2015高考数学分类汇编数列

合集下载

2015高考数学真题分类 考点20 递推数列及数列的应用

2015高考数学真题分类 考点20 递推数列及数列的应用

考点20 递推数列及数列的应用1.(2015.北京.理,20)已知数列{}n a 满足:*1a ∈N ,136a ≤,且121823618n n n nn a a a a a +⎧=⎨->⎩,≤,,()12n =,,…. 记集合{}*|n M a n =∈N .(Ⅰ)若16a =,写出集合M 的所有元素;(Ⅱ)若集合M 存在一个元素是3的倍数,证明:M 的所有元素都是3的倍数; (Ⅲ)求集合M 的元素个数的最大值.2.(2015.天津.理,18)已知数列{a n }满足a n+2=qa n (q 为实数,且q≠1),n ∈N *,a 1=1,a 2=2,且a 2+a 3,a 3+a 4,a 4+a 5成等差数列。

(1)求q 的值和{a n }的通项公式; (2)设b n =,n ∈N *,求数列{b n }的前n 项和.3.(2015.上海.理,22)已知数列{a n }与{b n }满足a n+1﹣a n =2(b n+1﹣b n ),n ∈N *. (1)若b n =3n+5,且a 1=1,求数列{a n }的通项公式; (2)设{a n }的第n 0项是最大项,即a≥a n (n ∈N *),求证:数列{b n }的第n 0项是最大项;(3)设a 1=λ<0,b n =λn (n ∈N *),求λ的取值范围,使得{a n }有最大值M 与最小值m,且∈(﹣2,2).4.(2015.上海.文,23)已知数列{}n a 与{}n b 满足()*112,N n n n n a a b b n ++-=-∈. (1)若35n b n =+,且11a =,求{}n a 的通项公式;(2)设{}n a 的第0n 项是最大项,即()0*N n n a a n ≥∈,求证:{}n b 的第0n 项是最大项;(3)设()*130,N n n a b n λλ=<=∈,求λ的取值范围,使得对任意*,N ,0nm n a∈≠,且1,66m n a a ⎛⎫∈ ⎪⎝⎭.5.(2015.重庆.理,22)在数列{}n a 中,21113,0()n n n n a a a a a n N λμ+++=++=∈(1)若0,2λμ==-,求数列{}n a 的通项公式; (2)若0001(,2),1k N k k λμ+=∈≥=-,证明:010011223121k a k k ++<<+++.6.(2015.湖南.理,21)已知0a >,函数()[)()e sin 0,ax f x x x =∈+∞. 记n x 为()f x 的从小到大的第n ()*n ∈N 个极值点,证明: (1)数列(){}n f x 是等比数列; (2)若21e 1a -…,则对一切*n ∈N ,()n n x f x <恒成立.7.(2015.湖南.文,19)设数列{}n a 的前n 项和为n S ,已知121,2,a a ==且2133,().n n n a S S n *++=-+∈N (1)证明:23n n a a +=; (2)求.n S8.(2015.湖北.理,22)已知数列{}n a 的各项均为正数,1(1)()n n n b n a n n+=+∈N ,e 为自然对数的底数.(Ⅰ)求函数()1e x f x x =+-的单调区间,并比较1(1)n n+与e 的大小;(Ⅱ)计算11b a ,1212b b a a ,123123b b b a a a ,由此推测计算1212n nb b ba a a 的公式,并给出证明; (Ⅲ)令112()nn n c a a a = ,数列{}n a ,{}n c 的前n 项和分别记为n S ,n T , 证明:e n n T S <. 9.(2015.广东.理,21)数列{a n }满足:a 1+2a 2+…na n =4﹣,n ∈N +.(1)求a 3的值;(2)求数列{a n }的前 n 项和T n ; (3)令b 1=a 1,b n =+(1+++…+)a n (n≥2),证明:数列{b n }的前n 项和S n 满足S n<2+2lnn .10.(2015.广东.文,19)设数列{}n a 的前n 项和为*,n S n ÎN ,已知123351,,,24a a a ===且当2n ³时,211458n n n n S S S S ++-+=+.(1)求4a 的值;(2)证明:⎭⎬⎫⎩⎨⎧-+n n a a 211为等比数列;(3)求数列{}n a 的通项公式.11.(2015.江苏,11)设数列{}n a 满足11=a ,且11+=-+n a a n n (*N n ∈), 则数列⎭⎬⎫⎩⎨⎧n a 1前10项的和为 .12.(2015.江苏,20)设1234,,,a a a a 是各项为正数且公差为d (0)d ≠的等差数列 (1)证明:31242,2,2,2a a a a 依次成等比数列;(2)是否存在1,a d ,使得2341234,,,a a a a 依次成等比数列,并说明理由;(3)是否存在1,a d 及正整数,n k ,使得kn k n k n n a a a a 342321,,,+++依次成等比数列,并说 明理由.13.(2015.浙江.理,20)已知数列{a n }满足a 1=且a n+1=a n ﹣a n 2(n ∈N *) (1)证明:1≤≤2(n ∈N *);(2)设数列{a n 2}的前n 项和为S n ,证明(n ∈N *)14.(2015.浙江.文,17)已知数列{}n a 和{b }n 满足*1112,12(),n n a b a a n +===∈N ,*1231111+1().23n n b b b b b n n++++=-∈N(1)求n a 和n b ;(2)计数列{}n n a b 的前n 项和为n T ,求n T .15.(2015.山东.理,18)设数列{}n a 的前n 项和为n S ,已知233n n S =+ (1)求{}n a 的通项公式(2)若数列{}n b 满足3log 2n n a b =,求{}n b 的前n 项和n T16.(2015.山东.文,19)已知数列{}n a 是首项为正数的等差数列,数列11n n a a +⎧⎫⎨⎬⋅⎩⎭的前n 项和为21nn +. (I )求数列{}n a 的通项公式;(II )设(1)2n a n n b a =+⋅,求数列{}n b 的前n 项和n T .17.(2015.安徽.理,18)设n ∈N *,x n 是曲线y=x 2n+2+1在点(1,2)处的切线与x 轴交点的横坐标(Ⅰ)求数列{x n }的通项公式; (Ⅱ)记T n =x 12x 32…x 2n ﹣12,证明:T n ≥.18.(2015.福建.理文,8)若,a b 是函数()()20,0f x x px q p q =-+>> 的两个不同的零点,且,,2a b - 这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q + 的值等于A.6B.7C.8D.919.(2015.全国I.理,17)n S 为数列{m a }的前n 项和 已知342,02+=+>m m m m S a a a(I )求}{m a 的通项公式。

(word完整版)2015高考数列大题汇编,推荐文档

(word完整版)2015高考数列大题汇编,推荐文档

2015高考数列试题1.(2015新课标理1)井4~ Sn为数列{a n}的前n项和.已知a n>0,(I )求{a n}的通项公式:(n )设1,求数列{划}的前n项和2.( 2015广东理)数列{a n}满足:a12a2nN(1)求a3的值;⑵求数列{a n}的前n项和T n;3 5 3.( 2015广东文)设数列a n的前n项和为S n, n .已知a i 1 , a2, a32 4 且当n 2时,45.2 5S n 8S n 1 S n 1.1求34的值;2证明:3. 1 ^a n为等比数列;23求数列a n的通项公式.4. ( 2015北京文)已知等差数列{「}满足二+ :=10,- -「=2.(I)求{「.}的通项公式;(U)设等比数列仇}满足%=铅,旳=鼬;问:-一与数列P., }的第几项相等?5. ( 2015天津理)已知数列{a n}满足a n 2 qa n(q为实数,且q 1), n N ,& 2,且a?+a3,a3+a4,a4+a§成等差数列.(I) 求q的值和{a n}的通项公式;(II) 设b n lOg2a2n ,n N*,求数列{b n}的前n项和.a2n 16. ( 2015天津文)18•已知{a n}是各项均为正数的等比数列,{b n}是等差数列,且a1二b1 =1,b2 +b3 =2a3,a5 - 3b2 = 7 • (1)求{a n}和{b n}的通项公式;(2)设C n = a n b n ,n? N,求数列{C n} 的前n项和.7. ( 2015 福建文)等差数列a n中,a2 4 ,a4 a7 15 .(i)求数列a n的通项公式;(n)设b n 2an 2 n,求b i b2 4 d。

的值.8(2015山东理)(18)(本小题满分12分)设数列{a n}的前n项和为S n.已知2S n=3n+3.(I)求{a n}的通项公式;(II)若数列{b n}满足a n b n=log 32,求{b n}的前n项和T n.9 (2015重庆文)、(本小题满分12分,(I)小问7分,(II)小问6分)9已知等差数列a n满足a3=2,前3项和&=.2(I)求a n的通项公式;(II)设等比数列b n满足b| = a i,b4 = a!5,求b n前n项和10.(2015浙江文)已知数列{a n}和{0}满足,a1 2力1,a n 1 2a n(n* N ),1 *-b n b n1 1(n N ). n C1)求a n 与b n;(2)记数列{a n b n}的前n项和为T n,求⑴求数列{a n }的通项公式;a(II )设b n (a n 1) 2 n ,求数列{b n }的前n 项和T n12.(2015安徽文)已知数列a n 是递增的等比数列,且 a 1 a 4 9,a 2a 3 8.(1) 求数列 a n 的通项公式;a(2)设S n 为数列a n 的前n 项和,b n ——,求数列b n 的前n 项和T n 。

2015年高考数学(理)核按钮:第六章《数列》(含解析)

2015年高考数学(理)核按钮:第六章《数列》(含解析)

