用定义证明数列极限例题
证明数列极限的题目及答案

证明数列极限的题目及答案题目:证明数列$a_n =\frac{n}{n + 1}$的极限为 1证明:首先,我们需要明确数列极限的定义。
对于数列$\{a_n\}$,如果对于任意给定的正数$\epsilon$,总存在正整数$N$,使得当$n > N$ 时,都有$|a_n L| <\epsilon$ 成立,那么就称数列$\{a_n\}$的极限为$L$。
接下来,我们来证明数列$a_n =\frac{n}{n + 1}$的极限为 1。
对于任意给定的正数$\epsilon$,要使$|a_n 1| <\epsilon$,即\\begin{align}\left|\frac{n}{n + 1} 1\right|&<\epsilon\\\left|\frac{n}{n + 1} \frac{n + 1}{n + 1}\right|&<\epsilon\\\left|\frac{-1}{n + 1}\right|&<\epsilon\\\frac{1}{n + 1}&<\epsilon\\n + 1 &>\frac{1}{\epsilon}\\n &>\frac{1}{\epsilon} 1\end{align}\所以,取$N =\left\frac{1}{\epsilon} 1\right$(这里$\cdot$ 表示取整),当$n > N$ 时,就有$|a_n 1| <\epsilon$。
因此,根据数列极限的定义,数列$a_n =\frac{n}{n + 1}$的极限为 1。
题目:证明数列$b_n =\frac{1}{n}$收敛于 0证明:给定任意正数$\epsilon$,要使$|b_n 0| <\epsilon$,即\\begin{align}\left|\frac{1}{n} 0\right|&<\epsilon\\\frac{1}{n}&<\epsilon\\n &>\frac{1}{\epsilon}\end{align}\所以,取$N =\left\frac{1}{\epsilon}\right$,当$n >N$ 时,就有$|b_n 0| <\epsilon$。
求数列极限的十五种解法

求数列极限的十五种方法1.定义法N ε-定义:设{}n a 为数列,a 为定数,若对任给的正数ε,总存在正数N ,使得当n N >时,有n a a ε-<,则称数列{}n a 收敛于a ;记作:lim n n a a →∞=,否则称{}n a 为发散数列.例1.求证:1lim 1nn a →∞=,其中0a >.证:当1a =时,结论显然成立.当1a >时,记11n a α=-,则0α>,由()1111(1)nn a n n ααα=+≥+=+-,得111na a n--≤, 任给0ε>,则当1a n N ε->=时,就有11n a ε-<,即11na ε-<,即1lim 1nn a →∞=.当01a <<时,令1b a=,则1b >,由上易知:1lim 1nn b →∞=,∴111lim 1lim n n nn a b→∞→∞==.综上,1lim 1nn a →∞=,其中0a >.例2.求:7lim !nn n →∞. 解:变式:77777777777771!1278917!6!n n n n n n=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅≤⋅=⋅-;∴77710!6!n n n -≤⋅, ∴0ε∀>,7716!N ε⎡⎤∃=⋅⎢⎣⎦,则当n N >时,有77710!6!n n n ε-≤⋅<;∴7lim 0!n n n →∞=. 2.利用柯西收敛准则柯西收敛准则:数列{}n a 收敛的充要条件是:0ε∀>,∃正整数N ,使得当n m N >、时,总有:n m a a ε-<成立. 例3.证明:数列1sin (1, 2, 3, )2nn kk kx n ===⋅⋅⋅∑为收敛数列. 证:11111sin(1)sin 111112(122222212n mn m m n m n m m m n x x m -+++-+-=+⋅⋅⋅+≤+⋅⋅⋅+<<<-, 0ε∀>,取1N ε⎡⎤=⎢⎥⎣⎦,当n m N >>时,有n m x x ε-<,由柯西收敛准则,数列{}n x 收敛.例4.(有界变差数列收敛定理)若数列{}n x 满足条件:11221n n n n x x x x x x M ----+-+⋅⋅⋅-≤,(1, 2, )n =⋅⋅⋅,则称{}n x 为有界变差数列,试证:有界变差数列一定收敛.证:令1112210, n n n n n y y x x x x x x ---==-+-+⋅⋅⋅-,那么{}n y 单调递增,由已知可知:{}n y 有界,故{}n y 收敛, 从而0ε∀>,∃正整数N ,使得当n m N >>时,有n m y y ε-<;此即1121n m n n n n m m x x x x x x x x ε---+-≤-+-+⋅⋅⋅-<;由柯西收敛准则,数列{}n x 收敛. 注:柯西收敛准则把N ε-定义中的n a 与a 的关系换成了n a 与m a 的关系,其优点在于无需借用数列以外的数a ,只需根据数列本身的特征就可鉴别其敛散性. 3.运用单调有界定理单调有界定理:在实数系中,有界的单调数列必有极限.例5.证明:数列n x =n 个根式,0a >,1, 2, n = )极限存在,并求lim nn x →∞.证:由假设知n x =;①用数学归纳法可证:1, n n x x k N +>∈;② 此即证{}n x 是单调递增的.事实上,10n x +<<<1=;由①②可知:{}n x 单调递增有上界,从而lim n n x l →∞=存在,对①式两边取极限得:l =解得:l =l =;∴lim n n x →∞=4.利用迫敛性准则(即两边夹法)迫敛性:设数列{}n a 、{}n b 都以a 为极限,数列{}n c 满足:存在正数N ,当n N >时,有:n n n a c b ≤≤,则数列{}n c 收敛,且lim n n c a →∞=. 例6.求:22212lim()12n nn n n n n n n→∞++⋅⋅⋅+++++++.解:记:2221212n n x n n n n n n n =++⋅⋅⋅+++++++,则:2212121n n nx n n n n n ++⋅⋅⋅+++⋅⋅⋅+≤≤++++;∴22(1)(1)2(2)2(1)n n n n n x n n n n ++≤≤+++;从而22(1)1(1)lim lim 2(2)22(1)n n n n n n n n n n →∞→∞++==+++, ∴由迫敛性,得:222121lim()122n n n n n n n n n →∞++⋅⋅⋅+=++++++.注:迫敛性在求数列极限中应用广泛,常与其他各种方法综合使用,起着基础性的作用. 5.利用定积分的定义计算极限黎曼积分定义:设为()f x 定义在[, ]a b 上的一个函数,J 为一个确定的数,若对任给的正数0ε>,总存在某一正数δ,使得对[, ]a b 的任意分割T ,在其上任意选取的点集{}i ξ,i ξ∈[]1,i i x x -,只要T δ<,就有1()niii f x Jξε=∆-<∑,则称函数()f x 在[, ]a b 上(黎曼)可积,数J 为()f x 在[, ]a b 上的定积分,记作()baJ f x dx =⎰.例7.求:()()11lim !2!nnn n n n --→∞⎡⎤⋅⋅⎣⎦. 解:原式n n →∞→∞==112lim (1)(1)(1)nn n n n n →∞⎡⎤=++⋅⋅⋅+⎢⎥⎣⎦11exp lim ln(1)nn i i nn →∞=⎛⎫=+ ⎪⎝⎭∑()()1expln(1)exp 2ln 21x dx =+=-⎰.例8.求:2sin sin sin lim 1112n n n n n n n n n πππ→∞⎛⎫⎪++⋅⋅⋅+ ⎪+ ⎪++⎪⎝⎭. 解:因为:222sinsinsin sin sin sin sin sin sin 111112n n n nn n n n n n n n n n n n n n nπππππππππ++⋅⋅⋅+++⋅⋅⋅+<++⋅⋅⋅+<+++++,又:2sinsinsin 12limlim (sin sin sin )11n n n n n nn n n n n n n n ππππππππ→∞→∞++⋅⋅⋅+⎡⎤=⋅⋅++⋅⋅⋅+⎢⎥++⎣⎦∴02sinsinsin 12limsin 1n n nn n xdx n ππππππ→∞++⋅⋅⋅+=⋅=+⎰; 同理:2sinsinsin 2lim1n n nn n n nππππ→∞++⋅⋅⋅+=+; 由迫敛性,得:2sin sin sin 2lim 1112n n n n n n n n n ππππ→∞⎛⎫⎪++⋅⋅⋅+= ⎪+ ⎪++⎪⎝⎭. 注:数列极限为“有无穷多项无穷小的和的数列极限,且每项的形式很规范”这一类型问题时,可以考虑能否将极限看作是一个特殊的函数定积分的定义;部分相关的数列极限直接利用积分定义可能比较困难,这时需要综合运用迫敛性准则等方法进行讨论.6.利用(海涅)归结原则求数列极限归结原则:0lim ()x xf x A →=⇔对任何0 ()n x x n →→∞,有lim ()n n f x A →∞=. 例9.求:11lim 1n n e n →∞-. 解:11001lim lim ()111n nx x n n e e e e n n=→∞→∞--'===-. 例10.计算:211lim 1nn n n →∞⎛⎫+- ⎪⎝⎭. 解:一方面,2111(1)(1) ()n n e n n n n+-<+→→∞; 另一方面,2221112221111(1)(1)(1n n n n n n n n n n n n n -------+-=+≥+;由归结原则:(取2, 2, 3, 1n n x n n ==⋅⋅⋅-),22222111222211111lim(1)lim(1lim(1lim(1)lim(1)n n n x n n n n n n n x n n n n e x n n n n ----→∞→∞→∞→∞→∞----+=+⋅+=+=+=; 由迫敛性,得:211lim(1)nn e n n →∞+-=. 注:数列是一种特殊的函数,而函数又具有连续、可导、可微、可积等优良性质,有时我们可以借助函数的这些优良性质将数列极限转化为函数极限,从而使问题得到简化和解决. 