2011-2018高考数学数列分类汇编(理)

合集下载

高考数学复习分类汇编3[1].1等差数列 精品

高考数学复习分类汇编3[1].1等差数列 精品

第三章 数列第一节 等差数列一、基本知识点1.定义:)()(1∙+∈=-N n d a a n n 常数2.通项公式:d n a a n )1(1-+=,推广:d m n a a m n )(-+=d =11--n a a n ,d =m n a a m n --是点列(n ,a n )所在直线的斜率.3.前n 项的和:d n n na a a n Sn n2)1(2)(11-+=+=21()22d dn a n =+-变式:21n a a +=n S n4.等差中项:若a 、b 、c 等差数列,则b 为a 与c 的等差中项:2b=a+c 5.性质:设{a n }是等差数列,公差为d,则(1)m+n=p+q ,则a m +a n =a p +a q (2) a n , a n+m , a n+2m ……组成公差为md 的等差数列.(3) S n , S 2n -S n , S 3n -S 2n ……组成公差为n 2d 的等差数列.(4)当n=2k-1为奇数时,S n =na k ;S 奇=ka k ,S 偶=(k-1)a k (a k =a 中)(5)在等差数列{a n }中,设前m 项和为S m ,前n 项和为S n ,且S m =S n ,m ≠n ,则S m+n=0.6.等差数列的判定方法(n ∈N*)(1)定义法: a n+1-a n =d 是常数 (2)等差中项法:212+++=n n n a a a(3)通项法:d n a a n)1(1-+= (4)前n 项和法:Bn An S n +=27.n n S a n d a ,,,,1知三求二, 可考虑统一转化为两个基本量;或利用数列性质。

8.三个数成等差,可设变量为:d a a d a +-,,,四个数成等差可设变量为d a d a d a d a 3,,,3-+--二、考点典例分析考点一:等差数列的定义及应用 1.已知等差数列{}n a 的通项公式n a n 23-=,则它的公差为( )A .2B .3C .-2D .-32.数列{}n a 的通项公式为*3(1)2,n a n n N =+-∈,则此数列( )A .是公差为3的等差数列;B .是公差为-2的等差数列;C .是公差为1的等差数列;D .不是等差数列.3.在1与25之间插入五个数,使其组成等差数列,则这五个数为( ) (A )3、8、13、18、23 (B )4、8、12、16、20 (C )5、9、13、17、21 (D )6、10、14、18、22 4.ABC ∆中,三内角C B A ,,成等差数列,则B 等于 ()A .30°B .60°C .90°D .120°5.已知数列{}n a 的前n 项和为c bn an ++2,则该数列为等差数列的充要条件为( )(A )0==c b(B )0=b (C )0,0=≠c a (D )0=c6.若关于x 的方程02=+-a x x 和02=+-b x x )(b a ≠的四个根可以组成首项为41的等差数列,则b a +的值为( )(A )83 (B )2411 (C )2413(D )72317.一个直角三角形的三条边成等差数列,则它的最短边与最长边的比为( ) (A )4∶5 (B )5∶13 (C )3∶5 (D )12∶138.成等差数列的四个数之和为26,第二个数与第三个数之积为40,求这四个数.9.已知三个数成等差数列,其和为15,其平方和为83,求此三个数.考点二:等差数列的通项公式及运用1.数列{}n a 是首项为2,公差为3的等差数列,数列{}n b 是首项为-2,公差为4的等差数列.若nn a b =,则n 的值为( )(A )4 (B )5 (C )6 (D )72.在数列{}n a 中, 12a =,1221n n a a +=+,则101a 的值为()A .49B .50C .51D .523.等差数列{}n a 的首项为70,公差为-9,则这个数列中绝对值最小的一项为( )A .8aB .9aC .10aD .11a4.在等差数列{}n a 中, 25a =-,646a a =+,则1a 等于()A .-9B .-8C .-7D .-45.在等差数列{}n a 中, 152533,66a a ==,则35a =________.6. 已知数列{}n a 为等差数列, 3753,44a a ==-,求15a 的值. 7. 等差数列{}n a 的首项为1,{}n a 从第9项开始各项均大于25,求公差d 的取值范围. 8. 一个首项为23,公差为整数的等差数列,如果前六项均为正数,第七项起为负数,则它的公差是多少?9. 100是不是等差数列2,9,16,……的项?如果是,是第几项?如果不是,说明理由.10. 已知等差数列{}n a 中, 154533,153a a ==,试问217是否为此数列的项?若是说明是第几项;若不是,说明理由.考点三:等差数列性质的应用 1.已知等差数列{}n a 满足12990a a a +++= ,则( )(A )1990a a +> (B )2980a a +< (C )3970a a += (D )5050a =2.在等差数列{}n a 中,7916a a +=,41a =,则12a 的值是( ) A .15; B .30; C .31; D .64.3.在等差数列{}n a 中, ,m n a n a m ==,则m n a +的值为( )(A )m n + (B ))(21n m + C ))(21n m - (D )04.在等差数列{}n a 中,若14739a a a ++=,25833a a a ++=,则369a a a ++的值为( )(A )30 (B )27 (C )24 (D )21 5.与的等差中项为A .0 B. C.lg(5- D .16.设数列{}n a 、{}n b 都是等差数列,且112225,75,100a b a b ==+=,则3737a b +等于( ) A .0B .37C .100D .-377等差数列{}n a 中, 34567450a a a a a ++++=,则28a a +等于( )A .45B .75C .180D .3008.若1x -,1x +,23x +是一个等差数列的连续三项,则x = . 9. 等差数列{}n a ,已知23101136a a a a +++=,则58a a += ______.10. 等差数列{}n a 中,若1233a a a ++=,4569a a a ++=,则101112a a a ++=11. 已知数列{}n a 是等差数列,若1591317117a a a a a -+-+=,求315a a +.12. 在等差数列{}n a 中,若1a +6a =9, 4a =7, 求3a , 9a . 13. 等差数列{}n a 中,若381312a a a ++=,381328a a a ⋅⋅=,求{}n a 的通项公式.考点四:等差数列的前n 项和1. 等差数列前10项的和为140,其中,项数为奇数的各项的和为125,求其第6项.2.已知等差数列{a n }中,S 3=21,S 6=64,求数列{|a n |}的前n 项和T n .解 d S na d3a 3d =21ba 15d =24n 111设公差为,由公式=+得++n n ()-⎧⎨⎩12解方程得:d =-2,a 1=9∴a n =9+(n -1)(n -2)=-2n +由=-+>得<,故数列的前项为正,a 2n 110 n =5.5{a }5n n 112其余各项为负.数列{a n }的前n 项和为: S 9n (2)=n 10n n 2=+--+n n ()-12∴当n ≤5时,T n =-n 2+10n当n >6时,T n =S 5+|S n -S 5|=S 5-(S n -S 5)=2S 5-S n ∴T n =2(-25+50)-(-n 2+10n)=n 2-10n +50考点五:等差数列的综合问题 1. 在ABC ∆中,若C B A sin lg ,sin lg ,sinlg 成等差数列,且三个内角CB A ,,也成等差数列,试判断三角形的形状.三、高考真题测试 1.(2010全国等差数列{}n a 中,34512a a a ++=,那么127...a a a +++=( )(A )14 (B )21 (C )28 (D )6. 2.(2010安徽文)设数列{}n a 的前n 项和2nS n =,则8a 的值为( )(A ) 15 (B) 16 (C) 49 (D )64 3.(2010重庆)在等差数列{}n a 中,1910a a +=,则5a 的值为(A )5 (B )6 (C )8 (D )10 4.2010辽宁设n S 为等差数列{}n a 的前n项和,若36324S S ==,,则9a = 。

解三角形、数列2018年全国数学高考分类真题(含答案)

解三角形、数列2018年全国数学高考分类真题(含答案)