第六章数列§6.1数列的概念与简单表示法1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式).2.了解数列是自变量为正整数的一类特殊函数.高考以考查通项公式及其性质为主,题型主要为:用归纳猜想法求通项;利用a n与S n的关系求通项;由递推数列的关系式求通项;判断数列的单调性等.1.数列的概念(1)定义:按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的.数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第1项(通常也叫做),排在第二位的数称为这个数列的第2项……排在第n位的数称为这个数列的第n项.所以,数列的一般形式可以写成,其中a n是数列的第n项,叫做数列的通项.常把一般形式的数列简记作{a n}.(2)通项公式:如果数列{a n}的与序号之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.(3)从函数的观点看,数列可以看作是一个定义域为正整数集N*(或它的有限子集{1,2,3,…,n})的函数,当自变量从小到大依次取值时所对应的一列________.(4)数列的递推公式:如果已知数列的第1项(或前几项),且从第二项(或某一项)开始的任一项与它的前一项(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.(5)数列的表示方法有、、、.2.数列的分类(1)数列按项数是有限还是无限来分,分为、.(2)按项的增减规律分为、、和.递增数列⇔a n+1a n;递减数列⇔a n+1a n;常数列⇔a n+1a n.递增数列与递减数列统称为.3.数列前n项和S n与a n的关系已知S n,则a n=⎩⎨⎧≥=).2(),1(nn4.常见数列的通项(1)1,2,3,4,…的一个通项公式为a n=____________;(2)2,4,6,8,…的一个通项公式为a n=____________;(3)3,5,7,9,…的一个通项公式为a n=____________;(4)2,4,8,16,…的一个通项公式为a n=____________;(5)-1,1,-1,1,…的一个通项公式为a n=____________;(6)1,0,1,0,…的一个通项公式为a n=____________;(7)a,b,a,b,…的一个通项公式为a n=____________;(8)9,99,999,…的一个通项公式为a n=.注:据此,很易获得数列1,11,111, (2)22,222,…;…;8,88,888,…的通项公式分别为19(10n-1),29(10n-1),…,89(10n-1).【自查自纠】1.(1)项首项a1,a2,a3,…,a n,…(2)第n项n(3)函数值(4)a n a n-1(5)通项公式(解析法)列表法图象法递推公式2.(1)有穷数列无穷数列(2)递增数列递减数列摆动数列常数列><=单调数列3.S1S n-S n-14.(1)n (2)2n (3)2n +1 (4)2n (5)(-1)n(6)1+(-1)n -12(7)(a +b )+(-1)n -1(a -b )2(8)10n -1数列-1,43,-95,167,…的一个通项公式是( )A .a n =(-1)n n (n +1)2n -1B .a n =(-1)nn 22n -1C .a n =(-1)nn 22n +1D .a n =(-1)nn 3-2n2n -1解:-1=-11,数列1,4,9,16,…对应通项n 2,数列1,3,5,7,…对应通项2n -1,数列-1,1,-1,1,…对应通项(-1)n .故选B .下列有四个命题:①数列是自变量为正整数的一类函数;②数列23,34,45,56,…的通项公式是a n =n n +1;③数列的图象是一群孤立的点;④数列1,-1,1,-1,…与数列-1,1,-1,1,…是同一数列.其中正确的个数是( ) A .1B .2C .3D .4解:易知①③正确,②④不正确.故选B .若数列a n =1n +1+1n +2+…+12n ,则a 5-a 4=( )A.110B .-110C.190D.1990解:a 5-a 4=⎝⎛⎭⎫16+17+…+110-(15+16+17+18)=19+110-15=190,故选C .数列{a n }的前n 项和S n =n 2+2n +1,则{a n }的通项公式为____________.解:当n =1时,a 1=S 1=4;当n ≥2时,a n =S n-S n -1=2n +1,∴a n =⎩⎪⎨⎪⎧4(n =1),2n +1(n ≥2).故填a n =⎩⎪⎨⎪⎧4(n =1),2n +1(n ≥2).数列{a n }中,a 1=1,对于所有的n ∈N *都有a 1·a 2·a 3·…·a n =n 2,则a 3+a 5=________.解法一:由a 1a 2a 3=22a 3=32,得a 3=94,由a 1a 2a 3a 4a 5=42a 5=52,得a 5=2516,∴a 3+a 5=6116.解法二:当n ≥1时,a 1·a 2·a 3·…·a n =n 2. 当n ≥2时,a 1·a 2·a 3·…·a n -1=(n -1)2.两式相除得a n =⎝ ⎛⎭⎪⎫n n -12,n ≥2.∴a 3=94,a 5=2516.∴a 3+a 5=6116.故填6116.类型一 数列的通项公式已知数列:45,910,1617,2526,….(1)试写出该数列的一个通项公式;(2)利用你写出的通项公式判断0.98是不是这个数列中的一项.解:(1)各项的分子为22,32,42,52,…,分母比分子大1,因此该数列的一个通项公式为a n =(n +1)2(n +1)2+1.(2)不妨令(n +1)2(n +1)2+1=0.98,得n 2+2n -48=。

2015-2019全国卷高考数学分类汇编-数列

2015-2019全国卷高考数学分类汇编-数列

2014年1卷17.(本小题满分12分)已知数列{n a }的前n 项和为n S ,1a =1,0n a ≠,11n n n a a S λ+=-,其中λ为常数.(Ⅰ)证明:2n n a a λ+-=;(Ⅱ)是否存在λ,使得{n a }为等差数列?并说明理由.2014年2卷17.(本小题满分12分)已知数列{}n a 满足1a =1,131n n a a +=+. (Ⅰ)证明{}12n a +是等比数列,并求{}n a 的通项公式; (Ⅱ)证明:1231112n a a a ++<…+.2015年1卷(17)(本小题满分12分)S n 为数列{a n }的前n 项和.已知a n >0,(Ⅰ)求{a n }的通项公式:(Ⅱ)设,求数列}的前n 项和2015年2卷(4)等比数列{a n }满足a 1=3,a 1+ a 3+ a 5=21,则a 3+ a 5+ a 7 =(A )21 (B )42 (C )63 (D )84(16)设S n 是数列{a n }的前项和,且1111,n n n a a s s ++=-=,则S n =___________________.2016年1卷 (3)已知等差数列{}n a 前9项的和为27,10=8a ,则100=a ( )(A )100(B )99(C )98(D )97(15)设等比数列满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为 。

2016-217.(本小题满分12分)n S 为等差数列{}n a 的前n 项和,且17=128.a S =,记[]=lg n n b a ,其中[]x 表示不超过x 的最大整数,如[][]0.9=0lg99=1,.(I )求111101b b b ,,;(II )求数列{}n b 的前1 000项和.2016-3(12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,k a a a 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有( )(A )18个 (B )16个 (C )14个 (D )12个(17)(本小题满分12分) 已知数列的前n 项和1n n S a λ=+,其中λ0. (I )证明是等比数列,并求其通项公式 (II )若53132S = ,求λ2017-14.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为A .1B .2C .4D .812.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的学最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是A .440B .330C .220D .1102017-23.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏15.等差数列{}n a 的前n 项和为n S ,33a =,410S =,则11nk k S ==∑ .2017-39.等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为A .-24B .-3C .3D .814.设等比数列{}n a 满足a 1 + a 2 = –1, a 1 – a 3 = –3,则a 4 = ___________.2018-14.记n S 为等差数列{}n a 的前n 项和.若3243S S S =+,12a =,则=5aA .12-B .10-C .10D .1214.记n S 为数列{}n a 的前n 项和.若21n n S a =+,则6S =_____________.2018-217.(12分)记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-.(1)求{}n a 的通项公式;(2)求n S ,并求n S 的最小值.2018-317.(12分)等比数列{}n a 中,15314a a a ==,.(1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和.若63m S =,求m .2019-19.记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则A .25n a n =-B . 310n a n =-C .228n S n n =-D .2122n S n n =- 14.记S n 为等比数列{a n }的前n 项和.若214613a a a ==,,则S 5=____________.2019-219.(12分)已知数列{a n }和{b n }满足a 1=1,b 1=0,1434n n n a a b +-=+ ,1434n n n b b a +-=-.(1)证明:{a n +b n }是等比数列,{a n –b n }是等差数列;(2)求{a n }和{b n }的通项公式.2019-35.已知各项均为正数的等比数列{a n }的前4项为和为15,且a 5=3a 3+4a 1,则a 3=A . 16B . 8C .4D . 214.记S n 为等差数列{a n }的前n 项和,12103a a a =≠,,则105S S =___________.。

2015年高考数学试题分项版解析专题06数列文(含解析)

2015年高考数学试题分项版解析专题06数列文(含解析)

