基因工程 第七章 酵母基因表达体系(55P)说课材料

合集下载

第七章 酵母基因工程

第七章 酵母基因工程
第七章 酵母菌的基因工程
Dividing Saccharomyces cerevisiae (baker’s yeast) cells
一. 酵母克隆载体
① 能在E.coli中克隆和扩增。 Ori ②有大肠杆菌的选择标记 Ampr、Tetr。 ③ 有酵母的选择标记 Leu2+、His+、Ura3+、Trp1+;
如pYF92:
pBR322 2m 酵母his 3+
2m质粒: 酿酒酵母的内源质粒,长度是2m 。含有自主 复制起始区ori和STB序列(使质粒在供体中维 持稳定)。
特点:
①很高的转化活性(103-105转化子/微克 DNA). ②拷贝数多(25-100分子/细胞)。 ③比YRp稳定。
YEp24
亮氨酸lue2—β-异丙基苹果酸脱 氢酶
• 该酶是把丙酮酸转化成亮氨酸的代谢酶之 一.只要使用亮氨酸lue2突变的营养缺陷型 酵母作受体,载体上带有亮氨酸lue2基因就 能在不含亮氨酸的培养基上实现转化克隆 的筛选(书170页图).
四. 酵母表达系统的特点
(1)优点 ①对其遗传学和生理学的研究比较深入。 ②小量培养和大规模反应器中都能生长。 ③已经分离出很强的启动子。 ④有翻译后的加工。 ⑤本身自然分泌很少,便于胞外蛋白的纯 化。 ⑥安全性高(FDA确认的安全生物),不 需要宿主的安全性检验。
④不稳定,容易丢失。
(3)着丝粒质粒(YCp) 在YRp质粒中插入酵母染色体的着丝粒 区。 YRp质粒 酵母着丝粒 特点: ①行为像染色体,能稳定遗传。 ②单拷贝存在。
③不易从细胞中提取。
(4)附加体型载体(YEp) 由大肠杆菌质粒、2m质粒及酵母染色体 DNA选择标记构成。 大肠杆菌质粒 2m质粒 酵母选择标记