7.利用施托尔茨(stolz )定理求数列极限stolz 定理1:()∞∞型:若{}n y 是严格递增的正无穷大数列,它与数列{}n x 一起满足:11lim n n n n n x x l y y +→∞+-=-,则有lim nn nx l y →∞=,其中l 为有限数,或+∞,或-∞.stolz 定理2:0()0型:若{}n y 是严格递减的趋向于零的数列,n →∞时,0n x →且11lim n n n n n x x l y y +→∞+-=-,则有lim nn nx l y →∞=,其中l 为有限数,或+∞,或-∞.例11.求:112lim ()p p pp n n p N n +→∞++⋅⋅⋅+∈. 解:令112, , p p p p n n x n y n n N +=++⋅⋅⋅+=∈,则由定理1,得:112lim p p p p n n n +→∞++⋅⋅⋅+=11(1)lim (1)p p p n n n n ++→∞+=+-1(1)1lim (1)1(1)12p n p p n p p p p n n →∞-+=+⋅++-+⋅⋅⋅+. 注:本题亦可由方法五(即定积分定义)求得,也较为简便,此处略.例12.设02ln nk nk n CS n ==∑,求:lim n n S →∞. 解:令2n y n =,则{}n y 单调递增数列,于是由定理2得:lim n n S →∞=02ln lim nknk n C n =→∞∑110022ln ln lim (1)n nk k n nk k n C C n n++==→∞-=+-∑∑01ln 1lim 21nk n n n k n =→∞+-+=+∑11(1)ln(1)ln lim 21n k n n n k n +=→∞++-=+∑ 1ln()(1)ln(1)ln ln(1)1lim lim 2122nn n n n n n n n n n →∞→∞+++--+===+.注:stolz 定理是一种简便的求极限方法,特别对分子、分母为求和型,利用stolz 定理有很大的优越性,它可以说是求数列极限的洛必达(L'Hospita )法则. 8.利用级数求和求数列极限由于数列与级数在形式上的统一性,有时数列极限的计算可以转化为级数求和,从而通过级数求和的知识使问题得到解决.例13.求:212lim()n n na a a→∞++⋅⋅⋅+,(1)a >. 解:令1x a =,则1x <,考虑级数:1nn nx ∞=∑.∵11(1)lim lim 1n n n n n n a n x x a nx ++→∞→∞+==<, ∴此级数是收敛的.令1()nn S x nx ∞==∑11n n x nx∞-==⋅∑,再令11()n n f x nx ∞-==∑,∵111()xxn n n n f t dt nt dt x ∞∞-=====∑∑⎰⎰1xx-;∴21()(1(1)x f x x x '==--; 而2()()(1)x S x x f x x =⋅=-;因此,原式=1112()(1)a S a a ---==-.9.利用级数收敛性判断极限存在由于级数与数列在形式上可以相互转化,使得级数与数列的性质有了内在的密切联系,因此数列极限的存在性及极限值问题,可转化为研究级数收敛性问题. 例14.设00x >,12(1)2n n nx x x ++=+(0, 1, 2, )n =⋅⋅⋅,证明:数列{}n x 收敛,并求极限lim nn x →∞. 证:由00x >,可得:0n x >(0, 1, 2, )n =⋅⋅⋅,令2(1)(), (0)2x f x x x+=>+, 则2210'()(2)2f x x <=<+,且12(1)(), 0, (0, 1, 2, )2n nn n nx f x x x n x ++==>=⋅⋅⋅+, 考虑级数:10n n n x x ∞+=-∑;由于11n n n n x x x x +--=-11()()n n n n f x f x x x ---=-11'()()12n n n n f x x x x ξ---<-;所以,级数10n n n x x ∞+=-∑收敛,从而10()n n n x x ∞+=-∑收敛.令()10nn k k k S x x +==-∑10n x x +=-,∵lim n n S →∞存在,∴10lim lim n n n n x x Sl +→∞→∞=+=(存在);对式子:12(1)2n n n x xx ++=+,两边同时取极限:2(1)2l l l+=+,∴l =或l =(舍负);∴lim nn x →∞= 例15.证明:111lim(1ln )23n n n→∞++⋅⋅⋅+-存在.(此极限值称为Euler 常数). 证:设1111ln 23n a n n =++⋅⋅⋅+-,则1n n a a --=[]1ln ln(1)n n n---; 对函数ln y n =在[1, ]n n -上应用拉格朗日中值定理, 可得:1ln ln(1) (01)1n n n θθ--=<<-+,所以1211111(1)(1)n n a a n n n n n θθθ---=-=<-+-+-; 因为221(1)n n ∞=-∑收敛,由比较判别法知:12n n n a a ∞-=-∑也收敛, 所以lim nn a →∞存在,即111lim(1ln )23n n n→∞++⋅⋅⋅+-存在. 10.利用幂级数求极限利用基本初等函数的麦克劳林展开式,常常易求出一些特殊形式的数列极限. 例16.设11sin sin , sin sin(sin ) (2, 3, )n n x x x x n -===⋅⋅⋅,若sin 0x >,求:sin n n x →∞. 解:对于固定的x ,当n →∞时,1sin n x单调趋于无穷,由stolz 公式,有: 2222111lim sin lim lim 111sin sin sin n n n n n n n n n n x x x x →∞→∞→∞++-==-221lim 11sin (sin )sin n n n x x→∞=-46622220002244221()1sin 3lim lim lim 111sin (())sin 3t t t t t o t t t t t t t t o t t t +++→→→-⋅+⋅===----+46622004411()1()33lim lim 311()(1)33t t t t o t t o t t o t o ++→→-⋅+-⋅+===++. 11.利用微分中值定理求极限拉格朗日中值定理是微分学重要的基本定理,它利用函数的局部性质来研究函数的整体性质,其应用十分广泛.下面我们来看一下拉格朗日中值定理在求数列极限中的应用.例17.求:2lim (arctan arctan )1n a an n n →∞-+,(0)a ≠. 解:设()arctan f x x =,在[, 1a an n+上应用拉格朗日中值定理, 得:21()()( [, ]1111a a a a a af f n n n n n nξξ-=-∈++++,故当n →∞时,0ξ→,可知:原式22lim 11n a nn a n ξ→∞=⋅⋅=++. 12.巧用无穷小数列求数列极限引理:数列{}n x 收敛于a 的充要条件是:数列{}n x a -为无穷小数列. 注:该引理说明,若lim nn x a →∞=,则n x 可作“变量”替换:令n n x a α=+,其中{}n α是一个无穷小数列. 定理1:若数列{}n α为无穷小数列,则数列{}n α也为无穷小数列,反之亦成立. 定理2:若数列{}n α为无穷小数列,则数列12{}nnααα++⋅⋅⋅+也为无穷小数列.推论1:设数列{}n α为无穷小数列,则数列12{}nnααα++⋅⋅⋅+也为无穷小数列.例18.(算术平均收敛公式)设lim n n x a →∞=,求极限12limnn x x x n→∞++⋅⋅⋅+.解:由lim nn x a →∞=,作“变量”代换,令n n x a α=+,其中{}n α是一无穷小数列; 由定理2的结论有:12lim n n x x x n →∞++⋅⋅⋅+12()()()lim n n a a a nααα→∞++++⋅⋅⋅++= 1212()()lim lim 0n n n n na a a a n nαααααα→∞→∞+++⋅⋅⋅+++⋅⋅⋅+==+=+=.此题还可以用方法1(定义法)证明,也可通过方法7(stolz 公式)求得,此处略.例19.设lim n n x a →∞=,lim n n y b →∞=,求极限1211lim n n n n x y x y x y n-→∞++⋅⋅⋅+.解:由lim n n x a →∞=,lim n n y b →∞=,作“变量”代换,令n n x a α=+,n n y b β=+,其中{}n α,{}n β都是一无穷小数列, 故1211lim n n n n x y x y x y n -→∞++⋅⋅⋅+11()()()()lim n n n a b a b nαβαβ→∞+++⋅⋅⋅+++= 1111lim n n n n n ab b a n n n ααββαβαβ→∞+⋅⋅⋅++⋅⋅⋅++⋅⋅⋅+⎡⎤=+++⎢⎥⎣⎦ 因为0n β→()n →∞,所以{}n β有界数列,即n M β≤, 从而结合上述推论1,有:12110 ()nn n M n nnααααβαβ++⋅⋅⋅++⋅⋅⋅≤⋅→→∞,再根据定理1,即有:110 ()n n n nαβαβ+⋅⋅⋅→→∞;又由定理2,可知:10na nββ+⋅⋅⋅+⋅→,10 ()nb n nαα+⋅⋅⋅+⋅→→∞;∴1211lim n n n n x y x y x y ab n-→∞++⋅⋅⋅+=.注:利用无穷小数列求数列极限通常在高等数学和数学分析教材中介绍甚少,但却是一种很实用有效的方法.用这种方法求某类数列的极限是极为方便的. 13.利用无穷小的等价代换求某些函数列的极限定理:设函数()f x 、()g x 在0x =的某个领域有意义,()0g x >,0()lim 1()x f x g x →=,且当n →∞时,0mn a →(1, 2, 3, )m =⋅⋅⋅,11lim ()lim ()nnmn mn n n m m f a g a →∞→∞===∑∑,则在右端极限存在时成立.例20.求极限1lim 1)nn i →∞=∑.