专题06 数列1.【2015高考新课标1,文7】已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a =( )(A )172 (B )192(C )10 (D )12 【答案】B【解析】∵公差1d =,844S S =,∴11118874(443)22a a +⨯⨯=+⨯⨯,解得1a =12,∴1011199922a a d =+=+=,故选B. 【考点定位】等差数列通项公式及前n 项和公式【名师点睛】解等差数列问题关键在于熟记等差数列定义、性质、通项公式、前n 项和公式,利用方程思想和公式列出关于首项与公差的方程,解出首项与公差,利用等差数列性质可以简化计算.2.【2015高考陕西,文13】中位数为1010的一组数构成等差数列,其末项为2015,则该数列的首项为________ 【答案】5【解析】若这组数有21n +个,则11010n a +=,212015n a +=,又12112n n a a a +++=,所以15a =;若这组数有2n 个,则1101022020n n a a ++=⨯=,22015n a =,又121n n n a a a a ++=+,所以15a =; 故答案为5【考点定位】等差数列的性质.【名师点睛】1.本题考查等差数列的性质,这组数字有可能是偶数个,也有可能是奇数个.然后利用等差数列性质m n p q m n p q a a a a +=+⇒+=+.2.本题属于基础题,注意运算的准确性.3.【2015高考广东,文13】若三个正数a ,b ,c 成等比数列,其中526a =+,526c =-,则b = .【答案】1【解析】因为三个正数a ,b ,c 成等比数列,所以()()25265261b ac ==+-=,因为0b >,所以1b =,所以答案应填:1.【考点定位】等比中项.【名师点晴】本题主要考查的是等比中项,属于容易题.解题时要抓住关键字眼“正数”,否则很容易出现错误.解本题需要掌握的知识点是等比中项的概念,即若a ,G ,b 成等比数列,则G 称为a 与b 的等比中项,即2G ab =.4.【2015高考福建,文16】若,a b 是函数()()20,0f x x px q p q =-+>> 的两个不同的零点,且,,2a b - 这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q + 的值等于________. 【答案】9【解析】由韦达定理得a b p +=,a b q ⋅=,则0,0a b >>,当,,2a b -适当排序后成等比数列时,2-必为等比中项,故4a b q ⋅==,4b a=.当适当排序后成等差数列时,2-必不是等差中项,当a 是等差中项时,422a a =-,解得1a =,4b =;当4a 是等差中项时,82a a=-,解得4a =,1b =,综上所述,5a b p +==,所以p q +9=.【考点定位】等差中项和等比中项.【名师点睛】本题以零点为载体考查等比中项和等差中项,其中分类讨论和逻辑推理是解题核心.三个数成等差数列或等比数列,项与项之间是有顺序的,但是等差中项或等比中项是唯一的,故可以利用中项进行讨论,属于难题.5.【2015高考浙江,文10】已知{}n a 是等差数列,公差d 不为零.若2a ,3a ,7a 成等比数列,且1221a a +=,则1a = ,d = . 【答案】2,13- 【解析】由题可得,2111(2)()(6)a d a d a d +=++,故有1320a d +=,又因为1221a a +=,即131a d +=,所以121,3d a =-=. 【考点定位】1.等差数列的定义和通项公式;2.等比中项.【名师点睛】本题主要考查等差数列的定义和通项公式.主要考查学生利用等差数列的定义以及等比中项的性质,建立方程组求解数列的首项与公差.本题属于容易题,主要考查学生正确运算的能力.6.【2015高考新课标1,文13】数列{}n a 中112,2,n n n a a a S +==为{}n a 的前n 项和,若126n S =,则n = .【答案】6【解析】∵112,2n n a a a +==,∴数列{}n a 是首项为2,公比为2的等比数列,∴2(12)12612n n S -==-,∴264n =,∴n=6. 考点:等比数列定义与前n 项和公式【名师点睛】解等差数列问题关键在于熟记等比数列定义、性质、通项公式、前n 项和公式,利用方程思想和公式列出关于首项与公比的方程,解出首项与公比,利用等比数列性质可以简化计算. 7.【2015高考安徽,文13】已知数列}{n a 中,11=a ,211+=-n n a a (2≥n ),则数列}{n a 的前9项和等于 . 【答案】27【解析】∵2≥n 时,21,21121+=+=-a a a a n n 且 ∴{}1a a n 是以为首项,21为公差的等差数列 ∴2718921289199=+=⨯⨯+⨯=S 【考点定位】本题主要考查等差数列的定义、通项公式和前n 项和公式的应用.【名师点睛】能够从递推公式判断数列的类型或采用和种方法是解决本题的关键,这需要考生平时多加积累,同时本题还考查了等差数列的基本公式的应用,考查了考生的基本运算能力. 8.【2015高考福建,文17】等差数列{}n a 中,24a =,4715a a +=. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设22n a n b n -=+,求12310b b b b +++⋅⋅⋅+的值.【答案】(Ⅰ)2n a n =+;(Ⅱ)2101. 【解析】(I )设等差数列{}n a 的公差为d .由已知得()()11143615a d a d a d +=⎧⎪⎨+++=⎪⎩,解得131a d =⎧⎨=⎩.所以()112n a a n d n =+-=+. (II )由(I )可得2n n b n =+.所以()()()()231012310212223210b b b b +++⋅⋅⋅+=++++++⋅⋅⋅++()()2310222212310=+++⋅⋅⋅+++++⋅⋅⋅+()()1021211010122-+⨯=+-()112255=-+112532101=+=.【考点定位】1、等差数列通项公式;2、分组求和法.【名师点睛】确定等差数列的基本量是1,a d .所以确定等差数列需要两个独立条件,求数列前n 项和常用的方法有四种:(1)裂项相消法(通过将通项公式裂成两项的差或和,在前n 项相加的过程中相互抵消); (2)错位相减法(适合于等差数列乘以等比数列型);(3)分组求和法(根据数列通项公式的特点,将其分解为等差数列求和以及等比数列求和);(4)奇偶项分析法(适合于整个数列特征不明显,但是奇数项之间以及偶数项之间有明显的等差数列特征或等比数列特征).9.【2015高考北京,文16】(本小题满分13分)已知等差数列{}n a 满足1210a a +=,432a a -=. (I )求{}n a 的通项公式;(II )设等比数列{}n b 满足23b a =,37b a =,问:6b 与数列{}n a 的第几项相等? 【答案】(I )22n a n =+;(II )6b 与数列{}n a 的第63项相等. 【解析】试题分析:本题主要考查等差数列、等比数列的通项公式等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.(I )利用等差数列的通项公式,将1234,,,a a a a 转化成1a 和d ,解方程得到1a 和d 的值,直接写出等差数列的通项公式即可;(II )先利用第一问的结论得到2b 和3b 的值,再利用等比数列的通项公式,将2b 和3b 转化为1b 和q ,解出1b 和q 的值,得到6b 的值,再代入到上一问等差数列的通项公式中,解出n 的值,即项数.试题解析:(Ⅰ)设等差数列{}n a 的公差为d . 因为432a a -=,所以2d =.又因为1210a a +=,所以1210a d +=,故14a =. 所以42(1)22n a n n =+-=+ (1,2,)n = .(Ⅱ)设等比数列{}n b 的公比为q . 因为238b a ==,3716b a ==, 所以2q =,14b =. 所以61642128b -=⨯=. 由12822n =+,得63n =. 所以6b 与数列{}n a 的第63项相等. 考点:等差数列、等比数列的通项公式.【名师点晴】本题主要考查的是等差数列的通项公式和等比数列的通项公式,属于中档题.本题通过求等差数列和等比数列的基本量,利用通项公式求解.解本题需要掌握的知识点是等差数列的通项公式和等比数列的通项公式,即等差数列的通项公式:()11n a a n d =+-,等比数列的通项公式:11n n a a q -=. 10.【2015高考安徽,文18】已知数列{}n a 是递增的等比数列,且14239,8.a a a a +== (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设n S 为数列{}n a 的前n 项和,11n n n n a b S S ++=,求数列{}n b 的前n 项和n T .【答案】(Ⅰ)12n n a -=(Ⅱ) 112221n n ++--【解析】(Ⅰ)由题设可知83241=⋅=⋅a a a a , 又941=+a a , 可解的⎩⎨⎧==8141a a 或⎩⎨⎧==1841a a (舍去)由314q a a =得公比2=q ,故1112--==n n n q a a .(Ⅱ)1221211)1(1-=--=--=n nn n q q a S又1111111n n n n n n n n n n a S S b S S S S S S +++++-===-所以1113221211111...1111...++-=⎪⎪⎭⎫ ⎝⎛-++⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-=+++=n n nn n S S S S S S S S b b b T12111--=+n .【考点定位】本题主要考查等比数列的通项公式、性质,等比数列的前n 项和,以及利用裂项相消法求和. 【名师点睛】本题利用“若q p n m +=+,则q p n m a a a a =”,是解决本题的关键,同时考生发现1111111n n n n n n n n n n a S S b S S S S S S +++++-===-是解决本题求和的关键,本题考查了考生的基础运算能力. 11.【2015高考广东,文19】(本小题满分14分)设数列{}n a 的前n 项和为n S ,n *∈N .已知11a =,232a =,354a =,且当2n ≥ 时,211458n n n n S S S S ++-+=+. (1)求4a 的值; (2)证明:112n n a a +⎧⎫-⎨⎬⎩⎭为等比数列; (3)求数列{}n a 的通项公式.【答案】(1)78;(2)证明见解析;(3)()11212n n a n -⎛⎫=-⨯ ⎪⎝⎭.【解析】试题分析:(1)令2n =可得4a 的值;(2)先将211458n n n n S S S S ++-+=+(2n ≥)转化为2144n n n a a a +++=,再利用等比数列的定义可证112n n a a +⎧⎫-⎨⎬⎩⎭是等比数列;(3)先由(2)可得数列112n n a a +⎧⎫-⎨⎬⎩⎭的通项公式,再将数列112n n a a +⎧⎫-⎨⎬⎩⎭的通项公式转化为数列12n n a ⎧⎫⎪⎪⎪⎪⎨⎬⎛⎫⎪⎪⎪⎪⎪⎝⎭⎩⎭是等差数列,进而可得数列{}n a 的通项公式.试题解析:(1)当2n =时,4231458S S S S +=+,即435335415181124224a ⎛⎫⎛⎫⎛⎫+++++=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得:478a =(2)因为211458n n n n S S S S ++-+=+(2n ≥),所以21114444n n n n n n S S S S S S ++-+-+-=-(2n ≥),即2144n n n a a a +++=(2n ≥),因为3125441644a a a +=⨯+==,所以2144n n n a a a +++=,因为()2121111111114242212142422222n n n n n n n n n n n n n n n n n a a a a a a a a a a a a a a a a a +++++++++++-----====----,所以数列112n n a a +⎧⎫-⎨⎬⎩⎭是以21112a a -=为首项,公比为12的等比数列(3)由(2)知:数列112n n a a +⎧⎫-⎨⎬⎩⎭是以21112a a -=为首项,公比为12的等比数列,所以111122n n n a a -+⎛⎫-= ⎪⎝⎭即1141122n n n na a ++-=⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,所以数列12n n a ⎧⎫⎪⎪⎪⎪⎨⎬⎛⎫⎪⎪⎪⎪⎪⎝⎭⎩⎭是以1212a =为首项,公差为4的等差数列,所以()2144212nna n n =+-⨯=-⎛⎫⎪⎝⎭,即()()111422122nn n a n n -⎛⎫⎛⎫=-⨯=-⨯ ⎪ ⎪⎝⎭⎝⎭,所以数列{}n a 的通项公式是()11212n n a n -⎛⎫=-⨯ ⎪⎝⎭考点:1、等比数列的定义;2、等比数列的通项公式;3、等差数列的通项公式.【名师点晴】本题主要考查的是等比数列的定义、等比数列的通项公式和等差数列的通项公式,属于难题. 本题通过将n S 的递推关系式转化为n a 的递推关系式,利用等比数列的定义进行证明,进而可得通项公式,根据通项公式的特点构造成等差数列进行求解.解题时一定要注意关键条件“2n ≥”,否则很容易出现错误.解本题需要掌握的知识点是等比数列的定义、等比数列的通项公式和等差数列的通项公式,即等比数列的定义:1n na q a +=(常数),等比数列的通项公式:11n n a a q -=,等差数列的通项公式:()11n a a n d =+-. 12.【2015高考湖北,文19】设等差数列{}n a 的公差为d ,前n 项和为n S ,等比数列{}n b 的公比为q .已知11b a =,22b =,q d =,10100S =.(Ⅰ)求数列{}n a ,{}n b 的通项公式; (Ⅱ)当1d >时,记nn na cb =,求数列{}n c 的前n 项和n T .【答案】(Ⅰ)121,2.n n na nb -=-⎧⎪⎨=⎪⎩或11(279),929().9n n n a n b -⎧=+⎪⎪⎨⎪=⋅⎪⎩;(Ⅱ)12362n n n T -+=-.【考点定位】本题综合考查等差数列、等比数列和错位相减法求和,属中档题.【名师点睛】这是一道简单综合试题,其解题思路:第一问直接借助等差、等比数列的通项公式列出方程进行求解,第二问运用错位相减法直接对其进行求和.体现高考坚持以基础为主,以教材为蓝本,注重计算能力培养的基本方向.13.【2015高考湖南,文19】(本小题满分13分)设数列{}n a 的前n 项和为n S ,已知121,2a a ==,且13n n a S +=*13,()n S n N +-+∈,(I )证明:23n n a a +=; (II )求n S 。