解三角形、数列2018年全国高考分类真题(含答案)一.选择题(共4小题)1.△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=()A.B.C.D.2.在△ABC中,cos=,BC=1,AC=5,则AB=()A.4 B. C. D.23.已知a1,a2,a3,a4成等比数列,且a1+a2+a3+a4=ln(a1+a2+a3),若a1>1,则()A.a1<a3,a2<a4B.a1>a3,a2<a4C.a1<a3,a2>a4D.a1>a3,a2>a4 4.记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12 B.﹣10 C.10 D.12二.填空题(共4小题)5.在△ABC中,角A,B,C所对的边分别为a,b,c,∠ABC=120°,∠ABC的平分线交AC于点D,且BD=1,则4a+c的最小值为.6.在△ABC中,角A,B,C所对的边分别为a,b,c.若a=,b=2,A=60°,则sinB=,c=.7.设{a n}是等差数列,且a1=3,a2+a5=36,则{a n}的通项公式为.8.记S n为数列{a n}的前n项和.若S n=2a n+1,则S6=.三.解答题(共9小题)9.在△ABC中,a=7,b=8,cosB=﹣.(Ⅰ)求∠A;(Ⅱ)求AC边上的高.10.已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P(﹣,﹣).(Ⅰ)求sin(α+π)的值;(Ⅱ)若角β满足sin(α+β)=,求cosβ的值.11.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知bsinA=acos(B ﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.12.在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.13.设{a n}是首项为a1,公差为d的等差数列,{b n}是首项为b1,公比为q的等比数列.(1)设a1=0,b1=1,q=2,若|a n﹣b n|≤b1对n=1,2,3,4均成立,求d的取值范围;(2)若a1=b1>0,m∈N*,q∈(1,],证明:存在d∈R,使得|a n﹣b n|≤b1对n=2,3,…,m+1均成立,并求d的取值范围(用b1,m,q表示).14.已知等比数列{a n}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{b n}满足b1=1,数列{(b n+1﹣b n)a n}的前n项和为2n2+n.(Ⅰ)求q的值;(Ⅱ)求数列{b n}的通项公式.15.设{a n}是等比数列,公比大于0,其前n项和为S n(n∈N*),{b n}是等差数列.已知a1=1,a3=a2+2,a4=b3+b5,a5=b4+2b6.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)设数列{S n}的前n项和为T n(n∈N*),(i)求T n;(ii)证明=﹣2(n∈N*).16.等比数列{a n}中,a1=1,a5=4a3.(1)求{a n}的通项公式;(2)记S n为{a n}的前n项和.若S m=63,求m.17.记S n为等差数列{a n}的前n项和,已知a1=﹣7,S3=﹣15.(1)求{a n}的通项公式;(2)求S n,并求S n的最小值.解三角形、数列2018年全国高考分类真题(含答案)参考答案与试题解析一.选择题(共4小题)1.△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=()A.B.C.D.【解答】解:∵△ABC的内角A,B,C的对边分别为a,b,c.△ABC的面积为,==,∴S△ABC∴sinC==cosC,∵0<C<π,∴C=.故选:C.2.在△ABC中,cos=,BC=1,AC=5,则AB=()A.4 B. C. D.2【解答】解:在△ABC中,cos=,cosC=2×=﹣,BC=1,AC=5,则AB====4.故选:A.3.已知a1,a2,a3,a4成等比数列,且a1+a2+a3+a4=ln(a1+a2+a3),若a1>1,则()A.a1<a3,a2<a4B.a1>a3,a2<a4C.a1<a3,a2>a4D.a1>a3,a2>a4【解答】解:a1,a2,a3,a4成等比数列,由等比数列的性质可知,奇数项符号相同,偶数项符号相同,a1>1,设公比为q,当q>0时,a1+a2+a3+a4>a1+a2+a3,a1+a2+a3+a4=ln(a1+a2+a3),不成立,即:a1>a3,a2>a4,a1<a3,a2<a4,不成立,排除A、D.当q=﹣1时,a1+a2+a3+a4=0,ln(a1+a2+a3)>0,等式不成立,所以q≠﹣1;当q<﹣1时,a1+a2+a3+a4<0,ln(a1+a2+a3)>0,a1+a2+a3+a4=ln(a1+a2+a3)不成立,当q∈(﹣1,0)时,a1>a3>0,a2<a4<0,并且a1+a2+a3+a4=ln(a1+a2+a3),能够成立,故选:B.4.记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12 B.﹣10 C.10 D.12【解答】解:∵S n为等差数列{a n}的前n项和,3S3=S2+S4,a1=2,∴=a1+a1+d+4a1+d,把a1=2,代入得d=﹣3∴a5=2+4×(﹣3)=﹣10.故选:B.二.填空题(共4小题)5.在△ABC中,角A,B,C所对的边分别为a,b,c,∠ABC=120°,∠ABC的平分线交AC于点D,且BD=1,则4a+c的最小值为9.【解答】解:由题意得acsin120°=asin60°+csin60°,即ac=a+c,得+=1,得4a+c=(4a+c)(+)=++5≥2+5=4+5=9,当且仅当=,即c=2a时,取等号,故答案为:9.6.在△ABC中,角A,B,C所对的边分别为a,b,c.若a=,b=2,A=60°,则sinB=,c=3.【解答】解:∵在△ABC中,角A,B,C所对的边分别为a,b,c.a=,b=2,A=60°,∴由正弦定理得:,即=,解得sinB==.由余弦定理得:cos60°=,解得c=3或c=﹣1(舍),∴sinB=,c=3.故答案为:,3.7.设{a n}是等差数列,且a1=3,a2+a5=36,则{a n}的通项公式为a n=6n﹣3.【解答】解:∵{a n}是等差数列,且a1=3,a2+a5=36,∴,解得a1=3,d=6,∴a n=a1+(n﹣1)d=3+(n﹣1)×6=6n﹣3.∴{a n}的通项公式为a n=6n﹣3.故答案为:a n=6n﹣3.8.记S n为数列{a n}的前n项和.若S n=2a n+1,则S6=﹣63.【解答】解:S n为数列{a n}的前n项和,S n=2a n+1,①当n=1时,a1=2a1+1,解得a1=﹣1,当n≥2时,S n=2a n﹣1+1,②,﹣1由①﹣②可得a n=2a n﹣2a n﹣1,∴a n=2a n﹣1,∴{a n}是以﹣1为首项,以2为公比的等比数列,∴S6==﹣63,故答案为:﹣63三.解答题(共9小题)9.在△ABC中,a=7,b=8,cosB=﹣.(Ⅰ)求∠A;(Ⅱ)求AC边上的高.【解答】解:(Ⅰ)∵a<b,∴A<B,即A是锐角,∵cosB=﹣,∴sinB===,由正弦定理得=得sinA===,则A=.(Ⅱ)由余弦定理得b2=a2+c2﹣2accosB,即64=49+c2+2×7×c×,即c2+2c﹣15=0,得(c﹣3)(c+5)=0,得c=3或c=﹣5(舍),则AC边上的高h=csinA=3×=.10.已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P(﹣,﹣).(Ⅰ)求sin(α+π)的值;(Ⅱ)若角β满足sin(α+β)=,求cosβ的值.【解答】解:(Ⅰ)∵角α的顶点与原点O重合,始边与x轴非负半轴重合,终边过点P(﹣,﹣).∴x=﹣,y=,r=|OP|=,∴sin(α+π)=﹣sinα=;(Ⅱ)由x=﹣,y=,r=|OP|=1,得,,又由sin(α+β)=,得=,则cosβ=cos[(α+β)﹣α]=cos(α+β)cosα+sin(α+β)sinα=,或cosβ=cos[(α+β)﹣α]=cos(α+β)cosα+sin(α+β)sinα=.∴cosβ的值为或.11.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知bsinA=acos(B ﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.【解答】解:(Ⅰ)在△ABC中,由正弦定理得,得bsinA=asinB,又bsinA=acos(B﹣).∴asinB=acos(B﹣),即sinB=cos(B﹣)=cosBcos+sinBsin=cosB+,∴tanB=,又B∈(0,π),∴B=.(Ⅱ)在△ABC中,a=2,c=3,B=,由余弦定理得b==,由bsinA=acos(B﹣),得sinA=,∵a<c,∴cosA=,∴sin2A=2sinAcosA=,cos2A=2cos2A﹣1=,∴sin(2A﹣B)=sin2AcosB﹣cos2AsinB==.12.在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.【解答】解:(1)∵∠ADC=90°,∠A=45°,AB=2,BD=5.∴由正弦定理得:=,即=,∴sin∠ADB==,∵AB<BD,∴∠ADB<∠A,∴cos∠ADB==.(2)∵∠ADC=90°,∴cos∠BDC=sin∠ADB=,∵DC=2,∴BC===5.13.设{a n}是首项为a1,公差为d的等差数列,{b n}是首项为b1,公比为q的等比数列.(1)设a1=0,b1=1,q=2,若|a n﹣b n|≤b1对n=1,2,3,4均成立,求d的取值范围;(2)若a1=b1>0,m∈N*,q∈(1,],证明:存在d∈R,使得|a n﹣b n|≤b1对n=2,3,…,m+1均成立,并求d的取值范围(用b1,m,q表示).【解答】解:(1)由题意可知|a n﹣b n|≤1对任意n=1,2,3,4均成立,∵a1=0,q=2,∴,解得.即≤d≤.证明:(2)∵a n=a1+(n﹣1)d,b n=b1•q n﹣1,若存在d∈R,使得|a n﹣b n|≤b1对n=2,3,…,m+1均成立,则|b1+(n﹣1)d﹣b1•q n﹣1|≤b1,(n=2,3,…,m+1),即b1≤d≤,(n=2,3,…,m+1),∵q∈(1,],∴则1<q n﹣1≤q m≤2,(n=2,3,…,m+1),∴b1≤0,>0,因此取d=0时,|a n﹣b n|≤b1对n=2,3,…,m+1均成立,下面讨论数列{}的最大值和数列{}的最小值,①当2≤n≤m时,﹣==,当1<q≤时,有q n≤q m≤2,从而n(q n﹣q n﹣1)﹣q n+2>0,因此当2≤n≤m+1时,数列{}单调递增,故数列{}的最大值为.②设f(x)=2x(1﹣x),当x>0时,f′(x)=(ln2﹣1﹣xln2)2x<0,∴f(x)单调递减,从而f(x)<f(0)=1,当2≤n≤m时,=≤(1﹣)=f()<1,因此当2≤n≤m+1时,数列{}单调递递减,故数列{}的最小值为,∴d的取值范围是d∈[,].14.已知等比数列{a n}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{b n}满足b1=1,数列{(b n+1﹣b n)a n}的前n项和为2n2+n.(Ⅰ)求q的值;(Ⅱ)求数列{b n}的通项公式.【解答】解:(Ⅰ)等比数列{a n}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项,可得2a4+4=a3+a5=28﹣a4,解得a4=8,由+8+8q=28,可得q=2(舍去),则q的值为2;(Ⅱ)设c n=(b n+1﹣b n)a n=(b n+1﹣b n)2n﹣1,可得n=1时,c1=2+1=3,n≥2时,可得c n=2n2+n﹣2(n﹣1)2﹣(n﹣1)=4n﹣1,上式对n=1也成立,则(b n﹣b n)a n=4n﹣1,+1﹣b n=(4n﹣1)•()n﹣1,即有b n+1可得b n=b1+(b2﹣b1)+(b3﹣b2)+…+(b n﹣b n﹣1)=1+3•()0+7•()1+…+(4n﹣5)•()n﹣2,b n=+3•()+7•()2+…+(4n﹣5)•()n﹣1,相减可得b n=+4[()+()2+…+()n﹣2]﹣(4n﹣5)•()n﹣1=+4•﹣(4n﹣5)•()n﹣1,化简可得b n=15﹣(4n+3)•()n﹣2.15.设{a n}是等比数列,公比大于0,其前n项和为S n(n∈N*),{b n}是等差数列.已知a1=1,a3=a2+2,a4=b3+b5,a5=b4+2b6.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)设数列{S n}的前n项和为T n(n∈N*),(i)求T n;(ii)证明=﹣2(n∈N*).【解答】(Ⅰ)解:设等比数列{a n}的公比为q,由a1=1,a3=a2+2,可得q2﹣q ﹣2=0.∵q>0,可得q=2.故.设等差数列{b n}的公差为d,由a4=b3+b5,得b1+3d=4,由a5=b4+2b6,得3b1+13d=16,∴b1=d=1.故b n=n;(Ⅱ)(i)解:由(Ⅰ),可得,故=;(ii)证明:∵==.∴==﹣2.16.等比数列{a n}中,a1=1,a5=4a3.(1)求{a n}的通项公式;(2)记S n为{a n}的前n项和.若S m=63,求m.【解答】解:(1)∵等比数列{a n}中,a1=1,a5=4a3.∴1×q4=4×(1×q2),解得q=±2,当q=2时,a n=2n﹣1,当q=﹣2时,a n=(﹣2)n﹣1,∴{a n}的通项公式为,a n=2n﹣1,或a n=(﹣2)n﹣1.(2)记S n为{a n}的前n项和.当a1=1,q=﹣2时,S n===,由S m=63,得S m==63,m∈N,无解;当a1=1,q=2时,S n===2n﹣1,由S m=63,得S m=2m﹣1=63,m∈N,解得m=6.17.记S n为等差数列{a n}的前n项和,已知a1=﹣7,S3=﹣15.(1)求{a n}的通项公式;(2)求S n,并求S n的最小值.【解答】解:(1)∵等差数列{a n}中,a1=﹣7,S3=﹣15,∴a1=﹣7,3a1+3d=﹣15,解得a1=﹣7,d=2,∴a n=﹣7+2(n﹣1)=2n﹣9;(2)∵a1=﹣7,d=2,a n=2n﹣9,∴S n===n2﹣8n=(n﹣4)2﹣16,∴当n=4时,前n项的和S n取得最小值为﹣16.。

