旋转知识梳理

合集下载

小学旋转知识点总结

小学旋转知识点总结

小学旋转知识点总结一、旋转的定义旋转是物体围绕着某个中心点或轴线做圆周运动的一种运动方式。

在旋转过程中,物体的角速度会随着时间的推移而发生改变,这种运动方式是一种复杂的二维运动形式。

在数学中,旋转通常是指以某个点为中心将图形或物体沿着一定的角度旋转,从而得到一个新的图形或物体。

旋转是几何变换中的一种,通常用来描述图形的位置和形状的改变。

在日常生活中,我们可以通过旋转来改变物体的朝向和位置,从而更好地适应我们的需求。

二、旋转的特点旋转具有以下几个特点:1. 围绕中心点运动:在旋转中,物体是围绕着某个中心点或轴线进行圆周运动的,这种运动方式可以使物体的位置和形状发生改变。

2. 角速度的改变:在旋转过程中,物体的角速度会随着时间的变化而发生改变,这种变化通常可以用角速度函数来描述。

3. 形状和位置的改变:通过旋转可以使物体的形状和位置发生改变,这种改变通常是由中心点和旋转角度来决定的。

4. 旋转轴的选择:在进行旋转运动时,需要选择合适的旋转轴,这个选择通常是与物体本身的形状和特点有关的。

5. 旋转的方向:旋转可以沿着顺时针方向或逆时针方向进行,这个方向通常取决于旋转轴的选择和旋转角度的大小。

三、旋转的应用旋转在日常生活中有着广泛的应用,比如:1. 旋转木马:旋转木马是孩子们喜欢的游乐设施之一,它通过围绕中心点旋转,让孩子们感到快乐和兴奋。

2. 旋转舞台:在舞台表演中,有些舞台可以进行旋转,这样可以让观众从不同的角度欣赏表演。

3. 旋转木锯:在木工行业中,有些木工机械可以进行旋转运动,以便更好地加工木材。

4. 旋转太阳能发电站:在能源领域,有些太阳能发电站可以进行旋转,跟踪太阳位置,从而提高发电效率。

四、旋转的实例和案例分析在生活中,我们可以找到很多关于旋转的实例和案例,比如:1. 旋转木马:旋转木马是一个很好的旋转实例,它可以让孩子们体验到旋转运动时的快乐和刺激。

2. 地球的自转:地球围绕自身的中心轴进行自转,这种自转运动导致了地球的日夜交替现象。

小学五年级旋转知识点梳理

小学五年级旋转知识点梳理

小学五年级旋转知识点梳理旋转是数学中的一个重要概念,既有几何含义,也有代数含义。

在小学五年级的数学学习中,学生需要掌握与旋转相关的知识点,本文将对这些知识点进行梳理和总结。

一、旋转的含义和基本概念在几何中,旋转是指一个图形绕着某个点旋转一定角度后得到的新图形。

旋转时,保持图形的形状和大小不变,但位置和方向可能发生改变。

旋转可以分为顺时针和逆时针两种方向。

二、旋转的基本要素旋转有三个基本要素,分别是旋转中心、旋转角度和旋转方向。

1. 旋转中心:图形绕着某个点旋转,这个点称为旋转中心。

旋转中心可以在图形内部、外部或边上。

2. 旋转角度:旋转角度是指图形旋转的角度大小,用度数来表示。

旋转角度可以是直角、钝角或锐角。

3. 旋转方向:旋转方向有顺时针和逆时针两种,顺时针方向是指按照钟表的方向旋转,逆时针方向则相反。

三、旋转的性质和特点1. 旋转不改变图形的大小和形状,只改变位置和方向。

2. 旋转角度小于360度时,经过一次旋转后,图形会回到原来的位置。

3. 旋转180度后,图形会变为镜像对称的形状。

四、旋转的具体操作和应用1. 根据旋转角度和旋转中心,可以进行图形的旋转操作。

可以使用纸和铅笔进行实际操作,也可以使用计算机软件进行模拟。

2. 旋转在日常生活中有许多应用,比如地球的自转和公转、风车的旋转、机械旋转等等。

五、旋转的示例和练习下面通过几个实际的例子来加深对旋转知识点的理解:1. 以一个正方形为例,选择一个角作为旋转中心,分别进行90度和180度的顺时针旋转,观察图形的变化。