2015年高考数列汇编

2015年高考数列汇编

2015年高考数列汇编一.选择题:1.(2015高考北京,理6)设{}n a 是等差数列. 下列结论中正确的是( C )A .若120a a +>,则230a a +>B .若130a a +<,则120a a +<C .若120a a <<,则213a a a >D .若10a <,则()()21230a a a a -->2.(2015高考浙江,理3)已知{}n a 是等差数列,公差d 不为零,前n 项和是n S ,若3a ,4a ,8a 成等比数列,则(B )A.140,0a d dS >>B. 140,0a d dS <<C. 140,0a d dS ><D. 140,0a d dS <> 3.(2015高考重庆,理2)在等差数列{}n a 中,若42=a ,24=a ,则=6a (B ) A 、-1 B 、0 C 、1 D 、64.(2015高考福建,理8)若,a b 是函数()()20,0f x x px q p q =-+>> 的两个不同的零点,且,,2a b - 这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q + 的值等于(D ) A .6 B .7 C .8 D .9 二.填空题:5.(2015高考广东,理10)在等差数列{}n a 中,若2576543=++++a a a a a ,则82a a += . (答案)10.6.(2015高考陕西,理13)中位数1010的一组数构成等差数列,其末项为2015,则该数列的首项为 . (答案)57.(2015高考安徽,理14)已知数列{}n a 是递增的等比数列,14239,8a a a a +==,则数列{}n a 的前n 项和等于 .(答案)21n-8.(2015高考新课标2,理16)设n S 是数列{}n a 的前n 项和,且11a =-,11n n n a S S ++=,则n S =________. (答案)1n-9.(2015江苏高考,11)数列}{n a 满足11=a ,且11+=-+n a a n n (*N n ∈),则数列}1{na 的前10项和为 (答案)2011三.解答题:10.(2015高考浙江,理20)已知数列{}n a 满足1a =12且1n a +=n a -2n a (n ∈*N ) (1)证明:112nn a a +≤≤(n ∈*N ); (2)设数列{}2n a 的前n 项和为n S ,证明112(2)2(1)n S n n n ≤≤++(n ∈*N ).解:(1)由题意得,210n n n a a a +-=-≤,即1n n a a +≤,12n a ≤,由11(1)n n n a a a --=- 得1211(1)(1)(1)0n n n a a a a a --=--⋅⋅⋅->,由102n a <≤得, 211[1,2]1n n n n n na a a a a a +==∈--,即112n n a a +≤≤;(2)由题意得21n n n a a a +=-, ∴11n n S a a +=-①,由1111=n n n n a a a a ++-和112n n a a +≤≤得,11112n na a +≤-≤, ∴11112n n n a a +≤-≤,因此*111()2(1)2n a n N n n +≤≤∈++②,由①②得 112(2)2(1)n S n n n ≤≤++.11.(2015高考山东,理18)设数列{}n a 的前n 项和为n S .已知233nn S =+.(1)求{}n a 的通项公式;(2)若数列{}n b 满足3log n n n a b a =,求{}n b 的前n 项和n T . 解:(1)3,332,33211=∴+=∴+=a a S n n当1>n 时,11111333222,332-----=-=-=+=n n n n n n n n n a S S a S 即此时,⎩⎨⎧>==∴-1,31,31n n a n n(2)31,log 13=∴=b a b a n n n ,当n n n n n b n ----==>11313)1(3log 31时, 所以1113T b ==当1n > 时,()()12112311323133n n n T b b b b n ---=++++=+⨯+⨯++-所以()()01231132313nn T n --=+⨯+⨯++-两式相减,得()()012122333133n nn T n ---=+++--⋅ ()11121313313n n n ----=+--⋅- 1363623n n +=-⨯ 所以13631243n n n T +=+⨯ 经检验,1n = 时也适合, 综上可得:13631243n n n T +=+⨯ 13. (2015高考安徽,理18)设*n N ∈,n x 是曲线221n y x +=+在点(12),处的切线与x 轴交点的横坐标. (Ⅰ)求数列{}n x 的通项公式; (Ⅱ)记2221321n n T x x x -= ,证明14n T n≥. 解(1):2221'(1)'(22)n n y xn x ++=+=+,曲线221n y x +=+在点(12),处的切线斜率为22n +. 从而切线方程为2(22)(1)y n x -=+-.令0y =,解得切线与x 轴交点的横坐标1111n nx n n =-=++. (2)证:由题设和(1)中的计算结果知22222213211321()()()242n n n T x x xn --== . 当1n =时,114T =.当2n ≥时,因为222222122221(21)(21)1441()2(2)(2)(2)n n n n n n n x n n n n n-------==>==, 所以211211()2234n n T n n->⨯⨯⨯⨯= . 综上可得对任意的*n N ∈,均有14n T n≥.14.(2015高考天津,理18)(本小题满分13分)已知数列{}n a 满足212()*,1,2n n a qa q q n N a a +=≠∈==为实数,且1,,且 233445,,a a a a a a +++成等差数列.(1)求q 的值和{}n a 的通项公式; (2)设*2221log ,nn n a b n N a -=∈,求数列{}n b 的前n 项和.解:(1)由已知,知)()()()(43543243a a a a a a a a +-+=+-+,即3524a a a a -=-,2,21),1()1(132332=∴====∴≠-=-∴q q a a a a q q a q a 由当)(12*∈-=N n k n 时,2221112---===n k k n a a当)(2*∈=N n k n 时,2222n kk n a a ===所以{}n a 的通项公式为⎪⎩⎪⎨⎧=-为偶数为奇数,n n a n n n ,22221(2) 由(1)得22121log 2n n n n a nb a --==,设数列{}n b 的前n 项和为n S ,则012111111232222n n S n -=⨯+⨯+⨯++⨯ , 1231111112322222n n S n =⨯+⨯+⨯++⨯ 两式相减得23111111112212122222222212n n n n n n n n n n S --=+++++-=-=--- , 整理得1242n n n S -+=-所以数列{}n b 的前n 项和为124,*2n n n N -+-∈.15.(2015高考重庆,理22)在数列{}n a 中,()21113,0n n n n a a a a a n N λμ+++=++=∈(1)若0,2,λμ==-求数列{}n a 的通项公式; (2)若()0001,2,1,k N k k λμ+=∈≥=-证明:010011223121k a k k ++<<+++ 解:(1)由于0,2λμ==-,因此把已知等式具体化得212n n n a a a +=,显然由于13a =,则0n a ≠(否则会得出10a =),从而12n n a a +=,所以{}n a 是等比数列. (2)由211010,n n n n a a a a k +++-=可变形为2101n n n a a a k +⎛⎫+= ⎪⎝⎭()N n +∈, 由于00k >,因此11n n a a k <+,于是可得1n n a a +<,即有12130n n a a a a +=>>>>>> ,又2222001000011111111n n n n n n n a a k k a a k k k a a a k k +-+===-+?+++,于是有()()00011211k k k a a a a a a ++=+-++-010000102011111111k a k k k k a k a k a ⎛⎫=-⋅+⋅+++ ⎪ ⎪+++⎝⎭ 000011112313131k k k k ⎛⎫>+⋅+++ ⎪+++⎝⎭01231k =++,可知2(*)n a n N >∈,因此01k a +=010000102011111111k a k k k k a k a k a ⎛⎫=-⋅+⋅+++ ⎪⎪+++⎝⎭ 000011112212121k k k k ⎛⎫<+⋅+++ ⎪+++⎝⎭ 01221k =++.(1)由02λμ==-,,有212,(n N )n n n a a a ++=∈若存在某个0n N +∈,使得0n 0a =,则由上述递推公式易得0n 10a +=,重复上述过程可得10a =,此与13a =矛盾,所以对任意N n +∈,0n a ≠.从而12n n a a +=()N n +∈,即{}n a 是一个公比q 2=的等比数列. 故11132n n n a a q --==?.(2)由,1,1-==μλk 数列{}n a 的递推关系式变为012101=-+++n n n n a a k a a ,变形为)(1201*-∈=⎪⎪⎭⎫ ⎝⎛+N n a k a a n n n 0100002020202112112,1,111111103,3k n a k k k a k a k k a k a a a a a a a a n n n n n nn n n =∙+-=++-=+=>>>>>>==+++所以归纳可得由上式及求和得()()00011211k k k a a a a a a ++=+-++-01000010200000011111111111112231313131k a k k k k a k a k a k k k k k ⎛⎫=-⋅+⋅+++ ⎪⎪+++⎝⎭⎛⎫>+⋅+++=+ ⎪++++⎝⎭另一方面,由上已证的不等式知001212k k a a a a +>>>>> 得00110000102011111111k k a a k k k k a k a k a +⎛⎫=-⋅+⋅+++ ⎪ ⎪+++⎝⎭0000111112221212121k k k k k ⎛⎫<+⋅+++=+ ⎪++++⎝⎭综上:010*******21k a k k ++<<+++16.(2015高考四川,理16)设数列{}n a 的前n 项和12n n S a a =-,且123,1,a a a +成等差数列. (1)求数列{}n a 的通项公式; (2)记数列1{}na 的前n 项和n T ,求得1|1|1000n T -<成立的n 的最小值.解(1)由已知12n n S a a =-,有1122(1)n n n n n a S S a a n --=-=->, 即12(1)n n a a n -=>. 从而21312,4a a a a ==.又因为123,1,a a a +成等差数列,即1322(1)a a a +=+.所以11142(21)a a a +=+,解得12a =.所以,数列{}n a 是首项为2,公比为2的等比数列. 故2n n a =. (2)由(1)得112n n a =. 所以2311[1()]1111122112222212n n n nT -=++++==-- . 由1|1|1000n T -<,得11|11|21000n --<,即21000n>.因为9102512100010242=<<=, 所以10n ≥. 于是,使1|1|1000n T -<成立的n 的最小值为10. 17.(2015高考湖北,理18)设等差数列{}n a 的公差为d ,前n 项和为n S ,等比数列{}n b 的公比为q .已知11b a =,22b =,q d =,10100S =.(Ⅰ)求数列{}n a ,{}n b 的通项公式; (Ⅱ)当1d >时,记nn na cb =,求数列{}n c 的前n 项和n T . 解:(1)由题意有,⎪⎩⎪⎨⎧==⎩⎨⎧==⎩⎨⎧==+92921210045101111d a d a d a d a 或解得⎪⎪⎩⎪⎪⎨⎧⎪⎭⎫ ⎝⎛⋅=+=⎩⎨⎧=-=∴--11929)792(91212n n nn n n b n a b n a 或 (2))1(,212292725231,212,2,12,143211 n n n n n n n n T n c b n a d -++++++=∴-=∴=-=∴>--2345113579212222222n n n T -=++++++ . (2) ①-②可得221111212323222222n n n n n n T --+=++++-=- ,故n T 12362n n -+=-.18.(2015高考陕西,理21)(本小题满分12分)设()n f x 是等比数列1,x ,2x ,⋅⋅⋅,nx 的各项和,其中0x >,n ∈N ,2n ≥.(I )证明:函数()()F 2n n x f x =-在1,12⎛⎫⎪⎝⎭内有且仅有一个零点(记为n x ),且11122n n n x x +=+; (II )设有一个与上述等比数列的首项、末项、项数分别相同的等差数列,其各项和为()n g x ,比较()n f x 与()n g x 的大小,并加以证明.解:(I )2()()212n n n F x f x x x x =-=++++- ,则(1)10,n F n =->1211111112()1220,12222212n nn nF +⎛⎫- ⎪⎛⎫⎛⎫⎝⎭=++++-=-=-< ⎪ ⎪⎝⎭⎝⎭- 所以()n F x 在1,12⎛⎫ ⎪⎝⎭内至少存在一个零点n x .又1()120n n F x x nx-'=+++> ,故在1,12⎛⎫⎪⎝⎭内单调递增,所以()n F x 在1,12⎛⎫ ⎪⎝⎭内有且仅有一个零点n x .因为n x 是()n F x 的零点,所以()=0n n F x ,即11201n n nx x +--=-,故111=+22n n n x x +.(II)解法一:由题设,()()11().2nnn x g x ++=设.0,2)1)(1(1)()()(2>++-++++=-=x x n x x x x g x f x h n nn n 当1=x 时,)()(x g x f n n = 当1≠x 时,.2)1(21)(11--+-+++='n n x n n nx x x h若.02)1(2)1(2)1(2)(,10111111=+-+=+-+++>'<<------n n n n n n x n n x n n x n n nx x x x h x若02)1(2)1(2)1(2)(,1111111=+-+=+-+++<'>------n n n n n n x n n x n n x n n nx x xx h x 所以)(x h 在()1,0上递增,在),1(+∞上递减, 所以()(1)0h x h <=,即()()n n f x g x <.综上所述,当1x =时, ()()n n f x g x =;当1x ≠时()()n n f x g x < 解法二 由题设,()()211()1,(),0.2n n n n n x f x x x x g x x ++=++++=>当1x =时, ()()n n f x g x =[来源:]当1x ≠时, 用数学归纳法可以证明()()n n f x g x <. 当2n =时, 2221()()(1)0,2f xg x x -=--<所以22()()f x g x <成立. 假设(2)n k k =≥时,不等式成立,即()()k k f x g x <. 那么,当+1n k =时,()()111k+1k 11()()()2kk k k k k x f x f x xg x xx+++++=+<+=+()12112k k x k x k +++++=. 又()()11k+121111()22k k k k x k x k kx k x g x ++++++-++-=令()1()11(0)k k k h x kxk x x +=-++>,则()()11()(1)11(1)k k k k h x k k x k k x k k x x --'=+-+=+-所以当01x <<,()0kh x '<,()k h x 在(0,1)上递减; 当1x >,()0kh x '>,()k h x 在(1,)+∞上递增. 所以()(1)0k k h x h >=,从而()1k+1211()2k k x k x k g x +++++>故11()()k k f x g x ++<.即+1n k =,不等式也成立. 所以,对于一切2n ≥的整数,都有()()n n f x g x <.解法三:由已知,记等差数列为{}k a ,等比数列为{}k b ,1,2,, 1.k n =+ 则111a b ==,11nn n a b x ++==,所以()11+1(2n)n k x a k k n-=-⋅≤≤,1(2),k k b x k n -=≤≤令()()111(x)1,0(2).n k k k k k x m a b x x k n n---=-=+->≤≤当1x =时, =k k a b ,所以()()n n f x g x =. 当1x ≠时, ()()12211()(k 1)11n k k n k k k m x nx x k x x n----+-'=--=-- 而2k n ≤≤,所以10k ->,11n k -+≥. 若01x <<,11n k x -+<,()0k m x '<,当1x >,11n k x-+>,()0km x '>, 从而()k m x 在(0,1)上递减,()k m x 在(1,)+∞上递增.所以()(1)0k k m x m >=, 所以当01(2),k k x x a b k n >≠>≤≤且时,又11a b =,11n n a b ++=,故()()n n f x g x < 综上所述,当1x =时,()()n n f x g x =;当1x ≠时()()n n f x g x <.19.(2015高考新课标1,理17)n S 为数列{n a }的前n 项和.已知n a >0,2n n a a +=错误!未找到引用源。