计数原理_2012~2018高考真题

计数原理_2012~2018高考真题

计数原理高考真题汇总2017~2018年一. 排列与组合1. (2018·新课标2·理)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果, 哥德巴赫猜想是 “每个大于2的偶数可以表示为两个素数的和”, 如30=7+23, 在不超过30的素数中, 随机选取两个不同的数, 其和等于30的概率是( ) A.121 B. 141 C. 151 D. 181 [答案与解析].符合题意的素数有: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29共10个, 故不同的取法有210C =45种其中和为30的组合有: {7, 23}, {11, 19}, {13, 17}三种, 故P=453=151, 选C. 2. (2018·上海9)有编号互不相同的五个砝码, 共中5克, 3克, 1克砝码各一个, 2克砝码两个, 从中随机选取三个,则这三个砝码的总质量为9克的概率是_____(结果用最简分数表示) [答案与解析].砝码有5个, 故不同的取法有35C =10种, 总质量为9克的仅{9, 3, 1}, {9, 2, 2}两种, 故P=102=51, 3. (2018·浙江)从1, 3, 5, 7, 9中任取2个数字, 从0, 2, 4, 6中任取2个数字, 一共可以组成____个没有重复数字的四位数.(用数学作答)[答案与解析].先从两组中各任取2个数作全排列, 减去0为首位的情况.即331325442425A C C A C C -=1260个4. (2018·新课标1·理) 从2位女生, 4位男生中选3人参加科技比赛, 且至少有1位女生入选, 则不同的选法共有______种. (用数字填写答案)[答案与解析].方法一: 先从两女生中选出1人, 余下2个名额在4男1女中任意选取.故2512C C =20, 但这里包括了2名女生入选的情况, 若2名女生入选再乘12C 就重复了, 所以, 即不同的选法共有20–1422C C =16.方法二: 在六人中任取三人, 减去作是男生的情况 3436C C -=16 方法三: 分女生有1人, 2人入选两种情况讨论2412C C +1422C C =165.(2017•新课标Ⅱ,6)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A.12种B.18种C.24种D.36种 [答案与解析].D 4项工作分成3组,可得:=6,安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,可得:6×=36种.故选D .6.(2017·天津,14)用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有________个.(用数字作答) [答案与解析].1 080 根据题意,分2种情况讨论:①、四位数中没有一个偶数数字,即在1、3、5、7、9种任选4个,组成一共四位数即可,有A 54=120种情况,即有120个没有一个偶数数字四位数; ②、四位数中只有一个偶数数字,在1、3、5、7、9种选出3个,在2、4、6、8中选出1个,有C 53•C 41=40种取法, 将取出的4个数字全排列,有A 44=24种顺序, 则有40×24=960个只有一个偶数数字的四位数;则至多有一个数字是偶数的四位数有120+960=1080个;故答案为:1080.7.(2017•浙江,16)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有____种不同的选法.(用数字作答) [答案与解析]. 660第一类,先选1女3男,有C 63C 21=40种,这4人选2人作为队长和副队有A 42=12种, 故有40×12=480种,第二类,先选2女2男,有C 62C 22=15种,这4人选2人作为队长和副队有A 42=12种, 故有15×12=180种,根据分类计数原理共有480+180=660种,故答案为:660二. 二项式定理1. (2018·全国3·理)522⎪⎭⎫ ⎝⎛+x x 的展开式中x 4的系数为( )A. 10B. 20C. 40D. 80[答案与解析].T r+1=r r r r x x C --2)5(25, 由10–2r –r=4, 解得r=2, 于是所求系数为2252⨯C =40, 故选C.2. (2018·天津·理10)在521⎪⎭⎫ ⎝⎛-x x 的展开式中x 2的系数为_______[答案与解析]. T r+1=2552r rrrxxC ---,由25r r --=2, 解得r=2, 于是所求系数为2252-⨯C =25 3 (2018·上海3)在(1+x )7的二项展开式中, x 2项的系数为________ (结果用数值表示)[答案与解析].4. (2018·浙江)二项式8321⎪⎭⎫ ⎝⎛+x x 的展开式的常数项是______ .[答案与解析].5.(2017•新课标Ⅰ,6)(1+)(1+x )6展开式中x 2的系数为( )A.15B.20C.30D.35[答案与解析].C (2x ﹣y )5的展开式的通项公式: T r+1=(2x )5﹣r (﹣y )r =25﹣r (﹣1)rx 5﹣r y r .令5﹣r=2,r=3,解得r=3.令5﹣r=3,r=2,解得r=2. ∴(x+y )(2x ﹣y )5的展开式中的x 3y 3系数=+23×=40.故选C .6.(2017•新课标Ⅲ,4)(x+y )(2x ﹣y )5的展开式中的x 3y 3系数为 ( ) A.﹣80 B.﹣40 C.40 D.80[答案与解析].C (1+ )(1+x)6展开式中:若(1+ )=(1+x﹣2)提供常数项1,则(1+x)6提供含有x2的项,可得展开式中x2的系数:若(1+ )提供x﹣2项,则(1+x)6提供含有x4的项,可得展开式中x2的系数:由(1+x)6通项公式可得.可知r=2时,可得展开式中x2的系数为.可知r=4时,可得展开式中x2的系数为.(1+ )(1+x)6展开式中x2的系数为:15+15=30.故选C.7.(2017•浙江,13)已知多项式(x+1)3(x+2)2=x5+a1x4+a2x3+a3x2+a4x+a5,则a4=________,a5=________.[答案与解析].16;4 多项式(x+1)3(x+2)2=x5+a1x4+a2x3+a3x2+a4x+a5,(x+1)3中,x的系数是:3,常数是1;(x+2)2中x的系数是4,常数是4,a4=3×4+1×4=16;a5=1×4=4.故答案为:16;4.8.(2017•山东,11)已知(1+3x)n的展开式中含有x2的系数是54,则n=________.[答案与解析]. (1+3x)n的展开式中通项公式:T r+1= (3x)r=3r x r.∵含有x2的系数是54,∴r=2.∴=54,可得=6,∴=6,n∈N*.解得n=4.故答案为:4.2015~2016年一. 排列与组合1.(2016·全国Ⅱ,5)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()A.24B.18C.12D.9[答案与解析].B [从E点到F点的最短路径有6种,从F点到G点的最短路径有3种,所以从E 点到G点的最短路径为6×3=18种,故选B.]2.(2016·全国Ⅲ,12)定义“规范01数列”{a n}如下:{a n}共有2m项,其中m项为0,m项为1,且对任意k≤2m,a1,a2,…,a k中0的个数不少于1的个数.若m=4,则不同的“规范01数列”共有() A.18个 B.16个 C.14个 D.12个[答案与解析].C [第一位为0,最后一位为1,中间3个0,3个1,三个1在一起时为000111,001110;只有2个1相邻时,共A24种,其中110100;110010;110001,101100不符合题意,三个1都不在一起时有C34种,共2+8+4=14.]3.(2016·四川,4)用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为()A.24B.48C.60D.72[答案与解析].D [由题可知,五位数要为奇数,则个位数只能是1,3,5;分为两步:先从1,3,5三个数中选一个作为个位数有C13,再将剩下的4个数字排列得到A44,则满足条件的五位数有C13·A44=72.选D.]4.(2016·北京,8)袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒,每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则()A.乙盒中黑球不多于丙盒中黑球B.乙盒中红球与丙盒中黑球一样多C.乙盒中红球不多于丙盒中红球D.乙盒中黑球与丙盒中红球一样多[答案与解析].B [取两个球往盒子中放有4种情况:①红+红,则乙盒中红球数加1个;②黑+黑,则丙盒中黑球数加1个;③红+黑(红球放入甲盒中),则乙盒中黑球数加1个;④黑+红(黑球放入甲盒中),则丙盒中红球数加1个;因为红球和黑球个数一样,所以①和②的情况一样多.③和④的情况随机,③和④对B选项中的乙盒中的红球与丙盒中的黑球数没有任何影响,①和②出现的次数是一样的,所以对B选项中的乙盒中的红球与丙盒中的黑球数的影响次数一样.综上选B.]5.(2015·四川,6)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有( ) A.144个 B.120个 C.96个 D.72个[答案与解析].B [由题意,首位数字只能是4,5,若万位是5,则有3×A 34=72个;若万位是4,则有2×A 34个=48个,故40 000大的偶数共有72+48=120个.选B.]6.(2015·广东,12)某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了________条毕业留言(用数字作答).[答案与解析].1 560 [依题两两彼此给对方写一条毕业留言相当于从40人中任选两人的排列数,所以全班共写了A 240=40×39=1 560条毕业留言.]二. 二项式定理1.(2016·四川,2)设i 为虚数单位,则(x +i)6的展开式中含x 4的项为( ) A.-15x 4 B.15x 4 C.-20i x 4 D.20i x 4[答案与解析]. A [由题可知,含x 4的项为C 26x 4i 2=-15x 4.选A.]2.(2015·新课标全国Ⅰ,10)(x 2+x +y )5的展开式中,x 5y 2的系数为( ) A.10 B.20 C.30 D.60[答案与解析].C [T k +1=C k 5(x 2+x )5-k y k ,∴k =2.∴C 25(x 2+x )3y 2的第r +1项为C 25C r 3x 2(3-r )x r y 2,∴2(3-r )+r =5,解得r =1,∴x 5y 2的系数为C 25C 13=30.]3.(2015·湖南,6)已知⎝⎛⎭⎫x -a x 5的展开式中含32x 的项的系数为30,则a =( )A. 3B.- 3C.6D.-6[答案与解析].D [⎝⎛⎭⎫x -a x 5的展开式通项T r +1=C r 5x 5-r 2(-1)r a r ·x -r 2=(-1)r a r C r 5x 52-r , 令52-r =32,则r =1,∴T 2=-a C 15x 32,∴-a C 15=30,∴a =-6,故选D.]4.(2015·陕西,4)二项式(x +1)n (n ∈N +)的展开式中x 2的系数为15,则n =( ) A.4 B.5 C.6 D.7[答案与解析].C [由题意易得:C n -2n =15,C n -2n =C 2n =15,即n (n -1)2=15,解得n =6.]5.(2016·全国Ⅰ,14)(2x +x )5的展开式中,x 3的系数是______________(用数字填写答案).[答案与解析].10 [(2x +x )5展开式的通项公式T k +1=C k 5(2x )5-k (x )k=C k 525-k x 5-k2,k ∈{0,1,2,3,4,5},令5-k 2=3解得k =4,得T 5=C 4525-4x 5-42=10x 3,∴x 3的系数是10.] 6.(2016·北京,10)在(1-2x )6的展开式中,x 2的系数为________.[答案与解析]. 