渠化工程课程设计

渠化工程课程设计
渠化工程课程设计

《渠化工程学》课程设计

1 设计目的

课程设计的目的在于巩固和加深课堂中所学的基本概念和基本理论,了解渠化工程(主要指船闸)设计的一般原则、步骤和方法,树立正确的设计思想,培养和提高计算、绘图的基本能力。 2 设计任务

通过渠化工程课程设计,可以将所学的基础课和专业基础课同专业知识有机的结合起来,使学生更好地明确学习目的,加深专业印象,为今后从事航道及通航建筑物的勘测、规划、可行性研究、设计、施工和科学研究工作打下坚实的基础,以达到本专业培养目标的要求。 3 基本内容与要求

船闸总体平面布置及设计标准

船闸及引航道在枢纽中的布置 1.船闸的布置 (1)布置原则:

①船闸在通航期内应有良好的通航条件,满足船舶安全迅速通畅过闸,并有利于运行管理和检修;

②遵照综合利用、统筹兼顾的原则,正确处理船闸与溢流坝、泄水闸、电站等建筑物之间的关系和矛盾,优化布置,以发挥最大的综合效益;

③根据国民经济发展规划,做到远近结合,既要满足设计水平年内航运的需要,又要考虑远景发展,充分留有余地;

④在满足航运要求的前提下,应尽量选择经济合理、工程投资少、能就地取材、施工方便的方案;

⑤对大、中型和水流泥沙条件复杂的工程应进行模型试验,优选布置方案。 (2)布置方式:采用闸坝并列式。 2.引航道的布置

(1)引航道的布置方式:采用对称型式。 (2)引航道尺度

1)引航道宽度0B :单线船闸且停泊段只一侧停泊等候进闸的船舶 因为,0B ≥211b b b b c c ?+?++=+++*= 所以,取0B =40m 2)引航道长度 ①导航段长度1l : 因为,1l ≥c L =160m

所以,取1l =160m ②调顺段长度2l :

因为,2l ≥c L )0.2~5.1(=~*160=240~320 m

所以,取2l =320m

③停泊段长度3l : 因为,3l ≥c L =160m

所以,取3l =160m

④过渡段长度4l :

因为,4l B ?≥10=10*(60-40)=200m 所以,取4l =200m ⑤制动段长度'4l :

因为,'4l =C L α 且取α=

所以,'4l =3*160=480m 3)引航道的最小水深0H :

因为本设计船闸为Ⅰ级船闸,所以引航道最小水深应满足 1.5T H 0≥(T 表示设计最大船舶(队)满载吃水)。即 1.5T H 0≥=*2=3m ,取0H =3m 。 4)弯曲半径和弯道加宽

①引航道的最小弯曲半径R : 因为,C 4L R ≥=4*160=640m 所以,取R =640m ②弯道加宽值B ?:

因为,)B 2R (L B 02C +=?=)40640*2(1602+= 所以,取B ?=20m

3.口门区的防沙和水流条件要求 (1)口门区的防沙:

船闸宜布置在顺直稳定河段,上、下游引航道口门应尽可能避开易淤积部位,尤其是凸岸淤积区及回流、环流淤积区。如因当地条件限制,找不到合适的河段时,则应通过论证,证明可采取工程措施达到通航要求,才可布置。对泥沙淤积影响较大的船闸,应考虑布置防淤清淤设施,以保证引航道尺度。 (2)口门区的水流流速:

口门区是过闸船舶进出引航道的咽喉。因此在通航期内,引航道口门区的流速、流态应满足船舶(队)正常航行的要求。并应尽量避免出现不良的流态,如泡漩、乱流等,如因条件限制不能避免时,则须采取措施,消减到无害程度。在《船闸总体设计规范》中,引航道口门区水面最大流速限值见下表。

因为本设计船闸为Ⅰ级船闸,所以平行航线的纵向流速不应大于s ,垂直航线的横向流速不应大于s ,且回流流速不应大于s 。 船闸型式选择 1.船闸线数和级数

(1)船闸线数:船闸线数是船闸规模的重要部分,应根据船闸设计水平年的客、货运量,过闸的船型船队组成,地形地质条件,船闸所在河流的重要性等因素,结合船闸尺度及通过能力、船闸级数,综合论证选择。本设计船闸采用单线船闸。 (2)船闸级数:船闸级数直接影响船闸的通过能力。船闸级数的选择,应根据船闸总水头、地形、地质、水源、水力学等自然条件和可靠性、技术条件、管理运用条件等,通过经济技术比较确定。由于单级船闸较多级船闸具有过闸时间短、

通过能力大、故障较少、检修停航时间较短,占线路较短、枢纽布置较易(如需设冲沙建筑物等)和管理方便等优点,因而是最广泛采用的形式。本设计船闸采用单级船闸。

2.船闸建设规模及标准

(1)船闸的基本尺度:船闸的基本尺度是指船闸正常通航过程中,闸室可供船舶安全停泊和通过的尺度,包括闸室有效长度、有效宽度和门槛水深。

①闸室有效长度x L :闸室有效长度x L 等于设计最大船队长度加上富裕长度,即:

x c f L L L =+ 式中:f L —闸室的富余长度(m )。对于顶推船队:c l 06.02L f +≥ 所以,闸室有效长度x L =160+(2+*160)=。取x L =172m 。

②闸室有效宽度x B :闸室有效宽度x B 是指闸室内两侧墙面最突出部分之间的最小距离,为闸室两侧闸墙面间的最小净宽度。

f c b b +∑=x B c f b n b b )1(025.0-+?=

式中:c b ∑—只有一个船队或一艘船舶单列过闸时,则为设计最大船队或船舶的宽度c b ; b ?—富余宽度附加值(m ),因为7m 8.10≤=m b c ,所以1m ≥?b ,取

b ?=1m ;

n —过闸停泊在闸室的船舶列数。

所以,闸室有效宽度f c b b +∑=x B =,取x B =12m

③门槛最小水深H :门槛最小水深是指在设计最低通航水位时门槛上的最小深 度。我国船闸设计规范采用门槛水深大于等于设计最大船舶(队)满载吃水的 倍,即

1.6T H ≥

所以,门槛最小水深 3.2m 2*1.6H =≥,取H=4m 。 ④船闸最小过水断面的断面系数η:

1.5~

2.0≥Φ

Ω=η

式中: Ω — 最低通航水位时,船闸过水断面面积㎡

Φ — 最大设计过闸船舶(队)满载吃水时船舶断面水下部分

的断面面积(㎡)

所以,船舶的最小断面系数ΦΩ=η=(12*4)/(*2)≈,满足要求。 (2)船闸设计水位和各部分高程 1)船闸设计水位:

2)船闸各部分高程 ①船闸闸门顶高程:

根据国内船闸设计和运用实践,闸首门顶超高可采用下表的数值:

上闸首闸门顶高程=校核洪水位+超高=+=

下闸首闸门顶高程=上游设计最高通航水位+超高=203+= ②闸首墙顶高程:

上闸首墙顶高程=上闸首闸门顶高程+构造高=+1= 下闸首墙顶高程=下闸首闸门顶高程+构造高=+1=

③闸室墙顶高程=上游设计最高通航水位+空载干舷高度=203+= ④闸室底板顶部高程=下游设计最低通航水位-闸室设计水深== ⑤闸首门槛顶高程:

上闸首门槛高程=上游设计最低通航水位-门槛水深=200-4=196m 下闸首门槛高程=下游设计最低通航水位-门槛水深== ⑥引航道底高程:

上游引航道底高程=上游设计最低通航水位-引航道最小水深=200-3= 下游引航道底高程=下游设计最低通航水位-引航道最小水深== ⑦导航建筑物和靠船建筑物顶高程:

上游导航建筑物顶高程=上游设计最高通航水位+最大空载干舷高度=203+= 下游导航建筑物顶高程=下游设计最高通航水位+最大空载干舷高度=+=192m 船闸通过能力和耗水量

1.船闸通过能力:船闸通过能力是指单位时间内船闸能通过的货物总吨数(过货能力)或船舶总数(过船能力),是船闸的一项重要经济技术指标。 (1)船舶过闸时间(单级船闸)

1)进出闸时间:船队进出闸时间,可根据其运行距离和进出闸速度确定。对单向过闸和双向过闸方式应分别计算。

双向进闸距离是船队自引航道中停靠位置至闸室内停泊处之间的距离,双向出闸距离是船队自闸室内停泊处至双向过闸靠船码头的距离。单向进闸距离是船队自引航道中停靠位置至闸室内停泊处之间的距离,出闸时,是船队自闸室内停泊处至船尾驶离闸门之间的距离。其距离可分别按下式近似确定:

单向进闸:)

1(L L 1C 1α+==172*(1+= 单向出闸:)

’1(L ’L 1C 1α+==172*(1+= 双向过闸:212C 22)

1(L ’L L l l +++==α=172*(1++160+320= 根据《船闸设计规范》差得单向进闸速度1V =s ,单向出闸速度1’V =s ,双向进闸速度2V =s ,双向出闸速度2’V =s 。

进出闸时间可按下式计算: 单向进闸:111/t V L ===

单向出闸:114'/'t V L === 双向进闸:221/t'V L === 双向出闸:224'/'t'V L ===

2)开启、关闭闸门时间2t :闸门启闭时间与闸门型式和闸首口门宽度有关,当闸首口门宽为12m 时,取2t =2min 。 3)闸室灌泄水时间3t :船闸灌泄水时间与水头,输水系统型式,闸室尺度等有关,取3t =8min 。 4)船队进出闸间隔时间:取5t =5min 。

5)单向一次过闸时间:54321122

4T t t t t t ++++==+4*2+2*8++2*5= 双向一次过闸时间:

5432124

’224’2T t t t t t ++++==2*+4*2+2*8+2*+4*5= 6)过闸时间:单级船闸一次过闸时间可按下式计算:

)2

T T (21

T 21+==

(2)日平均过闸次数n 可按下式计算:

60

n T

τ?=

=21*60/=,取n=26

(3)一次过闸平均载重吨位G :根据运量预测,一顶+2*1000t 船队约占30%,一顶+2*500t

船队约占50%,一顶+2*300t 船队约占20%

G=2000*30%+1000*50%+600*20%=1220t

(4)船闸通过能力P :

β

αNG n )n (21P 0-==*(26-2)*352*1220*=333(万t/年)