酵母表达体系构建

酵母表达体系构建

酵母表达体系构建酵母表达体系是一种常用的基因表达系统,可以用于生产重组蛋白质、疫苗、抗体等生物制品。

构建酵母表达体系需要选择合适的酵母菌种、载体、目的基因以及必要的宿主细胞,并通过基因克隆、转化、筛选等一系列步骤实现。

本文将详细介绍酵母表达体系的构建过程。

一、选择酵母菌种和载体1.酵母菌种选择:根据需要表达的蛋白质的种类和性质,选择适合的酵母菌种。

常用的酵母菌种有Saccharomyces cerevisiae(酿酒酵母)、Pichia pastoris(毕赤酵母)等。

2.载体选择:载体是携带目的基因进入宿主细胞的必要元件,常用的载体包括质粒、整合型载体和噬菌体载体等。

在构建酵母表达体系时,应根据目的基因的性质和表达量要求选择合适的载体。

二、目的基因的克隆和鉴定1.基因克隆:将目的基因插入到载体中,形成重组DNA分子。

可以通过PCR、基因文库等方法获取目的基因,也可以从基因组或cDNA文库中筛选出目的基因。

2.转化宿主细胞:将重组DNA分子导入到宿主细胞中,常用的方法包括电穿孔法、转化法等。

3.阳性克隆筛选:通过菌落PCR或 southern 杂交等方法筛选出含有目的基因的阳性克隆。

4.序列分析:对阳性克隆进行序列分析,确保目的基因正确插入载体中,并且没有发生任何突变。

三、构建酵母表达体系1.质粒制备:从阳性克隆中提取重组质粒,并进行纯化和鉴定。

2.转化酵母细胞:将重组质粒转化到酵母细胞中,常用的方法包括电穿孔法、热激法等。

3.筛选阳性克隆:通过 southern 杂交等方法筛选出含有重组质粒的阳性克隆。

4.鉴定表达产物:对阳性克隆进行蛋白质表达水平检测,常用的方法包括 western 杂交、ELISA等。

同时对表达产物进行生物活性检测,以评估表达产物的质量和功能。

5.优化表达条件:通过对培养条件(如温度、pH值、营养物质浓度等)进行优化,提高目的基因的表达水平和产量。

6.生产与纯化:在优化条件下进行大规模培养和表达,并对表达产物进行纯化和加工,以满足实际应用需求。

《基因工程说课》课件

《基因工程说课》课件
《基因工程说课》ppt课 件
CATALOGUE
目 录
• 基因工程简介 • 基因工程的基本技术 • 基因工程实验操作流程 • 基因工程的安全与伦理问题 • 未来展望
01
CATALOGUE
基因工程简介
基因工程的定义
基因工程是指通过人工操作将外源基因导入细胞或生物体内,以改变其遗传物质, 从而达到改良生物性状、生产生物制品或治疗遗传性疾病目的的技术。
基因工程是生物工程的一个重要分支,它利用分子生物学和分子遗传学的原理和技 术,对生物体的遗传物质进行操作和改造。
基因工程的基本操作包括基因克隆、基因转移、基因表达和基因沉默等,这些技术 为人类提供了强大的工具来探索和利用生命系统的奥秘。
基因工程的历史与发展
基因工程的起源可以追溯到20世纪70 年代初期,当时科学家们开始探索限制 性内切酶和DNA连接酶等基本工具,
健康风险
基因工程可能对人类健康产生负面 影响,如基因治疗中的副作用。
安全风险
基因工程可能被用于制造生物武器 或生物恐怖主义。
基因工程的伦理问题
人类基因编辑
基因资源与知识产权
基因工程应用于人类胚胎编辑可能引 发一系列伦理问题,如设计婴儿等。
基因资源属于全人类共享的遗产,涉 及知识产权和利益分配问题。
为基因操作奠定了基础。
1973年,美国科学家斯坦利·柯恩和赫 伯特·博耶利用限制性内切酶和DNA连 接酶,成功地将SV40病毒的DNA切割 并重新连接,从而实现了第一个重组
DNA分子。
自此以后,基因工程技术不断发展,逐 渐形成了完整的理论体系和技术体系, 并在医学、农业、工业和基础研究中得
到了广泛应用。
基因歧视
基因信息可能被用于歧视某些人群, 如保险、就业等方面。

基因工程 第七章 酵母基因表达体系(55P)

基因工程 第七章 酵母基因表达体系(55P)

• 该质粒上共有4个基因:FLP、REP1、 REP2和D.其中FLP基因的编码产物催化 两个IRS序列之间的同源重组,使质粒在A 与B两种形态中转化,REP1、REP2和D基 因均为控制质粒稳定性的反式作用因子编 码基因.上述基因共转录出7种不同分子量 的mRNA分子。
• 2u质粒还含3个顺式作用元件.其中单一的 自主复制子结构(ARS)位于一个IRs的边界 上,REP3(STB)区域是REP1和REP2蛋白 因子的结合位点.对质粒在细胞有丝分裂 时的均匀分配起着重要作用,FRT存在于 两个IRs序列中,大小为50bP,是FLP蛋白 的识别位点。
缺陷在于:
1. 表达效率相对低 2. 酵母常有密码子偏性,真核基因在其中表达时需要人工 修正。
酵母菌的基因工程
酵母菌作为基因工程受体菌的特征 酵母菌表达外源基因的优势
全基因组测序,基因表达调控机理比较清楚,遗传操
作简便 具有原核细菌无法比拟的真核蛋白翻译后加工系统
大规模发酵历史悠久、技术成熟、工艺简单、成本低廉 能将外源基因表达产物分泌至培养基中 不含有特异性的病毒、不产内毒素,美国FDA认定为安全 基因工程受体系统(Generally Recognized As Safe
减少泛蛋白因子依赖型蛋白降解作用的突变宿主菌 泛素降解途径衰减的酿酒酵母 UBI4缺陷型: 在酿酒酵母菌中,泛素主要由UBI4基因表达,UBI4-突变 株正常生长,但细胞内游离泛素分子的浓度比野生株要 低的多,因此UBI4缺陷突变株是外源基因表达理想的受 体。 UBA1缺陷型: UBA1编码泛素激活酶E1,UBA1突变株式致死性的,但 其等位基因缺陷是非致死性的,而且也能削弱泛素介导 的蛋白降解。 Ubc4-ubc5双突变型: 七个泛素连接酶基因的突变对衰减蛋白降解作用同样有效。