60 [展开式的通项T r +1=C r 6·16-r ·(-2x )r =C r 6(-2x )r .令r =2得T 3=C 26·4x 2=60x 2,即x 2的系数为60.]7.(2015·北京,9)在(2+x )5的展开式中,x 3的系数为________(用数字作答).[答案与解析].40 [展开式通项为:T r +1=C r 525-r x r ,∴当r =3时,系数为C 35·25-3=40.]8.(2015·天津,12)在⎝⎛⎭⎫x -14x 6的展开式中,x 2的系数为________. [答案与解析].1516 [⎝⎛⎭⎫x -14x 6的展开式的通项T r +1=C r 6x 6-r ⎝⎛⎭⎫-14x r =C r 6⎝⎛⎭⎫-14r x 6-2r ;当6-2r =2时,r =2,所以x 2的系数为C 26⎝⎛⎭⎫-142=1516.]2014年一. 计数原理1.(2014·大纲全国,5)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()A.60种B.70种C.75种D.150种[答案与解析].C[从中选出2名男医生的选法有C26=15种,从中选出1名女医生的选法有C15=5种,所以不同的选法共有15×5=75种,故选C.]2.(2014·辽宁,6)6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为()A.144B.120C.72D.24[答案与解析].D[3人中每两人之间恰有一个空座位,有A33×2=12种坐法,3人中某两人之间有两个空座位,有A33×A22=12种坐法,所以共有12+12=24种坐法.]3.(2014·四川,6)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()A.192种B.216种C.240种D.288种[答案与解析].B[当最左端排甲时,不同的排法共有A55种;当最左端排乙时,甲只能排在中间四个位置之一,则不同的排法共有C14A44种.故不同的排法共有A55+C14A44=9×24=216种.]4 (2014·重庆,9)某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是()A.72B.120C.144D.168[答案与解析].B[依题意,先仅考虑3个歌舞类节目互不相邻的排法种数为A33A34=144,其中3个歌舞类节目互不相邻但2个小品类节目相邻的排法种数为A22A22A33=24,因此满足题意的排法种数为144-24=120,选B.]5.(2014·安徽,8)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有()A.24对B.30对C.48对D.60对[答案与解析].C[法一直接法:如图,在上底面中选B1D1,四个侧面中的面对角线都与它成60°,共8对,同样A1C1对应的也有8对,下底面也有16对,这共有32对;左右侧面与前后侧面中共有16对.所以全部共有48对.法二间接法:正方体的12条面对角线中,任意两条垂直、平行或成角为60°,所以成角为60°的共有C212-12-6=48对.]6.(2014·福建,10)用a代表红球,b代表蓝球,c代表黑球.由加法原理及乘法原理,从1个红球和1个蓝球中取出若干个球的所有取法可由(1+a)(1+b)的展开式1+a+b+ab表示出来,如:“1”表示一个球都不取、“a”表示取出一个红球、而“ab”则表示把红球和蓝球都取出来.依此类推,下列各式中,其展开式可用来表示从5个无区别的红球、5个无区别的蓝球、5个有区别的黑球中取出若干个球,且所有的蓝球都取出或都不取出的所有取法的是()A.(1+a+a2+a3+a4+a5)(1+b5)(1+c)5B.(1+a5)(1+b+b2+b3+b4+b5)(1+c)5C.(1+a)5(1+b+b2+b3+b4+b5)(1+c5)D.(1+a5)(1+b)5(1+c+c2+c3+c4+c5)[答案与解析].A[分三步:第一步,5个无区别的红球可能取出0个,1个,…,5个,则有(1+a+a2+a3+a4+a5)种不同的取法;第二步,5个无区别的蓝球都取出或都不取出,则有(1+b5)种不同取法;第三步,5个有区别的黑球看作5个不同色,从5个不同色的黑球中任取0个,1个,…,5个,有(1+c)5种不同的取法,所以所求的取法种数为(1+a+a2+a3+a4+a5)(1+b5)(1+c)5,故选A.]7.(2014·广东,8)设集合A={(x1,x2,x3,x4,x5)|x i∈{-1,0,1},i=1,2,3,4,5},那么集合A中满足条件“1≤|x1|+|x2|+|x3|+|x4|+|x5|≤3”的元素个数为()A.60B.90C.120D.130[答案与解析].D[易知|x1|+|x2|+|x3|+|x4|+|x5|=1或2或3,下面分三种情况讨论.其一:|x1|+|x2|+|x3|+|x4|+|x5|=1,此时,从x1,x2,x3,x4,x5中任取一个让其等于1或-1,其余等于0,于是有C15C12=10种情况;其二:|x1|+|x2|+|x3|+|x4|+|x5|=2,此时,从x1,x2,x3,x4,x5中任取两个让其都等于1或都等于-1或一个等于1、另一个等于-1,其余等于0,于是有2C25+C25C12=40种情况;其三:|x1|+|x2|+|x3|+|x4|+|x5|=3,此时,从x1,x2,x3,x4,x5中任取三个让其都等于1或都等于-1或两个等于1、另一个等于-1或两个等于-1、另一个等于1,其余等于0,于是有2C35+C35C13+C35C23=80种情况.由于10+40+80=130,故答案为D.]8.(2014·北京,13)把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有________种.[答案与解析].36[将A、B捆绑在一起,有A22种摆法,再将它们与其他3件产品全排列,有A44种摆法,共有A22A44=48种摆法,而A、B、C 3件在一起,且A、B相邻,A、C相邻有CAB、BAC两种情况,将这3件与剩下2件全排列,有2×A33=12种摆法,故A、B相邻,A、C不相邻的摆法有48-12=36种.]9 (2014·浙江,14)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种(用数字作答).[答案与解析].60 [分情况:一种情况将有奖的奖券按2张、1张分给4个人中的2个人,种数为C 23C 11A 24=36;另一种将3张有奖的奖券分给4个人中的3个人,种数为A 34=24,则获奖情况总共有36+24=60(种).]二. 二项式定理1.(2014·湖北,2)若二项式⎝⎛⎭⎫2x +a x 7的展开式中1x 3的系数是84,则实数a =( ) A.2 B.54 C.1 D.24[答案与解析].C [T r +1=C r 7·(2x )7-r ·⎝⎛⎭⎫a x r=27-r C r 7a r ·1x2r -7.令2r -7=3,则r =5.由22·C 57a 5=84得a =1,故选C.]2.(2014·浙江,5)在(1+x )6(1+y )4的展开式中,记x m y n 项的系数f (m ,n ),则f (3,0)+f (2,1)+f (1,2)+f (0,3)=( )A.45B.60C.120D.210[答案与解析].C [在(1+x )6的展开式中,x m 的系数为C m 6,在(1+y )4的展开式中,y n 的系数为C n 4,故f (m ,n )=C m 6·C n 4.从而f (3,0)=C 36=20,f (2,1)=C 26·C 14=60,f (1,2)=C 16·C 24=36,f (0,3)=C 34=4,故选C.]3.(2014·四川,2)在x (1+x )6的展开式中,含x 3项的系数为( ) A.30 B.20 C.15 D.10[答案与解析].C [只需求(1+x )6的展开式中含x 2项的系数即可,而含x 2项的系数为C 26=15,故选C.]4.(2014·湖南,4)⎝⎛⎭⎫12x -2y 5的展开式中x 2y 3的系数是( ) A.-20 B.-5 C.5 D.20[答案与解析].A [展开式的通项为T k +1=C k 5(12x )5-k ·(-2y )k =(-1)k ·22k -5C k 5x 5-k ·y k ,令5-k =2,得k =3.则展开式中x 2y 3的系数为(-1)3·22×3-5C 35=-20,故选A.]5.(2014·新课标全国Ⅰ,13)(x -y )(x +y )8的展开式中x 2y 7的系数为________(用数字填写答案).[答案与解析].-20 [由二项展开式公式可知,含x 2y 7的项可表示为x ·C 78xy 7-y ·C 68x 2y 6,故(x -y )(x +y )8的展开式中x 2y 7的系数为C 78-C 68=C 18-C 28=8-28=-20.]6.(2014·新课标全国Ⅱ,13)(x +a )10的展开式中,x 7的系数为15,则a =________(用数字作答). [答案与解析].12 [T r +1=C r 10x 10-r a r ,令10-r =7,得r =3,∴C 310a 3=15,即10×9×83×2×1a 3=15,∴a 3=18,∴a =12.]7.(2014·安徽,13)设a ≠0,n 是大于1的自然数,⎝⎛⎭⎫1+xa n 的展开式为a 0+a 1x +a 2x 2+…+a n x n .若点A i (i ,a i )(i =0,1,2)的位置如图所示,则a =________. [答案与解析].3 [根据题意知a 0=1,a 1=3,a 2=4, 结合二项式定理得⎩⎨⎧C 1n ·1a=3,C 2n·1a 2=4,即⎩⎪⎨⎪⎧n -1=83a ,n =3a ,解得a =3.]8.(2014·山东,14)若⎝⎛⎭⎫ax 2+bx 6的展开式中x 3项的系数为20,则a 2+b 2的最小值为________. [答案与解析].2[T r +1=C r 6(ax 2)6-r ⎝⎛⎭⎫b x r=C r 6a 6-r b r x 12-3r ,令12-3r =3,则r =3. ∴C 36a 3b 3=20,即ab =1.∴a 2+b 2≥2ab =2,即a 2+b 2的最小值为2.]9.(2014·大纲全国,13)⎝⎛⎭⎫ x y -yx 8的展开式中x 2y 2的系数为________(用数字作答). [答案与解析].70[T r +1=C r 8·⎝⎛⎭⎫x y 8-r ·⎝⎛⎭⎫-y x r=(-1)r ·C r 8·x 16-3r 2·y 3r -82,令⎩⎨⎧16-3r2=2,3r -82=2,得r =4.所以展开式中x 2y 2的系数为(-1)4·C 48=70.]2013年一. 计数原理1. (2013·四川8). 从1, 3, 5, 7, 9这五个数中,每次取出两个不同的数分别记为a ,b ,共可得到lg lg a b -的不同值的个数是( )(A )9 (B )10 (C )18 (D )20答案C解析:lg lg a b -=lg ,=有4×5−2 =18种,2为情况所以选C2. (2013·福建5).满足a , b ∈{–1, 0, 1, 2},且关于的方程ax 2+2x +b =0有实数解的有序数对的个数为( )A. 14B. 13C. 12D. 10[答案与解析]. B 方程ax 2+2x +b =0有实数解. 分类讨论.① 当a =0时, 2x +b =0有实数解, 此时b 可以取4个值, 故有4个有序数对. ② 当a ≠0时, 方程ax 2+2x +b =0有实数解. 则△=4–4ab ≥0, 即ab ≤1, 此时(2. 1), (1, 2), (2, 2)三个不符合题意, 故有3×4–3=9个 综上, 有9+4=13个.3. (2013·山东10). 用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为 (A) 243 (B) 252 (C) 261 (D) 279[答案与解析]. B 有重复数字的三位数有9×10×10=900. 没有重复数字的三位数有2919A C =648. 所以有重复数字的三位数的个数为900–648=252.4. (2013·新课标II 14)). 从n 个正整数1, 2, 3, 4, 5, ... , n 中任意取出两个不同的数,若其和为5的概率是141,则n =_________。