2.船闸耗水量:船闸的耗水量是船闸的一项重要的经济技术指标。船闸的耗水量包括船舶过

闸用水量和闸、阀门漏水量两部分。 (1)单级船闸单向一次过闸的用水量

①单级船闸单向一次过闸的用水量:CH V 0==(172*12)*()=526323

m ②单级船闸双向一次过闸的用水量(用水量为单向一次过闸用水量的一半):

0021

’V V =

=263163m ③39474)’V (2

1’V'0

00=+=V 3m (2)闸阀门漏水量:u e q =

式中:e —止水线每米上的渗漏损失(3m /s/m ),当水头小于10m 时,其e=~3

m s/m ,当水

头大于10m 时,取e=~3

m s/m u —闸门和阀门边沿止水线的总长度(m ),即

①闸门止水线:m h n 10430*37*232l =+=+

②阀门止水线:2*3*=15m

所以,q=*(104+15)=3

m (3)船闸一天内平均耗水量:

12.490.3578640026

*52632*0.75q 86400n 0.75V Q 0—

=+=+=

3m

输水系统型式选择及水力计算 船闸输水系统型式选择:船闸输水系统的型式可分为集中输水系统和分散输水系统两类型。输水系统类型可根据以下判别系数初步选定:

H

T m =

式中:H —设计水头(m )

T —闸室灌水时间(min )

因为 1.5825.5

8

==

m ,所以才用分散输水系统。 分散输水系统

1.分散输水系统的水力特性:

分散输水系统是通过设置在闸室墙或底板内的纵向输水廊道,以及与之相连的分支廊道和出水支孔,将水流灌入或泄出闸室内。与集中输水系统相比,分散输水系统的出水口沿一定长度分度,水流均匀进入闸室,可大大减少水流作用力,特别是波浪力。同时由于廊道较长,水流惯性力影响较大,导致各出水支孔出流不均匀,而且随流量和时间变化。在阀门开启初期水流为加速流,惯性阻滞流速的增加,使得各出水支孔的出流沿水流方向减少。随着惯性逐渐减小,压力增加,在廊道断面及各支孔断面不变情况下,后面支孔出流逐渐增多并超过前面支孔。而后惯性的作用又转为阻滞流速的减小,后面支孔的出流更加的到加强。由于各出水支孔为非恒定流,再加上出水支孔一般布置在闸室的一定范围内,因而形成闸室内的波浪运动及纵向水流而对船舶产生波浪力及流速力。 2.分散输水系统的型式:

因为设计水头H=20~30m ,所以采用较复杂式分散输水系统。 3.分散输水系统的布置原则:

(1)闸室出水段中心宜与闸室面积的中心重合,闸墙长廊道侧支孔和闸底长廊道顶支孔输水系统的出水段宜设置在闸室中部,其长度为闸室长度的1/2~2/3; (2)输水系统的进出口应布置为流线型,以提高输水效率。进口断面的最大平均流速不宜大于s ,进口淹没水深应大于倍设计水头,并应该考虑进口水面的局部跌落。出口的淹没水深宜大于,布置应能分散水流,减弱出口水流的紊动并达到引航道内流速分布均匀的目的;

(3)中、高水头船闸的上、中闸首帷墙立面宜做成斜面,以避免当闸室水面上升至帷墙顶面平台时,水域面积有较大的突变,从而恶化船舶的停泊条件; (4)分散输水系统的阀门段前后应有一定长度的直线段,以使水流顺直均匀地通过。同时阀门段及其以后的廊道顶部高程必须布置在下游最低通航水位以下,并有一定淹没水深,不容许掺入大量空气而恶化船舶的停泊条件;

(5)阀门段高程应满足阀门工作条件要求,门口廊道型式应根据工作条件选择,有扩大、向上渐扩和突然扩大三种型式,其布置应通过模型试验确定;

(6)阀门后廊道压力较低时,上中闸首的下游侧检修门与工作门的距离宜大于廊道高度的3倍,必要时需在检修门井内作防止掺气的封闭措施;

(7)当上、中闸首输水阀门廊道段的压力较低或出现负压时,其后的检修阀门门槽距工作阀门的距离应大于廊道高度的3倍,以避免检修阀门井掺气。必要时需在检修阀门井内廊道顶部高程处加设防治掺气的封闭措施;

(8)输水系统的主廊道断面一般可大于输水阀门处廊道断面,以增大输水系统的流量系数;

(9)闸墙长廊道室内输水系统的布置尤其是出水支孔的布置应尽可能对称,横支廊道宜交错布置;

(10)条件允许时,应优先考虑采用部分或全部由引航道外取水的旁侧进口和由

引航道外的旁侧出口的布置。 船闸水力计算

1.输水系统设计及水力计算

(1)本设计输水系统采用全段横支廊道出水盖板消能输水系统。根据《船闸输水系统设计规范》确定输水系统廊道各细部尺寸(如进出口、转弯、直线段、阀门段等断面),其布置及尺寸见附图1。 (2)水力计算

1)输水阀门处廊道断面面积: ①对于分散输水系统,由于廊道较长,输水过程中水流产生的惯性水头影响较大。因此,在水力计算中应考虑惯性水头的影响,即:

v t g

d

H C T )1(2d 2=

αμω-+-+

式中:ω—输水阀门处廊道断面面积(2m )

C —对于单级船闸,22064m 12*172C ==Ω=(Ω:闸室水域面积) H —设计水位差(m )

d —惯性水头,分散输水系统的惯性水头可达~。取d=。

μ—阀门全开后输水系统的流量系数,初步设计时可取为~.取μ=。

α—与阀门型式和流量系数有关的系数,可按《渠化工程》表5-5选用。

本设计采用反向弧型阀门,α=。

T —闸室灌、泄水的总时间,T=960s 。 v t —阀门开启时间(s ),取v t =60s 。 所以,输水阀门处廊道断面面积ω=2m ,即阀门处廊道断面尺寸为*3(宽*高)。 ②阀门开启时间v t (s ):

g

2)

H -H (2C t V v αμω=

=60s

式中:V H —阀门全开时水位差(m ),取V H =24m 2)输水系统的阻力系数和流量系数:

①流量系数c

vn t ’1

ζζζμ++==

式中:vn ζ—与时间t 相当的阀门开度为n 时的阀门局部阻力系数,可按不同阀门

型式由《渠化工程》表5-4选取。取vn ζ=0;

'ζ—阀门井或门槽的阻力系数,对反向弧型阀门'ζ=0;

c ζ—阀门全开后阀门段以外的输水廊道系数。2

i

i

)(ωωζζ∑=c =。 a.进口处阻力系数0.11=ζ

b.圆滑转弯处阻力系数0.243=ζ

c.扩大处阻力系数0.814=ζ

d.收缩处阻力系数0.55=ζ

e.出口处阻力系数0.76=ζ

②输水系统的阻力系数2

i

i

)(ωωζζζ∑==c = 3)输水廊道换算长度:)(i

i

ωωl l p ∑= 根据《船闸输水系统设计规范》,由于本设计船闸出水支孔的数量大于15,所以p l =*8=4m 。

4)惯性超高值:C

l p

ωμ2d =

式中:C —闸室水域面积,C=172*12=20642m

μ—阀门全开时输水系统的流量系数,μ= ω—输水阀门处廊道断面面积,ω=2m p l —输水廊道换算长度,p l =4m 所以,闸室水面惯性超高值d=1mm 2.水力特性曲线的绘制:绘制水力特性曲线一方面可以了解输水过程中所有水力特性的变化情况及其最大值,另一方面可以进一步进行水力计算的需要,如核算船舶停泊条件、阀门工作条件等。 (1)流量系数与时间的关系曲线

1)假定阀门匀速开启,且开启时间为60s ,则阀门开度与时间的函数关系为

t 60

1n =;

2)ζ与阀门开度的关系:

3)流量系数与时间的关系曲线:c

vn t ’ζζζμ++=('ζ=0,c ζ=)

(2)水位差与时间的关系曲线

1)阀门全开后,当考虑惯性影响时,任一时段末的水位差可按下式计算:

d C

g t h h -?-

+=2

12)22d (μω

式中:2h —计算时段末的水位差(m );

1h —计算时段开始的水位差(m );

t ?—计算时段(s ),一般可取为10~30s 。取t ?=20s ; mt μ—计算时段的平均流量系数;

d —惯性水头(m ),取d=。

(3)流量与时间的关系曲线

1)流量与时间关系曲线可通过下列公式计算求得:

)(2Q t t t t d h g +=ωμ

dt

dv g l d p t *=

式中:t μ—时刻t 的流量系数; t h —时刻t 的水位差(m ); t d —时刻t 的惯性水头(m ); p l —输水廊道换算长度(m );

v —阀门段廊道断面平均流速(s m /2

3.闸室内停泊条件的验算 (1)闸室内船舶的停泊条件

1)分散输水系统的水流是在较大范围内分散流入或流出闸室,水流对船舶的作用力较小,尤其是在泄水时它的值更小,因此分散输水系统泄水时,闸室内船舶的停泊条件一般可不加考虑,而只验算灌水时的停泊条件。

2)闸室灌水初期,波浪力最大,此时流速力和局部力几乎为零,因此闸室灌水时,过闸船舶的停泊条件可按下式核算:

L P )

(2P ≤-=

x t gH

DW k c v r b ωω

式中:b P —灌水初期的波浪作用力,KN ; W —船舶(队)的排水量,t ;

r k —与阀门型式有关的系数,对反向弧型阀门取; ω—输水阀门处廊道断面面积,2m ;

D —波浪力系数;按《渠化工程》表5-6选取,取D=; c ω—初始水位时闸室过水断面面积,2m ; H —设计水头,m ;

v t —输水阀门开启时间,s ;

x —船舶中腰水下横断面面积,2m ;

L P —允许系缆力的纵向水平分力,KN 。根据《渠化工程》表5-1选取,

L P =40KN 。

33KN )

2*10.84*12(*6025.5

*9.8*2*)80*2*10.8(*0.3*7.25*0.623P 因为=-=

b

所以L P P ≤b ,满足泊稳要求。 闸阀门及启闭机型式选择 闸门型式选择及门扇尺寸确定 1.闸门型式的选择:

本设计船闸采用平面人字闸门,在平面人字闸门中,门扇结构成平面形式,其主横梁受轴向力和弯矩的共同作用。根据门扇结构梁格的布置方式,本设计采用横梁式,其水平的主横梁是它的主要承重构件,在主横梁间布置竖立次梁。水压力由面板和次梁传给主横梁,然后再由主横梁通过斜接柱、门轴柱上的支垫座和枕垫座形成三角拱而传至闸首边墩。 2.门扇尺寸的确定

(1)门扇长度:门扇的计算长度n l 是门扇支垫座的支承面到两扇门叶互相支承的斜截面的距离。其值可由下式求得:

θ

cos 22l n c B k +=

式中:k B — 闸首边墩墙面间的口门宽度(m );

c — 由门扇的支垫座与枕垫座的支承面至们龛外缘的距离,通常c=(~)k B ;

θ — 闸门关闭时门扇轴线的倾角,此倾角的大小直接关系到门扇结构所受的轴向压力与传递到闸首边墩的水平推力以及门扇计算长度n l 的大小。国内已建船闸中,θ一般选用??20或5.22。取θ=?20。

所以, 7m 20cos 2)

12*0.05(*212l n =?