2. 对一个三角形进行旋转,旋转角度为45度,旋转方向为逆时针,观察图形的变化。

3. 给出一个图形的旋转角度和旋转中心,要求学生根据要求画出旋转后的图形。

六、巩固与拓展为了巩固旋转的知识,学生可以通过以下练习来加深理解:1. 给出一个旋转图形,要求学生确定旋转中心和旋转角度。

2. 给出一个图形的旋转中心和旋转角度,要求学生画出旋转后的图形。

旋转知识归纳及规律方法指导

旋转知识归纳及规律方法指导

旋转知识归纳及规律方法指导旋转是一个常见的运动形式,在几何学、物理学和其他科学领域中都有广泛的应用。

了解和掌握旋转的知识和规律对于解决各种问题和应用场景是非常重要的。

以下是一些关于旋转的归纳和规律方法的指导,希望能对您有所帮助。

1.旋转的定义和基本概念旋转是物体或几何图形绕一个固定点或轴进行的运动。

旋转可以是二维的,也可以是三维的。

固定点或轴称为旋转中心,物体或几何图形绕着旋转中心旋转的路径称为旋转轨迹。

旋转可以分为顺时针旋转和逆时针旋转两种。

顺时针旋转可以看成逆时针旋转的反方向。

2.旋转的基本规律和性质旋转具有以下基本规律和性质:-旋转角度:旋转角度是物体或几何图形旋转的度量。

旋转角度通常用角度或弧度表示。

-旋转方向:旋转方向可以是顺时针或逆时针。

正角度代表逆时针旋转,负角度代表顺时针旋转。

-旋转中心:旋转中心可以是一个点、一条轴或一个平面。

-旋转轨迹:旋转轨迹通常是一个曲线或曲面,取决于旋转的维度和形状。

-旋转角速度:旋转角速度是物体或几何图形单位时间内旋转的角度。

旋转角速度通常用弧度/秒或度/秒表示。

-旋转周期:旋转周期是物体或几何图形旋转一周所需要的时间。

3.旋转的常见问题和应用场景旋转知识的掌握可以帮助解决许多问题和应用场景,包括但不限于以下几个方面:-几何问题:旋转可以用来解决几何图形的位置和形状变化问题,如判断两个几何图形是否相似,求解旋转体的体积和表面积等。