最新高考数学分类理科汇编

最新高考数学分类理科汇编

精品文档2018 年高考数学真题分类汇编学大教育宝鸡清姜校区高数组2018 年7 月1.(2018 全国卷 1 理科)设Z =1- i+ 2i 则 Z 1+ i 复数= ( )A.0B. 1C.1D. 22(2018 全国卷 2 理科) 1 + 2i= ()1 - 2iA. - 4 - 3iB. - 4 + 3 iC. - 3 - 4 iD. - 3 + 4 i5 5555 5 5 53(2018 全国卷 3 理科) (1 + i )(2 - i ) = ( )A. -3 - iB. -3 + iC. 3 - iD. 3 + i4(2018 北京卷理科)在复平面内,复数 11 - i的共轭复数对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限 5(2018 天津卷理科) i 是虚数单位,复数 6 + 7i=.1+ 2i6(2018 江苏卷)若复数 z 满足i ⋅ z = 1 + 2i ,其中 i 是虚数单位,则 z 的实部为 . 7(2018 上海卷)已知复数 z 满足(1+ i )z = 1- 7i (i 是虚数单位),则∣z ∣=.2集合1.(2018 全国卷1 理科)已知集合A ={x | x2 -x - 2 > 0 }则C R A =()A. {x | -1 <x < 2}C. {x | x <-1}Y{x | x > 2} B. {x | -1 ≤x ≤ 2}D. {x | x ≤-1}Y{x | x ≥ 2}2(2018 全国卷2 理科)已知集合A={(x,y)x2元素的个数为()+y2 ≤3,x ∈Z,y ∈Z}则中A.9B.8C.5D.43(2018 全国卷3 理科)已知集合A ={x | x -1≥0},B ={0 ,1,2},则A I B =()A. {0} B.{1} C.{1,2} D.{0 ,1,2}4(2018 北京卷理科)已知集合A={x||x|<2},B={–2,0,1,2},则A I B =( )A. {0,1}B.{–1,0,1}C.{–2,0,1,2}D.{–1,0,1,2}5(2018 天津卷理科)设全集为R,集合A = {x 0 <x < 2} ,B = {x x ≥ 1} ,则A I (CRB) =( )A.{x 0 <x ≤ 1}B. {x 0 <x < 1}C.{x 1 ≤x < 2}D. {x 0 <x < 2}6(2018 江苏卷).已知集合A={0,1,2,8},B={-1,1,6,8},那么A I B=.简易逻辑1(2018 北京卷理科)设集合A = {(x, y) | x -y ≥1, ax +y > 4, x -ay ≤ 2}, 则()A.对任意实数a,(2,1) ∈AC.当且仅当a<0 时,(2,1)∉AB.对任意实数a,(2,1)∉A D.当且仅当a≤3时,(2,1)∉A22(2018 北京卷理科)能说明“若f(x)>f(0)对任意的x∈(0,2]都成立,则f(x)在[0,2]上是增函数”为假命题的一个函数是.3(2018 天津卷理科)设x ∈R ,则“|x -1|<1”是“x3 <1”的()2 2A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件4(2018 上海卷)已知a ∈R ,则“a﹥1”是“1﹤1”的()aA.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件统计1(2018 全国卷1 理科)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番。

【高考数学真题分类汇编】——递推数列与数列求和(后附答案解析)

【高考数学真题分类汇编】——递推数列与数列求和(后附答案解析)