解:令()1f x =-,1()3g x x =,当0x →1x ~,由定理1,得:2111111lim 1)lim 3326nnn n i i i n→∞→∞===⋅=⋅=∑∑. 例21.求:2231lim (1)nn i i a n →∞=+∏,(a 为非零常数). 解:原式2331exp lim ln(1)nn i i a n →∞=⎛⎫=+ ⎪⎝⎭∑;令()ln(1)f x x =+,当0x →时,ln(1)x x +~, 由定理1,得:22333311lim ln(1)lim nnn n i i i i a a n n→∞→∞==+=∑∑223(1)(21)1lim 63n n n n a a n →∞++==;∴2231lim (1)nn i i a n →∞=+=∏21exp()3a . 注:我们知道,当0x →时,函数sin , tan , arcsin , arctan , 1, ln(1)x x x x x e x -+都x 与等价,倘若熟悉这些等价函数,观察它们与本文定理中的()f x 的关系,把求某些函数列极限问题转化为求熟知的数列极限问题,这样就会起到事半功倍的效果. 14.利用压缩映射原理求数列极限定义1:设()f x 在[, ]a b 上有定义,方程()f x x =在[, ]a b 上的解称为()f x 在[, ]a b 上的不动点. 定义2:若存在一个常数k ,且01k ≤<,使得[, ]x y a b ∀∈、有()()f x f y k x y -≤-,则称()f x 是[, ]a b 上的一个压缩映射.压缩映射原理:设称()f x 是[, ]a b 上的一个压缩映射且0x ∈[, ]a b ,1()n n x f x +=,对n N ∀∈,有[, ]n x a b ∈,则称()f x 在[, ]a b 上存在唯一的不动点c ,且lim nn x c →∞=. 例22.设12ax =,212n n a x x ++=(01)a <<,1, 2, n =⋅⋅⋅,求lim nn x →∞. 解:考察函数2()22a x f x =+,1[0,2ax +∈, 易见对1[0, ]2a x +∀∈,有:21()2n n n a x x f x ++==,11[0, 22a a x +=∈,1()12af x x +'=≤<; 所以,()f x 是压缩的,由压缩映射原理,数列{}n x 收敛.设lim nn x c →∞=,则c 是222a x x =+在1[0, ]2a +的解,解得1c =,即lim 1n n x →∞=例23.证明:数列n x =(n 个根式,14a >,1, 2, n =⋅⋅⋅)极限存在,并求lim nn x →∞.解:易知:n x =,考察函数:()f x =,[0, )x ∈+∞且在[0, )+∞上有:1f '<,因此,()f x 在[0, )+∞上是压缩的;1[0, )x =+∞,1()n n x f x +=,由压缩映射原理,数列{}n x 收敛且极限为方程:()x f x ==的解,解得:lim n n x →∞=本题也可通过方法三(单调有界定理)解得,此处略.注:压缩映射原理在实分析中有着十分广泛的应用,如用它可十分简单的证明稳函数存在定理、微分方程解的存在性定理,特别的在求一些数列极限中有着十分重要的作用,往往可以使数列极限问题得到简便快速的解决.15.利用矩阵求解一类数列的极限(1)若数列的递推公式形如:12n n n x px qx --=+且已知01x x 、,其中p q 、为常数且0p ≠,0q ≠,2, 3, n =⋅⋅⋅;解:可将递推公式写成矩阵形式,则有1111201010n n n n n x x x p q p q x x x ----⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==⋅⋅⋅= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,2, 3, n =⋅⋅⋅,从而可利用线性代数知识求出n x 的表达式,并进一步求出lim nn x →∞.(2)若数列的递推公式形如:11n n n ax bx cx d--+=+且已知0x ,其中0c ≠且ad bc ≠,1, 2, n =⋅⋅⋅,解法1:令211n n n y cx d y ---+=,则1121()n n n y x d c y ---=-,11()n n n yx d c y -=-, 从而有:121211()(())n n n n n n y yy a d d b c y c y y ------=-+⋅,整理得:12()()n n n y a d y bc ad y --=++-,再由(1)可以求解. 解法2:设与关系式010ax b x cx d +=+对应的矩阵为a b A c b ⎛⎫= ⎪⎝⎭,由关系式11n nn ax b x cx d --+=+; 逐次递推,有00n nn n n a x b x c x d +=+,其对应的矩阵为nn n n a b B c d ⎛⎫= ⎪⎝⎭, 利用数学归纳法易证得n B A =,通过计算n A 可求出n x 的表达式,并进一步求出lim nn x →∞. 例24.证明:满足递推公式11(1)n n n x x x αα+-=+-(01)α<<的任何实数序列{}n x 有一个极限,并求出以α、0x 及1x 表示的极限.解:由已知可得:111111200111010n n n n n n x x x x A x x x x αααα-------⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,(110A αα-⎛⎫=⎪⎝⎭); 矩阵A 的特征值121, 1λλα==-,对应的特征向量分别为:''12(1, 1), (1, 1)ξξα==-;令1211(, )11P αξξ-⎛⎫== ⎪⎝⎭,则11001P AP α-⎛⎫= ⎪-⎝⎭,从而有:()()11111111111111120101n n n AP P ααααα----⎛⎫⎛⎫--⎛⎫⎛⎫==⎪⎪ ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭⎝⎭()()()()111111121111n nn n ααααααα--⎛⎫---+- ⎪= ⎪----+-⎝⎭; 于是,101(1(1))(1(1))2n n n x x x αααα=--+-+-⎡⎤⎣⎦-. 因为11α-<,所以lim(1)0nn α→∞-=,从而[]011lim (1)2n n x x x αα→∞=-+-. 例25.已知斐波那契数列定义为:1101 (1, 2, 1)n n n F F F n F F +-=+=⋅⋅⋅==;;若令1n n n F x F +=,01x =且111n n x x -=+,(1, 2, )n =⋅⋅⋅,证明极限lim nn x →∞存在并求此极限. 解:显然1011x x =+,相应矩阵0111A ⎛⎫= ⎪⎝⎭的特征值12 λλ==,对应的特征向量分别为:''12 1), 1)ξξ==;令()21121211, 111111P λλλλξξ⎛⎫--⎛⎫ ⎪==== ⎪ ⎪⎝⎭ ⎪⎝⎭⎝⎭,11211P λλ-⎫=⎪--⎭; 则有:11200P AP λλ-⎛⎫= ⎪⎝⎭;于是11112121112121200nn n n n nn n n n n A P P λλλλλλλλλλ---++--⎛⎫⎛⎫== ⎪ ⎪--⎝⎭⎝⎭;从而,()111212111212, 1, 2, n n n nn nn n n x n λλλλλλλλ--++-+-==⋅⋅⋅-+-, 由于211λλ<,上式右端分子、分母同时除以1n λ, 再令n →∞,则有:1lim limn n n n n F x F →∞→∞+==. 注:求由常系数线性递推公式所确定的数列的极限有很多种方法,矩阵解法只是其一,但与之相关的论述很少,但却简单实用.。
如何利用定义证明极限问题

如何利用定义证明极限问题篇一极限这玩意儿,听着挺高深,其实也不难理解。
咱先说说数列极限的定义哈。
对于一个数列,如果存在一个常数A,对于任意给定的正数ε,总存在正整数N,使得当n>N 时,数列的通项与 A 的距离小于ε,那就说这个数列的极限是A。
比如说等差数列1,2,3,4,……这个数列就没有极限。
为啥呢?因为你找不到一个常数A,满足对任意给定的正数ε,总存在正整数N,使得当n>N 时,数列的通项与A 的距离小于ε。
再看等比数列,比如以1/2 为公比的等比数列1,1/2,1/4,1/8,……这个数列的极限就是0。
咱来证明一下。
对于任意给定的正数ε,要找到正整数N,使得当n>N 时,数列的通项与0 的距离小于ε。
数列的通项是(1/2)^(n - 1),它与0 的距离就是(1/2)^(n - 1)。
要让(1/2)^(n - 1)<ε,两边取对数,n - 1>log(1/2)ε,n>log(1/2)ε + 1。
所以只要取正整数N 大于等于log(1/2)ε + 1,当n>N 时,就有(1/2)^(n - 1)<ε。
这就证明了这个等比数列的极限是0。
再来说说函数极限的定义。
对于函数f(x),如果存在一个常数A,对于任意给定的正数ε,总存在正数δ,使得当0<|x - x0|<δ 时,函数值f(x)与 A 的距离小于ε,那就说函数f(x)在x0 处的极限是A。
举个例子,函数f(x)=x²在x=2 处的极限是4。
咱来证明一下。
对于任意给定的正数ε,要找到正数δ,使得当0<|x - 2|<δ 时,|x² - 4|<ε。
|x² - 4|=|x + 2||x - 2|。
因为x 趋近于2,所以可以限制|x - 2|<1,这样1<x<3,|x + 2|<5。
所以|x² - 4|=|x + 2||x - 2|<5|x - 2|。
数列极限与函数极限习题

lim
x→1
x2−1 2x2−x−1
;
(3)
lim
x→0
(x−1)3+(1−3x) x2+2x3
;
(4)
lim
x→1
x2√−√x x
;
6
√
(5) lim
x→3
1+x−2 x−3
;
(6)
lim
x→3
x2−5x+6 x2−8x+15
;
(7)
lim
x→1
xn−1 xm−1
(n,
m为正整数);
√
(8) lim
(3) lim
n→∞
1
+
1 2n
n;
(4) lim
n→∞
1
+
1 n2
n.