+=

(2)门扇高度:门扇高度是指闸门面板底至顶的距离,其值可由下式决定:

m k h k ±++=H h

式中:H —上游设计洪水位与下游最低通航水位之间的水位差; k h —船闸的槛上水深;

k —闸门面板顶在上游设计洪水位以上的超高,一般取~;

m —闸门面板底与门槛顶的高差,通常取m=~;当闸门关闭,门底止水

位于门槛侧面时取正值,在门槛顶面时取负值。

所以,30.2m 0.20.5425.5h =+++=,取h=30m 。 (3)转轴中心的确定:

1)在确定门扇旋转中心位置时,应使闸门的支垫座与枕垫座的支承面有良好的接触条件。在闸门转动时能立即脱开,以减小启闭时的摩阻力,而当闸门关闭时它们又能相互挤紧,以传递主横梁的反力,并使门侧止水效果良好。同时还应使门扇全开时能完全隐入门龛内,以免过闸船舶碰坏门扇。因此,在安装闸门时,必须精确的校正门扇转轴中心的位置。

2)当闸门支承部分的型式不同时,确定转轴中心的方法也不一样。当门轴上装设支垫座时,转轴中心的位置可按以下步骤进行:

①绘出门扇关闭时的轴线、轮廓线以及支垫座与枕垫座支承面的法线,即反力A R 的作用线(与门扇轴线成θ角);

②绘出门扇开启时的轴线,此轴线的位置可从闸墙边缘按门扇全部隐于门龛

中并使门扇各部分保持10~20cm的余隙而求得;

③从两轴线的交点上作其相应补角的等分线,则转轴O应位于此补角的等分线上;

④将反力

R作用线向上游平行移动,距离为m=4~10cm,平行于反力作用线A

的线,与补角等分角线交于O,即为转轴位置。这就使得当门扇开启时,支垫座易于离开枕垫座,而当关门的最后瞬间两者才互相接触而抵紧;

⑤校核转轴O是否位于止水内侧的法线(垂直于闸首边墩表面)以内,否则应将止水向外移动一段距离,以免开门时止水被闸墙卡住。

阀门型式选择及尺寸确定

1.阀门型式的选择:

本设计采用反向弧形阀门。在构造上反向弧形阀门与弧形闸门基本相同,只是将弧面朝向下游。它主要由面板、主梁、次梁、肋板、支臂等组成。为改善流态,门扇和支臂可以用薄板完全包封,做成流线型。

2.反向弧形阀门的轮廓尺寸

(1)阀门面板的曲率半径:一般取决于阀门处廊道孔口高度h,在工程实践中常取曲率半径R等于(~)h,取R=。

(2)阀门支绞中心的高程:应使支绞及支绞大梁不受水流的直接冲击,一般略高于廊道顶面约(~)h,取阀门支绞中心的高程为=。

(3)门顶高程:与门顶止水及止水埋设构件的型式、布置有关。一般在廊道顶面以上~,取门顶高程为。

(4)阀门井的轮廓尺寸:应便于阀门的安装和检修,井内应有供井下检修工作的场地及进入井内的爬梯。阀门井的长度可取为阀门弧面最大弦长加~,其侧向的富余宽度一般为~。

闸阀门启闭机型式选择

1.闸门的启闭机械:本设计采用刚性拉杆式启闭机械。

2.阀门的启闭机械:本设计采用液压启闭机械启闭,通过刚性拉杆将阀门与油缸的活塞杆相连。

闸室结构设计

闸室结构型式选择

船闸闸室是由上、下闸首的两侧闸墙环绕而形成的空间,是船闸实现其调整水位、升降船舶、使船舶克服航道上集中水位落差的结构。由闸室墙和闸底构成。为保证过闸船舶能随闸室水面安全地升降和可靠地停泊,闸室中设有系船设备和其他辅助设备。本设计船闸采用分离式闸室结构(选用透水闸底),即闸墙和闸底分别设置。其闸墙型式采用重力式。

初步设计

1.作用在船闸结构上的荷载

(1)作用荷载(取单宽)

1)自重:

G1=1*()*25=150KN

G2=(1+4)*()/2*25=1250KN

G3=(4+5)*()/2*8=180KN

G4=4*6*18=432KN

G5=(4+)*()/2*18=864KN

G6=*()/2*8=16KN G7=11*5*25=1375KN G8=12*()*10=480KN

KN G

G 47478

1

运==

KN G

G 26747

1

检==

2)土压力

(1)结合我国船闸建设经验,作用在船闸结构上的土压力状态应根据以下情况考虑:岩基上的重力式结构,由于墙身变位受到限制,主动极限平衡状态一般难以发生,墙后填土应按静止土压力计算。

(2)各土层界面上(包括地下水位线)的静止土压力强度oi P ,如图所示:

’sin -1K 0?== o1P =0kpa

o2P =10h K γ=*18*()=234kpa

o3P =)h ’

h (K 210γγ+=234+*8*土压力合力土P =*234*()+*(234+274)*)静水压力,如图所示:

闸室内的静水压力1P =10*()=40KN

地下水产生的静水压力2P =10*()=100KN

静水压力合力水运P =*100*()- *40*()=420KN 水检P =*100*()=500KN

4)扬压力:

①作用于建筑物基础底面垂直向上的总水压力称为扬压力,包括浮托力和渗透压力。

②扬压力的分布如图所示:

h γ=10*H γ扬压力合力扬运P =*(90+100)*22=2090KN 扬检P =*100*22=1100KN

5)船舶荷载

①船舶荷载包括:船舶进行时,船舶对建筑物的撞击力;船舶停靠时,由系船设备传到建筑物上的系缆力。至于停靠在建筑物前的船舶受风力作用而产生的横挤力,一般比撞击力小,在船闸设计中多不予以考虑。 ②船舶的撞击力:

a.KN W k c 6.129)80*2*8.10(*1*9.09.0P 3232===

b.撞击力的分布长度可按下列公式计算:

y y 3

2

L = (d y b L L 2≤≤)

式中:y L —沿墙长方向的分布长度(m ); y —撞击点至计算截面的高度(m ); b —计算截面处的墙厚度(m );

d L —墙分块长度(m )。 (3)船舶的系缆力:

①船舶系缆力由配缆破断力计算确定。设计时,可根据过闸船舶的载重量,按《渠化工程》表6-3选用。取系缆力值N=100KN 。

②船舶系缆力在建筑物长度方向上的分布与船舶撞击力相同。 6)闸面活荷载:

闸面活荷载的大小决定于船闸的运转方式。通常情况下,过闸船舶不用岸上曳引设备,可只考虑人群荷载,并考虑船闸检修期墙后堆放少量材料或使用轻便设备机械的要求,闸面活荷载通常取为2~5kpa 。当闸面有汽车、牵引车通行或堆放材料时,应根据具体情况确定。取闸面活荷载q=5kpa 。 (2)计算情况及荷载组合:

1)作用在船闸结构上的荷载,可能以不同组合方式出现。在设计计算时,不可能也不必要对所有的组合方式都进行计算,一般都选取起控制作用的组合方式进行计算。本设计针对运用情况、检修情况进行验算。

(1)抗滑稳定性验算

本设计采用抗剪强度计算公式,其抗滑稳定安全系数可按下式计算:

H

V f ∑∑=c k

式中:f —墙体与地基接触面的抗剪摩擦系数,取f=;

V ∑—作用于墙体上全部荷载对滑动面切向投影的总和,KN ;

H ∑—作用于墙体上全部荷载对滑动面切向投影的总和,KN 。 1) 运用情况:活扬运8

1

-P P G

V +=

∑∑=4747-2090+5*5=2682KN

N H +++=∑c 水运土P P P =5582+420++100=

1.12

2.06

.62312682

*5.0k c ≤==∑∑=

H V f 2) 检修情况:活扬检7

1

-P P G

V +=

∑∑=4267-1100+5*5=3192KN

水检土P P +=∑H =5582+500=6082KN

1.050.266082

3192

*5.0k c ≤==∑∑=

H V f 显然,闸室墙抗滑稳定性的验算结果不能满足规范规定的要求时,可采取适当措施提高闸室的抗滑稳定性。其措施有:在两侧闸墙之间的闸底处设置横撑;在闸墙基底设置齿墙;降低墙后地下水位和填土高度;或在基底更换摩擦系数较大的砂土(砂垫层)等。 (2)抗倾稳定性验算

闸室墙的抗倾稳定性按下式计算:

R

0M M k =

式中:0k —抗倾覆稳定安全系数,按船闸设计规范规定选用;

0M —对计算截面前趾的倾覆力矩,是由土压力、水压力及渗透压力等产生

的力矩(KN ·m );

R M —对计算截面前趾的稳定力矩,是由自重或上部荷载产生的力矩

(KN ·m )。

1) 运用情况:

R M =活水稳G M M M ++

=(150*+1250*+180*+432*+864*+16*)+80*+25*=·m 0M =船扬水倾土M M M M +++

=5582*+125*4/3+2090*4/3++100)*=·m

2) 0k =

R

M M ==≤检修情况: R M =活G M M +

=(150*+1250*+180*+432*+864*+16*)+25*=·m

0M =扬水倾土M M M ++

=5582*+125*4/3+2090*4/3= KN ·m

0k =

R M M ==≤显然,闸室墙抗倾稳定性的验算结果不能满足规范规定的要求

时,同样需要采取适当措施提高闸室的抗倾稳定性。

(3) 截面强度验算(如图取三个截面进行截面强度验算) 1)运行情况 截面Ⅰ:

1M =(*18*6)*6/2*(6/3)=324 KN ·m 11111F V W M +=∑σ=+324/(1*1/6)= 截面Ⅱ:

2M =*18*26)*26/3*(26/3)++100)*= KN ·m

22222F V W M +=

∑σ=+(1*2

4 /6)=

截面Ⅲ:

3M =*31*274*31/3+125*4/3-80*++100)*= KN ·m

3

3333V W M +=

∑σ=+(1*2

5/6)= 因为钢筋)HRB335混凝土,C30(Pa 11.92Pa 1.081max M M ≤=σ, 所以满足运用情况的设计要求。 3) 检修情况 截面Ⅰ: 1’M =(*18*6)*6/2*(6/3)=324 KN ·m

1

1

1

1’F ’V ’W

M +=

∑σ=+324/(1*1/6)=

截面Ⅱ: 2’M =*18*26)*26/3*(26/3)=17576 KN ·m

2222’F ’V ’W M +=

∑σ=+17576/(1*

2

4 /6)= 截面Ⅲ: 3’M =*31*274*31/3+125*4/3= KN ·m

3

3

3

3’F ’V ’W

M +=

∑σ=+(1*25/6)=

因为钢筋)HRB335混凝土,C30(Pa 11.92Pa 11.11max M M ≤=σ, 所以满足检修情况的设计要求。 3.墙后排水设施和回填土的设计

(1)墙后排水设施:墙后拟采用排水管排水,排水管的起点布置在闸室起点处,排水管高程位于闸室内最低通航水位上1m 处,即高程为。

(2)回填土:墙后回填土采用原地挖方,并回填至闸室墙顶高程。即?==30',18KN/m 3?γ.