酵母菌的基因工程课件

酵母菌的基因工程课件

拷贝数为50-100个,分别携带K1 K2两种能使多种酵母菌致死的毒
反向重复序列
pGKL1 8.9 kb
素蛋白编码基因(a b g),同时含有毒素蛋白抗性基因。
酵母菌克隆表达质粒的构建
含有ARS的YRp质粒的构建
ARS为酵母菌中的自主复制序列,0.8-1.5kb,染色体上每30-40kb 就有一个ARS元件。酵母菌自主复制型质粒的构建组成包括复制子、标 记基因、提供克隆位点的大肠杆菌质粒DNA。
原生质体转化法的一个显著特点是,一个受体细胞可同时接纳 多个质粒分子,而且这种共转化的原生质体占转化子总数的25%~ 33%。
酵母菌的转化程序
碱金属离子介导的酵母菌完整细胞的转化
7 酵母菌的基因工程
A 酵母菌作为基因工程受体菌的特征 酵母菌的分类学特征
酵母菌(Yeast)是一群以芽殖或裂殖方式进行无性繁殖的单细 胞真核生物,分属于子囊菌纲(子囊酵母菌)、担子菌纲(担子酵母 菌)、半知菌类(半知酵母菌),共由56个属和500多个种组成。如 果说大肠杆菌是外源基因最成熟的原核生物表达系统,则酵母菌是最 成熟的真核生物表达系统。
泛素降解途径衰减的酿酒酵母
UBI 4缺陷型: 在酿酒酵母菌中,泛素主要由UBI 4基因表达,UBI 4-突变株能 正常生长,但细胞内游离泛素分子的浓度比野生株要低得多, 因此UBI 4缺陷突变株是外源基因表达理想的受体
UBA 1缺陷型: UBA1编码泛素激活酶E1,UBA1突变株是致死性的,但其等位 基因缺陷是非致死性的,而且也能削弱泛素介导的蛋白降解
生物效应
改善重组蛋白分泌 提高重组蛋白表达 提高重组蛋白表达 提高重组蛋白表达 改善重组蛋白分泌 提高重组蛋白表达
作用位点
钙离子依赖型的ATP酶 转录后加工 转录水平 转录水平 羧肽酶Y 转录水平

酵母表达系统

酵母表达系统

酵母表达系统基因表达是分子生物学领域的重要内容之一,人们利用基因表达技术制备各种目的基因的重组蛋白质,在分析基因的表达与调控、基因的结构与功能、基因治疗以及生物制药等领域均取得了令人振奋的成果。

其中,酵母表达系统拥有转录后加工修饰功能,操作简便,成本低廉,适合于稳定表达有功能的外源蛋白质,而且可大规模发酵,是最理想的重组真核蛋白质生产制备用工具。

1、酵母表达系统的特点酵母是一种单细胞低等真核生物,培养条件普通,生长繁殖速度迅速,能够耐受较高的流体静压,用于表达基因工程产品时,可以大规模生产,有效降低了生产成本。

酵母表达外源基因具有一定的翻译后加工能力,收获的外源蛋白质具有一定程度上的折叠加工和糖基化修饰,性质较原核表达的蛋白质更加稳定,特别适合于表达真核生物基因和制备有功能的表达蛋白质。

某些酵母表达系统具有外分泌信号序列,能够将所表达的外源蛋白质分泌到细胞外,因此很容易纯化。

应用酵母表达系统生产外源基因的蛋白质产物时也有不足之处,如产物蛋白质的不均一、信号肽加工不完全、内部降解、多聚体形成等,造成表达蛋白质在结构上的不一致。

解决内部降解的方法有三:一是在培养基中加入富含氨基酸和多肽的蛋白胨或酪蛋白水解物,通过增加酶作用底物来缓解蛋白水解作用;二是将培养基的pH值调成酸性(酵母可在pH3.0~8.0的范围内生长),以抑制中性蛋白酶的活性;三是利用蛋白酶缺失酵母突变体进行外源基因的表达。