§3 函数的极限
1.用极限定义证明下列极限:
(1)
lim
x→−1
x−3 x2−9
=
1 2
;
(2)
lim
x→3
x−3 x2−9
=
1 6
;
(3)
lim
x→1
√xx−−11
=
2;
(4)
lim
x→1
(x−2)(x−1) x−3
=
0;
√ (5) lim x2 + 5 = 3;
(5)
lim
x→∞
x2+3x x2
;
(6)
lim
x→+∞
x sin x x2−4
;
(7)
lim
x→−∞
x−cos x
x;
(8) lim
用定义证明极限的方法

用定义证明极限的方法极限是数学中重要的概念,用来描述函数在某一点附近的表现。
证明极限的方法一般分为数列极限与函数极限两种情况。
数列极限的定义是:设数列{An}在无穷区间(或是去除有限项之后的无穷区间)上有定义,则有:若存在常量a,使得对于任意给定的正数ε(ε> 0),都存在与a 相对应的正整数N,使得当n > N 时,有An - a < ε,那么我们称数列{An}以a 为极限,记为lim(An) = a。
要证明数列的极限,可以使用以下几种方法:1. 利用极限定义进行证明:根据数列的极限定义,对于任意给定的正数ε,都存在与a 相对应的正整数N,使得当n > N 时,有An - a < ε。
我们可以根据定义的表达式,推导出n 和a 之间的关系式,进而找到N 的表达式,以此来证明数列的极限。
2. 利用数列的性质进行证明:根据数列的性质,如单调性、有界性等,可以借助这些性质推导出数列的极限。
例如,如果数列是单调递增且有上界,则根据确界性质可以推出数列的极限存在且有上确界。
3. 利用比较定理进行证明:比较定理是常用的判定数列极限的方法。
如果数列{An}和数列{Bn}满足一定的条件(比如当n>N 时,有0 ≤An ≤Bn),且已知数列{Bn}的极限为a,则可根据比较定理推导出数列{An}的极限也为a。
函数极限的定义是:设函数f(x) 在点a 的某个去心领域内有定义,如果存在常数L使对于任何ε> 0,存在着一个对应于ε的δ> 0 使得当0 < x - a < δ时,有f(x) - L < ε,那么我们称函数f(x) 在x = a 处的极限为L,记为lim f(x) = L 或x→a f(x) = L。
要证明函数的极限,可以使用以下几种方法:1. 利用极限定义进行证明:根据函数的极限定义,我们可以推导出给定ε时的δ,进而得到函数的极限。
通常需要利用函数的性质和定义对符号进行推导和运算。
用定义证明极限不等式

用定义证明极限等式一、用定义证明数列极限等式1、数列极限的定义:给定数列{}n x ,如果存在常数a ,对于任意给定的正数ε(不论它多么小),总存在正整数N ,使得当N n >时,不等式ε<a x n -都成立,那么就称常数a 是数列{}n x 的极限,或者称数列{}n x 收敛于a ,记为a x n n =∞→lim ,或()∞→→n a x n 。
上述定义的几何解释:将常数a 及数列1x ,2x ,3x ,…,n x ,…在数轴上用它们相应的点表示出来,再在数轴上作点a 的ε邻域()εε+-a a ,。
因不等式ε<a x n -与不等式εε+-a x a n <<等价,所以当N n >时,所有的点都落在开区间()εε+-a a ,内,而只有有限个(至多只有N 个)在这区间之外。
ε-a ε2 ε+a上述定义可表达为:.0lim εε<时,有>,当正整数,>a x N n N a x n n n -∃∀⇔=∞→ 2、常用方法:①直接解不等式ε<a x n -,得()εf n >②先放大n n y a x ≤-,n y 比较简单(以0为极限);然后解不等式ε<n y ,得()εf n > 3、例题 ①证明01lim2=∞→n n证:因为要使ε<22101n n =-,只要ε1>n ,所以0>ε∀,取11+⎥⎦⎤⎢⎣⎡=εN , 则当N n >时,就有ε<012-n,即01lim 2=∞→n n 。
②证明:0!lim=∞→n n n n证:先将n n n !放大:nn n n n n n n n 1321!≤⋅⋅⋅⋅⋅⋅⋅=;然后0>ε∀,解不等式ε<n 1,得ε1>n . a x N +1 x N +2 x N +3x 1 x 2 x 3x因此,0>ε∀,取11+⎥⎦⎤⎢⎣⎡=εN ,当N n >时,就有ε<n n n n 10!≤-,即0!lim =∞→n n n n 。
③证明:231213lim =++∞→n n n证:因为()n n n n 411221231213<+=-++,要使ε<231213-++n n ,只要ε<n 41,即ε41>n ,所以0>ε∀,取141+⎥⎦⎤⎢⎣⎡=εN ,则当N n >时,就有ε<231213-++n n ,即231213lim =++∞→n n n 。
数学分析第三讲 数列极限综合例题选讲
nn
n n 1 1
n1 n 1
nn11
利用an bn a b an1 an2b bn1
n 1n nn1
1
1 n
n
n
e n
1n
3
n 3, n n 单调递减.
得到结论:Sup n n = max 1, 2, 3 3 3 3
综合例题
例11
n
xn
.