参考文献: (1)《船闸总体设计规范》,人民交通出版社,2002 (2)《船闸水工建筑物设计规范》,人民交通出版社,2002 (3)《船闸输水系统设计规范》,人民交通出版社,2002 (4)《船闸闸阀门设计规范》,人民交通出版社,2003 (5)《港口航道与海岸工程专业毕业设计指南》,鲁子爱主编,中国水利水电出版社,2000 (6)《船闸设计》,王作高主编,人民交通出版社, (7)《航道工程学Ⅱ》,詹世富主编,人民交通出版社, (8)《渠化工程学》,刘晓平、陶桂兰主编,人民交通出版社,

渠化简答题答案

河流渠化是在天然河流上建筑一系列拦河闸坝和通航建筑物,利用闸坝壅水作用增加上游河段的通航水深,利用通航建筑物来克服筑坝后所形成的水位落差,以达到改善航行条件的目的。 1、渠化河段是否连续,河流渠化分为:连续渠化和局部渠化;渠化水头大小,河流渠化分:高坝渠化和低坝渠化。 2、渠化工程规划的程序:预可行性研究阶段、工程可行性研究阶段、初步设计阶段。 3、为综合利用水资源,在渠化工程中,通常需要建造不同的水工建筑物,并把它们有机地组合在一起,以发挥枢纽更高的使用效果,这些建筑物的综合体称为渠化枢纽。 5、通航建筑物主要有船闸和升船机两大类。 4、渠化枢纽一般由挡水建筑物,泄水建筑物,通航建筑物,水电站,坝岸连接及护岸建筑物组成。 6、船闸主要由闸首、闸室、输水系统、引航道、导航和靠船建筑物及相应的设备组成。 7、船闸的类型(1)按船闸的级数分为:单级船闸和多级船闸(2)按船闸的线数分为:单线船闸和多线船闸;(3)按闸室的型式分为:广式船闸、具有中间闸首的船闸和井式船闸。 8、升船机的组成:承船厢、支承结构或斜坡道、闸首、机械传动机构、事故装置、电气控制系统。 9、升船机的类型(1)按承船厢载运船舶的方式分为:湿运和干运;(2)按承船厢的运行路线分:垂直升船机、斜面升船机。其中垂直升船机根据平衡方式,分为提升式、均衡重式、浮筒式以及水压式10、水电站的基本类型:坝式水电站、河床式水电站、引水式水电站(分为无压引水式和有压引水式水电站) 11、船闸基本尺度是指船闸正常通航过程中,闸室可供船舶安全停泊和通过的尺度,包括闸室有效长度、有效宽度和门槛水深。 14、门槛最小水深指在设计最低通航水位时门槛上的最小深度。 12、闸室有效长度是指船舶过闸时,闸室内可供船舶安全停泊的长度。闸室有效长度Lx等于设计最大船队长度加富余长度Lx=Lc+Lf 17、船闸设计通航水位通常包括船闸设计通航水位、船闸校核水位和船闸检修水位。 13、闸室有效宽度是指闸室内两侧墙面最突出的部分之间的最小距离,为闸室两侧闸墙面间的最小净宽度。 15、我国三峡船闸采用了连续5级双线船闸,是目前世界上总水头最高,连续级数最多的大型船闸。16、两个以上闸室纵向连续阶梯排列船闸称连续多级船闸 18、船闸高程包括船闸顶部高程和底部高程 19、影响船闸通过能力的因素有船闸的技术水平、外部条件、船闸管理水平 20、船闸通过能力系指单位时间内船闸能通过的货物总吨数(过货能力)或船舶总数(过船能力),是船闸的一项重要经济技术指标。 21、双向过闸是指一个方向的过闸船舶出闸后,另一方向等候过闸的船舶迎向进闸。 22、一次过闸时间是指船舶过闸时间,船闸完成循环运行操作所需时间,取决于船舶进出闸时的运行速度和船闸的技术指标。 27、引航道一般由导航段、调顺段、停泊段、过渡段、制动段组成。 23、凡为满足防洪、发电、航运、灌溉、引水等需要,在河流(含渠化河流、运河、灌溉渠道)修建具有综合用途的水工建筑物,都成为水利枢纽。30、船闸水工建筑物是船闸工程的主体,由闸首、闸室、输水系统、引航道、导航及靠船建筑物组成。 24、船闸布置方式一般分闸坝并列式和闸坝分离式。船闸布置在河床或河滩上,与其他水工建筑物紧靠,即为闸坝并列方式布置;若船闸布置在另外开挖的引河中,或利用河中的小岛与拦河坝、电站等水工建筑物分隔而自成体系,则为闸坝分离式布置。25、单线船闸引航道平面布置,一般有对称型、反对称型、不对称型等三种型式。 26、对称型:引航道宽度大时,船队进闸沿曲线行驶,出闸沿直线,出闸速度快,船闸通过能力大,宽度小时,船舶进出闸沿曲线行驶,进出闸速度慢,影响船闸通过能力。 31、作用于建筑物基础底面垂直向上的总水压力称为扬压力 28、船闸输水系统由进水口,阀门段,输水廊道, 出水口,消能工和镇静段组成,是完成闸室灌泄水 运行的主要设备。 32、作用于船闸水工建筑物上的荷载包括:1、建 筑物的自重力以及建筑物内部或上部填料重力2、 闸门、阀门及其他设备重量3、土压力4、静水压力 5、扬压力(作用在建筑物基础底面垂直向上的总水 压力称为扬压力,包括浮托力和渗透压力)6、船舶 荷载7、闸面活荷载8、波浪压力9、水流力10、地 震力 33、船舶荷载包括:船舶进行时,船舶对建筑物的 撞击力;船舶停靠时,有系船设备传到建筑物上的 系缆力。 34、闸室结构形式及其构造:船闸闸室是由上下闸 首和两侧闸墙环绕而形成的空间,是船闸实现其调 整水位、升降船舶、使船舶客服航道上集中水位落 差的结构。由闸室墙和闸底构成。闸室结构按其受 力状态可分为整体式结构和分离式结构两大类。1) 重力式结构按断面形式可分为梯形和衡重式两种。 2)悬臂式闸室的构造:由闸室、底板、和后悬臂组 成。3)扶壁式闸墙的构造:由立板、肋板和底板组 成,底板分趾板和内底板。4)衬砌式及混合式:当 基岩顶面高程高于闸墙顶高程时可用衬砌式闸室 结构。 29、船闸输水系统的形式可分为集中输水系统和分 散输水系统 35、闸室结构验算一般包括:抗滑、抗倾、抗浮稳 定性验算;渗透稳定性验算;地基承载力验算;结 构各部位强度计算和限裂计算等。 38、岩基上分离式闸室结构的闸墙常用的形式有重 力式、衬彻式和混合式。 36、闸首结构布置(上游连接为上闸首)闸首是将 闸室和上下游航道分隔开的挡水建筑物。其上一般 设有输水廊道、闸门、阀门、闸阀门启闭机械及其 相应的设备等。作用是:调整闸室内水位升降,使 船舶通过船闸,克服水位落差。闸首由墩墙和底板 所构成。闸首结构按其受力状态分为整体式结构 和分离式结构。 40、悬臂式闸室是由闸墙、底板、和后悬臂组成; 受力特点是只传递水平推力,不传递弯矩和剪力。 41、整体式闸首计算闸首结构必须根据结构特点进 行稳定性和强度计算。稳定性验算包括:整体抗滑、 抗倾、抗浮渗透稳定性验算和地基承载力验算。强 度验算包括:边墩强度,底板强度,局部强度验算。 42、分离式闸首计算边墩:需对横向的抗滑、抗倾 稳定性进行验算。分离式闸首的中间底板:承受 较大的浮托力,必须验算其抗浮稳定。 37、土基上 的分离式闸室结构的闸墙可分为重力式、悬臂式、 扶壁式、板桩式和地下连接墙等。 43、闸室结构验算一般包括抗滑、抗倾、抗浮稳定 性验算、渗透稳定性验算、地基承载力验算、地基 沉降计算、结构各部分强度计算和限裂计算等 44、闸室结构沉降计算的目的是计算地基沉降量和 沉降差,防止沉降量过多而引起的危害,并为确定 闸室墙顶高程以及止水构造和某些结构构造提供设 计依据。 39、重力式结构按断面形式可分梯形和衡重式两种。 1、.渠化工程规划的内容是什么? 答:渠化河流航道等级的拟定;渠化枢纽坝址的选 择及梯级布置方案的拟定;枢纽的平面布置及其主 要技术经济指标的计算;进行梯级布置方案的比较 及开发程序的确定。 2、船闸输水系统的设计应满足哪些基本要求? 答:(1)闸室灌水和泄水时间满足船闸设计通过能 力所规定的输水时间。(2)船舶在闸室及上下游引 航道内具有良好的停泊条件,承受的系缆力小于规 范允许值。(3)输水系统各部位不应因水流冲刷和 空蚀等造成破坏。(4)结构简单,施工及维修方便, 工程投资少。 3、渠化工程规划应该具备哪些基本资料? 答:渠化工程的规划,应按照预可行性研究、工程 可行性研究、初步设计不同阶段的要求进行设计资 料的收集。一、预可行性研究阶段(1.渠化河段的 经济营运资料。2.渠化河段的航道资料。3.渠化河段 的地质情况。4.地形资料。5.水文、泥沙气象资料。 6其他资料。)二、工程可行性研究阶段(1.渠化河 段的经济营运资料。2.地质资料。3.地形资料。4水 文、泥沙气象资料。5.不同总体布置方案的通航建 筑物、引航道回淤及口门通航水流条件,枢纽下游 河床冲淤变化情况的模型试验资料。6.渠化河段内 与淹没计算有关的不同频率洪水痕迹调查资料。8. 地区交通和堤防资料,渠化河段环保现状及评价资 料。9.与施工方案、施工组织有关的资料,工程单 价和定额等资料。)三、初步设计阶段(1.地质资料。 2.地形资料。 3.复核、补充拟定坝址处的水位、流量、 含沙量等资料。4.核实淹没补偿等资料。5核实渠化 河段两岸的道路交通、供水及供电等资料。6.编制 工程概算有关定额、地方材料及设备价格等资料。) 4、试述集中输水系统输水时闸室内波浪力产生的 原理及大小变化过程? 答:波浪力是由于流入或流出闸室的流量随着时间 而变化,水流由闸室一端向另一端推进,从而闸室 内形成纵向长波,使闸室水面倾斜产生的作用力。 在灌水初期,由于流量速度较大,闸室内水深较小, 停靠船舶的闸室过水断面较小,水面形成较大的倾 斜,波浪力是过闸船舶所承受的主要作用力,到中 期,流入闸室的水流能力比较大,局部力转为主要 作用力,波浪力慢慢减小。 6、.当船闸的闸室为透水闸底时,整个船闸的渗流 有何特点?(设船闸布置在坝轴线下游) 答:当闸室为透水闸底时,闸首和闸室均为独立的 挡水建筑物,闸首渗流自上游经上闸首底板向闸室 渗出,同时它也绕过闸首边墩向下游流动。就闸室 而言,当闸室排空时,闸室墙后回填土中的地下水 经过闸室墙底向闸室方向渗出。当闸室灌满水时, 渗流则向闸室墙后回填土渗出,因此闸室墙下的渗 流为双向渗流。随着船闸的灌水和泄水,作用在船 闸的水头在很短时间内将由最大值将为零,然后又 由零增长到最大值,从而渗流的方向也随着改变, 就使得船闸的渗流具有不稳定的性质。 7、渠化枢纽的主要技术经济指标包括哪些? 答:技术指标,航运、发电、淹没与防护、灌溉及 施工等项目;经济指标:主要工程量、淹没拆迁数 量、工程费用或工程总投资、工程综合效益及其他 社会效益等。 8、简述集中输水系统的水力特点? 答:灌入或泄出闸室的水体分别经上(下)闸首的 一端流入或流出。在灌泄水的过程中,水流的纵向 流动对船舶产生的作用力可以分为三部分:流速力、 波浪力和局部力。在灌水初期,由于流量增率大, 闸首内水深较小,停靠船舶处的过水断面较小,水 面形成较大倾斜,此时船舶主要受波浪力;泄水中 期,流入闸首水流具有较大的能量,局部力就转为 主要作用力;流速力大小主要取决于闸首内水流流 速大小,与波浪力和局部力相比,相对较小。 9、试述闸首底板纵向分段的原则? 答:一般根据荷载、刚度及跨度等因数划分,分段 原则是使特征段的底板有大致相同的断面;各段内 边墩的间距基本一致,作用在各段内的荷载沿纵向 变化较小。 11、进行闸首底板计算,为什么通常只进行横向强 度计算?而在工程如何横向强度计算的? 答:由于纵向有刚度较大的边墩存在,闸首底板纵 向变形很小,因此闸首底板的强度计算以横向为主。 闸首底板除受力属于空间状态外,其断面也因在闸 首上设置闸门门龛及输水消能设施等而发生变化, 因而闸首底板实际上为一变断面的空间结构,为简 化计算,一般将底板纵向划分为几个特征段,计入 不平衡剪力,按平面问题进行计算,然后考虑整体 影响,将各段所得的内力进行调整。 1、当岩层的顶面高程介于闸室底与闸墙顶高程时, 闸室墙一般采用什么结构?基岩顶面低于闸墙顶 高程时,可采用混合式结构,即基岩以上采用重力 式,基岩以下采用衬砌式结构,其构造分别按重力 式和衬砌式确定。P123 2、闸室的有效长度L x是指什么?设计最大船队长 度加富裕长度。P46 3、上游设计最高通航水位视船闸等级采用什么标 准?上游设计最高通航水位,可根据具体情况通过 论证后确定,但不应低于船闸建设前航道的通航标 准P50 4、在无粘性土中,渗流变形的主要形式是什么? 主要形式是流土和管涌两种。