-物理学问题:旋转在物理学中有广泛应用,如刚体的旋转运动、角动量与动能的关系等。

-工程问题:旋转可以帮助解决工程中的问题,如机械制造中的零件的旋转安装,机械臂的旋转运动控制等。

4.学习旋转知识的方法和技巧学习旋转知识需要掌握一些方法和技巧,以下是一些建议:-理论学习:首先要通过学习相关的理论知识和概念来建立旋转的基本框架和认识。

-实践操作:通过实际操作和练习,例如通过模型拼装、绘制旋转图形等进行实践,使抽象的概念更加具体。

-解决问题:通过解决一些与旋转相关的问题,例如解决一些几何问题或物理学问题,来加深对旋转的理解。

旋转知识点总结

旋转知识点总结

旋转知识点总结旋转是一种常见的几何变换,它改变了物体的方向、位置和角度。

在计算机图形学、几何学、物理学和工程学等领域都有广泛的应用。

下面是对旋转相关知识点的一些总结:1. 旋转的定义:旋转是一种刚体运动,它将物体绕着特定的轴线转动一定的角度。

旋转由旋转中心、旋转轴和旋转角度三个要素来描述。

2. 旋转的方向:旋转可以是顺时针方向或逆时针方向。

在三维空间中,右手法则可以确定旋转的方向。

3. 旋转角度的表示:旋转角度可以用弧度制或角度制来表示。

弧度制是使用弧长与半径的比值来表示角度,角度制则是使用度数来表示。

4. 旋转矩阵:旋转可以用旋转矩阵来表示。

旋转矩阵是一个二维矩阵,其中每个元素表示旋转后的坐标与旋转前的坐标之间的关系。

5. 旋转轴的表示:旋转轴可以用向量来表示,向量的方向和大小决定了旋转轴的方向和旋转角度的大小。

6. 旋转的基本性质:旋转具有一些基本的性质,包括不变性、可逆性、可叠加性等。

这些性质对于旋转的应用非常重要。

7. 旋转的合成:旋转可以进行合成,即先进行一个旋转,再进行另一个旋转。

合成旋转可以通过旋转矩阵的乘法来实现。

8. 旋转的变换:旋转可以用来进行物体的变换,包括位置的变换、形状的变换和姿态的变换等。

旋转变换可以通过矩阵乘法来实现。

9. 欧拉角和四元数:欧拉角和四元数是常用的旋转表示方法。

欧拉角使用三个独立的角度来表示旋转,而四元数使用一个四维向量来表示旋转。

10. 旋转的应用:旋转在计算机图形学中有广泛的应用,包括三维建模、动画、物理模拟等。

旋转也被广泛应用于机器人学、飞行控制、游戏开发等领域。

11. 旋转的误差:由于测量误差和计算误差等原因,旋转变换可能会引入一定的误差。

为了减少误差,可以使用数值方法和优化算法等技术来进行旋转估计和校正。

12. 旋转的性能优化:旋转的计算通常比较复杂,对于大规模的数据和复杂的模型,旋转计算可能会成为性能瓶颈。

为了提高性能,可以使用并行计算、SIMD指令、快速算法等技术来加速旋转计算。

旋转现象知识点总结高中

旋转现象知识点总结高中

旋转现象知识点总结高中一、旋转现象的概念与分类1. 旋转现象的概念旋转现象是指物体或系统在围绕某一中心点或轴线进行旋转运动的物理现象。

旋转现象是动力学的重要概念,广泛应用于日常生活和科学研究中。

2. 旋转现象的分类旋转现象可以分为平面旋转和空间旋转两种类型。

平面旋转是指物体在二维平面内围绕一定中心点进行旋转的现象,例如地球围绕太阳的公转运动;空间旋转是指物体在三维空间内围绕一定轴线进行旋转的现象,例如地球的自转运动。