专题六数列第十七讲递推数列与数列求和2019年 1.19(2019天津理)设{}n a 是等差数列,{}n b 是等比数列.已知112233 4,622,24a b b a b a ===−=+,.(Ⅰ)求 {}n a 和 {}n b 的通项公式;(Ⅱ)设数列 {}n c 满足11 1,22,2,1,,kk n kk c n c b n +=⎧<<=⎨=⎩其中*k ∈N . ()求数列i() {}221n n a c −的通项公式;()求ii()2*1ni ii a c n =∈∑N . 2010-2018年一、选择题1.(2013大纲)已知数列 {}n a 满足12430,3n n aa a + +==−,则 {}n a 的前项和等于10 A .106(13)−−− B .101(13)9−C .10 3(13)−− D .10 3(13)−+2.(2012 )上海设25sin1πn n a n =,n n a a a S +++= 21,在10021 ,,,S S S 中,正数的个数是A 25 B 50 C 75 D 100....二、填空题3(2018 .全国卷Ⅰ记)n S 为数列{}n a 的前n 项和,若21n n S a =+,则6S =_____. 42017 .( 新课标Ⅱ)等差数列{}n a 的前n 项和为n S ,33a =,410S =,则11nk kS ==∑ .52015 .( 新课标Ⅱ)设n S 是数列{}n a 的前n 项和,且 1111,n n n a a S S ++ =−=,则n S =__.62015.(江苏)数列}{n a 满足11=a ,且11+=−+n a a n n (*N n ∈),则数列}1{na前10项的和为.72013 .(新课标Ⅰ)若数列{n a }的前项和为n n S =2133n a +,则数列{n a }的通项公式是n a =______.82013 .( 湖南)设n S 为数列{}n a 的前项和,n 1 (1),,2n n n nS a n N *= −−∈则()13a =_____;()2 12100S S S ++⋅⋅⋅+=___________ .92012 .( 新课标)数列}{n a 满足12)1(1−=−++n a a n n n ,则}{n a 的前项和为60 .10.(福建)数列2012 {}n a 的通项公式cos 12n n a n π=+,前n 项和为n S ,则2012S =___________.三、解答题11.(2018 浙江)已知等比数列1{}a 的公比1q >,且34528a a a ++=,42a +是3a ,5a 的等差中项.数列{}n b 满足11b =,数列1 {()}n n n b b a +−的前n 项和为22n n +. (1)求q 的值;(2)求数列{}n b 的通项公式.12.(2018)天津设{}n a 是等比数列,公比大于,其前0n 项和为n S ()n * ∈N ,{}n b 是等差数列.已知11a =,322a a =+, 435a b b =+, 5462a b b =+. (1)求{}n a 和{}n b 的通项公式;(2)设数列{}n S 的前n 项和为n T ()n *∈N , (i)求n T ;(ii)证明221()22(1)(2)2n nk k k k T b b k k n ++=+=− +++∑()n *∈N . 13.( 2017江苏)对于给定的正整数k ,若数列{}n a 满足11112n k n k n n n k n k n a a a a a a ka −−+−++−+++⋅⋅⋅+++⋅⋅⋅++=对任意正整数n ()n k >总成立,则称数列{}n a 是“()P k 数列”.()证明:等差数列1{}n a 是“(3)P 数列”;()若数列2{}n a 既是“(2)P 数列,又是”“(3)P 数列,证明:”{}n a 是等差数列. 14.(2016年全国II )n S 为等差数列{}n a 的前n 项和,且11a =,728S =.记 []lg n n b a =,其中 []x表示不超过x 的最大整数,如 [] 0.90=, [] lg991=. (Ⅰ)求1b ,11b ,101b ;(Ⅱ)求数列 {}n b 的前1000项和.15.( 2015新课标Ⅰ)n S 为数列{}n a 的前n 项和,已知0n a >,2243n n n a a S +=+ (ⅠⅠ)求{}n a 的通项公式: (Ⅱ)设11n n n b a a +=,求数列{}n b 的前n 项和. 16.( 2015广东)数列{}n a 满足:1212242n n n a a na −+ ++⋅⋅⋅+=−,*N n ∈. ()求13a 的值;()求数列2{}n a 的前n 项和n T ;()令311b a =,1 111 (1)23n n n Tb a nn− =++++⋅⋅⋅+(2)n ≥ 证明:数列{}n b 的前n 项和n S 满足 22ln n S n <+.17.( 2014广东)设各项均为正数的数列 {}n a 的前n 项和为n S ,且n S 满足()()* ∈=+−−+−N n n n S n n S n n ,033222.(Ⅰ)求1a 的值;(Ⅱ)求数列 {}n a 的通项公式; (Ⅲ)证明:对一切正整数n ,有()()().311111112211<+++++n n a a a a a a 18.( 2013湖南)设n S 为数列{n a }的前项和,已知01≠a ,2n n S S a a •=−11,∈n N *()Ⅰ求1a ,2a ,并求数列{n a }的通项公式;()Ⅱ求数列{n na }的前n 项和.19.( 2011 广东)设0b >,数列 {}n a 满足1a b =,11 (2)22n n n nba a n a n −−=≥+−.()求数列1 {}n a 的通项公式;()证明:对于一切正整数2n ,11 1.2n n n b a ++≤+专题六数列第十七讲递推数列与数列求和答案部分 2019年1.解析 (Ⅰ)设等差数列 {}n a 的公差为d ,等比数列 {}n b 的公比为q ,依题意得2 662, 6124q d q d =+⎧⎨=+⎩解得3.2d q =⎧⎨=⎩故1 4(1)331,6232n n n n a n n b − =+−⨯=+=⨯=⨯. 所以, {}n a 的通项公式为 () {} 31,n na n n b*=+∈N 的通项公式为 ()32n nb n *=⨯∈N . (Ⅱ))(i () () ()()222 11321321941n n n n n n n a c a b −=−=⨯+⨯−=⨯−. 所以,数列() {}221n n a c −的通项公式为 ()()22 1941n n n a c n * −=⨯−∈N . ()ii () ()222211112211n n n niii i i i i ii i i i c a c a a c a a ====−⎡⎤ =+−=+⎣⎦ ∑∑∑∑ ()()1 221 2439412n nn ni i =⎛⎫− ⎪ =⨯+⨯+⨯− ⎪⎝⎭∑()()2114143252914n n n n−−−=⨯+⨯+⨯−−() 211*2725212n n n n −−=⨯+⨯−−∈N . 2010-2018年1.【解析】∵113n n a a +=−,∴ {}n a 是等比数列 又243a =−,∴14a =,∴ ()1010101413 313113S −⎛⎫⎛⎫−− ⎪ ⎪ ⎪⎝⎭⎝⎭ ==−+,故选C . 2.D 【解析】由数列通项可知,当125n 剟,n N +∈时,0na …,当 2650n 剟,n N +∈时,0n a …,因为 1260a a +>, 2270a a +>⋅⋅⋅∴ 1250,,,S S S ⋅⋅⋅都是正数;当51100n 剟,n N +∈同理5152100,,,S S S ⋅⋅⋅也都是正数,所以正数的个 数是100.3.63−【解析】通解 因为21n n S a =+,所以当1=n 时,1121=+a a ,解得11=−a ;当2=n 时,12221+=+a a a ,解得22=−a ; 当3=n 时,123321++=+a a a a ,解得34=−a ; 当4=n 时,1234421+++=+a a a a a ,解得48=−a ; 当5=n 时,12345521++++=+a a a a a a ,解得516=−a ; 当6=n 时,123456621+++++=+a a a a a a a ,解得632=−a . 所以61248163263=− −−−−−=−S . 优解因为 21n n S a =+,所以当1=n 时,1121=+a a ,解得11=−a ,当2≥n 时,112121−−=−=+−−n n n n n a S S a a ,所以12−=n n a a , 所以数列{}n a 是以1−为首项,2 为公比的等比数列,所以12−=−n n a ,所以661(12)6312−⨯−==−−S .4.21n n +【解析】设等差数列的首项为1a ,公差为d ,则1123434102a d a d +=⎧⎪⎨⨯+=⎪⎩,解得11a =,1d =,∴1(1)(1)22n n n n n S na d −+=+⨯=,所以12112()(1)1n S k k k k ==−++,所以1111111122[(1)()()]2(1)223111nk knS n n n n ==−+−+⋅⋅⋅+−=−=+++∑.5.1n −【解析】当1n =时,111S a ==−,所以111S =−,因为111n n n n n a S S S S +++=−=,所以1111n n S S +−=,即1111n nS S +−=−,所以1{}nS 是以1−为首项,1−为公差的等差数列, 所以1 (1)(1)(1)nn n S = −+−−=−,所以1n S n =−.6.2011【解析】由题意得: 112211()()()nn n n n a a a a a a a a −−− =−+−++−+ (1)1212n n n n + =+−+++=所以10 11112202(),2(1), 11111n n n S S a n n n n =−=−== +++.7.【解析】当n =1 时,1a =1S =12133a +,解得1a =1, 当n ≥2 时,n a =1n n S S −−=2133n a +-(12133n a −+)=12233n n a a −−,即n a =12n a −−,∴{n a}是首项为,公比为-1 2 的等比数列,∴n a =1(2)n −−. 81.( )116−,(2)10011 (1)32−【解析】(1)∵1(1)2n n n nS a = −−.3n =时,a 1+a 2+a 3=-a 3-18①4n =时,a 1+a 2+a 3+a 4=a 4-116,∴a 1+a 2+a 3=-116.②由①②知a 3=-116.(2)1n >时,11111(1)()2n n n n S a −−−− = −−,∴11(1)(1)()2n n nn n n a a a − = −+−+ 当为奇数时,n 1111()22n n n a a +−=−; 当为偶数时,n 11()2nn a −=−.故11 (),21 (),2n n n n a n +⎧−⎪⎪=⎨⎪⎪⎩为奇数为偶数,11,20,n n n S n +⎧−⎪=⎨⎪⎩为奇数为偶数∴ 12100 2461001111() 2222S S S ++⋅⋅⋅+=−+++⋅⋅⋅+10010010011(1)111142(1)(1)1323214−=−=−−=−−.9.1830【解析】可证明:14142434443424241616n n n n n n n n n n b a a a a a a a a b +++++−−−=+++=++++=+1123410b a a a a =+++=⇒15151410151618302S ⨯=⨯+⨯=.10.3018【解析】因为cos 2n π的周期为4;由cos 12n n a n π=+n N *∈∴12346a a a a +++=,56786a a a a +++=,… ∴201250363018S =⨯=. 11.【解析】由(1)42a +是3a ,5a 的等差中项得35424a a a +=+, 所以34543428a a a a ++=+=, 解得48a =.由3520a a +=得18()20q q+=,因为1q >,所以2q =.(2)设1()nn n n c b b a +=−,数列{}n c 前n 项和为n S .由11,1,2n nn S n c S S n −=⎧=⎨−⎩≥,解得41n c n =−. 由可知(1)12n n a −=,所以111(41)()2n n n b b n −+−=−⋅,故211(45)()2n nn b b n −−−=−⋅,2n ≥, 11123221()()()()n n n n n b b b b b b b b b b −−−−=−+−+⋅⋅⋅+−+−23111(45)()(49)()73222n n n n −−=−⋅+−⋅+⋅⋅⋅+⋅+.设221113711()(45)()222n n T n −=+⋅+⋅+⋅⋅⋅+−⋅,2n ≥,2311111137()11()(45)()22222n n T n −=⋅+⋅+⋅+⋅⋅⋅+−⋅所以22111111344()4()(45)()22222n n n T n −−=+⋅+⋅+⋅⋅⋅+⋅−−⋅,因此2114(43)()2n nT n −=−−⋅,2n ≥,又11b =,所以2115(43)()2n n b n −=−−⋅.12.【解析】(1)设等比数列{}n a 的公比为q .由1321,2,a a a ==+可得220q q −−=. 因为0q >,可得2q =,故12n n a −=.设等差数列{}n b 的公差为,由d 435a b b =+,可得13 4.b d +=由5462a b b =+, 可得131316,bd += 从而11,1,b d == 故.n b n =所以数列{}n a 的通项公式为12n n a −=,数列{}n b 的通项公式为.n b n =(2)(i)(1)由,有122112nn n S −==−−,故1112(12)(21)22212nnnk k n n k k T n n n +==⨯−=−=−=−=−−−∑∑.(ii)证明:因为11212()(222)222(1)(2)(1)(2)(1)(2)21k k k k k k+kT +b b k k k k k k k k k k k k ++++−−++⋅===−++++++++,所以,324321221()2222222()()()2(1)(2)3243212n n n n k k kk T b b kk n n n ++++=+=−+−++−=−+++++∑.13.【解析】证明:(1)因为{}n a 是等差数列,设其公差为d ,则1(1)n a a n d =+−, 从而,当n 4≥时,nk n k a a a −++=+11(1)(1)n k d a n k d −−+++−122(1)2n a n d a =+−=,1,2,3,k =所以n n n n n n n a a a a a a a −−−+++++=321123+++6, 因此等差数列{}n a 是“(3)P 数列”. (2)数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”,因此,当3n ≥时,n n n n n a a a a a −−++ +++=21124,①当4n ≥时,n n n n n n n a a a a a a a −−−+++ +++++=3211236.② 由①知,n n n a a a−−− +=−32141()n n a a ++,③ n n n a a a +++ +=−23141()n n aa −+,④ 将③④代入②,得n n n a a a −++=112,其中4n ≥,所以345 ,,,a a a 是等差数列,设其公差为d'.在①中,取4n =,则 235644a a a a a +++=,所以23a a d'=−, 在①中,取3n =,则 12453 4a a a a a +++=,所以122a a d'=−, 所以数列{}n a 是等差数列.14.【解析】(Ⅰ)设 {}n a 的公差为d ,74 728S a ==,∴44a =,∴4113a a d −==,∴1 (1)na a n d n =+−=. ∴ [][]11 lg lg10b a ===, [][] 1111 lg lg111b a ===, [][] 101101101 lg lg 2b a ===. (Ⅱ)记 {}n b 的前n 项和为n T ,则 1000121000 Tb b b =++⋅⋅⋅+ [][] [] 121000 lg lg lg a a a =++⋅⋅⋅+.当 0lg 1na <≤时, 129n =⋅⋅⋅,,,; 当 1lg 2n a <≤时,101199n =⋅⋅⋅,,,; 当 2lg 3n a <≤时, 100101999n =⋅⋅⋅,,,;当 lg 3n a =时,1000n =.∴1000091902900311893T =⨯+⨯+⨯+⨯=. 15.【解析】(Ⅰ)当1n =时,211112434+3a a S a +=+=,因为0n a >,所以1a =3, 当2n ≥时,22 111 43434 −−− +−−=+−−=n n nn n n n a a a a S S a ,即 111 ()()2()n n n n n n a a a a aa −−− +−=+,因为0n a >,所以1n n a a −−=2, 所以数列{n a}32是首项为,公差为的等差数列,所以n a =21n +; ()由(ⅡⅠ)知,n b =1111() (21)(23)22123n n n n =− ++++,所以数列{n b}n 前项和为 12n b b b +++=1111111 [()()()]235572123n n −+−++−++=116463(23)n n n −=++. 16.【解析】()由题意知:11212242n n n a a na −+ +++=−当3=n 时,121222=42++−a a ;当3=n 时, 1232322+3=42++−a a a ;321 322233=4(4) 224++ −−−=a 31=4a ()当21n =时,11112412a -+=-=;当2n ≥时,由1212242n n n a a na −++++=−知 121212 2(1)42n n n a a n a −−−++++−=−两式相减得21112 222n n n n n n nna −−−++ =−=, 此时112n n a -=.经检验知11a =也满足112n n a -=.故数列{}n a 是以为首项,1 12为公比的公比数列, 故11 1[1()]1221212nn n T −⨯− ==−−.()由()知,31)( 2111b a ==.当2n ≥时,2111211111112(1)(1) 23232n n n n n Tb a n n n n −−−−=++++⋅⋅⋅+=++++⋅⋅⋅+⋅1 211111 (1) 2312n n n n − =++++⋅⋅⋅+−⋅−.当1n =时,1 122ln12S =<+=,成立;当2n ≥时,12 2112111 1[(1)][(1)] 2223232n S =++−⋅+++−⋅+⋅⋅⋅1 211111 [(1)] 2312n n n n − +++++⋅⋅⋅+−⋅−= 21231 11111111111 12()()() 2322222222n n n −−+++⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅+− 34121211111111111 ()()() 322221222n n n n n n −−−− +++⋅⋅⋅+−+⋅⋅⋅+−+−−=21211 1111111212()(1)()1 23222212n n n −−− +++⋅⋅⋅++−+⋅−−33212111 111111112 ()()()1 322122212n n n n n n − −−−− +⋅−+⋅⋅⋅+−+−−−=11 111111 12()(1)() 23222n n n −− +++⋅⋅⋅++−+−111111111 ()()() 32122n n n n n −−− +−+⋅⋅⋅+−+−−1 1111111 22()(1) 23232n n n −=+++⋅⋅⋅+−+++⋅⋅⋅+⋅ 111 22()23n<+++⋅⋅⋅+.构造函数()ln(1),01xf x x x x=+−>+ 2()0,()()1x f x f x x在单调递增0,+'∴=>∞+ ()ln(1)(0)01xf x x f x∴=+−>=+ ln(1)()1xx x 在上恒成立0,+∴+>∞+,即ln(1)1x x x<++1=,1x n 令−2n ≥,则11 ln(1)1n n <+−,从而可得11 ln(1) 221<+−,11ln(1) 331<+−,⋅⋅⋅,11ln(1)1n n <+−,将以上1n −个式子同向相加即得{} 111111ln(1)ln(1)ln(1) 2321311n n++⋅⋅⋅+<++++⋅⋅⋅++= −−−23ln()ln121n n n ⨯⨯⋅⋅⋅⨯=−,故 11122()22ln 23n S n n <+++⋅⋅⋅+<+综上可知, 22ln n S n <+.17.【解析】(Ⅰ)22 1111 1:(1)320,60,n S S S S =−−−⨯=+−=令得即所以11(3)(2)0S S +−=, 111 0,2, 2.S S a >∴==即(Ⅱ)2222 (3)3()0,:(3)()0,n n n n S n n S n n S S n n ⎡⎤ −+−−+=+−+=⎣⎦ 由得2 0(),0,30,,n n n n a n N S S S n n *>∈∴>+>∴=+从而221 2,(1)(1)2,n n n n a S S n n n n n−⎡⎤ ∴≥=−=+−−+−=⎣⎦ 当时1 221,2().n a a n n N *==⨯∴=∈又(Ⅲ)22 313 ,()(),221644kk k N k k k k *∈+>+−=−+当时 111111 113 (1)2(21)44 ()()() 244k k a a k k k k k k ∴==⋅<⋅++ +−+11111111144 (1) ()(1)4444k k k k ⎡⎤⎢⎥ =⋅=⋅−⎢⎥⎡⎤⎢⎥−+− −⋅+−⎢⎥⎣⎦⎣⎦1122111(1)(1)(1)n n a a a a a a ∴++++++1111111()() 1111114 1223(1) 444444n n ⎡⎤⎢⎥ <−+−++−⎢⎥⎢⎥ −−−−−+−⎣⎦.18.【解析】(Ⅰ) 11111121.S S a a n a S ⋅=−=∴=时,当 .1,011 =≠⇒a a 11111111222221−−−−=⇒−=−−−=−=>n n n n n n n n n a a a a S a a S a a s s a n 时,当- .*,221}{11N n a q a a n n n ∈===⇒−的等比数列,公比为时首项为(Ⅱ)n n n nqa n qa qa qa qT a n a a a T ⋅++⋅+⋅+⋅=⇒⋅++⋅+⋅+⋅= 321321321321设1432321+⋅++⋅+⋅+⋅=⇒n na n a a a qT 上式错位相减:nn n nn n n n na qq a na a a a a T q 21211)1(111321⋅−−=−−−=−++++=−++ *,12)1(N n nT n n ∈+⋅−=⇒.19.【解析】(1)由11111210,0,.22n n n n n nba n n a b a a n a b b a −−−−=>=>=++−知令11,n n n A A a b==,当1122,n n n A A b b −≥=+时211 2111222n n n n A b b b b−−−− =++++2121 1222.n n n n b b b b−−− =++++①当2b ≠时,12 (1)2,2 (2)1nn n n nb b b A b b b⎛⎫− ⎪−⎝⎭==−− ②当2,.2n nb A ==时 (2),22 2,2n nnn nb b b a b b ⎧−≠⎪=−⎨⎪=⎩(2)当2b ≠时,(欲证1111 (2)2 1,(1)2 222n n n n n nn n n n n nb b b b b a nb b b ++++−− =≤+≤+−−只需证)11111212 (2)(2)(22)2n n n n n n n n n b b b b b b++++−−−− +=++++− 1122222111 22222n n n n n n n n n b b b b b +−+−−−+=+++++++2121 222 2()222n nn nnn n n b b bb b bb −− =+++++++12(222)222n n n n n n b n b n b + >+++=⋅=⋅,11 (2) 1.22n n n n n n nb b b a b ++− ∴=<+−当112,2 1.2nn nbb a++===+时综上所述111.2nn nba++≤+。