解:分析数列
1 xn 1 xn1 1 / 4 2 xn 1 xn 1 / 4
xn 1 xn xn 1 xn1 xn xn1 xn单调有界
根据数列极限的保序性
lim n
xn
1
lim
n
xn1
1 / 4 1 1
4
lim n
xn
1
lim
n
xn
0 1, N
xn p xn
ln max
x1 ln q
结论得证
x0
1,1 , n
N
,p
N
*:
柯西(Cauchy,Augustin Louis, 1789-1857)法国数学 家. 在数学领域有很高的建树. 在复变函数论、微分方程等领 域研究具有开创性工作. 柯西是微积分严密化创始人之一.
n2 1
1/
8
+
n
1 1/
4
n2 1
1/
4
+
n
1 1/
2
n2 1
1/
2
+
n
1
分母最高次: n1/4 n1/2 n n7/4
解:原式=
2n / n7 / 4
lim
0
求数列极限的方法总结及例题
求数列极限的方法总结及例题关于数列极限的几个有关问题: 1、定义在数学中,数列极限是指对数列的各项,分别取某个确定的量x(一般是正数或0)时,对数列的极限。
数列的极限是很重要的概念,也是整个数学的一个非常重要的概念。
2、怎样求n个数?分成两种情况:第一种情况,已知数列的前n项和为c,求其极限n(n是自然数)就是一项一项去求;第二种情况,对数列的每一项取自然数a,则该数列的极限就是这个数列与取极限的那个自然数a之差的绝对值。
如果是已知前n项的和,且满足条件1, 2, 3,…, n,则一次可以把它们写成几个递减的数列的和。
对数列求极限,实际上是对数列中未知数的求导数,用高中阶段所学的求导方法即可。
3、能不能用分类讨论法来证明数列?可以的。
但需要你对数列有比较全面的了解。
如果只是熟悉数列,想通过直接求极限来证明,显然行不通。
但是如果是通过给数列分类,利用分类求和公式证明也是可以的。
如果数列中出现了极限,则说明数列发生了变化。
数列的极限就是该数列与取极限的那个自然数a之差的绝对值。
所以我们可以先将数列进行分类,再分别求出每一类的极限,利用它们之间的关系进行推理证明。
当然还可以借助等比数列的前n项和公式求出数列的极限。
4、数列中的项,怎样才可以取到最大或最小值呢?我们认为,对于任意给定的数列,数列的极限都不会出现两个,并且最大或最小的数都是唯一的,而不是任意取的。
因此,如果数列中存在两个极限,则只能从这两个极限中选取一个。
也就是说,取极限时,我们可以根据极限的性质进行取舍。
5、数列中的某些数据怎样才可以取到最大或最小值呢?我们认为,数列极限都是取到极限中的某一个数,而不是在极限中取最大或最小值。
数列中的数据最大或最小值就是极限值的两倍。
也就是说,对于数列最大或最小值,我们可以用两个不同的数据取它的最大或最小值,从而取到两个不同的极限值。
例如,如果数列中存在两个极限,且两个极限都是1,则数列极限只能取1,但是对于数列的某些数据,如果数据是2, 4, 8,…,则我们完全可以用数据是2取它的极限值。
高等数学《 数列极限的定义》
播放
问题: 当 n 无限增大时, xn 的变化趋势如何?
把n无限增大这个重要的变化过程记为 n。
当
n
时,
xn
1
(1)n1 n
无限接近于1
.
问题: “无限接近”意味着什么?如何用数学语言 刻划它.
xn
1
(1)n1
1 n
1 n
给定 1 , 100
要
xn 1
1, 100
由1 1 , n 100
只要 n 100,
由于N 不唯一,不要求最小的N,故可把 |xna| 适当放大,得到一个新的不等式,再寻找 N.
从 |xna|< 找 N 与解不等式 |xna|< 意义不同.
四、数列极限的性质
1. 极限的唯一性
定理1
若极限
lim
n
xn
存在,则极限是唯一的.
证
设
lim
n
xn
a, 又 lim n
xn
b,
不妨设 a b , 由定义, 对 | a b |
说明 :
1. 是用来刻划 xn 与常数 a 的接近程度. 具有任 意性和稳定性的双重意义, 的任意性刻划了xn 与 a 无限接近,同时 又具有相对稳定性,一经 取定,它就确定了,这样用有限形式 |xna|< 来
表示 xn 无限接近于 a 的过程。
2. N 用来刻划 n 的增大程度,要 |xna|< ,
二、数列的定义
数列定义 按照某一法则 , 对每个正整数 n , 都 有确定的实数xn与之对应,这列有序的数:
x1 , x2 , ... , xn , ... 称为数列 (sequence),
数列中的每个数叫做数列的项,
第一讲 数列的极限典型例题
第一讲 数列的极限一、内容提要 1.数列极限的定义N n N a x n n >∀N ∈∃>∀⇔=∞→,,0lim ε,有ε<-a x n .注1ε的双重性.一方面,正数ε具有绝对的任意性,这样才能有{}n x 无限趋近于)(N n a x a n ><-⇔ε另一方面,正数ε又具有相对的固定性,从而使不等式ε<-a x n .还表明数列{}n x 无限趋近于a 的渐近过程的不同程度,进而能估算{}n x 趋近于a 的近似程度.注2 若n n x ∞→lim 存在,则对于每一个正数ε,总存在一正整数N 与之对应,但这种N 不是唯一的,若N 满足定义中的要求,则取 ,2,1++N N ,作为定义中的新的一个N 也必须满足极限定义中的要求,故若存在一个N 则必存在无穷多个正整数可作为定义中的N . 注3 a x n →)(∞→n 的几何意义是:对a 的预先给定的任意-ε邻域),(εa U ,在{}n x 中至多除去有限项,其余的无穷多项将全部进入),(εa U . 注4 N n N a x n n >∃N ∈∀>∃⇔≠∞→00,,0lim ε,有00ε≥-a x n .2. 子列的定义在数列{}n x 中,保持原来次序自左往右任意选取无穷多个项所得的数列称为{}n x 的子列,记为{}k n x ,其中k n 表示k n x 在原数列中的项数,k 表示它在子列中的项数. 注1 对每一个k ,有k n k ≥.注2 对任意两个正整数k h ,,如果k h ≥,则k h n n ≥.反之,若k h n n ≤,则k h ≤. 注3 K k K a x k n n >∀N ∈∃>∀⇔=∞→,,0lim ε,有ε<-a x k n .注4 ⇔=∞→a x n n lim {}n x 的任一子列{}k n x 收敛于a . 3.数列有界对数列{}n x ,若0>∃M ,使得对N n >∀,有M x n ≤,则称数列{}n x 为有界数列. 4.无穷大量对数列{}n x ,如果0>∀G ,N n N >∀N ∈∃,,有G x n >,则称{}n x 为无穷大量,记作∞=∞→n n x lim .注1 ∞只是一个记号,不是确切的数.当{}n x 为无穷大量时,数列{}n x 是发散的,即nn x ∞→lim 不存在.注2 若∞=∞→n n x lim ,则{}n x 无界,反之不真.注3 设{}n x 与{}n y 为同号无穷大量,则{}n n y x +为无穷大量. 注4 设{}n x 为无穷大量,{}n y 有界,则{}n n y x ±为无穷大量.注5 设{}n x 为无穷大量,对数列{}n y ,若0>∃δ,,N ∈∃N 使得对N n >∀,有δ≥n y ,则{}n n y x 为无穷大量.特别的,若0≠→a y n ,则{}n n y x 为无穷大量. 5.无穷小量若0lim =∞→n n x ,则称{}n x 为无穷小量.注1 若0lim =∞→n n x ,{}n y 有界,则0lim =∞→n n n y x .注2 若∞=∞→n n x lim ,则01lim=∞→nn x ;若0l i m =∞→n n x ,且,N ∈∃N 使得对N n >∀,0≠n x ,则∞=∞→nn x 1lim.6.收敛数列的性质(1)若{}n x 收敛,则{}n x 必有界,反之不真. (2)若{}n x 收敛,则极限必唯一.(3)若a x n n =∞→lim ,b y n n =∞→lim ,且b a >,则N ∈∃N ,使得当N n >时,有n n y x >.注 这条性质称为“保号性”,在理论分析论证中应用极普遍.(4)若a x n n =∞→lim ,b y n n =∞→lim ,且N ∈∃N ,使得当N n >时,有n n y x >,则b a ≥.注 这条性质在一些参考书中称为“保不等号(式)性”.(5)若数列{}n x 、{}n y 皆收敛,则它们和、差、积、商所构成的数列{}n n y x +,{}n n y x -,{}n n y x ,⎭⎬⎫⎩⎨⎧n n y x (0lim ≠∞→n n y )也收敛,且有 ()=±∞→n n n y x lim ±∞→n n x lim n n y ∞→lim , =⋅∞→n n n y x lim ⋅∞→n n x lim n n y ∞→lim ,=∞→nnn y x lim n n nn y x ∞→∞→lim lim (0lim ≠∞→n n y ). 7. 迫敛性(夹逼定理)若N ∈∃N ,使得当N n >时,有n n n z x y ≤≤,且n n y ∞→lim a z n n ==∞→lim ,则a x n n =∞→lim .8. 单调有界定理单调递增有上界数列{}n x 必收敛,单调递减有下界数列{}n x 必收敛. 9. Cauchy 收敛准则数列{}n x 收敛的充要条件是:N m n N >∀N ∈∃>∀,,,0ε,有ε<-m n x x .注 Cauchy 收敛准则是判断数列敛散性的重要理论依据.尽管没有提供计算极限的方法,但它的长处也在于此――在论证极限问题时不需要事先知道极限值. 10.Bolzano Weierstrass 定理 有界数列必有收敛子列.11. 7182818284.211lim ==⎪⎭⎫⎝⎛+∞→e n nn12.