二、旋转运动的基本概念1. 角度和弧度角度是描述旋转运动的单位,通常用°表示。

1°等于π/180弧度。

弧度是描述旋转角度的单位,通常用rad表示。

弧度的定义为:一条半径等于弧长的圆弧所对的角度为1弧度。

2. 角速度和角加速度角速度是描述旋转运动的快慢程度的物理量,通常用ω表示,单位为弧度每秒(rad/s)。

角速度的大小等于单位时间内旋转的角度。

角加速度是描述旋转运动加速度的物理量,通常用α表示,单位为弧度每秒平方(rad/s²)。

3. 转动惯量转动惯量是描述物体对旋转运动的惯性大小的物理量,通常用I表示,单位为千克·米²(kg·m²)。

转动惯量的大小与物体的质量分布和几何形状密切相关,对于不同形状的物体,其转动惯量大小不同。

4. 角动量和角动量守恒定律角动量是描述旋转运动的动量,通常用L表示,单位为千克·米²/秒(kg·m²/s)。

角动量守恒定律是指在没有外力作用的情况下,物体的角动量保持不变。

三、刚体的平面运动学1. 刚体的平面平移运动刚体的平面平移运动是指刚体在平面内进行直线运动,此时刚体各点的位移相等,速度相等,加速度相等。

2. 刚体的平面转动运动刚体的平面转动运动是指刚体在平面内围绕一定轴线进行转动的运动,此时刚体各点的角速度和角加速度相等。

四、刚体的空间动力学1. 刚体的空间平移运动刚体的空间平移运动是指刚体在三维空间内进行直线运动,此时刚体各点的位移、速度和加速度均不相等。

旋转现象知识点总结

旋转现象知识点总结

旋转现象知识点总结1. 旋转现象的基本原理旋转现象基本原理是物体围绕自身中心轴进行旋转运动。

这种运动形式是刚体运动的一种,而刚体的旋转运动是以固定点为轴心,刚体的各点都做圆周运动的运动形式。

在旋转中,刚体上所有点都作圆周运动,而且速度和加速度都不相同。

这种运动可以通过角位移、角速度和角加速度来描述。

角位移表示旋转的角度大小,角速度表示旋转的快慢,而角加速度则表示旋转的加速或减速程度。

在物理学中,旋转现象的基本原理受到角动量守恒定律的影响。

根据角动量守恒定律,如果没有外力矩作用,旋转态的角动量守恒,即角动量大小和方向保持不变。

这就意味着在旋转过程中,如果没有外力矩的作用,物体的角速度和角动量会保持不变。

除了角动量守恒,旋转现象还受到转动惯量的影响。

转动惯量是描述物体抵抗转动的能力,它和物体的形状、质量分布有关。

转动惯量的大小和形状、质量分布都有关系,例如,长杆的转动惯量要比球体的小。

转动惯量的大小影响着物体旋转的难易程度,而且其大小还决定了物体在旋转中的动能大小。

2. 旋转现象的应用旋转现象在工程学、医学、航天航空等领域都有着广泛的应用。

在工程学领域,旋转现象被广泛应用于机械系统中,例如发动机、泵、风力发电机等设备。

这些设备都是通过旋转来实现能量转换和传递的。

旋转还在制造业中用于车床、铣床等机床设备,加工工件时通过旋转实现切削加工。

此外,旋转还在交通运输行业中应用广泛,例如汽车、飞机、船舶等交通工具都需要通过发动机和车轮的旋转来实现运动。

在医学方面,旋转现象也有着重要的应用。

例如,MRI(核磁共振成像)技术就是基于旋转原理的一种诊断技术,它通过物质原子核的旋转运动产生信号,来获取人体组织的影像。

此外,旋转还在手术器械、假肢等医疗器械中有着广泛的应用。

在航天航空领域,旋转现象也被广泛应用于飞行器的姿态控制、推进系统等方面。

例如,飞行器通过调整旋转状态来实现姿态控制,通过发动机旋转来产生推进力。

此外,还有卫星、航天飞行器等载具通过旋转来调整轨道、实现定位和导航等任务。

圆的旋转知识点总结

圆的旋转知识点总结

圆的旋转知识点总结在数学中,圆是一个非常重要的几何图形,它有许多有趣和复杂的特性。

圆的旋转是圆的一个重要属性,它在几何、物理和工程领域中都有着重要的应用。

本文将对圆的旋转进行详细的介绍和总结,包括圆的基本概念、旋转的定义和性质、旋转的应用等方面。

一、圆的基本概念圆是一个平面上所有点到一个固定点距离相等的集合。

这个固定点称为圆心,到圆心的距离称为半径。

圆的直径是通过圆心的两个点之间的线段,直径的长度是半径的两倍。

圆的周长是圆上一点到另一点的距离的总和,也就是圆的外周的长度。

圆的面积是圆内部的所有点构成的区域的大小。

二、旋转的定义和性质旋转是指一个物体或几何图形绕某个固定点或轴进行旋转运动的过程。

在圆的旋转中,固定点就是圆心,旋转轴就是围绕圆心旋转的线段。

圆的旋转有一些基本的性质:1. 当一个圆绕其圆心旋转时,圆的形状和大小保持不变。

这是因为圆的所有点都与圆心的距离相等,所以无论怎样旋转,这个距离不会改变。

2. 圆的旋转可以分为两种:顺时针旋转和逆时针旋转。

这两种旋转方向可以通过右手定则来确定,当右手握住旋转轴的方向时,大拇指所指的方向就是旋转的方向。

3. 圆的旋转可以产生许多有趣的几何图形,如旋转体、圆锥、圆柱等。

这些几何图形在工程和建筑中都有着广泛的应用。

4. 圆的旋转还可以产生许多数学问题和定理,如圆的面积和周长的计算、圆的体积和表面积的计算等。

这些问题和定理都是圆的旋转性质的重要应用。

三、旋转的应用圆的旋转在现实生活中有着广泛的应用,下面列举了一些典型的应用:1. 工程领域:圆的旋转在机械制造和加工中有着重要的应用,如车床加工、铣床加工等。

在这些加工过程中,工件通过旋转轴绕自身旋转,切削工具则在不同的方向上进行切削,从而形成所需的零件。

2. 建筑领域:圆的旋转在建筑设计和施工中也有着重要的应用,如旋转体结构的设计、旋转柱的施工等。

这些应用可以通过对圆的旋转性质和公式的应用,来解决具体的问题。

图形的旋转(6种题型)-2023年新九年级数学核心知识点与常见题型(浙教版)(解析版)

图形的旋转(6种题型)-2023年新九年级数学核心知识点与常见题型(浙教版)(解析版)