另外,还时常遇到表达产物的过度糖基化情况。

因此,表达系统应根据具体情况作适当的改进。

2、常用酵母表达系统(宿主-载体系统)(1)酿酒酵母(Saccharomyces cerevisiae)表达系统酿酒酵母难于高密度培养,分泌效率低,几乎不分泌分子量大于30 kD的外源蛋白质,也不能使所表达的外源蛋白质正确糖基化,而且表达蛋白质的C端往往被截短。

因此,一般不用酿酒酵母做重组蛋白质表达的宿主菌。

酿酒酵母本身含有质粒,其表达载体可以有自主复制型和整合型两种。

酵母表达系统-PPT课件


2)基因剂量
外源基因表达存在基因剂量效应 筛选多拷贝整合子
载体引入G418/Zeocin抗性标记,整合子拷贝数 与抗性成正相关,采用高G418/Zeocin抗性转化子。
体外串联多个表达盒,直接获多拷贝整合子 采用YRp型载体稳定化技术获高拷贝整合子 构建高拷贝整合型表达载体
3)整合位点
外源基因表达盒整合于AOX/MOX或标记基因处,均 可高效表达
高拷贝整合元件: A、高度重复序列:rDNA 提供多个整合位点 B、缺陷型标记基因:Leu2d
提高选择压力
C、抗性标记;neo 提高选择压力
甲醇酵母系统胞内表达载体
需要带入ATG
表达载体类型
单位点
甲醇酵母系统胞内表达载体
需要带入ATG
多位点
表达载体类型
甲醇酵母系统分泌表达载体
信号肽:PHO1
甲醇酵母系统分泌表达载体
KM71:His+Muts
3’His4
3) 多基因插入事件(串联整合)
宿主株:GS115、KM71
可插入位点: 5’AOX1
3’AOX1
TT
转化子: GS115:His+Mut+ KM71:His+Muts
4) 基因取代(GS115,AOX1+)
转化子:His4+Muts
汉森酵母系统的高拷贝整合型表达载体
信号肽:MFα
甲醇酵母系统分泌表达载体
信号肽:MFα 标记:Kan
4、甲醇酵母系统高效表达影响因素与对策
载体稳定性 基因剂量
整合位点
甲醇利用表型 mRNA5’端 AT含量分泌信号 表达产物稳定性
1)载体稳定性
同拷贝数时,整合型的比自主复制型的表达水平高 YRp型载体的稳定化: 选择—非选择培养交替数十代可得稳定的整合子 ,但费时,整合位点不确定。 采用YIp型载体: 更易实现整合、整合位点清楚

基因工程-外源基因在酵母菌中的表达

基因工程刘夫锋2019.11.27基因工程5 2 3 4 1 6789重组DNA 技术与基因工程的基本概念重组DNA技术与基因工程的基本原理重组DNA技术所需的基本条件重组DNA技术的操作过程目的基因的克隆与基因文库的构建外源基因在大肠杆菌中的表达外源基因在酵母菌中的表达外源基因在哺乳动物细胞中的表达外源基因表达产物的分离纯化7.1酵母菌作为表达外源基因受体菌的特征7 外源基因在酵母菌中的表达酵母菌的分类学特征酵母菌(Yeast )是一群以芽殖或裂殖方式进行无性繁殖的单细胞真核生物,分属于子囊菌纲(子囊酵母菌)、担子菌纲(担子酵母菌)、半知菌类(半知酵母菌),共由56个属和500多个种组成。