渠化工程电子版

第一章绪论 第一节水运在国民经济中的作用 交通运输业是国民经济中的一个重要组成部分,它在国民经济中的作用如同人体的血液循环一样,时刻影响着整个社会的经济活动。现代交通运输共有铁路、公路、水路、航空和管道等运输方式。由于生产和消费的需要,各种运输方式根据本身的特点和具体条件合理分工,相互配合,扬长避短,各尽其用,形成一个综合运输体系。 水路运输(包括内河运输和海洋运输)是交通运输业中的一个重要部分。它对现代工农业生产,国防建设,以及改善人民生活和促进国际贸易与文化交流等都起着重要的作用。 目前,世界上工农业生产和科学技术比较发达的国家,都相当重视内河航运的建设,水运比较发达。例如,美国、德国、荷兰和俄罗斯等国,基本上都已建成了四通八达的航道网,其货物周转量仅次于铁路运输,在国民经济中占有重要的地位。 水运之所以重要,是由于它与其它运输方式相比,具有如下的优越性: 1.内河水道的建设可以密切结合水利资源的综合利用和综合开发 综合利用水利资源是我国水利建设的基本原则,许多水利工程的建设都为水运的发展创造了极其有利的条件。只要注重通航建筑物和航道的建设,兴建水利工程对内河航运事业能起着很好的促进作用。同时,内河航道的建设都是尽可能结合灌溉、防洪、供水、发电、渔业等方面综合进行的,因此,水运建设也可以取得多方面的综合效益。 2.水运的运输能力(即航道的通过能力)比较高 一条单线铁路的年运量约为3000万吨左右,而一条通航河流的运输能力远远超过这个数量,可以说几乎是不受限制的,如德国莱茵河1970年年运量就相当于20条铁路年运量。 3.水运的运输成本低 据以往调查,我国铁路平均运输成本比内河航运高5%。在国外,水运的运输成本一般仅为铁路的1/3~1/2,为公路的1/10~1/5。水运运输成本低的原因: (1)船舶的航行阻力小,因此在一定的航速下,利用水运运输货物所消耗的动力和燃料比其它运输方式低; (2)航道建设投资和维护管理费用较铁路或公路少。建设年通过能力100万吨的航道投资仅相当于铁路的1/10,公路的1/4~1/3。在运输工具制造方面,水运也比较经济,每一载重吨船的造价一般为铁路车辆的1/6~1/5,而且每一载重吨铁路车辆所需的钢材超出船舶1倍以上; (3)船舶的载重量大,而且自重所占的比重较小。目前国外大型船舶的载重量一般为4~5万吨,最高可达40万吨,这相当于几列火车或数千辆汽车的载重量。在整个载重量中,船舶自重仅占7.5%~28%,而铁路车辆的自重却相当于它的载重量的40%~60%。 4.由于河流的分布面广,使水运便于实行大、中、小结合及长短途运输的结合 船舶能装载各种类型的货物,特别是大宗散货、石油以及危险物资等。在同一条航道上,既可行驶大型船舶,为重要的工业建设生产服务,也可以行驶小型船舶,为短途运输,

城市交叉口渠化方法

城市交叉口渠化设计方法与评价 随着城市经济社会的不断发展,交通需求与供应之间的矛盾越来越突出,道路交通拥挤情况越来越严重,而在交叉口处“瓶颈”现象也日益突出。因此如何使车辆、行人迅速便捷地通过交叉口,是提高城市交通运行效率的关键。在交叉口除了通过信号灯等交通管理手段对车辆、行人进行控制外,交叉口渠化设计对于提高道路、交叉口的通行能力,缓解交通阻塞,降低事故等都具有很大的现实意义。交叉口的渠化设计方法,正是在这种背景下产生并发展起来的。 渠化设计具有投资少,见效快,极大地提高道路网络运输效率等优点。因此渠化设计已经越来越受到欢迎,但每个城市有各自的交通特点,同时各交叉口的情况又不尽相同。如何根据成都市具体情况,用渠化方法设计出具有成都特色的交叉口正是本文探讨和研究的重点。 1.渠化概念及渠化设计作用 道路交通渠化,就是在道路上使用交通标志、标线或用各种岛状构造物,或将路面漆刷成不同颜色,或利用护栏、分隔带、隔离墩以及其它设施和方法,对行人与各种不同车型、不同方向、不同速度及不同运动状态的交通流进行引导、隔离和管制,使交通实体像渠内水流一样顺着一定的方向和线路,互不干扰安全有序的运行,以达到分离和控制交通流的目的。 渠化设计的作用主要体现在2个方面:1是规范车辆行驶、减少车流冲突,有效组织车流有序地经过交叉口,最大限度地发挥道路资源的利用率;2是能够有效地保证行人和自行车的安全,减少车流的冲突。 2.成都市交叉口特色 2.1交通组成复杂、交通组织困难 如图1所示为成都市居民出行方式的构成图,以及部分城市的出行方式构成表(表1),由图表可知,成都交通方式中步行和自行车所占比例很大,其中电动自行车的比例比其它城市更大。这样在一定程度上加剧了成都市交叉口交通组成的复杂度,尤其是非机动车与机动车之间的矛盾比较突出,而且电动自行车的速度介于自行车和机动车之间,电动自行车与非机动车之间也存在着矛盾冲突,这种特殊的情况也将导致成都市交通交叉口设计的特殊性。?