图形的旋转(6种题型)【知识梳理】一.生活中的旋转现象(1)旋转的定义:在平面内,把一个图形绕着某一个点O旋转一个角度的图形变换叫做旋转.点O叫做旋转中心,转动的角叫做旋转角,如果图形上的点P经过旋转变为点P′,那么这两个点叫做对应点.(2)注意:①旋转是围绕一点旋转一定的角度的图形变换,因而旋转一定有旋转中心和旋转角,且旋转前后图形能够重合,这时判断旋转的关键.②旋转中心是点而不是线,旋转必须指出旋转方向.二.旋转的性质(1)旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.(2)旋转三要素:①旋转中心;②旋转方向;③旋转角度.注意:三要素中只要任意改变一个,图形就会不一样.三.旋转对称图形(1)旋转对称图形如果某一个图形围绕某一点旋转一定的角度(小于360°)后能与原图形重合,那么这个图形就叫做旋转对称图形.(2)常见的旋转对称图形有:线段,正多边形,平行四边形,圆等.四.中心对称图形(1)定义把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.注意:中心对称图形和中心对称不同,中心对称是两个图形之间的关系,而中心对称图形是指一个图形自身的特点,这点应注意区分,它们性质相同,应用方法相同.(2)常见的中心对称图形平行四边形、圆形、正方形、长方形等等.五.坐标与图形变化-旋转(1)关于原点对称的点的坐标P(x,y)⇒P(﹣x,﹣y)(2)旋转图形的坐标图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.六.作图-旋转变换(1)旋转图形的作法:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.(2)旋转作图有自己独特的特点,决定图形位置的因素较多,旋转角度、旋转方向、旋转中心,任意不同,位置就不同,但得到的图形全等.七.利用旋转设计图案由一个基本图案可以通过平移、旋转和轴对称以及中心对称等方法变换出一些复合图案.利用旋转设计图案关键是利用旋转中的三个要素(①旋转中心;②旋转方向;③旋转角度)设计图案.通【考点剖析】一.生活中的旋转现象(共1小题)1.(2022秋•义乌市期中)商场卫生间旋转门锁的局部如图1所示,如图2锁芯O固定在距离门边(EF)3.5cm处(即ON=3.5cm),在自然状态下,把手竖直向下(把手底端到达A).旋转一定角度,把手底端B恰好卡住门边时,底端A、B的竖直高度差为0.5cm.当把手旋转90°到达水平位置时固定力最强,有效的固定长度(把手底端到门边的垂直距离)DN=cm,当把手旋转到OC时,∠BOC=∠BOD,此时有效的固定长度为cm.【分析】作BG⊥OA于G,设OA=OB=OC=OD=xcm,在Rt△OBG中利用勾股定理求出x,利用OD﹣ON 得到DN,连接OB,交OC于M,作CP⊥OD,MQ⊥OD,求出BD,OM,QM和OQ,证明△OPC∽△OQM,可得OP,可得PN,即可得到C到EF的距离.【解答】解:如图,作BG⊥OA于G,设OA=OB=OC=OD=xcm,则AG=0.5cm,BG=ON=3.5cm,∴OG=OA﹣AG=x﹣0.5cm,∵在Rt△OBG中,OB2=OG2+BG2,∴x2=(x﹣0.5)2+3.52,解得:x=12.5,∴OA=OB=OC=OD=12.5cm,∴DN=OD﹣ON=12.5﹣3.5=9cm.