2011年—2018年新课标全国卷(1卷、2卷、3卷)文科数学试题分类汇编—8

2011年—2018年新课标全国卷(1卷、2卷、3卷)文科数学试题分类汇编—8

2011年—2018年新课标全国卷(1卷、2卷、3卷)文科数学试题分类汇编—8.三角函数、解三角形2011年—2018年新课标全国卷Ⅰ文科数学分类汇编7.三角函数、解三角形一、选择题2018年新课标Ⅰ文8题:已知函数$f(x)=2\cos x-\sin x+2$,则$f(x)$的最小正周期为$\pi$,最大值为3.2018年新课标Ⅰ文11题:已知角$\alpha$的顶点为坐标原点,始边与$x$轴的非负半轴重合,终边上有两点$A(1,0)$,$B(2,b)$,且$\cos2\alpha=\frac{1}{5}$,则$a-b=\frac{1}{5}$。

2018年新课标Ⅱ文7题:在$\triangle ABC$中,$\cos C=\frac{5}{\sqrt{26}}$,$BC=1$,$AC=5$,则$AB=5\sqrt{2}$。

2018年新课标Ⅱ文10题:若$f(x)=\cos x-\sin x$在$[0,a]$是减函数,则$a$的最大值是$\frac{3\pi}{4}$。

2018年新课标Ⅲ文4题:若$\sin \alpha=\frac{1}{\sqrt{8}}$,则$\cos 2\alpha=-\frac{7}{8}$。

2018年新课标Ⅲ文6题:函数$f(x)=\frac{\tan x}{1+\tan^2 x}$的最小正周期为$\pi$。

2018年新课标Ⅲ文11题:triangle ABC$的内角$A$,$B$,$C$的对边分别为$a$,$b$,$c$。

若$\triangle ABC$的面积为$4$,则$\cosC=\frac{3}{4}$。

2017年新课标Ⅰ文11题:triangle ABC$的内角$A$、$B$、$C$的对边分别为$a$、$b$、$c$。

已知$\sin B+\sin A(\sin C-\cos C)=\frac{3}{2}$,$a=2$,$c=2$,则$C=\frac{\pi}{3}$。

【2022高考必备】2012-2021十年全国高考数学真题分类汇编 数列大题(原卷版及解析版)

【2022高考必备】2012-2021十年全国高考数学真题分类汇编 数列大题(原卷版及解析版)
6.(2018年高考数学课标Ⅲ卷(理))(12分)等比数列 中, ,
(1)求 的通项公式;
(2)记 为 的前 项和,若 ,求 .
(1) 或 ;(2)
【答案】【官方解析】(1)设 的公比为 ,由题设得
由已知得 ,解得 (舍去), 或
故 或
(2)若 ,则 ,由 ,得 ,此方和没有正整数解
若 ,则 ,由 ,得 ,解得
【答案】解析:(1)设 的公差为 ,由题意得 .
由 得 ,所以 的通项公式为 .
(2)由(1)得 .
所以当 时, 取得最小值,最小值为 .
8.(2016高考数学课标Ⅲ卷理科)已知数列 的前 项和 ,其中 .
(Ⅰ)证明 是等比数列,并求其通项公式;
(Ⅱ)若 ,求 .
【答案】(Ⅰ) ;(Ⅱ) .
【解析】(Ⅰ)由题意得 ,故 , , .
所以数列 是以 为首项,以 为公差等差数列;
(2)由(1)可得,数列 是以 为首项,以 为公差的等差数列,
,
,
当n=1时, ,
当n≥2时, ,显然对于n=1不成立,
∴ .
【点睛】本题考查等差数列的证明,考查数列的前n项和与项的关系,数列的前n项积与项的关系,其中由 ,得到 ,进而得到 是关键一步;要熟练掌握前n项和,积与数列的项的关系,消和(积)得到项(或项的递推关系),或者消项得到和(积)的递推关系是常用的重要的思想方法.
【解析】(1)设 的公比为 , 为 的等差中项,


(2)设 前 项和为 , ,
,①
,②
① ②得,


【点睛】本题考查等比数列通项公式基本量的计算、等差中项的性质,以及错位相减法求和,考查计算求解能力,属于基础题.