几个重要不等式(1) ,222ab b a ≥+ .1 s i n ≤x . s i n x x ≤ (2) 算术-几何-调和平均不等式: 对,,,,21+∈∀R n a a a 记,1 )(121∑==+++=n i i n i a n n a a a a M (算术平均值),)(1121nni i n n i a a a a a G ⎪⎪⎭⎫⎝⎛==∏= (几何平均值) .1111111)(1121∑∑====+++=ni in i ini a n a n a a a na H (调和平均值)有均值不等式: ),( )( )(i i i a M a G a H ≤≤等号当且仅当n a a a === 21时成立. (3) Bernoulli 不等式: (在中学已用数学归纳法证明过) 对,0x ∀> 由二项展开式 23(1)(1)(2)(1)1,2!3!nn n n n n n x nx x x x ---+=+++++)1(,1)1(>+>+⇒n nx x n(4)Cauchy -Schwarz 不等式: k k b a ,∀(n k ,,2,1 =),有≤⎪⎭⎫ ⎝⎛∑=21n k k k b a ≤⎪⎭⎫⎝⎛∑=21n k k k b a ∑=n k k a 12∑=nk kb12(5)N n ∈∀,nn n 1)11ln(11<+<+ 13. O. Stolz 公式二、典型例题 1.用“N -ε”“N G -”证明数列的极限.(必须掌握) 例1 用定义证明下列各式:(1)163153lim22=+-++∞→n n n n n ; (2)设0>n x ,a x n n =∞→lim ,则a x n n =∞→lim ;(97,北大,10分)(3)0ln lim=∞→αn nn )0(>α证明:(1)0>∀ε,欲使不等式ε<=<-<+--=-+-++n nn n n n n n n n n n n 6636635616315322222 成立,只须ε6>n ,于是,0>∀ε,取1]6[+=εN ,当N n >时,有ε<<-+-++n n n n n 616315322 即 163153lim22=+-++∞→n n n n n . (2)由a x n n =∞→lim ,0>n x ,知N n N >∀N ∈∃>∀,,0ε,有εa a x n <-,则<+-=-ax a x a x n n n ε<-aa x n 于是,N n N >∀N ∈∃>∀,,0ε,有<-a x n ε<-aa x n ,即 a x n n =∞→lim .(3)已知n n ln >,因为<⎪⎪⎭⎫ ⎝⎛+⎥⎦⎤⎢⎣⎡<=<αααααααn n n n n n 1ln 2ln 2ln 022≤⎪⎪⎭⎫ ⎝⎛+⎥⎦⎤⎢⎣⎡αααn n 122≤⋅αααn n ][2222244αααααn n n =⋅,所以,0>∀ε,欲使不等式=-0ln αnn≤αn n ln εαα<24n成立,只须ααε24⎪⎭⎫ ⎝⎛>n .于是,0>∀ε,取=N 142+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛ααε,当N n >时,有=-0ln αn n≤αn n ln εαα<24n,即 0ln lim =∞→αn nn .评注1 本例中,我们均将a x n -做了适当的变形,使得ε<≤-)(n g a x n ,从而从解不等式ε<)(n g 中求出定义中的N .将a x n -放大时要注意两点:①)(n g 应满足当∞→n 时,0)(→n g .这是因为要使ε<)(n g ,)(n g 必须能够任意小;②不等式ε<)(n g 容易求解.评注2 用定义证明a x n →)(∞→n ,对0>∀ε,只要找到一个自然数)(εN ,使得当)(εN n >时,有ε<-a x n 即可.关键证明N ∈)(εN 的存在性.评注3 在第二小题中,用到了数列极限定义的等价命题,即: (1)N n N >∀N ∈∃>∀,,0ε,有εM a x n <-(M 为任一正常数). (2)N n N >∀N ∈∃>∀,,0ε,有k n a x ε<-)(N k ∈.例2 用定义证明下列各式:(1)1lim =∞→n n n ;(92,南开,10分)(2)0lim =∞→n kn an ),1(N k a ∈>证明:(1)(方法一)由于1>n n (1>n ),可令λ+=1n n (0>λ),则()>++-++=+==n n nnn n n n n λλλλ 22)1(1)1(22)1(λ-n n (2>n ) 当2>n 时,21nn >-,有 >n >-22)1(λn n 2222)1(44-=nn n n λ即 nn n 210<-<.0>∀ε,欲使不等式=-1n n ε<<-nn n21成立,只须24ε>n .于是,0>∀ε,取⎭⎬⎫⎩⎨⎧+⎥⎦⎤⎢⎣⎡=2,14max 2εN ,当N n >时,有 1-nn ε<<n 2,即 1lim =∞→n n n .(方法二)因为nn n n n n n n n n n n n212211)111(112+<-+=++++≤⋅⋅⋅⋅⋅=≤- 个,所以1-nn n2<,0>∀ε,欲使不等式=-1n n ε<<-nn n21成立,只须24ε>n .于是,0>∀ε,取142+⎥⎦⎤⎢⎣⎡=εN ,当N n >时,有1-nn ε<<n2,即 1lim =∞→n n n .(2)当1=k 时,由于1>a ,可记λ+=1a (0>λ),则>++-++=+=n n n n n n a λλλλ 22)1(1)1(22)1(λ-n n (2>n ) 当2>n 时,21nn >-,于是有 <<n an 02242)1(λλn n n n <-.0>∀ε,欲使不等式0-nan<<n a n ελ<24n 成立,只须24ελ>n .对0>∀ε,取⎭⎬⎫⎩⎨⎧+⎥⎦⎤⎢⎣⎡=2,14max 2ελN ,当N n >时,有0-nan<<n a n ελ<24n . 当1>k 时,11>k a (1>a ),而=n ka n kn k a n ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡)(1.则由以上证明知N n N >∀N ∈∃>∀,,0ε,有ε<<nka n )(01,即kn k a n ε<<0,故 0lim =∞→n kn an .评注1 在本例中,0>∀ε,要从不等式ε<-a x n 中解得N 非常困难.根据n x 的特征,利用二项式定理展开较容易.要注意,在这两个小题中,一个λ是变量,一个λ是定值. 评注2 从第一小题的方法二可看出算术-几何平均不等式的妙处. 评注3 第二小题的证明用了从特殊到一般的证法.例 用定义证明:0!lim =∞→n a nn (0>a )(山东大学)证明:当10≤<a 时,结论显然成立.当1>a 时,欲使[][][][]ε<⋅<⋅⋅+⋅⋅⋅⋅=-n aa a n a a a a a a a n a a n !1210! 成立,只须>n [][]ε!1a a a +.于是0>∀ε,取=N [][]1!1+⎥⎦⎤⎢⎣⎡+εa a a ,当N n >时,有[][]ε<⋅<-n a a a n a a n !0!即 0!lim=∞→n a nn . 例 设1<α,用“N -ε”语言,证明:0])1[(lim =-+∞→ααn n n .证明:当0≤α时,结论恒成立. 当10<<α时,0>∀ε,欲使<-+=--+]1)11[(0)1(ααααn n n n εαα<=-+-11)111(nn n只须>n αε-111.于是0>∀ε,取=N 1111+⎥⎥⎦⎤⎢⎢⎣⎡-αε,当N n >时,有 <--+0)1(ααn n εα<-11n即 0])1[(lim =-+∞→ααn n n .2.迫敛性(夹逼定理)n 项和问题可用夹逼定理、定积分、级数来做,通项有递增或递减趋势时考虑夹逼定理.n n n z x y ≤≤,b y n →,c z n →}{n x ⇒有界,但不能说明n x 有极限.使用夹逼定理时,要求n n z y ,趋于同一个数.例 求证:0!lim =∞→n a nn (a 为常数).分析:na m a m a a a a n a n ⋅⋅+⋅⋅⋅⋅⋅= 1321!,因a 为固定常数,必存在正整数m ,使1+<≤m a m ,因此,自1+m a 开始,11<+m a ,12<+m a ,1,<na ,且∞→n 时,0→na. 证明:对于固定的a ,必存在正整数m ,使1+<m a ,当1+≥m n 时,有≤⋅⋅+⋅⋅⋅⋅⋅=≤n a m a m a a a a n an1321!0n am am⋅!,由于∞→n lim0!=⋅na m am,由夹逼定理得0!lim=∞→n ann ,即 0!lim=∞→n a nn . 评注 当极限不易直接求出时,可将求极限的变量作适当的放大或缩小,使放大、缩小所得的新变量易于求极限,且二者极限值相同,直接由夹逼定理得出结果.例 若}{n a 是正数数列,且02lim21=+++∞→nna a a nn ,则0lim 1=⋅⋅⋅∞→n n n a a n .证明:由()()()n n na a a ⋅⋅⋅ 2121nna a a n+++≤212,知n n na a a n ⋅⋅⋅⋅ 21!nna a a n+++≤212即 n n a a a ⋅⋅⋅ 21n n n n na a a !1221⋅+++≤.于是,n n a a a n ⋅⋅⋅<210nnn nna a a !1221⋅+++≤,而由已知02lim21=+++∞→nna a a nn 及∞→n lim0!1=nn故 ∞→n lim0!1221=⋅+++nnn nna a a由夹逼定理得 0lim 1=⋅⋅⋅∞→n n n a a n .评注1 极限四则运算性质普遍被应用,值得注意的是这些性质成立的条件,即参加运算各变量的极限存在,且在商的运算中,分母极限不为0. 评注2 对一些基本结果能够熟练和灵活应用.例如: (1)0lim =∞→nn q (1<q ) (2)01lim=∞→an n (0>a )(3)1lim =∞→n n a (0>a ) (4)1lim =∞→n n n(5)0!lim=∞→n a n n (0>a ) (6)∞→n lim 0!1=n n 例 证明:若a x n n =∞→lim (a 有限或∞±),则a nx x x nn =+++∞→ 21lim(a 有限或∞±).