连接OB,交OC于M,作CP⊥OD,MQ⊥OD,∵BN=OG=12.5﹣0.5=12cm,DN=9cm,∴DB=DN2+BN2=15cm,又∵∠BOC=∠BOD,OD=OB,∴OC⊥BD,DM=BM=DB=7.5cm,∴OM===10cm,∵△DNB中,QM∥NB,且M是DB中点,∴QM=BN=6cm,∴Rt△OQM中,OQ===8cm,又∵CP∥MQ,∴△OPC∽△OQM,∴OC/OM=OP/OQ,∴=,∴OP=10cm,∴PN=OP﹣ON=10﹣3.5=6.5cm,∵CP⊥OD,EF⊥OD,∴C到EF的距离长等于PN 6.5cm.故答案为:9;6.5.【点评】本题考查了圆的基本性质,相似三角形的判定和性质,勾股定理,中位线定理,解题的关键是读懂题意,结合实际理解旋转门锁的运行原理.二.旋转的性质(共9小题)2.(2022秋•镇海区校级期中)如图,在正方形网格中,△ABC绕某点旋转一定的角度得到△A′B′C′,则旋转中心是点()A.O B.P C.Q D.M【分析】根据旋转的性质,对应点到旋转中心的距离相等,可得对应点连线的垂直平分线的交点即为旋转中心.【解答】如图,连接BB′,AA′可得其垂直平分线相交于点P,故旋转中心是P点.故选:B.【点评】本题考查了旋转的性质,对应点连线的垂直平分线的交点即为旋转中心,熟练掌握旋转中心的确定方法是解题的关键.3.(2022秋•拱墅区校级期中)如图,将△ABC绕点A逆时针旋转70°,得到△ADE,若点D在线段BC 的延长线上,则∠B的大小是()A.45°B.55°C.60°D.100°【分析】由旋转的性质可得AB=AD,∠BAD=70°,由等腰三角形的性质可求解.【解答】解:∵将△ABC绕点A逆时针旋转70°得到△ADE,∴AB=AD,∠BAD=70°,∴∠B=∠ADB==55°,故选:B.【点评】本题考查了旋转的性质,等腰三角形的性质,掌握旋转的性质是解题的关键.4.(2023•温州三模)如图,在△ABC中,∠BAC=50°,将△ABC绕点A逆时针旋转得△ADE,使点D恰好落在AC边上,连结CE,则∠ACE的度数为()A.45°B.55°C.65°D.75【分析】由旋转的性质可知,旋转前后对应边相等,对应角相等,得出等腰三角形,再根据等腰三角形的性质求解.【解答】解:由旋转的性质可知,∠CAE=∠BAC=50°,AC=AE,∴∠ACE=∠AEC,在△ACE中,∠CAE+∠ACE+∠AEC=180°,∴50°+2∠ACE=180°,解得:∠ACE=65°,故选:C.【点评】本题主要考查了旋转的性质,找出旋转角和旋转前后的对应边得出等腰三角形是解答此题的关键.5.(2022秋•杭州期末)如图,将一个含30°角的直角三角板ABC绕点A逆时针旋转,点C的对应点为点C′,若点C′落在BA延长线上,则三角板ABC旋转的度数是()A.60°B.90°C.120°D.150°【分析】根据旋转角的定义,两对应边的夹角就是旋转角,即可求解.【解答】解:旋转角是∠BAB′=180°﹣30°=150°.故选:D.【点评】本题考查的是旋转的性质,掌握对应点与旋转中心所连线段的夹角等于旋转角是解题的关键.6.