如果说大肠杆菌是外源基因最成熟的原核生物表达系统,则酵母菌是最成熟的真核生物表达系统。

7.1 酵母菌作为表达外源基因受体菌的特征7 外源基因在酵母菌中的表达酵母菌表达外源基因的优势全基因组测序,基因表达调控机理比较清楚,遗传操作相对简单能将外源基因表达产物分泌至培养基中具有原核细菌无法比拟的真核蛋白翻译后加工系统大规模发酵历史悠久、技术成熟、工艺简单、成本低廉不含有特异性的病毒、不产内毒素,美国FDA 认定为安全的基因工程受体系统,食品工业有数百年历史酵母菌是最简单的真核模式生物7.2 酵母菌的宿主系统7 外源基因在酵母菌中的表达7.2.2提高重组蛋白表达产率的突变宿主菌7.2.3 抑制超糖基化作用的突变宿主菌7.2.4 减少泛素依赖型蛋白降解作用的突变宿主菌7.2.1 广泛用于外源基因表达的酵母宿主菌7.2.1 广泛用于外源基因表达的酵母宿主菌目前已广泛用于外源基因表达和研究的酵母菌包括:酵母属如酿酒酵母(Saccharomyces cerevisiae )克鲁维酵母属如乳酸克鲁维酵母(Kluyveromyces lactis )毕赤酵母属如巴斯德毕赤酵母(Pichia pastoris )裂殖酵母属如非洲酒裂殖酵母(Schizosaccharomyces pombe )汉逊酵母属如多态汉逊酵母(Hansenula polymorpha )裂殖酵母属如粟酒裂殖酵母(Schizosaccharomyces pombe )如解脂耶氏酵母(耶氏酵母属Yarrowia lipolytica )如腺嘌呤阿氏酵母(阿氏酵母属Arxula adeninivorans )其中芽殖型酿酒酵母的遗传学和分子生物学研究最为详尽。

酵母表达系统

通过适应性进化实验研究酵母在 不同环境下的适应机制,了解生 物进化的过程。
比较基因组学
通过比较不同物种之间的基因组 和转录组,分析生物进化的特征 和规律。
05 酵母表达系统的未来发展
提高表达产物的产量与质量
基因编辑技术
利用基因编辑技术,如CRISPR-Cas9,对酵母基因进行精确修饰, 以提高目标蛋白的表达量和纯度。
沉默子
沉默子是能够抑制基因表达的DNA序列,通过与转录因子结合来抑制基因的表达,在基因表达调控中具有重要作 用。
转录因子与基因表达调控
转录因子
转录因子是能够识别并结合DNA序列的蛋白质,通过与特定DNA序列的结合来调控基因的表达。
转录因子与基因表达调控
转录因子在基因表达调控中发挥关键作用,通过与启动子、增强子或沉默子等DNA序列的相互作用来 调节基因的表达。
蛋白质相互作用
通过酵母双杂交等技术研究蛋白质之间的相互作用,揭示基因调控 的分子机制。
基因突变分析
通过构建突变体分析基因突变对酵母生长、代谢等的影响,研究基因 的功能。
生物进化研究
物种进化
利用酵母表达系统研究物种之间 的进化关系,通过比较不同物种 之间基因表达的差异,揭示物种 进化的规律。
适应性进化
利用酵母表达系统生产食品添 加剂、酶制剂等,提高食品质 量和安全性。
农业领域
通过酵母表达系统改良农作物 ,提高抗逆性、产量和品质等

酵母表达系统的优缺点
优点
操作简便、周期短、成本低、可大规 模生产、安全性高。
缺点
表达水平相对较低、分泌蛋白的加工 和修饰能力有限、易受宿主菌遗传背 景的影响。
02 酵母表达系统的基本组成
对启动子、终止子等表达元件进行优化,提高其转 录和翻译效率,促进目标蛋白的表达。

基因表达(基因工程课件)