2015《数列》高考真题总结及答案

2015《数列》高考真题总结及答案

2015《数列》高考真题总结1.(2015·新课标I 卷13)在数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和.若S n =126,则n =________.2.(2015·浙江卷10)已知{a n }是等差数列,公差d 不为零.若a 2,a 3,a 7成等比数列,且2a 1+a 2=1,则a 1=__________________,d =__________________.3.(2015·安徽卷13)已知数列{a n }中,a 1=1,a n =a n -1+12(n ≥2),则数列{a n }的前9项和等于________.4.(2015·新课标I 卷7)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 8=4S 4,则a 10=( ) A.172 B.192C .10 D .12 5.(2015·新课标Ⅱ卷5)设S n 是等差数列{a n }的前n 项和,若a 1+a 3+a 5=3,则S 5=( )A .5B .7C .9D .116.(2015·北京卷16)已知等差数列{a n }满足a 1+a 2=10,a 4-a 3=2.(1)求{a n }的通项公式;(2)设等比数列{b n }满足b 2=a 3,b 3=a 7,问:b 6与数列{a n }的第几项相等?7.(2015四川文科16)设数列{a n }的前n 项和S n 满足S n =2a n -a 1,且a 1,a 2+1,a 3成等差数列.(1)求数列{a n }的通项公式.(2)设数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为T n ,求T n .8.(2015·重庆卷16)已知等差数列{a n }满足a 3=2,前3项和S 3=92.(1)求{a n }的通项公式;(2)设等比数列{b n }满足b 1=a 1,b 4=a 15,求{b n }的前n 项和T n .9.(2015·浙江卷17)已知数列{a n }和{b n }满足a 1=2,b 1=1,a n +1=2a n (n∈N *),b 1+12b 2+13b 3+…+1n b n =b n +1-1(n ∈N *).(1)求a n 与b n ;(2)记数列{a n b n }的前n 项和为T n ,求T n .10.(2015·福建卷17)等差数列{a n }中,a 2=4,a 4+a 7=15.(1)求数列{a n }的通项公式;(2)设b n =2a n -2+n ,求b 1+b 2+b 3+…+b 10的值.11.(2015·安徽卷18)已知数列{a n }是递增的等比数列,且a 1+a 4=9,a 2a 3=8.(1)求数列{a n }的通项公式;(2)设S n 为数列{a n }的前n 项和,b n =a n +1S n S n +1,求数列{b n }的前n 项和T n .12.(2015·天津卷18)已知{a n }是各项均为正数的等比数列,{b n }是等差数列,且a 1=b 1=1,b 2+b 3=2a 3,a 5-3b 2=7.(1)求{a n }和{b n }的通项公式;(2)设c n =a n b n ,n ∈N *,求数列{c n }的前n 项和.13.(2015·广东卷19)设数列{a n }的前n 项和为S n ,n ∈N *.已知a 1=1,a 2=32,a 3=54,且当n ≥2时,4S n +2+5S n =8S n +1+S n -1.(1)求a 4的值;(2)证明:⎩⎨⎧⎭⎬⎫a n +1-12a n 为等比数列;(3)求数列{a n }的通项公式. 14.(2015·湖北卷19)设等差数列{a n }的公差为d ,前n 项和为S n ,等比数列{b n }的公比为q .已知b 1=a 1,b 2=2,q =d ,S 10=100.(1)求数列{a n },{b n }的通项公式;(2)当d >1时,记c n =a nb n,求数列{c n }的前n 项和T n .15.(2015·湖南卷19)设数列{a n }的前n 项和为S n .已知a 1=1,a 2=2,且a n +2=3S n -S n +1+3,n ∈N *.(1)证明:a n +2=3a n ; (2)求S n .16.(2015·山东卷19)已知数列{a n }是首项为正数的等差数列,数列{1a n ·a n +1}的前n 项和为n 2n +1. (1)求数列{a n }的通项公式; (2)设b n =(a n +1)·2a n ,求数列{b n }的前n 项和T n .17.(2015·新课标Ⅱ卷9)已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2=( )A .2B .1C.12D.182015《数列》高考真题答案1.【答案】6【解析】∵112,2n n a a a +==,∴数列{}n a是首项为2,公比为2的等比数列, ∴2(12)12612n n S -==-,∴264n=,∴n=6.2.【答案】2,13-【解析】由题可得,2111(2)()(6)a d a d a d +=++,故有1320a d +=,又因为1221a a +=,即131a d +=,所以121,3d a =-=.3.【答案】27【解析】∵2≥n 时,21,21121+=+=-a a a a n n 且 ∴{}1a a n是以为首项,21为公差的等差数列 ∴2718921289199=+=⨯⨯+⨯=S4.【答案】B 【解析】∵公差1d =,844S S =,∴11118874(443)22a a +⨯⨯=+⨯⨯,解得1a =12,∴1011199922a a d =+=+=,故选B.5.【答案】A6.【答案】(I )22n a n =+;(II )6b 与数列{}n a 的第63项相等.试题解析:(Ⅰ)设等差数列{}n a 的公差为d .因为432a a -=,所以2d =.又因为1210a a +=,所以1210a d +=,故14a =.所以42(1)22n a n n =+-=+(1,2,)n = .(Ⅱ)设等比数列{}n b 的公比为q .因为238b a ==,3716b a ==,所以2q =,14b =.所以61642128b -=⨯=.由12822n =+,得63n =.所以6b 与数列{}n a 的第63项相等.7.【解析】(Ⅰ) 由已知S n =2a n -a 1,有a n =S n -S n-1=2a n -2a n -1(n ≥2)即a n =2a n -1(n ≥2),从而a 2=2a 1,a 3=2a 2=4a 1,又因为a 1,a 2+1,a 3成等差数列 即a 1+a 3=2(a 2+1),所以a 1+4a 1=2(2a 1+1),解得a 1=2 所以,数列{a n }是首项为2,公比为2的等比数列。

2015高考数学试题分类汇编-数列

2015高考数学试题分类汇编-数列

数列专题1.(15北京理科)设{}n a 是等差数列。

下列结论中正确的是A .若120a a +>,则230a a +>B .若130a a +<,则120a a +<C .若120a a <<,则2a > D .若10a <,则()()21230a a a a -->2。