证明:(1)设a 为有限,因为a x n n =∞→lim ,则11,,0N n N >∀N ∈∃>∀ε,有2ε<-a x n .于是=-+++a n x x x n21()()()na x a x a x n -++-+- 21+-++-+-≤nax a x a x N 121 nax a x n N -++-+ 1121εε+<-+<n A n N n n A . 其中a x a x a x A N -++-+-=121 为非负数.因为0lim=∞→nAn ,故对上述的22,,0N n N >∀N ∈∃>ε,有2ε<n A .取},max{21N N N =当N n >时,有 εεε=+<-+++2221a n x x x n即 a nx x x nn =+++∞→ 21lim.(2)设+∞=a ,因为+∞=∞→n n x lim ,则11,,0N n N G >∀N ∈∃>∀,有G x n 2>,且0121>+++N x x x .于是=+++n x x x n21 ++++nx x x N 121 n x x n N +++ 11G nN G n N n G nx x nN 11122)(21-=->++>+取12N N =,当N n >时,G G nN <12,于是 G G G nx x x n=->+++221 .即 +∞=+++∞→nx x x nn 21lim(3)-∞=a 时证法与(2)类似.评注1 这一结论也称Cauchy 第一定理,是一个有用的结果,应用它可计算一些极限,例如:(1)01211lim=+++∞→nn n (已知01lim =∞→n n );(2)1321lim 3=++++∞→nnn n (已知1lim =∞→n n n ).评注2 此结论是充分的,而非必要的,但若条件加强为“}{n x 为单调数列”,则由a nx x x nn =+++∞→ 21lim可推出a x n n =∞→lim .评注3 证明一个变量能够任意小,将它放大后,分成有限项,然后证明它的每一项都能任意小,这种“拆分方法”是证明某些极限问题的一个常用方法,例如:若10<<λ,a a n n =∞→lim (a 为有限数),证明:λλλλ-=++++--∞→1)(lim 0221aa a a a n n n n n . 分析:令0221a a a a x n n n n n λλλ++++=-- ,则01101221)()()()1(a a a a a a a a x n n n n n n n n +-----++-+-+=-λλλλλ .只须证0)()()(101221→-++-+----a a a a a a n n n n n λλλ (∞→n )由于a a n n =∞→lim ,故N n N >∀N ∈∃,,有ε<--1n n a a .于是)()()(101221a a a a a a n n n n n -++-+----λλλ101111221a a a a a a a a a a n N n N n N N n N n N n n n n -++-+-++-+-≤---+-+----λλλλλ 再利用0lim =∞→n n λ(10<<λ)即得.例 求下列各式的极限: (1))2211(lim 222nn n nn n n n n +++++++++∞→(2)n n n1211lim +++∞→ (3)nn nn 2642)12(531lim ⋅⋅⋅⋅-⋅⋅⋅⋅∞→解:(1)≤+++++++++≤+++++n n n n n n n n n n n n 2222221121 1212+++++n n n∵∞→n lim n n n n +++++221 ∞→=n lim 212)1(2=+++n n n n n , ∞→n lim 1212+++++n n n ∞→=n lim 2112)1(2=+++n n n n , 由夹逼定理, ∴21)2211(lim 222=+++++++++∞→nn n n n n n n n(2)n n n n n=+++≤+++≤11112111 ∵1lim =∞→n n n ,由夹逼定理,∴11211lim =+++∞→n n n. (3)∵121243212642)12(531212212452321<-⋅⋅⋅=⋅⋅⋅⋅-⋅⋅⋅⋅=⋅--⋅⋅⋅≤nn n n n n n n , ∴12642)12(53121<⋅⋅⋅⋅-⋅⋅⋅⋅≤⋅nn nn n n.∵∞→n lim121=⋅nnn,由夹逼定理,∴12642)12(531lim =⋅⋅⋅⋅-⋅⋅⋅⋅∞→nn nn .评注nn 212-的极限是1,用此法体现了“1”的好处,可以放前,也可放后.若极限不是1,则不能用此法,例如:)12(53)1(32+⋅⋅⋅+⋅⋅⋅=n n x n ,求n n x ∞→lim .解:∵0>n x ,{}n x 单调递减,{}n x 单调递减有下界,故其极限存在. 令a x n n =∞→lim ,∵3221++⋅=+n n x x n n ∴=+∞→1lim n n x n n x ∞→lim ∞→n lim 322++n n , a a 21=, ∴0=a ,即 0lim =∞→n n x .)2112111(lim nn +++++++∞→ (中科院) 评注 拆项:分母是两项的积,111)1(1+-=+n n n n 插项:分子、分母相差一个常数时总可以插项.1111111+-=+-+=+n n n n n 3单调有界必有极限 常用方法:①n n x x -+1;②nn x x 1+;③归纳法;④导数法. )(1n n x f x =+ 0)(>'x f )(x f 单调递增12x x > )()(12x f x f > 23x x > 12x x < )()(12x f x f < 23x x <0)(<'x f )(x f 单调递减12x x > )()(12x f x f < 23x x <12x x < )()(12x f x f > 23x x >不解决决问题.命题:)(1n n x f x =+,若)(x f 单调递增,且12x x >(12x x <),则{}n x 单调递增(单调递减).例 求下列数列极限:(1)设0>A ,01>x ,)(211nn n x Ax x +=+;(98,华中科大,10分) (2)设01>x ,nnn x x x ++=+3331;(04,武大)(3)设a x =0,b x =1,221--+=n n n x x x ( ,3,2=n ).(2000,浙大) 解:(1)首先注意A x Ax x A x x nn n n n =⋅⋅≥+=+221)(211,所以{}n x 为有下界数列. 另一方面,因为0)(21)(211≤-=-+=-+n nn n n n n x x Ax x A x x x .(或()121)1(21221=+≤+=+A Ax A x x nn n )故{}n x 为单调递减数列.因而n n x ∞→lim 存在,且记为a . 由极限的四则运算,在)(211nn n x Ax x +=+两端同时取极限∞→n ,得)(21aAa a +=.并注意到0>≥A x n ,解得A a =. (2)注意到33)1(333301<++=++=<+nn n n n x x x x x ,于是{}n x 为有界数列.另一方面,由)24)(3()3(2333333333333311211121121-------+++-=++-⎪⎪⎭⎫⎝⎛++-=+-=-++=-n n n n n n n n n n n n n n x x x x x x x x x x x x x x )2)(3(31121---++-=n n n x x x 知=---+11n n n n x x x x 02133)2)(3(311211121>+=+-++-------n n n n n n x x x x x x . 即n n x x -+1与1--n n x x 保持同号,因此{}n x 为单调数列,所以n n x ∞→lim 存在(记为a ).由极限的四则运算,在nn n x x x ++=+3331两端同时取极限∞→n ,得a aa ++=333.并注意到30<<n x ,解得3=a .(3)由于nn n n n n n n n n a b x x xx x x x x x x x )2()2()2(2201112111--=--=--==--=-+=----+ , 又=+-=∑-=+0101)(x x x x n m m m n a a b a a b x nn m mn +-----=+--=∑-=)21(1)21(1)()2(1)(10,所以 n n x ∞→lim 323)(2)21(1)21(1lim)(a b a a b a a b nn +=+-=+-----=∞→. 评注1 求递归数列的极限,主要利用单调有界必有极限的原理,用归纳法或已知的一些基本结果说明数列的单调、有界性.在说明递归数列单调性时,可用函数的单调性.下面给出一个重要的结论:设)(1n n x f x =+( ,2,1=n )I x n ∈,若)(x f 在区间I 上单调递增,且12x x >(或12x x <),则数列{}n x 单调递增(或单调递减).评注2 第三小题的方法较为典型,根据所给的11,,-+n n n x x x 之间的关系,得到n n x x -+1与1--n n x x 的等式,再利用错位相减的思想,将数列通项n x 写成级数的表达式.例 设11,b a 为任意正数,且11b a ≤,设11112----+=n n n n n b a b a a ,11--=n n n b a b ( ,3,2=n ),则{}n a ,{}n b 收敛,且极限相同. 证明:由≤+=----11112n n n n n b a b a a 111122----n n n n b a b a n n n b b a ==--11,知≤=--11n n n b a b 111---=n n n b b b .