目的蛋白质稳定性高。
目的蛋白质易于分离: 利用亲和层析技术,可以快速 获得纯度较高的融合蛋白。
目的蛋白质表达率高: 与受体蛋白质共用一套表达元件。 目的蛋白质溶解性好:融合蛋白质在胞内形成良好的空
间构象,且大多具有水溶性。 目的蛋白质需要回收:融合蛋白质需要裂解和进一步
分离,才能获得目的蛋白。
目的基因表达
CONTENTS
目 录
01 基因表达载概体念的 概 念 、 种 类
02 基因表达载和体调的控特条点件 、 功 能
03
原核与真质核粒生物基因表达的主要差异
04
基因表达过程
05
影响外源基因表达的因素
03
蛋白质的表达形式
基因表达:指基因携带的遗传信息,经过 转录、翻译、加工修饰等复杂过程,产生 具有生物学功能的蛋白质过程。
mRNA上与核糖体16sRNA结合的序列。
原核生物肽链合成的延长:
1.进位: 氨基酰-tRNA结合到 核糖体A位。
氨基酸2
氨基酸1
2.成肽:转肽酶催化,P位上起 始氨基酰-tRNA上的氨基酸 与A位上氨基酰-tRNA的氨基 形成肽键。
CA A G G A
ACUAGGUUCCUGCUAG
3.转位:转位酶催化,A位的 肽酰-tRNA移入P位。
转录延长:
启动子清除,σ亚基脱落, RNA聚合酶核心酶变构,与 模板结合松弛,沿着DNA模 板前移,在核心酶作用下 NTP不断聚合,RNA链不断 延长。
核心酶
β ωα
α
β’
全酶 σ
原核生物:在同一DNA模板上,有多个转录同时进行(羽毛
状现象),转录尚未完成,翻译已在进行。
真核生物:转录延长过程与原核生物大致相似,但因有核膜
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全基因组测序,基因表达调控机理比较清楚,遗传操
作简便 具有原核细菌无法比拟的真核蛋白翻译因表达产物分泌至培养基中 不含有特异性的病毒、不产内毒素,美国FDA认定为安全
基因工程受体系统(Generally Recognized As Safe
GRAS) 酵母菌是最简单的真核模式生物
酵母基因组特征
与真核生物的基因组相比,啤酒酵母的基 因组很小,仅有16条染色体,含1.4X107 bp, 编码约5000个蛋白质,是目前已知真核生 物中基因组最小的一个。酵母细胞既可以 作为单倍体存在,也可以作为二倍体存在。 这就克服了在其它真核生物中隐性基因控 制的形状难以检测的缺陷。
Ubc4-ubc5双突变型:
七个泛素连接酶基因的突变对衰减蛋白降解作用同样有效。
酵母菌的载体系统
载体的一般结构
选择标记
复制子
表达盒
启动子
先导序列
终止子
有用的蛋白结构域
1酵母菌中的野生型质粒 2酵母菌克隆表达质粒的构建
酵母菌种的野生型质粒
酿酒酵母中的2μ环状质粒
几乎所有的酿酒酵母 都含有2μ双链环状质粒, 拷贝数维持50-100个。
• 第一种方法是以分泌的形式表达重组异源蛋白,异 源蛋白在与泛蛋白因子形成共价结合物之前,迅速 被转移到分泌器中,即可有效避免降解作用;
• 第二种方法是将外源基因的表达置于一个可诱导的 启动子控制之下,由于异源蛋白质在短期内集中表 达,分子数占绝对优势的表达产物便能逃脱泛蛋白 因子的束缚,从而减少由降解效应带来的损失;
毕赤酵母属 如巴斯德毕赤酵母
裂殖酵母属 如非洲酒裂殖酵母
汉逊酵母属 如多态汉逊酵母
其中酿酒酵母的遗传学和分子生物学研究
最详尽,但巴斯德毕赤酵母表达外源基因 最理想
提高重组异源蛋白产率的诱变宿主菌
使啤酒酵母中异源蛋白产量提高和质量改善的突变
突变 产生的异源蛋白
增加产量(倍数)
作用位点
SSC1
SSC2
• 第三种方法是使用泛蛋白因子生物合成缺陷的突变 株作为外源基因表达的受体细胞;
• 在酿酒酵母中,泛蛋白因子的主要来源是多聚泛 蛋白基因UBI4的表达,UBI4突变株能正常生长, 但其细胞内游离的泛蛋白因子浓度比野生型菌株 低得多,因此这种缺陷株是一个理想的外源基因 表达受体。