(15北京理科)已知数列{}n a 满足:*1a ∈N ,136a ≤,且121823618n n n nn a a a a a +⎧=⎨->⎩,≤,,()12n =,,…. 记集合{}*|n M a n =∈N .(Ⅰ)若16a =,写出集合M 的所有元素;(Ⅱ)若集合M 存在一个元素是3的倍数,证明:M 的所有元素都是3的倍数; (Ⅲ)求集合M 的元素个数的最大值.3.(15北京文科)已知等差数列{}n a 满足1210a a +=,432a a -=. (Ⅰ)求{}n a 的通项公式;(Ⅱ)设等比数列{}n b 满足23b a =,37b a =,问:6b 与数列{}n a 的第几项相等?4.(15年广东理科)在等差数列{}n a 中,若2576543=++++a a a a a ,则82a a +=5.(15年广东文科)若三个正数a ,b ,c成等比数列,其中5a =+5c =-,则b = . 6.(15年广东文科) 设数列{}n a 的前n 项和为n S ,n *∈N .已知11a =,232a =,354a =,且当2n ≥时,211458n n n n S S S S ++-+=+.()1求4a 的值;()2证明:112n n a a +⎧⎫-⎨⎬⎩⎭为等比数列; ()3求数列{}n a 的通项公式.7.(15年安徽理科)设*n N ∈,n x 是曲线231n y x+=+在点(12),处的切线与x 轴交点的横坐标,(1)求数列{}n x 的通项公式;(2)记2221221n n T x x x -=,证明14n T n≥.8。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题六 数列1.【2015高考重庆,理2】在等差数列{}n a 中,若2a =4,4a =2,则6a = ( ) A 、-1 B 、0 C 、1 D 、6 【答案】B【解析】由等差数列的性质得64222240a a a =-=⨯-=,选B .【考点定位】本题属于数列的问题,考查等差数列的通项公式及等差数列的性质.【名师点晴】本题可以直接利用等差数列的通项公式求解,也可应用等差数列的性质求解,主要考查学生灵活应用基础知识的能力.是基础题.2.【2015高考福建,理8】若,a b 是函数()()20,0f x x px q p q =-+>> 的两个不同的零点,且,,2a b - 这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q + 的值等于( )A .6B .7C .8D .9 【答案】D【解析】由韦达定理得a b p +=,a b q ⋅=,则0,0a b >>,当,,2a b -适当排序后成等比数列时,2-必为等比中项,故4a b q ⋅==,.当适当排序后成等差数列时,2-必不是等差中项,当a 是等差中项时,,解得1a =,4b =;当4a是等差中项时,,解得4a =,1b =,综上所述,5a b p +==,所以p q +9=,选D . 【考点定位】等差中项和等比中项.【名师点睛】本题以零点为载体考查等比中项和等差中项,其中分类讨论和逻辑推理是解题核心.三个数成等差数列或等比数列,项及项之间是有顺序的,但是等差中项或等比中项是唯一的,故可以利用中项进行讨论,属于难题.3.【2015高考北京,理6】设{}n a 是等差数列. 下列结论中正确的是( )A .若120a a +>,则230a a +>B .若130a a +<,则120a a +<C .若120a a <<,则2a >D .若10a <,则()()21230a a a a --> 【答案】C【解析】先分析四个答案支,A 举一反例1232,1,4a a a ==-=-,120a a +>而230+<a a ,A 错误,B 举同样反例1232,1,4a a a ==-=-,130a a +<,而120+>a a ,B 错误,下面针对C 进行研究,{}n a 是等差数列,若120a a <<,则10,a >设公差为d ,则0d >,数列各项均为正,由于22215111()(2)a a a a d a a d -=+-+22221111220a a d d a a d d =++--=>,则2113a a a >113a a a ⇒>,选C.考点定位:本题考点为等差数列及作差比较法,以等差数列为载体,考查不等关系问题,重 点是对知识本质的考查.【名师点睛】本题考查等差数列的通项公式和比较法,本题属于基础题,由于前两个选项无法使用公式直接做出判断,因此学生可以利用举反例的方法进行排除,这需要学生不能死套公式,要灵活应对,作差法是比较大小常规方法,对判断第三个选择只很有效.4.【2015高考浙江,理3】已知{}n a 是等差数列,公差d 不为零,前n 项和是n S ,若3a ,4a ,8a 成等比数列,则( )A.140,0a d dS >>B. 140,0a d dS <<C. 140,0a d dS ><D.140,0a d dS <>【答案】B.【名师点睛】本题主要考查了等差数列的通项公式,等比数列的概念等知识点,同时考查了学生的运算求解能力,属于容易题,将1a d ,4dS 表示为只及公差d 有关的表达式,即可求解,在解题过程中要注意等等差数列及等比数列概念以及相关公式的灵活运用.5.【2015高考安徽,理14】已知数列{}n a 是递增的等比数列,14239,8a a a a +==,则数列{}n a 的前n 项和等于 .【答案】21n -【解析】由题意,,解得141,8a a ==或者148,1a a ==,而数列{}n a 是递增的等比数列,所以141,8a a ==,即,所以2q =,因而数列{}n a 的前n 项和1(1)1221112n nn n a q S q --===---. 【考点定位】1.等比数列的性质;2.等比数列的前n 项和公式.【名师点睛】对于等差数列及等比数列综合考查的问题,要做到:①熟练掌握等差或等比数列的性质,尤其是m n p q +=+,则m n p q a a a a +=+(等差数列),m n p q a a a a ⋅=⋅(等比数列);②注意题目给定的限制条件,如本题中“递增”,说明1q >;③要熟练掌握数列中相关的通项公式,前n 项和公式等.6.【2015高考新课标2,理16】设n S 是数列{}n a 的前n 项和,且11a =-,11n n n a S S ++=,则n S =________. 【答案】1n-【解析】由已知得111n n n n n a S S S S +++=-=⋅,两边同时除以1n n S S +⋅,得,故数列是以1-为首项,1-为公差的等差数列,则,所以. 【考点定位】等差数列和递推关系.【名师点睛】本题考查数列递推式和等差数列通项公式,要搞清楚项n a 及n S 的关系,从而转化为1n S +及n S 的递推式,并根据等差数列的定义判断是等差数列,属于中档题. 7.【2015高考广东,理10】在等差数列{}n a 中,若2576543=++++a a a a a ,则82a a += .【答案】10. 【解析】因为{}n a 是等差数列,所以37462852a a a a a a a +=+=+=,345675525a a a a a a ++++==即55a =,所以285210a a a +==,故应填入10.【考点定位】等差数列的性质.【名师点睛】本题主要考查等差数列性质及其简单运算和运算求解能力,属于容易题,解答此题关键在于熟记()*,,,m n p q a a a a m n p q N m n p q +=+∈+=+且,()*2,,2m n p a a a m n p N m n p +=∈+=且及其熟练运用.8.【2015高考陕西,理13】中位数1010的一组数构成等差数列,其末项为2015,则该数列的首项为 . 【答案】5【解析】设数列的首项为1a ,则12015210102020a +=⨯=,所以15a =,故该数列的首项为5,所以答案应填:5. 【考点定位】等差中项.【名师点晴】本题主要考查的是等差中项,属于容易题.解题时一定要抓住重要字眼“中位数”和“等差数列”,否则很容易出现错误.解本题需要掌握的知识点是等差中项的概念,即若a ,A ,b 成等差数列,则A 称为a 及b 的等差中项,即2a b A =+.9.【2015江苏高考,11】数列}{n a 满足11=a ,且11+=-+n a a n n (*N n ∈),则数列}1{na 的前10项和为 【答案】2011【考点定位】数列通项,裂项求和【名师点晴】由数列的递推公式求通项公式时,若递推关系为a n +1=a n +f (n )或a n +1=f (n )·a n ,则可以分别通过累加、累乘法求得通项公式,另外,通过迭代法也可以求得上面两类数列的通项公式,注意:有的问题也可利用构造法,即通过对递推式的等价变形,转化为特殊数列求通项.数列求和的常用方法有倒序相加法,错位相减法,裂项相消法,分组求和法,并项求和法等,可根据通项特点进行选用. 10.【2015江苏高考,20】(本小题满分16分)设1234,,,a a a a 是各项为正数且公差为d (0)d ≠的等差数列 (1)证明:31242,2,2,2aaaa依次成等比数列;(2)是否存在1,a d ,使得2341234,,,a a a a 依次成等比数列,并说明理由;(3)是否存在1,a d 及正整数,n k ,使得kn k n k n n a a a a 342321,,,+++依次成等比数列,并说 明理由.【答案】(1)详见解析(2)不存在(3)不存在【解析】试题分析(1)根据等比数列定义只需验证每一项及前一项的比值都为同一个不为零的常数即可(2)本题列式简单,变形较难,首先令将二元问题转化为一元,再分别求解两个高次方程,利用消最高次的方法得到方程:27+430t t +=,无解,所以不存在(3)同(2)先令将二元问题转化为一元,为降次,所以两边取对数,消去n,k 得到关于t 的一元方程4ln(13)ln(1)ln(13)ln(12)3ln(12)ln(1)0t t t t t t ++-++-++=,从而将方程的解转化为研究函数()4ln(13)ln(1)ln(13)ln(12)3ln(12)ln(1)g t t t t t t t =++-++-++零点情况,这个函数需要利用二次求导才可确定其在(0,)+∞上无零点试题解析:(1)证明:因为(1n =,2,3)是同一个常数, 所以12a ,22a ,32a ,42a 依次构成等比数列.(2)令1a d a +=,则1a ,2a ,3a ,4a 分别为a d -,a ,a d +,2a d +(a d >,2a d >-,0d ≠). 假设存在1a ,d ,使得1a ,22a ,33a ,44a 依次构成等比数列, 则()()34a a d a d =-+,且()()6422a d a a d +=+. 令,则()()3111t t =-+,且()()64112t t +=+(,0t ≠),化简得32220t t +-=(*),且21t t =+.将21t t =+代入(*)式,()()21212313410t t t t t t t t +++-=+=++=+=,则.显然不是上面方程得解,矛盾,所以假设不成立,因此不存在1a ,d ,使得1a ,22a ,33a ,44a 依次构成等比数列. (3)假设存在1a ,d 及正整数n ,k ,使得1na ,2n ka +,23n ka +,34n ka +依次构成等比数列,则()()()221112n kn k n a a d a d +++=+,且()()()()32211132n kn kn k a d a d a d +++++=+.分别在两个等式的两边同除以()21n k a +及()221n k a +,并令(,0t ≠),则()()()22121n kn k t t +++=+,且()()()()32211312n kn kn k t t t +++++=+.将上述两个等式两边取对数,得()()()()2ln 122ln 1n k t n k t ++=++, 且()()()()()()ln 13ln 1322ln 12n k t n k t n k t +++++=++. 化简得()()()()2ln 12ln 12ln 1ln 12k t t n t t +-+=+-+⎡⎤⎡⎤⎣⎦⎣⎦, 且()()()()3ln 13ln 13ln 1ln 13k t t n t t +-+=+-+⎡⎤⎡⎤⎣⎦⎣⎦.令()()21t t ϕϕ'=,则()()()()212011213t t t t ϕ'=>+++.