工程材料简答题,武汉理工大学,考试试题(含原题),2014年总结

简答题 1、金属材料的机械性能主要包括哪几个方面? ○1)强度、塑性、 2)弹性、韧性和硬度等。 2、钢铁材料的性能,可以通过什么途径加以改变? ○热处理、形变强化等手段。 3、常见的金属晶体结构有哪几种?它们的原子排列有何特点? ○1)体心立方、面心立方和密排六方晶格; 2)原子排列都趋于紧密堆垛。 4、常见的金属晶体结构有哪几种?它们的晶格常数有何特点? ○1)体心立方、面心立方和密排六方晶格; 2)体心立方、面心立方的晶格常数是a=b=c,而密排六方晶格的晶格常数是c/a>1。 5、在体心立方晶格中,哪个晶面和晶向的原子密度最大? ○(110);[111] 6、在面心立方晶格中,哪个晶面和晶向的原子密度最大? ○(111);[110] 7、为何单晶体具有各向异性? ○1)单晶体中各原子面和各原子列上的原子排列的紧密程度不同; 2)因此在各个不同的方向上性能不同。 8、多晶体在一般的情况下为何不显示出各向异性? ○1)多晶体受到不同方位晶体相互的影响; 2)只能反映出其统计平均性能,所以不象单晶体那样呈各向异性。 9、过冷度与冷却速度有何关系?它对金属的结晶过程有何影响? ○1)冷却速度越大,过冷度越大; 2)在一般情况下过冷度越大,结晶的推动力越大,有利于结晶过程的进行。 10、过冷度对铸件晶粒大小有何影响?

○1)在一般的工业冷却条件下,过冷度越大,形核率越大; 2)铸件晶粒越小。 11、在铸造生产中,采用哪些措施控制晶粒的大小? ○冷却速度、变质处理、振动等等。 12、如果其它条件相同,试比较在下列铸造条件下,铸件晶粒的大小: 1)金属模浇注与砂模浇注; 2)铸成薄件与铸成厚件; ○金属模浇注;铸成薄件。 13、影响固溶体的结构形式和溶解度的因素有哪些? ○主要有四个方面: 1)尺寸因素;2)结构因素; 3)负电性因素;4)电子浓度因素。 14、置换原子与间隙原子的固溶强化效果哪个大些?为什么? ○1)间隙原子; 2)因为间隙原子引起的晶格畸变度大于置换原子,强化效果优于后者。 15、金属间化合物在结构和性能方面与固溶体有何不同? ○1)金属间化合物具有独特的晶格形式,而固溶体保持溶剂的晶格形式; 2)固溶体有良好的综合机械性能,金属间化合物高硬度、高脆性、高熔点。 16、何谓固溶强化? ○1)溶质原子的作用; 2)造成溶剂晶格发生不同程度地畸变,引起固溶体强度、硬度升高的现象。 17、何谓共晶反应? ○一定成分的液相在一定的温度条件下同时结晶出来两种成分、结构均不相同的固相的反应。 18、何谓共析反应? ○一定成分的固相在一定的温度条件下同时析出来两种成分、结构均不同的固相的反应。19、试比较共晶反应和共析反应的异同点。 ○1)不同点:一个是从液相中结晶出来,而另一个是从固相中析出来; 2)相同点:都同时生成两种成分、结构均不同的固相。 20、形状、尺寸相同的两个Cu-Ni合金铸件,一个含90%Ni,另一个含50%Ni,铸后自然冷却,

渠化工程课程设计汇总

《渠化工程学》课程设计 1 设计目的 课程设计的目的在于巩固和加深课堂中所学的基本概念和基本理论,了解渠化工程(主要指船闸)设计的一般原则、步骤和方法,树立正确的设计思想,培养和提高计算、绘图的基本能力。 2 设计任务 通过渠化工程课程设计,可以将所学的基础课和专业基础课同专业知识有机的结合起来,使学生更好地明确学习目的,加深专业印象,为今后从事航道及通航建筑物的勘测、规划、可行性研究、设计、施工和科学研究工作打下坚实的基础,以达到本专业培养目标的要求。 3 基本内容与要求 3.1 船闸总体平面布置及设计标准 3.1.1船闸及引航道在枢纽中的布置 1.船闸的布置 (1)布置原则: ①船闸在通航期内应有良好的通航条件,满足船舶安全迅速通畅过闸,并有利于运行管理和检修; ②遵照综合利用、统筹兼顾的原则,正确处理船闸与溢流坝、泄水闸、电站等建筑物之间的关系和矛盾,优化布置,以发挥最大的综合效益; ③根据国民经济发展规划,做到远近结合,既要满足设计水平年内航运的需要,又要考虑远景发展,充分留有余地; ④在满足航运要求的前提下,应尽量选择经济合理、工程投资少、能就地取材、施工方便的方案; ⑤对大、中型和水流泥沙条件复杂的工程应进行模型试验,优选布置方案。 (2)布置方式:采用闸坝并列式。 2.引航道的布置 (1)引航道的布置方式:采用对称型式。 (2)引航道尺度 1)引航道宽度0B :单线船闸且停泊段只一侧停泊等候进闸的船舶 因为,0B ≥211b b b b c c ?+?++=10.8+10.8+10.8+0.5*10.8=37.8m 所以,取0B =40m 2)引航道长度 ①导航段长度1l : 因为,1l ≥c L =160m 所以,取1l =160m ②调顺段长度2l : 因为,2l ≥c L )0.2~5.1(=(1.5~2.0)*160=240~320 m 所以,取2l =320m ③停泊段长度3l : 因为,3l ≥c L =160m

工程材料期末考试复习题集

第二章晶体结构与结晶 简答题 1、常见的金属晶格类型有哪几种?它们的晶格常数和原子排列有什么特点? 2.为什么单晶体具有各向异性,而多晶体在一般情况下不显示各向异性? 3.在实际金属中存在哪几种晶体缺陷?它们对金属的力学性能有何影响? 4.金属结晶的基本规律是什么?工业生产中采用哪些措施细化晶粒?举例说明。 第三章金属的塑性变形 简答题 7、多晶体的塑性变形与单晶体的塑性变形有何异同? 答:相同——塑性变形方式都以滑移或孪晶进行;都是在切应力作用下产生塑性变形的。 不同点——在外力作用下,各晶粒因位向不同,受到的外力不一致,分切应力相差大,各晶粒不能同时开始变形,接近45℃软位向先滑移,且变形要受到周围临近晶粒制约相互要协调;晶粒之间的晶界也影响晶粒的塑性变形。多晶体的塑性变形逐次逐批发生,由少数开始,最后到全部,从不均匀到均匀。 8.已知金属Pb、Fe、Cu的熔点分别为327℃、1534℃,1083℃、,试估算这些金属的再结晶温度范围?在室温下的变形属于冷加工还是热加工? 9.说明产生下列现象的原因: (1)滑移面和滑移方向是原子排列密度最大的晶面和晶向; (2)晶界处滑移阻力最大; (3)实际测得的晶体滑移所需的临界切应力比理论计算的数值小的多; (4)Zn、α-Fe和Cu的塑性不同。 作业: 1.解释下列名词:滑移、加工硬化 2.塑性变形的实质是什么?它对金属的组织与性能有何影响? 3.何为塑性变形?塑性变形的基本方式有那些? 4.为什么常温下晶粒越细小,不仅强度、硬度越高,而且塑性、韧性也越好? 第四章二元合金 1.解释下列名词:合金、组元、相、相图、组织、固溶体、金属间化合物、晶内偏析。2.指出下列名词的主要区别: (1)置换固溶体与间隙固溶体 (2)间隙相与间隙固溶体 (3)相组成物与组织组成物 答:相组成物:指构成显微组织的基本相,它有确定的成分与结构,但没有形态的概念。例:α和β 组织组成物:指在结晶过程中形成的,有清晰轮廓,在显微镜下能清楚区别开的组成部分。例:α、β、αⅡ、βⅡ、α+β。 (4)共晶反应与共析反应 3.为什么铸造合金常选用有共晶成分或接近共晶成分的合金?用于压力加工的合金选用何种成分的合金为好? 答:铸造性能:取决于结晶的成分间隔与温度间隔,间隔越大,铸造性能越差。 压力加工性能好的合金通常是固溶体,应强度较低,塑性好,变形均匀不易开裂。

航道工程课程设计指导书

《航道工程学》课程设计指导书 重庆交通大学河海学院 水道教研室 二〇〇六年三月

《航道工程学》课程设计指导书 一、设计目的 设计的目的在于巩固和加深课堂中所学的基本概念和基本理论,了解渠化、整治工程设计的一般原则、步骤和方法,树立正确的设计思想,培养和提高计算、绘图的基本能力。 二、设计任务 通过航道工程课程设计,可以将所学的基础课和专业基础课同专业知识有机的结合起来,使学生更好地明确学习目的,加深专业印象,为今后从事航道及通航建筑物的勘测、规划、可行性研究、设计、施工和科学研究工作打下坚实的基础,以达到本专业培养目标的要求。 三、基本内容与要求 第一部分渠化工程课程设计 (一)基本内容 第一章船闸总体规划及平面布置 1.1船闸型式选择 对船闸的各种型式进行综合比较,确定适宜的船闸型式。 1.2船闸的平面尺寸及各部高程 1.2.1船闸的有效尺度设计 1.2.2船闸的最小断面系数 1.2.3引航道的平面形状与尺寸 1.2.4船闸的各部高程 1.3船闸的通过能力 为本章难点,首先应分别对近、远期过闸的不同船型进行过闸船队组合,找出一次过闸的平均吨位,再根据船闸的平面尺度等计算过闸平均时间等,继而计算其近、远期通过能力,满足货运量的要求。 1.4船闸的耗水量及经济损失计算 需计算船闸一昼夜过闸的平均耗水量和闸阀门漏水,进一步计算电能损失。 1.5船闸在枢纽中的布置 第二章船闸输水系统型式选择及水力计算 2.1船闸输水系统型式选择 2.1.1集中输水与分散式输水系统选择