近6年来高考数列题分析(以全国卷课标Ⅰ为例)

近6年来高考数列题分析(以全国卷课标Ⅰ为例)

近5年来高考数列题分析(以全国卷课标Ⅰ为例)单的裂项相消法和错位相减法求解数列求和即可。

纵观全国新课标Ⅰ卷、Ⅱ卷的数列试题,我们却发现,新课标卷的数列题更加注重基础,强调双基,讲究解题的通性通法。

尤其在选择、填空更加突出,常常以“找常数”、“找邻居”、“找配对”、“构函数”作为数列问题一大亮点.从2011年至2015年,全国新课标Ⅰ卷理科试题共考查了8道数列题,其中6道都是标准的等差或等比数列,主要考查等差或等比数列的定义、性质、通项、前n项和、某一项的值或某几项的和以及证明等差或等比数列等基础知识。

而文科试题共考查了9道数列题,其中7道也都是标准的等差或等比数列,主要考查数列的性质、求通项、求和、求数列有关基本量以及证明等差或等比数列等基础知识。

1.从试题命制角度看,重视对基础知识、基本技能和基本数学思想方法的考查。

2.从课程标准角度看,要求学生“探索并掌握等差数列、等比数列的通项公式与前n 项和的公式,能在具体问题情境中,发现数列的等差关系或等比关系,并能用有关知识解决相应的问题”。

3.从文理试卷角度看,尊重差异,文理有别,体现了《普通高中数学课程标准(实验)》的基本理念之一“不同的学生在数学上得到不同的发展”。

以全国新课标Ⅰ卷为例,近五年理科的数列试题难度整体上要比文科的难度大一些。

如2012年文科第12题“数列 满足 ,求的前60项和”是一道选择题,但在理科试卷里这道题就命成了一道填空题,对考生的要求自然提高了。

具体来看,全国新课标卷的数列试题呈现以下特点:●小题主要考查等差、等比数列的基本概念和性质以及它们的交叉运用,突出了“小、巧、活”的特点,难度多属中等偏易。

●大题则以数列为引线,与函数、方程、不等式、几何、导数、向量等知识编织综合性强,内涵丰富的能力型试题,考查综合素质,难度多属中等以上,有时甚至是压轴题,难度较大。

(一)全国新课标卷对数列基本知识的考查侧重点1.考查数列的基本运算,主要涉及等差、等比数列的通项公式与前项和公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011-2018新课标数列分类汇编一、选择题【2012新课标】5. 已知为等比数列,472a a +=,,则( D )()A 7 ()B 5 ()C -5 ()D -7【分析】472a a +=,56474784,2a a a a a a ==-⇒==-或472,4a a =-=471101104,28,17a a a a a a ==-⇒=-=⇔+=-【2013新课标1】7、设等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,则m = ( C ) A 、3 B 、4 C 、5 D 、6 【分析】有题意知m S =1()2m m a a +=0,∴1a =-m a =-(m S -1m S -)=-2, 1m a += 1m S +-m S =3,∴公差d =1m a +-m a =1,∴3=1m a +=-2m +,∴m =5,故选C.【2013新课标2】3. 等比数列{a n }的前n 项和为S n .已知S 3=a 2+10a 1,a 5=9,则a 1=( C ). A . 13 B . -13 C .19 D . -19【分析】设数列{a n }的公比为q ,若q =1,则由a 5=9,得a 1=9,此时S 3=27,而a 2+10a 1=99,不满足题意,因此q ≠1.∵q ≠1时,S 3=31(1)1a q q --=a 1·q +10a 1,∴311q q--=q +10,整理得q 2=9.∵a 5=a 1·q 4=9,即81a 1=9,∴a 1=19. 【2015新课标2】4. 等比数列{a n }满足a 1=3, =21,则( B )(A )21 (B )42 (C )63 (D )84【2016新课标1】3. 已知等差数列{}n a 前9项的和为27,10=8a ,则100=a ( C ) (A )100(B )99(C )98(D )97 【分析】解法1:199599272a a S a +===,53a ∴= 1051105a ad -∴==- 10010(10010)89098a a d ∴=+-=+=.解法2:91989272S a d ⨯=+=,即143a d +=,又10198a a d =+=,解得 11,1a d =-=,1001(1001)19998a a d ∴=+-=-+=【2017新课标1】4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为( C ) A .1 B .2 C .4 D .8【2017新课标1】12.几位大学生响应国家的创业号召,开发了一款使用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题{}n a 568a a =-110a a +=的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是( A ) A .440 B .330 C .220 D .110【2017新课标2】3.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( B ) A .1盏 B .3盏 C .5盏 D .9盏 【分析】设顶层灯数为1a ,2=q ,()7171238112-==-a S ,解得13a =.【2017新课标3】9.等差数列{}n a 的首项为1,公差不为0.若2a ,3a ,6a 成等比数列,则{}n a 前6项的和为( A ) A .24- B .3-C .3D .8【分析】∵{}n a 为等差数列,且236,,a a a 成等比数列,设公差为d .则2326a a a =⋅,即()()()211125a d a d a d +=++ 又∵11a =,代入上式可得220d d += 又∵0d ≠,则2d =-∴()61656561622422S a d ⨯⨯=+=⨯+⨯-=-,故选A. 【2018新课标1】4.记n S 为等差数列{}n a 的前n 项和.若3243S S S =+,12a =,则3a =( )A .12-B .10-C .10D .12【答案】B二、填空题【2012新课标】16. 数列{}n a 满足1(1)21n n n a a n ++-=-,则{}n a 的前60项和为 1830 【分析】可证明:14142434443424241616n n n n n n n n n n b a a a a a a a a b +++++---=+++=++++=+ 112341515141010151618302b a a a a S ⨯=+++=⇒=⨯+⨯= 【2013新课标1】14、若数列{a n }的前n 项和为S n =23a n +13,则数列{a n }的通项公式是a n =__1(2)n --____.【分析】当n =1时,1a =1S =12133a +,解得1a =1, 当n ≥2时,n a =1n n S S --=2133n a +-(12133n a -+)=12233n n a a --,即n a =12n a --,∴{n a }是首项为1,公比为-2的等比数列,∴n a =1(2)n --.【2013新课标2】16.等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15=25,则nS n 的最小值为_____-49_____.【分析】设数列{a n }的首项为a 1,公差为d ,则S 10=1109102a d ⨯+=10a 1+45d =0,① S 15=11514152a d ⨯+=15a 1+105d =25.②联立①②,得a 1=-3,23d =, 所以S n =2(1)211032333n n n n n --+⨯=-. 令f (n )=nS n ,则32110()33f n n n =-,220'()3f n n n =-.令f ′(n )=0,得n =0或203n =.当203n >时,f ′(n )>0,200<<3n 时,f ′(n )<0,所以当203n =时,f (n )取最小值,而n ∈N +,则f (6)=-48,f (7)=-49,所以当n =7时,f (n )取最小值-49. 【2015新课标2】16. 设是数列的前n 项和,且,,则________.【分析】由已知得,两边同时除以,得,故数列是以为首项,为公差的等差数列,则,所以.【2016新课标1】15. 设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则12n a a a ⋅⋅⋅的最大值为 64 【分析】由a 1+a 3=10,a 2+a 4=5解得118,2a q ==,14118()()22n n n a --∴==, 27321(4)21211()()22nnn n a a a ----+⋅⋅⋅+-∴⋅⋅⋅==,所以当3n =或4时,12n a a a ⋅⋅⋅有最大值64【2017新课标2】15.等差数列{}n a 的前n 项和为n S ,33a =,410S =,则11nk kS==∑2+1nn . 【分析】设{}n a 首项为1a ,公差为d ,则3123a a d =+=,414610S a d =+= 求得11a =,1d =,则n a n =,()12n n n S +=122111n n n ⎛⎫=-=⎪++⎝⎭【2017新课标3】14.设等比数列{}n a 满足121a a +=-,133a a -=-,则4a =___-8_____. 【分析】∵a n {}为等比数列,设公比为q .121313a a a a +=-⎧⎨-=-⎩,即1121113a a q a a q +=-⎧⎪⎨-=-⎪⎩①②,显然1q ≠,10a ≠,②①得13q -=,即2q =-, 代入①式可得11a =, ()3341128a a q ∴==⨯-=-.【2018新课标1】14.记n S 为数列{}n a 的前n 项和.若21n n S a =+,则6S =________. 【答案】-63三、解答题【2011新课标】等比数列{}n a 的各项均为正数,且212326231,9.a a a a a +== (1)求数列{}n a 的通项公式.(2)设31323log log ......log ,n n b a a a =+++求数列1n b ⎧⎫⎨⎬⎩⎭的前项和. 【分析】(1)设数列{a n }的公比为q ,由23269a a a =得32349a a =所以219q =。

有条件可知a>0,故13q =。

由12231a a +=得12231a a q +=,所以113a =。

故数列{a n }的通项式为a n =13n 。

(2)111111log log ...log n b a a a =+++(12...)(1)2n n n =-++++=-故12112()(1)1n b n n n n =-=--++ 12111111112...2((1)()...())22311n n b b b n n n +++=--+-++-=-++, 数列1{}nb 的前n 项和为21nn -+ 【2014新课标1】17.已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n+1=λS n ﹣1,其中λ为常数.( 1)证明:a n+2﹣a n =λ ( 2)是否存在λ,使得{a n }为等差数列?并说明理由. 【分析】( 1)证明:∵a n a n+1=λS n ﹣1,a n+1a n+2=λS n+1﹣1, ∴a n+1(a n+2﹣a n )=λa n+1∵a n+1≠0, ∴a n+2﹣a n =λ. ( 2)解:①当λ=0时,a n a n+1=﹣1,假设{a n }为等差数列,设公差为d .则a n+2﹣a n =0,∴2d=0,解得d=0,∴a n =a n+1=1, ∴12=﹣1,矛盾,因此λ=0时{a n }不为等差数列. ②当λ≠0时,假设存在λ,使得{a n }为等差数列,设公差为d .则λ=a n+2﹣a n =(a n+2﹣a n+1)+(a n+1﹣a n )=2d ,∴.∴,,∴λS n =1+=,根据{a n }为等差数列的充要条件是,解得λ=4. 此时可得,a n =2n ﹣1.因此存在λ=4,使得{a n }为等差数列.【2014新课标2】17. 已知数列{}n a 满足1a =1,131n n a a +=+.(1)证明{}12n a +是等比数列,并求{}n a 的通项公式; (2)证明:1231112na a a ++<…+.【分析】(1)由131m m a a +=+得1113().22m m a a ++=+ 又113a 22+=,所以,{12m a + } 是首项为32,公比为3的等比数列。

相关文档
最新文档