由()()()()1200000g ϕϕϕ====,()20t ϕ'>, 知()2t ϕ,()1t ϕ,()t ϕ,()g t 在和()0,+∞上均单调.故()g t 只有唯一零点0t =,即方程(**)只有唯一解0t =,故假设不成立. 所以不存在1a ,d 及正整数n ,k ,使得1na ,2n ka +,23n ka +,34n ka +依次构成等比数列.【考点定位】等差、等比数列的定义及性质,函数及方程【名师点晴】解决等差数列及等比数列的综合问题,关键是理清两个数列的关系.如果同一数列中部分项成等差数列,部分项成等比数列,要把成等差数列或等比数列的项抽出来单独研究;如果两个数列通过运算综合在一起,要从分析运算入手,把两个数列分割开,弄清两个数列各自的特征,再进行求解.11.【2015高考浙江,理20】已知数列{}n a 满足1a =12且1n a +=n a -2n a (n ∈*N )(1)证明:1(n ∈*N );(2)设数列{}2n a 的前n 项和为n S ,证明112(2)2(1)n S n n n ≤≤++(n ∈*N ). 【答案】(1)详见解析;(2)详见解析.试题分析:(1)首先根据递推公式可得,再由递推公式变形可知211[1,2]1n n n n n na a a a a a +==∈--,从而得证;(2)由和得, ,从而可得*111()2(1)2n a n N n n +≤≤∈++,即可得证.试题解析:(1)由题意得,210n n n a a a +-=-≤,即1n n a a +≤,,由11(1)n n n a a a --=- 得1211(1)(1)(1)0n n n a a a a a --=--⋅⋅⋅->,由得,211[1,2]1n n n n n na a a a a a +==∈--,即;(2)由题意得21n n n a a a +=-, ∴11n n S a a +=-①,由和得,, ∴,因此*111()2(1)2n a n N n n +≤≤∈++②,由①②得112(2)2(1)n S n n n ≤≤++. 【考点定位】数列及不等式结合综合题.【名师点睛】本题主要考查了数列的递推公式,不等式的证明等知识点,属于较难题,第一小问易证,利用条件中的递推公式作等价变形,即可得到,再结合已知条件即可得证,第二小问具有较强的技巧性,首先根据递推公式将n S 转化为只及1+n a 有关的表达式,再结合已知条件得到1+n a 的取值范围即可得证,此次数列自2008年之后作为解答题压轴题重出江湖,算是一个不大不小的冷门(之前浙江各地的模考解答题压轴题基本都是以二次函数为背景的函数综合题),由于数列综合题常及不等式,函数的最值,归纳猜想,分类讨论等数学思想相结合,技巧性比较强,需要平时一定量的训练及积累,在 后续复习时应予以关注.12.【2015高考山东,理18】设数列{}n a 的前n 项和为n S .已知233n n S =+. (I )求{}n a 的通项公式;(II )若数列{}n b 满足3log n n n a b a =,求{}n b 的前n 项和n T . 【答案】(I ); (II ).所以 当1n > 时,()()12112311323133n n n T b b b b n ---=++++=+⨯+⨯++-所以()()01231132313n n T n --=+⨯+⨯++-两式相减,得()()012122333133n nn T n ---=+++--⋅ ()11121313313n n n ----=+--⋅- 所以经检验,1n = 时也适合,综上可得:【考点定位】1、数列前n 项和n S 及通项n a 的关系;2、特殊数列的求和问题.【名师点睛】本题考查了数列的基本概念及运算,意在考查学生的逻辑思维能力及运算求解能力,思维的严密性和运算的准确性,在利用n S 及通项n a 的关系求n a 的过程中,一定要注意1n = 的情况,错位相减不法虽然思路成熟但也对学生的运算能力提出了较高的要求. 13. 【2015高考安徽,理18】设*n N ∈,n x 是曲线221n y x +=+在点(12),处的切线及x 轴交点的横坐标.(Ⅰ)求数列{}n x 的通项公式;(Ⅱ)记2221321n n T x x x -=,证明.【答案】(Ⅰ);(Ⅱ). 【解析】试题分析:(Ⅰ)对题中所给曲线的解析式进行求导,得出曲线221n y x+=+在点(12),处的切线斜率为22n +.从而可以写出切线方程为2(22)(1)y n x -=+-.令0y =.解得切线及x 轴交点的横坐标.(Ⅱ)要证,需考虑通项221n x -,通过适当放缩能够使得每项相消即可证明.思路如下:先表示出22222213211321()()()242n n n T x x x n--==,求出初始条件当1n =时,.当2n ≥时,单独考虑221n x -,并放缩得222222122221(21)(21)1441()2(2)(2)(2)n n n n n n n xn n n n n-------==>==,所以 211211()2234n n T n n->⨯⨯⨯⨯=,综上可得对任意的*n N ∈,均有. 试题解析:(Ⅰ)解:2221'(1)'(22)n n y x n x ++=+=+,曲线221n y x +=+在点(12),处的切线斜率为22n +.从而切线方程为2(22)(1)y n x -=+-.令0y =,解得切线及x 轴交点的横坐标. (Ⅱ)证:由题设和(Ⅰ)中的计算结果知22222213211321()()()242n n n T x x x n--==.当1n =时,. 当2n ≥时,因为222222122221(21)(21)1441()2(2)(2)(2)n n n n n n n x n n n n n-------==>==, 所以211211()2234n n T n n->⨯⨯⨯⨯=. 综上可得对任意的*n N ∈,均有.【考点定位】1.曲线的切线方程;2.数列的通项公式;3.放缩法证明不等式.【名师点睛】数列是特殊的函数,不等式是深刻认识函数及数列的重要工具,三者的综合是近几年高考命题的新热点,且数列的重心已经偏移到不等式的证明及求解中,而不再是以前的递推求通项,此类问题在2010年、2012年、2013年安徽高考解答题中都曾考过.对于数列问题中求和类(或求积类)不等式证明,如果是通过放缩的方法进行证明的,一般有两种类型:一种是能够直接求和(或求积),再放缩;一种是不能直接求和(或求积),需要放缩后才能求和(或求积),求和(或求积)后再进行放缩.在后一种类型中,一定要注意放缩的尺度,二是要注意从哪一项开始放缩. 14.【2015高考天津,理18】(本小题满分13分)已知数列{}n a 满足212()*,1,2n n a qa q q n N a a +=≠∈==为实数,且1,,且 233445,,a a a a a a 成等差数列.(I)求q 的值和{}n a 的通项公式; (II)设,求数列n b 的前n 项和. 【答案】(I) ; (II) .(II) 由(I)得,设数列{}n b 的前n 项和为n S ,则012111111232222n n S n -=⨯+⨯+⨯++⨯, 1231111112322222n n S n =⨯+⨯+⨯++⨯ 两式相减得2311111111*********2222212n n n n n n n n n n S --=+++++-=-=---, 整理得所以数列{}n b 的前n 项和为.【考点定位】等差数列定义、等比数列及前n 项和公式、错位相减法求和.【名师点睛】本题主要考查等差、等比数列定义及性质,求和公式以及错位相减法求和的问题,通过等差数列定义、等比数列性质,分n 为奇偶数讨论求通项公式,并用错位相减法基本思想求和.是中档题.15.【2015高考重庆,理22】在数列{}n a 中,()21113,0n n n n a a a a a n N λμ+++=++=∈(1)若0,2,λμ==-求数列{}n a 的通项公式; (2)若()0001,2,1,k N k k λμ+=∈≥=-证明:010011223121k a k k ++<<+++ 【答案】(1)132n n a -=⋅;(2)证明见解析. 【解析】试题分析:(1)由于0,2λμ==-,因此把已知等式具体化得212n n n a a a +=,显然由于13a =,则0n a ≠(否则会得出10a =),从而12n n a a +=,所以{}n a 是等比数列,由其通项公式可得结论;(2)本小题是数列及不等式的综合性问题,数列的递推关系是211010,n n n n a a a a k 可变形为()N n +∈,由于00k >,因此,于是可得1n n a a +<,即有12130n n a a a a ,又2222001000011111111n n n nn nna a k k a a k k k a a a k k ,于是有011211k k k a a a a a a010000102011111111k a k k k k a k a k a ⎛⎫=-⋅+⋅+++⎪⎪+++⎝⎭000011112313131k k k k ⎛⎫>+⋅+++⎪+++⎝⎭,这里应用了累加求和的思想方法,由这个结论可知2(*)n a n N >∈,因此01k a010000102011111111k a k k k k a k a k a ⎛⎫=-⋅+⋅+++ ⎪ ⎪+++⎝⎭000011112212121k k k k ⎛⎫<+⋅+++⎪+++⎝⎭,这样结论得证,本题不等式的证明应用了放缩法.(1)由02λμ==-,,有212,(n N )n n n a a a ++=∈ 若存在某个0n N +∈,使得0n 0a ,则由上述递推公式易得0n 10a ,重复上述过程可得10a ,此及13a 矛盾,所以对任意N n +∈,0n a ≠.从而12n n a a ()N n +∈,即n a 是一个公比q 2的等比数列.故11132nn na a q .求和得0011211k k k a a a a a a01000010200000011111111111112231313131k a k k k k a k a k a k k k k k ⎛⎫=-⋅+⋅+++ ⎪ ⎪+++⎝⎭⎛⎫>+⋅+++=+ ⎪++++⎝⎭另一方面,由上已证的不等式知01212k k a a a a 得00110000102011111111k k a a k k k k a k a k a +⎛⎫=-⋅+⋅+++ ⎪ ⎪+++⎝⎭00000111112221212121k k k k k ⎛⎫<+⋅+++=+ ⎪++++⎝⎭ 综上:010011223121k a k k【考点定位】等比数列的通项公式,数列的递推公式,不等式的证明,放缩法.,考查探究能力和推理论证能力,考查创新意识.【名师点晴】数列是考查考生创新意识及实践精神的最好素材.从近些年的高考试题来看,一些构思精巧、新颖别致、极富思考性和挑战性的数列及方程、函数(包括三角函数)、不等式以及导数等的综合性试题不断涌现,这部分试题往往以压轴题的形式出现,考查综合运用知识的能力,突出知识的融会贯通.数列的问题难度大,往往表现在及递推数列有关,递推含义趋广,不仅有数列前后项的递推,更有关联数列的递推,更甚的是数列间的“复制”式递推;从递推形式上看,既有常规的线性递推,还有分式、三角、分段、积(幂)等形式.在考查通性通法的同时,突出考查思维能力、代数推理能力、分析问题解决问题的能力. 本题第(1)小题通过递推式证明数列是等比数列,从而应用等比数列的通项公式求得通项,第(2)小题把数列及不等式结合起来,利用数列的递推式证明数列是单调数列,利用放缩法证明不等式,难度很大.16.【2015高考四川,理16】设数列{}n a 的前n 项和12n n S a a =-,且123,1,a a a +成等差数列.(1)求数列{}n a 的通项公式; (2)记数列1{}na 的前n 项和n T ,求得成立的n 的最小值. 【答案】(1)2n n a =;(2)10.【解析】(1)由已知12n n S a a =-,有1122(1)n n n n n a S S a a n --=-=->, 即12(1)n n a a n -=>. 从而21312,4a a a a ==.又因为123,1,a a a +成等差数列,即1322(1)a a a +=+. 所以11142(21)a a a +=+,解得12a =.所以,数列{}n a 是首项为2,公比为2的等比数列. 故2n n a =. (2)由(1)得.所以2311[1()]1111122112222212n n n nT -=++++==--. 由,得,即21000n>.