2.1.2消能工选择 2.2船闸水力计算 2.2.1计算输水廊道的断面面积 2.2.2输水系统设计 包括输水系统廊道的具体布置及细部尺寸(如进出口、转弯、直线段等细部设计),应在方格纸上画出输水系统布置图,并计算输水系统的阻力系数,进而校核流量系数、停泊条件满足要求否。 2.2.3绘制输水系统水力特性曲线 水力特征曲线的计算及绘制力求用计算机完成。 第三章闸阀门及启闭机型式选择 3.1闸门型式选择及门扇尺寸确定 3.2阀门型式选择及尺寸确定 3.3闸阀门启闭机型式选择 第四章闸室结构设计 4.1闸室结构型式选择 需进行型式比选,确定两个方案进行初步设计。 4.2初步设计 两个方案需进行同等精度的计算,并对墙后的排水设施,汇填土进行设计。针对高水、低水、检修、施工、完建等不同计算情况,选择其中两种情况计算,计算内容主要包括地基计算和闸墙结构计算。钢筋混凝土闸墙应计算配筋率;各种力(土压力、水压力、扬压力、船舶荷载、自重、地基反力等)的计算采用手算应列表,可以用计算机进行电算。 4.3结构计算 根据所选择的最终方案,将其余的计算情况进行完善。 (二)设计资料及有关规定 1、航运资料 (1)航道等级:Ⅱ级。 (2)建筑物等级:闸室,闸首,闸门按Ⅱ级建筑物设计;导航建筑物,靠船建筑物按Ⅲ-Ⅳ级建筑物设计;临时建筑物Ⅳ级。 (3)设计船型:根据调查,该河段近、远期船型资料见表1。 表1 船型资料

航道工程试卷

一、单选题(10题,每题1分,共10分) 1、弯道水流面流流向( a ),底流流向( )。l、A A、凹岸,凸岸 B、凸岸,凹岸 C、凹岸,凹岸 D、凸岸,凸岸 2、吹填工程质量等级应根据( d )三项指标进行综合评定。2、D A、平均超填高度、吹填高程偏差和压实度 B、吹填高程偏差、吹填土质和压实度 C、平均超填高度、压实度和吹填土质 D、平均超填高度、吹填高程偏差和吹填土质 3、船闸主要由( d )三个基本部分及相应的设备组成。3、D A、闸室、输水廊道、引航道 B、闸室、闸首、输水廊道 C、闸室、输水廊道、导航墙 D、闸室、闸首、引航道 4、汊道航道设计时,通航汊应选择在( a)的一汊。A发展冲刷 B、发生淤积 C、不冲不淤 D、冲淤交替 5、耙吸挖泥船挖泥作业时,应根据土质等选择合理的航速,对淤泥、淤泥质土和松散的砂,对地航速宜采用( b )。5、B A、1~2kn B、2~3kn C、3~4kn D、4~5kn 6、船闸施工时,混凝土潮湿养护的时间不应少于( )。6、B A、7d B、14d C、21d D、28d 7、调整两汊分流比可采用除( )之外的建筑物。7、B A、丁坝 B、平顺护岸 C、顺坝 D、锁坝 8、疏浚施工时,应定期对挖泥船的施工质量进行检测。一般情况下,斗式挖泥船、绞吸挖泥 船每前进( )左右应检测一次。8、C A、30m B、50m C、100m D、150m 9、我国船闸按其设计最大船舶吨级分为( )级。9、C A、五 B、六 C、七 D、八 10、挖槽的抛泥区应选择在( )。10、D A、航道边缘 B、挖槽进口附近 C、挖槽出口附近 D、下深槽沱口 二、多选题 1、航道尺度是指( )等的总称。1、A、B、C A、航道水深 B、航道宽度 C、航道弯曲半径 D、航道断面系数 2、船闸主体的主要分部工程是( )。2、B、C、D A、基槽开挖 B、上闸首 C、下闸首 D、闸室 3、( )对浅滩的冲淤演变有着直接的影响3、B、D A、河道的宽度 B、上游的来水量及其过程 C、河床的深度 D、上游的来沙量及其过程 4、航道炸礁常用方法有( )。4、A、B A、裸露爆破 B、钻孔爆破 C、峒室爆破 D、水中爆破 5、船闸集中输水系统可分为( )等类型。5、A、B、D A、短廊道输水 B、组合式输水 C、等惯性输水 D、闸门输水 6、整治断面设计,其基本参数是( )。6、A、B、D A、设计水位 B、整治水位 C、施工水位 D、整治线宽度 7、船闸的基本尺度是指( )。7、A、B、D A、闸室有效长度 B、闸室有效宽度 C、闸室有效高度 D、门槛最小水深

交叉口渠化设计方法

交叉口渠化设计方法 一、交叉口渠化设计的基本原则 在进行交叉口渠化设计时要掌握如下几个设计原则: 1、分离原则 渠化设计应尽可能减少不同交通流之间的干扰,通过交通标志标线引导交通参与者按照车道分离、机非分离、人车分离的通行方式,促使各行其道。 2、疏导原则 明确不同交通流的行驶轨迹,通过单向交通、变向交通、专用道、禁止左转等措施疏导交通流。 二、交叉口渠化设计的一般方法 1、交叉口断面分布:相交两条道路交叉口断面的合理分布是渠化设计的先决条件。由于交叉口的交通流量要远大于路段中交通流量,为保障交叉口进口道与路段通行能力相匹配,应增加进出口车道,对交叉口断面进行合理分布。 增加进出口车道的方法有下列几种: ⑴展宽路口:展宽路口的宽度增加值一般为5—15m,长度一般为50—100m,根据道路的等级,根据功能定位不同适当增减。 ⑵压缩车道宽度:路段车道宽度为3.75m,进入路口车道宽段为3.5m,在大型车辆不超过10%进口车道可压缩到2.75m,特殊情况下进口车道可压缩到2.5m。 ⑶压缩非机动车道宽:如非机动车交通流量不大时,可以压缩非机动车道宽。 ⑷削减绿化带:在二块板或三块板绿化带隔离的道路上,如条件允许,可削减交叉 口绿化带的宽度,以实现增加车道的功能。 2、车道的功能划分:车道功能的合理划分是交叉口快速分流的重要保障。渠化设计中要先对交叉口进行交通流量的调查。根据交通流量调查结果,确定车道的功能划分。一般的解决方法有如下几种: ⑴根据交通需求,确定是否单独设置转弯车道。当一个信号放行周期内左、右转车辆低于3pcu,在路幅宽度较窄的情况下,可以考虑不设左、右转专用车道。 ⑵由于右转交通流的绿灯时间较其它方向的长,因此在路口渠化中,一般右转车道 不做重点研究,但右转的进口道和出口道相邻间应留有一定距离,满足一辆小汽车的长度,一般情况下为6米。 ⑶左转交通流在路口的冲突点最大,因此在路口渠化设计中应重点解决左转交通问 题。比如施划左转车辆导流线,设置左弯待转区等方法,加强对左转车辆的引导和控制,以减少左转车辆与其它方向行驶的车流冲突,提高交叉口的通行能力。 ⑷设置调头车道时,可与左转车道合并,使用一个绿灯时段,调头车辆需在左转车辆放行时间内完成调头动作,才能最大限度地保证交叉口的通行安全性。

工程材料问答题

习题1 材料的力学性能 问答题 请解释材料的工艺性能、使用性能和力学性能含义 答:材料的工艺性能是指将材料加工成零件的难易性,包括可切削性、铸造性、锻压性、焊接性等。材料的工艺性好坏与所采用的加工方法有关。使用性能是指材料加工成零件后,是否好用、耐用,使用性能包括力学性能、物理性能、化学性能。力学性能是指材料受载荷作用时表现出的与变形、断裂相关的一系列性能,主要有强度、硬度、塑性、韧性、疲劳强度等。 什么叫强度?常用的强度指标是哪两个?分别代表什么? 答:强度——材料受静载荷作用时,抵抗塑性变形和断裂的能力。常用的强度指标是: 屈服强度σs ——材料受静载荷作用时,抵抗塑性变形的能力。 抗拉强度(强度极限)σb ——材料受静载荷作用时,抵抗断裂的能力。 什么叫塑性?常用的塑性指标是哪两个?材料的塑性在工程上有何实用意义? 答:塑性——材料在受载荷作用时,发生永久性变形的能力。常用的塑性指标是:延伸率δ、断面收缩率ψ。塑性在工程上的实用意义: 塑性是变形加工(锻压)的条件。塑性较好的材料才可以进行变形加工。 塑性好的材料,不易脆断,应用时安全性比较好。 比较布氏硬度、洛氏硬度的测量方法、压头形状和硬度值有效范围。并指出各自的应用范围。 洛氏硬度在测试时可以直接在读数表上读出硬度值。 布氏硬度需根据测试条件和压痕直径查表才能得到硬度值。 金属材料的硬度与抗拉强度之间存在什么关系?这种关系有什么实用意义? 答:金属材料的硬度与强度有一定正比关系。在实际工作中,在不方便测试零件的强度时,常常通过测试其硬度来换算出强度,既简便,成本又低。但需要注意这样换算的数据是比较粗略的 材料的力学性能指标有很多(如强度、塑性、硬度、冲击韧度等),但是在零件图上,常常只标注硬度值要求,这是为什么? 答:测试强度、塑性需采用拉伸试验、测试韧性要用冲击试验,这些试验都是破坏性的,显然不适合于成品零件。

最终版 渠化工程课程设计--新三孔闸--姚海元

渠化工程课程设计 新三孔闸工程设计 指导老师:李绍武、张伟 姓名:姚海元 学号:3007205197 年级:2007级 班级:港口航道与海岸工程二班 学院:天津大学建筑工程学院 完成时间:2010年12月17日

目录 1 工程概况 1.1 经济概况 1.2 工程建设的意义 1.3货运量预测 2 设计依据 3 基本条件 3.1 地形、地貌和地质条件 3.2 水文气象条件 3.3 水位水头 3.4 建筑物等级 3.5 船队、船型及货运量 3.6 材料供应及施工技术条件 4 船闸设计 4.1 船闸基本尺度确定 4.1.1闸室有效长度Lx 4.1.2闸室有效宽度Bx 4.1.3门槛水深H 4.2 各部分高程确定: 4.3 引航道 4.3.1引航道长度 4.3.2引航道宽度 4.3.3引航道最小水深 4.4 导航建筑物 4.5 人字闸门门扇基本尺度 4.5.1门扇长度 4.5.2门扇厚度 4.5.3门扇高度 4.6 闸首布置 4.6.1过闸时间初步计算 4.6.2输水阀门处廊道断面面积 4.6.3输水廊道高程确定 4.6.4验算流量系数 4.6.5闸首各部分尺度 (门前段、门龛段、支持段、边墩厚度、闸首底板)4.7输水系统 4.7.1输水系统选择 4.7.2输水廊道 4.8船闸耗水 4.9闸室结构 4.9.1闸室结构形式比选 4.9.2防渗布置 4.9.3结构尺度 4.9.4结构稳定性验算