则10b b n ≤<,即{}n b 为单调有界数列.又10b b a n n ≤≤<,且=-+=-------1111112n n n n n n n a b a b a a a =+---------111121112n n n n n n n b a b a a b a 0)(11111≥+------n n n n n b a a b a , 所以{}n a 亦为单调有界数列.由单调有界必有极限定理,n n a ∞→lim 与n n b ∞→lim 存在,且分别记为a 与b .在11112----+=n n n n n b a b a a 与11--=n n n b a b 两端同时取极限∞→n ,得b a ab a +=2与ab b =.考虑到11,b a 为任意正数且110b b a a n n ≤≤≤<. 即得0≠=b a .例 (1)设21=x ,nn x x 121+=+,求n n x ∞→lim ;(2)设01=x ,22=x ,且02311=---+n n n x x x ( ,3,2=n ),求n n x ∞→lim .解:(1)假设n n x ∞→lim 存在且等于a ,由极限的四则运算,在nn x x 121+=+两端同时取极限∞→n ,得aa 12+=,即21±=a . 又2>n x ,故21+=a .下面只须验证数列{}a x n -趋于零(∞→n ).由于<-<-=⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+=-<+a x a x a x a x a x n n n n n 41121201a x n-⎪⎭⎫ ⎝⎛<141, 而∞→n lim 0411=-⎪⎭⎫⎝⎛a x n,由夹逼定理得=∞→n n x lim 21+=a . (2)由02311=---+n n n x x x ,知=++n n x x 231=+-123n n x x =+--2123n n x x 62312=+=x x , 则 2321+-=+n n x x . 假设n n x ∞→lim 存在且等于a ,由极限的四则运算,得56=a . 下面只须验证数列⎭⎬⎫⎩⎨⎧-56n x 趋于零(∞→n ).由于 =-+-=--56232561n n x x =⎪⎭⎫ ⎝⎛---56321n x 56325632111⋅⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=--n n x . 显然∞→n lim 056321=⋅⎪⎭⎫ ⎝⎛-n ,由夹逼定理得56lim =∞→n n x .评注1 两例题中均采用了“先求出结果后验证”的方法,当我们不能直接用单调有界必有极限定理时,可以先假设a x n n =∞→lim ,由递归方程求出a ,然后设法证明数列{}a x n -趋于零.评注2 对数列{}n x ,若满足a x k a x n n -≤--1( ,3,2=n ),其中10<<k ,则必有a x n n =∞→lim .这一结论在验证极限存在或求解递归数列的极限时非常有用.评注3 本例的第二小题还可用Cauchy 收敛原理验证它们极限的存在性.设1a >0,1+n a =n a +na 1,证明n =1(04,上海交大) 证 (1)要证n =1 ,只要证2lim 12nn a n→∞=,即只要证221lim 1(22)2n nn a a n n +→∞-=+-,即证221lim()2n n n a a +→∞-= (2)因1+n a =n a +n a 1,故110n n n a a a +-=>,1211n n na a a +=+ 2211112211()()112n n n n n n n n n n na a a a a a a a a a a +++++-=-+==++=+ 因此只要证21lim0n na →∞=,即只要证lim n n a →∞=∞ (3)由110n n na a a +-=>知,{}n a 单调增加,假如{}n a 有上界,则{}n a 必有极限a ,由1+n a =n a +n a 1知,a =a +1a ,因此10a=,矛盾. 这表明{}n a 单调增加、没有上界,因此lim n n a →∞=∞. (证完)4 利用序列的Cauchy 收敛准则例 (1)设21xx =(10≤≤x ),2221--=n n x x x ,求n n x ∞→lim ;(2)设111==y x ,n n n y x x 21+=+,n n n y x y +=+1,求nnn y x ∞→lim; 解:(1)由21x x =(10≤≤x ),得211≤x .假设21≤k x ,则412≤k x .有 =-=+2221k k x x x 21212≤-k x x 由归纳法可得 21≤n x . 于是 ⎪⎪⎭⎫ ⎝⎛---=---++22222121n p n n pn x x x x x x111111212--+--+--+-≤-+=n p n n p n n p n x x x x x x 021211111→≤-≤≤-+-n p n x x (∞→n ).由Cauchy 收敛准则知:n n x ∞→lim 存在并记为a ,由极限的四则运算,在2221--=nn x x x 两端同时取极限∞→n ,得022=-+x a a . 注意到21≤n x ,故x a x n n ++-==∞→11lim .(2)设nnn y x a =,显然1>n a . 由于nn n n n n n n a y x y x y x a ++=++==+++1112111,则 111111+++-+=-n n n n a a a a ()()<++-=--1111n n n n a a a a <<-- 141n n a a 12141a a n --. 于是=-+n p n a a n n p n p n p n p n a a a a a a -++-+-+-+-+-++1211 n n p n p n p n p n a a a a a a -++-+-≤+-+-+-++121112124141a a n p n -⎪⎭⎫⎝⎛++<--- 12141141141a a p n ---⋅=- 03141121→-⋅<-a a n (∞→n ). 由Cauchy 收敛准则知:n n x ∞→lim 存在并记为a . 由极限的四则运算,在nn a a ++=+1111两端同时取极限∞→n ,得22=a . 注意到1>n a ,故=∞→n nn y x lim2lim =∞→n n a . 评注1 Cauchy 收敛准则之所以重要就在于它不需要借助数列以外的任何数,只须根据数列各项之间的相互关系就能判断该数列的敛散性. 本例两小题都运用了Cauchy 收敛准则,但细节上稍有不同.其实第一小题可用第二小题的方法,只是在第一小题中数列{}n x 有界,因此有11111≤+≤-++x x x x p p .保证了定义中的N 仅与ε有关.评注2 “对N p ∈∀有()0lim =-+∞→n p n n x x ”这种说法与Cauchy 收敛准则并不一致.这里要求对每个固定的p ,可找到既与ε又与p 的关的N,当N n >,有ε<-+n p n x x .而Cauchy 收敛准则要求所找到的N只能与任意的ε有关.5 利用Stolz 定理计算数列极限例 求下列极限(1)⎪⎪⎭⎫⎝⎛-+++∞→421lim 3333n n n n(2)假设1222...lim ,lim 2n n n n a a na aa a n →∞→∞+++==证明:(00,大连理工,10)(04,上海交大)证明:Stolz 公式121211222212...(2...(1))(2...)limlim(1)(1)lim 212n n n n n n n n a a na a a na n a a a na n n n n a a n +→∞→∞+→∞++++++++++++=+-+==+(3)nn n ln 1211lim+++∞→ (4)n n n n 1232lim++++∞→ (5)n n an 2lim ∞→(1>a )6 关于否定命题的证明 (书上一些典型例题需背)a x n n ≠∞→lim{}n x 发散例 证明:nx n 131211++++= 发散.例 设0≠n a ( ,2,1=n ),且0lim =∞→n n a ,若存在极限l a a nn n =+∞→1lim,则1≤l .(北大,20)7 杂例 (1) )1(1321211lim +++⋅+⋅∞→n n n(2) (04,武大)2212lim(...),(1)11()1lim()11(1)1n n n n n n a a a an a a a a a a →∞→∞+++>-=-=--- (3) )1()1)(1(lim 22n n x x x +++∞→ (1<x);(4)设31=a ,n n n a a a +=+21( ,2,1=n ),求: ⎪⎪⎭⎫ ⎝⎛++++++=∞→n n a a a l 111111lim 21 .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用定义证明数列极限例题
在数学中,数列极限是一个重要的概念,它描述了数列中随着项数无限增加,数列中每一项趋向于一个确定值的现象。
我们可以通过定义来证明数列极限是否存在,以下是一个例题:
给定数列 {an},其中 an = 1/n,证明该数列的极限为 0。
根据数列极限的定义,对于任意正数ε,存在正整数N,当 n>N 时,|an - L| < ε,其中L为数列极限。
对于数列 {an},当 n>N 时,有:
|an - 0| = |1/n - 0| = 1/n < ε
根据不等式性质,可以得出:
n > 1/ε
因此,对于任意正数ε,我们可以选择一个正整数N=1/ε,使得当 n>N 时,|an - 0| < ε,即数列 {an} 的极限为0。
- 1 -。