因为9102512100010242=<<=, 所以10n ≥.于是,使成立的n 的最小值为10.【考点定位】本题考查等差数列及等比数列的概念、等比数列通项公式及前n 项和公式等基础知识,考查运算求解能力.【名师点睛】凡是有n S 及n a 间的关系,都是考虑消去n S 或n a (多数时候是消去n S ,得n a 及1n a -间的递推关系).在本题中,得到n a 及1n a -间的递推关系式后,便知道这是一个等比数列,利用等比数列的相关公式即可求解.等差数列及等比数列是高考中的必考内容,多属容易题,考生应立足得满分.17.【2015高考湖北,理18】设等差数列{}n a 的公差为d ,前n 项和为n S ,等比数列{}n b 的公比为q .已知11b a =,22b =,q d =,10100S =. (Ⅰ)求数列{}n a ,{}n b 的通项公式;(Ⅱ)当1d >时,记,求数列{}n c 的前n 项和n T . 【答案】(Ⅰ)或;(Ⅱ)12362n n -+-.2345113579212222222n n n T -=++++++. ② ①-②可得221111212323222222n n nnn n T --+=++++-=-, 故n T 12362n n -+=-. 【考点定位】等差数列、等比数列通项公式,错位相减法求数列的前n 项和.【名师点睛】错位相减法适合于一个由等差数列}{n a 及一个等比数列}{n b 对应项之积组成的数列.考生在解决这类问题时,都知道利用错位相减法求解,也都能写出此题的解题过程,但由于步骤繁琐、计算量大导致了漏项或添项以及符号出错等.两边乘公比后,对应项的幂指数会发生变化,应将相同幂指数的项对齐,这样有一个式子前面空出一项,另外一个式子后面就会多了一项,两项相减,除第一项和最后一项外,剩下的1-n 项是一个等比数列. 18.【2015高考陕西,理21】(本小题满分12分)设()n f x 是等比数列1,x ,2x ,⋅⋅⋅,n x 的各项和,其中0x >,n ∈N ,2n ≥.(I )证明:函数()()F 2n n x f x =-在内有且仅有一个零点(记为n x ),且;(II )设有一个及上述等比数列的首项、末项、项数分别相同的等差数列,其各项和为()n g x ,比较()n f x及()n g x 的大小,并加以证明.【答案】(I )证明见解析;(II )当1x 时, ()()n n f x g x ,当1x ≠时,()()n n f x g x ,证明见解析. 【解析】试题分析:(I )先利用零点定理可证()F n x 在内至少存在一个零点,再利用函数的单调性可证()F n x 在内有且仅有一个零点,进而利用n x 是()F n x 的零点可证;(II )先设()()()n n h x f x g x =-,再对x 的取值范围进行讨论来判断()h x 及0的大小,进而可得()n f x 和()n g x 的大小.试题解析:(I )2()()212n n n F x f x x x x =-=++++-,则(1)10,n F n1211111112()1220,12222212n nn n F +⎛⎫- ⎪⎛⎫⎛⎫⎝⎭=++++-=-=-< ⎪ ⎪⎝⎭⎝⎭- 所以()n F x 在内至少存在一个零点n x . 又1()120n n F x x nx -'=+++>,故在内单调递增,所以()n F x 在内有且仅有一个零点n x .因为n x 是()n F x 的零点,所以()=0n n F x ,即,故.(II)解法一:由题设,11().2nn n x g x所以()(1)0h x h ,即()()n n f x g x .综上所述,当1x 时, ()()n n f x g x ;当1x ≠时()()n n f x g x解法二 由题设,()()211()1,(),0.2n n n n n x f x x x x g x x ++=++++=>当1x 时, ()()n n f x g x当1x ≠时, 用数学归纳法可以证明()()n n f x g x .当2n时, 2221()()(1)0,2f xg x x 所以22()()f x g x 成立.假设(2)n k k =≥时,不等式成立,即()()k k f x g x .那么,当+1nk 时,111k+1k 11()()()2kk k k k k x f x f x xg x xx12112kk x k x k .又11k+121111()22kk kk x k x k kx k x g x令()1()11(0)k k k h x kx k x x +=-++>,则()()11()(1)11(1)k k k k h x k k x k k x k k x x --'=+-+=+-所以当01x ,()0kh x '<,()k h x 在(0,1)上递减;当1x ,()0kh x '>,()k h x 在(1,)+∞上递增. 所以()(1)0k k h x h ,从而1k+1211()2kk x k x k g x故11()()k k f x g x .即+1n k ,不等式也成立.所以,对于一切2n ≥的整数,都有()()n n f x g x .解法三:由已知,记等差数列为k a ,等比数列为k b ,1,2,, 1.k n =+则111a b ,11n n n a b x ,所以()11+1(2n)n k x a k k n-=-⋅≤≤,1(2),k k b x k n -=≤≤令()()111(x)1,0(2).n k k k k k x m a b x x k n n---=-=+->≤≤当1x 时, =k k a b ,所以()()n n f x g x .当1x ≠时, ()()12211()(k 1)11n k k n k k k m x nx x k x x n----+-'=--=-- 而2k n ≤≤,所以10k ,11n k -+≥. 若01x ,11nk x ,()0k m x '<,当1x ,11nk x ,()0km x '>, 从而()k m x 在(0,1)上递减,()k m x 在(1,)+∞上递增.所以()(1)0k k m x m ,所以当01(2),k k x x a b k n >≠>≤≤且时,又11a b ,11n n a b ,故()()n n f x g x综上所述,当1x 时,()()n n f x g x ;当1x ≠时()()n n f x g x .考点:1、等比数列的前n 项和公式;2、零点定理;3、等差数列的前n 项和公式;4、利用导数研究函数的单调性.【名师点晴】本题主要考查的是等比数列的前n 项和公式、零点定理、等差数列的前n 项和公式和利用导数研究函数的单调性,属于难题.解题时一定要抓住重要字眼“有且仅有一个”,否则很容易出现错误.证明函数仅有一个零点的步骤:①用零点存在性定理证明函数零点的存在性;②用函数的单调性证明函数零点的唯一性.有关函数的不等式,一般是先构造新函数,再求出新函数在定义域范围内的值域即可.19.【2015高考新课标1,理17】n S 为数列{n a }的前n 项和.已知n a >0,2n n a a +=43n S +.(Ⅰ)求{n a }的通项公式; (Ⅱ)设 ,求数列{n b }的前n 项和. 【答案】(Ⅰ)21n +(Ⅱ)所以n a =21n +; (Ⅱ)由(Ⅰ)知,n b =1111()(21)(23)22123n n n n =-++++,所以数列{n b }前n 项和为12n b b b +++=1111111[()()()]235572123n n -+-++-++ =. 【考点定位】数列前n 项和及第n 项的关系;等差数列定义及通项公式;拆项消去法 【名师点睛】已知数列前n 项和及第n 项关系,求数列通项公式,常用将所给条件化为关于前n 项和的递推关系或是关于第n 项的递推关系,若满足等比数列或等差数列定义,用等比数列或等差数列通项公式求出数列的通项公式,否则适当变形构造等比或等数列求通项公式. 20.【2015高考广东,理21】数列{}n a 满足()*1212242n n n a a na n N -+++=-∈, (1) 求3a 的值;(2) 求数列{}n a 前n 项和n T ;(3) 令11b a =,()11111223n n n T b a n n n -⎛⎫=++++⋅⋅⋅+≥ ⎪⎝⎭,证明:数列{}n b 的前n 项和n S 满足n S n ln 22+<.【答案】(1)14;(2);(3)见解析.【解析】(1)依题()()312312312132223323244224a a a a a a --++⎛⎫=++-+=---= ⎪⎝⎭, ∴ ; (2)依题当1n >时,()()121211212122144222n n n n n n n n nna a a na a a n a ----++⎛⎫=++-++-=---=⎡⎤ ⎪⎣⎦⎝⎭,∴ ,又也适合此式, ∴ ,∴ 数列{}n a 是首项为1,公比为12的等比数列,故1111221212nn n T -⎛⎫- ⎪⎛⎫⎝⎭==- ⎪⎝⎭-;(3)依题由1211112n n n a a a b a n n -+++⎛⎫=++++ ⎪⎝⎭知11b a =,,1233111323a a b a +⎛⎫=+++ ⎪⎝⎭, 【考点定位】前n 项和关系求项值及通项公式,等比数列前n 项和,不等式放缩.【名师点睛】本题主要考查前n 项和关系求项值及通项公式,等比数列前n 项和,不等式放缩等,转化及化归思想的应用和运算求解能力,属于高档题,此题(1)(2)问难度不大,但第(3)问难度较大,首先应能求得11111222n n S n -⎛⎫⎛⎫=+++- ⎪⎪⎝⎭⎝⎭,并由得到,再用构造函数(()()1ln 11f x x x x =+->)结合不等()放缩方法或用数学归纳法证明11111ln 23n n++++<+. 【2015高考上海,理22】已知数列{}n a 及{}n b 满足()112n n n n a a b b ++-=-,n *∈N .(1)若35n b n =+,且11a =,求数列{}n a 的通项公式;(2)设{}n a 的第0n 项是最大项,即0n n a a >(n *∈N ),求证:数列{}n b 的第0n 项是最大项;(3)设10a λ=<,n n b λ=(n *∈N ),求λ的取值范围,使得{}n a 有最大值M 及最小值m ,且.【答案】(1)65n a n =-(2)详见解析(3)【解析】解:(1)由13n n b b +-=,得16n n a a +-=,所以{}n a 是首项为1,公差为6的等差数列,故{}n a 的通项公式为65n a n =-,n *∈N .证明:(2)由()112n n n n a a b b ++-=-,得1122n n n n a b a b ++-=-.所以{}2n n a b -为常数列,1122n n a b a b -=-,即1122n n a b a b =+-.因为0n n a a ≥,n *∈N ,所以011112222n n b a b b a b +-≥+-,即0n n b b ≥.故{}n b 的第0n 项是最大项.解:(3)因为n n b λ=,所以()112n n n n a a λλ++-=-,当2n ≥时,()()()112211n n n n n a a a a a a a a ---=-+-+⋅⋅⋅+-+()()()1122222n n n n λλλλλλλ---=-+-+⋅⋅⋅+-+2n λλ=-.当1n =时,1a λ=,符合上式.所以2n n a λλ=-.因为0λ>,所以222n n a λλλ=->-,21212n n a λλλ--=-<-.①当1λ<-时,由指数函数的单调性知,{}n a 不存在最大、最小值;②当1λ=-时,{}n a 的最大值为3,最小值为1-,而;③当10λ-<<时,由指数函数的单调性知,{}n a 的最大值222a λλM ==-,最小值1m a λ==,由及10λ-<<,得.综上,λ的取值范围是.【考点定位】等差数列,数列单调性【名师点睛】1.等差数列的四种判断方法(1)定义法:a n +1-a n =d (d 是常数)⇔{a n }是等差数列.(2)等差中项法:2a n +1=a n +a n +2(n ∈N *)⇔{a n }是等差数列.(3)通项公式:a n =pn +q (p ,q 为常数)⇔{a n }是等差数列.(4)前n 项和公式:S n =An 2+Bn (A 、B 为常数)⇔{a n }是等差数列.2.数列作为特殊的函数,其单调性的判断及研究也是特别的,只需研究相邻两项之间关系即可.。

相关文档
最新文档