• 编码泛蛋白激活酶E1的基因也可作为突变的靶基 因,含有该基因突变的哺乳动物细胞内几乎检测 不出泛蛋白-外源蛋白的共价结合物。酿酒酵母编 码E1蛋白的基因UBA1是一种看家基因,UBA1突 变株是致死性的,但编码UBA1蛋白等位突变株却 可减少泛蛋白因子依赖型异源蛋白的降解作用。 此外,上述6个UBC基因的突变也是构建重组异源 蛋白稳定表达宿主系统的选择方案,
因此超糖基化缺陷菌株 och 外侧糖链添加缺陷型
非常重要。
减少泛蛋白因子依赖型蛋白降解作用的突变宿主菌
泛素介导的蛋白质降解作用
靶蛋白
LLyyss
靶蛋白
Lys
靶蛋白
Lys
Ubiquitin 76 aa Ubiquitin ligase E3
Ubiquitin ligase E3
蛋白酶体
• 如果外源基因表达产物在酵母菌中具有对泛蛋白依 赖型降解作用的敏感性,则可通过下列方法使这种 降解作用减少到最低程度:
减少泛蛋白因子依赖型蛋白降解作用的突变宿主菌 泛素降解途径衰减的酿酒酵母
UBI4缺陷型:
在酿酒酵母菌中,泛素主要由UBI4基因表达,UBI4-突变 株正常生长,但细胞内游离泛素分子的浓度比野生株要 低的多,因此UBI4缺陷突变株是外源基因表达理想的受 体。
UBA1缺陷型:
UBA1编码泛素激活酶E1,UBA1突变株式致死性的,但 其等位基因缺陷是非致死性的,而且也能削弱泛素介导 的蛋白降解。
酵母基因表达体系
发展历程
1. 1974年rlarck—walker和Miklos发现在大多数酿 酒酵母中存在质粒。
2. 1978年Hmnen将来自一株酿酒酵母的leu 2基因 导入另一株酿酒酵母,弥补了后者的Leu2缺陷, 标志着酵母表达系统的建立。
3. 1981年Hinnen等用酵母基因表达系统表达了人 干扰素。
4. 我国也在1983年首次用酵母菌表达了乙型肝炎 病毒表面抗原基因。
5. 1996年在全世界科学家的通力合作下,完成了 第一个真核生物——酿酒酵母全基因组的测序。
酵母菌是外源基因最成功的真核生物表达系统 优势在于:
1. 安全无毒,不致病; 2. 有较清楚的遗传背景,容易进行遗传操作; 3. 容易进行载体DNA的导入。DNA转化技术的不断发展优化,
许多真核生物的蛋白质在其天门冬酰胺侧链上接有寡糖 基团,常常影响蛋白质的生物活性。整个糖单位由糖基核心
和外侧糖链两部分组成。
酵母菌普遍拥有完 突变类型
整的糖基化系统,但野
生物效应
生型酿酒酵母对异源蛋
白的糖基化反应很难控 mnn 甘露糖生物合成缺陷型
制,呈超糖基化倾向, alg 天门冬酰胺侧链糖基化缺陷
酵母菌的宿主系统 1. 广泛用于外源基因表达的酵母宿主菌 2. 提高重组异源蛋白产率的诱变宿主菌 3. 抑制超糖基化作用的突变宿主菌 4. 减少泛蛋白因子依赖型蛋白降解作用的突变宿主菌
广泛用于外源基因表达的酵母宿主菌
目前已广泛用于外源基因表达的研究的酵母菌包括:
酵母属
如酿酒酵母
克鲁维酵母属 如乳酸克鲁维酵母
Irs反向重复序列600bp, 重组FLP编码产物驱动Irs 的同源重组REP编码产物 控制质粒的稳定性STB REP的结合位点
多数酵母菌可以取得较高的转化率; 4. 培养条件简单,容易进行高密度发酵; 5. 能将外源基因表达产物分泌到培养基中; 6. 有类似高等真核生物的蛋白质翻译后的修饰功能。
缺陷在于:
1. 表达效率相对低 2. 酵母常有密码子偏性,真核基因在其中表达时需要人工
修正。
酵母菌的基因工程
酵母菌作为基因工程受体菌的特征 酵母菌表达外源基因的优势
rgrl osel NDS
ss1l
rho
凝乳酶原
牛生长因子
3-10
凝乳酶原
牛生长因子
鼠α—淀粉酶
5-10
β—内啡肽
7-12
人血清蛋白
溶酶原活化剂抑制因子2型 10
α1 —抗胰蛋白酶P
人溶菌酶
10
人溶菌酶
10
人表皮因子
NDE
Ca2+-ATPase 转录后 转录后
转录后 转录后
转录
羧肽酶Y 转录
抑制超糖基化作用的突变宿主菌
相关文档
最新文档