1 工程概况 1.1 经济概况 北运河干流位于京津两大城市之间,主要流经北京市的通州区、河北省廊坊市的香河县、天津市的武清区,三区(县)总面积2939.08km2。农作物以种植小麦、玉米为主,平原低洼地区以种植水稻为主,粮食总产量97.91吨,是主要粮棉产区及蔬菜、副食品的主要生产供应基地之一。区内工业门类有建筑、化工、纺织、机械、建材、食品、造纸等,各区县沿河均建有经济开发区。区内农业生产总值51.75亿元,工业生产总值209.21亿元。区内交通发达,有京沪、京山、津蓟等铁路干线,以及京津塘、京沈高速公路,其他公路四通八达。 拟建的新三孔闸,是自北运河(北关闸以下至屈家店)四保水船闸梯级渠化方案中的一座保水型船闸。北运河是海河北系的重要行洪排涝通道,是著名的京杭大运河的一部分。设计新三孔闸航道为VI级航道,设计通过船舶吨级为100t油船,船型总长为29-31m,型宽为5.0m,设计吃水为1.2-1.6m。船闸闸首、闸室按4级建筑设计,导航建筑物按5级设计。其中船闸建筑物等级设计为:主要水工建筑物4级,次要建筑物5级。初步估计2015年通航完成后,北运河的年货运量可达160万吨,约合十万多标箱,年客运量可达40万人次。作用水头H=8.0-4.8=3.2m,小于30m,拟建单线单级船闸。 1.2 工程建设的意义 北运河是祖先为我们留下的宝贵物质财富,历史上曾在经济发展中发挥过重要作用。只是在近代,伴随着铁路和公路的兴起、水资源的短缺以及各类跨河建筑物的兴建,北运河失去了往日通航的功能。目前作为北京市以及沿河沥水排涝的通道仍在发挥着作用,同时也为沿河农业灌溉提供水源。随着我国经济向低碳、节能、绿色、环保方向发展,以及假日经济、休闲旅游业的兴起,文化产业的振兴,再加上北运河得天独厚的地理、文化优势,北运河通航必将获得新的生命力。 1.2.1北运河综合整治工程将从根本上提升京津地区的防洪能力 海河流域是一个洪灾频发的区域,目前北运河仍然承担着较大的泄洪任务。由于北运河工程年久失修、防洪标准低、河道淤积严重、支流泄量增加、险工险段多,致使北运河的防洪标准由原设计的20年一遇降低到不足10年一遇;蓄滞洪区滞洪能力亦因围堤超高不足而大大降低。另外,随着北京市城市化水平的提高,北运河支流通惠河、凉水河的涝水流量增加,加大了北运河下游地区防洪压力。因此,每到洪汛期,北运河的防洪任务十分艰巨。根据国务院批准的《北三河防洪规划》,北运河综合整治工程按50年一遇洪水标准设防,通过扩挖、疏浚河道主槽、加高培厚左右堤防等方式,抬高北运河的防洪标准;同时治理险工险段,改扩建穿堤建筑物。综合治理工程完成后,北运河上段(北关闸~土门楼段)主槽宽度由原设计60~100m扩宽到80~140m,设计流量将由850~1346 m3/s提高到1155~2410m3/s,设计水位抬高0.67米;下段木厂闸~筐儿港枢纽段主槽底宽约32米,设计流量300 m3/s。北运河综合治理工程将完善北运河行洪方案,进一步提升京津地区的防洪能力。 1.2.2北运河的通航将形成一条京津间小黄金水道 京津之间的运输量逐年递增。目前正在建设的京津第三条高速公路就是为了缓解京津间运输紧张状况而起动的项目。从长远来看,京津再规划第四条高速公路的可能性不大。高速公路虽然方便、快捷,但占用耕地多,拆迁量大,污染大。 根据各种统计资料估算,2007年京津之间的年运输量达1200万吨,并且随着社会经济的发展,两城市之间的货运量会逐渐增多,初步估计2010年达2000万吨。北运河的通航,

航道整治

名词解释: 深泓线:沿河道各断面水深最大点的连线。 交错浅滩:上下深槽在平面上交错的浅滩(水深不够)的河段。 剪刀水:被两岸相对突出物挑引的两股水流,逐渐向下游收缩成一束,在平 面上呈“V”形状的水流流态。 下挑丁坝:坝轴线与水流交角α>900,坝头指向下游的丁坝。 富裕水深:船舶在标准载重时,处于静浮状态船底龙骨下至河底的最小距离。 整治水位超高值:整治水位超过设计水位的高程数值。 跌水:纵向水面比降特别陡峻的水流流态。 尖潭:交错浅滩上深槽的头部。 变吃水:一种减小航道工程费用而获得较大的营运经济效益的航运措施,船舶结构吃水大于标准吃水,高水多运,在航道标准上规定同一级航道的标准水深有一个幅度,根据河流的情况确定工程标准。 航道:为了组织水上运输所规定或设置的船舶航行(包括船拖木排)通道称为航道。 优良河段:满足通航要求且常年稳定的河段。 急流滩:因流急坡陡,航船上行困难的局部河段称为急流滩。 泡水:山区河流中,较急速的底流,由河底向上涌升,冲破水面,四散奔腾,尤如开水沸腾,这种现象称为泡水。 主导河岸:即在分沙导流作用中占主导作用的分叉河流的河岸。 扫弯险滩:微弯形的弯曲河段,在弯道水流作用下,一般可成优良航道。 整治线宽度:指整治水位时河面宽度。 河相关系:冲积河流的河床在水流与河床的长期相互作用下,其几何形态与所在水文、泥沙状况所存在的某种函数关系。 扫弯水:主流指向并紧贴急弯河段凹岸的水流。 稳定深槽:采取工程措施,使河道中因水流冲刷或环流作用下形成的水深较深的局部水域或河段处于稳定状态。 岛尾工程:建于江心洲尾,有时接一导流顺坝,使洲尾水流更加平顺相汇,减小互相顶托、对冲等不良影响,保证交汇处航道稳定。 裁弯取直工程:为彻底改变河湾的航运和排洪条件,可考虑在狭颈处开挖新河,即裁弯取直工程。 航道宽度:指设计最低通航水位时具有航道标准水深的宽度。 航道断面系数:指设计最低通航水位时,航道过水断面面积与船舶(船队)标准在载量时的船舯横断面级的比值。 净空高度:设计最高通航水位至建筑物底部的垂直距离。 水流动力轴线:是水流中能量最大的一股水流,它的位置代表着水流主流流路。 通航保证率:在规定的航道水深下,一年内能够通航的天数与全年天数之比,一般用百分率表示。 填空题 1、航道应有以下基本要求:(1)应有足够的水深、宽度和弯曲半径。(2)适宜船舶航行的水流条件,包括适宜的流速、良好的流态等。 2、在浅滩水位与相对水深关系图中(如下图所示), 为图线与横轴的夹角, >90°表明退水时浅滩冲刷, <90°表明退水时浅滩淤积, =90°表明退水时浅滩稳定。

交叉口渠化设计基本原则

一、交叉口渠化设计的基本原则 在进行交叉口渠化设计时要掌握如下几个设计原则: 1、分离原则 渠化设计应尽可能减少不同交通流之间的干扰,通过交通标志标线引导交通参与者按照车道分离、机非分离、人车分离的通行方式,促使各行其道。 2、疏导原则 明确不同交通流的行驶轨迹,通过单向交通、变向交通、专用道、禁止左转等措施疏导交通流。 二、交叉口渠化设计的一般方法 1、交叉口断面分布:相交两条道路交叉口断面的合理分布是渠化设计的先决条件。由于交叉口的交通流量要远大于路段中交通流量,为保障交叉口进口道与路段通行能力相匹配,应增加进出口车道,对交叉口断面进行合理分布。 增加进出口车道的方法有下列几种: ⑴展宽路口:展宽路口的宽度增加值一般为5—15m,长度一般为50—100m,根据道路的等级,根据功能定位不同适当增减。 ⑵压缩车道宽度:路段车道宽度为3.75m,进入路口车道宽段为3.5m,在大型车辆不超过10%进口车道可压缩到2.75m,特殊情况下进口车道可压缩到2.5m。 ⑶压缩非机动车道宽:如非机动车交通流量不大时,可以压缩非机动车道宽。 ⑷削减绿化带:在二块板或三块板绿化带隔离的道路上,如条件允许,可削减交叉口绿化带的宽度,以实现增加车道的功能。 2、车道的功能划分:车道功能的合理划分是交叉口快速分流的重要保障。渠化设计中要先对交叉口进行交通流量的调查。根据交通流量调查结果,确定车道的功能划分。一般的解决方法有如下几种: ⑴根据交通需求,确定是否单独设置转弯车道。当一个信号放行周期内左、右转车辆低于3pcu,在路幅宽度较窄的情况下,可以考虑不设左、右转专用车道。 ⑵由于右转交通流的绿灯时间较其它方向的长,因此在路口渠化中,一般右转车道不做重点研究,但右转的进口道和出口道相邻间应留有一定距离,满足一辆小汽车的长度,一般情况下为6米。 ⑶左转交通流在路口的冲突点最大,因此在路口渠化设计中应重点解决左转交通问题。比如施划左转车辆导流线,设置左弯待转区等方法,加强对左转车辆的引导和控制,以减少左转车辆与其它方向行驶的车流冲突,提高交叉口的通行能力。 ⑷设置调头车道时,可与左转车道合并,使用一个绿灯时段,调头车辆需在左转车辆放行时间内完成调头动作,才能最大限度地保证交叉口的通行安全性。 3、非机动车和行人交通的处理:非机动车和行人过街交通一直是管理的难点,也是交通渠化中较难处理的环节,在交通渠化设计中,只有把非机动车和行人的通行空间处理好,使之有一个便捷、舒适、安全的通行环境,真正体现出以人为本的理念,才能使行人和非机动车参与者自觉遵守。 在处理非机动车通行的交通渠化中,一般有如下解决方法: (1)、自行车交通应该与机动车交通进行空间和时间分离,如果没有条件分离,也必须给出适当的空间,让自行车与机动车分道行驶。 (2)、应尽量使自行车处于危险状态的时间减到最小。为了简化驾驶人员在交叉口的观察、思考、判断以及采取措施的过程,自行车交通与机动车交通的冲突点应该尽量远离机动车交通之间的冲突点。

相关文档
最新文档