(2023•天台县一模)如图,在矩形ABCD中,AB=1,∠CBD=18°,将矩形ABCD绕对角线中点O逆时针旋转α(0°<α<90°)得到矩形A′B′C′D′,当C′,D的距离等于1时,α的值为()A.36°B.54°C.68°D.72°【分析】根据矩形的性质以及圆周角定理可得出∠COD=∠DOC′=∠C′OB′=2∠CBD=36°,进而得出∠COC′=72°即可.【解答】解:如图,矩形ABCD的外接圆为⊙O,矩形A′B′C′D′的四个顶点也在⊙O上,∵AB=CD=B′C′=DC′=2,∴∠COD=∠DOC′=∠C′OB′=2∠CBD=36°,∴∠COC′=72°,故选:D.【点评】本题考查旋转的性质,矩形的性质,掌握矩形的性质以及旋转的性质是正确解答的前提.7.(2023•长兴县一模)如图,矩形ABCD绕点B旋转得到矩形BEFG,在旋转过程中,FG恰好过点C,过点G作MN平行AD交AB,CD于M,N.若AB=3,BC=5,则图中阴影部分的面积的是()A.3B.4C.5D.【分析】由旋转的性质可得BG=BA=3,由勾股定理可求CG,可求△BGC的面积,由平行四边形的性质可求解.【解答】解:∵矩形ABCD绕点B旋转得到矩形BEFG,∴BG=BA=3,∴CG===4,∴S△BGC=×BG•GC=6,∵MN∥AD,CD∥AB,∴四边形AMND是平行四边形,MN∥BC,∴四边形BCNM是平行四边形,∴S平行四边形BCNM=2S△BGC=12,∴阴影部分的面积=S矩形ABCD﹣S平行四边形BCNM=15﹣12=3,故选:A.【点评】本题考查了旋转的性质,矩形的性质,勾股定理等知识,灵活运用这些性质解决问题是解题的关键.8.(2023•仙居县二模)如图,在Rt△ABC中,∠C=90°,AC=10,BC=6,点D是边AC的中点.点P 为边BC上的一个动点,将点P绕点D逆时针旋转90°得到点P′,则AP′的取值范围为.【分析】由“SAS”可证△ADP',可得AP'=PH,即可求解.【解答】解:如图,以AD为直角边,作等腰直角三角形ADH,连接PH,∴AD=DH,∠ADH=90°,∵将点P绕点D逆时针旋转90°得到点P′,∴DP=DP',∠PDP'=90°=∠ADH,∴∠ADP'=∠PDH,∴△ADP'≌△HDP(SAS),∴AP'=PH,∵AC=10,点D是边AC的中点,∴CD=AD=DH=5,∵点P为边BC上的一个动点,∴当PH⊥BC时,PH有最小值为5,当点P与点C重合时,PH有最大值为5,∴5≤HP≤5,∴,故答案为:.【点评】本题考查了旋转的性质,全等三角形的判定和性质,添加恰当辅助线构造全等三角形是解题的关键.9.(2023•萧山区二模)如图,在正方形ABCD中,,O是BC中点,点E是正方形内一动点,OE=2,连接DE,将线段DE绕点D逆时针旋转90°得DF,连接AE,CF.则线段OF长的最小值为()A.8B.C.D.【分析】连接DO,将DO绕点D逆时针旋转90°得到DM,连接FM,OM,证明△EDO≌△FDM,可得FM =OE=2,由勾股定理可得,根据OF+MF≥OM,即可得出OF的最小值.【解答】解:如图,连接DO,将DO绕点D逆时针旋转90°得到DM,连接FM,OM,∵∠EDF=∠ODM=90°,∴∠EDO=∠FDM,在△EDO与△FDM中,,∴△EDO≌△FDM(SAS),∴FM=OE=2,∵正方形ABCD中,,O是BC边上的中点,∴,∴,∴,∵OF+MF≥OM,∴OF≥10﹣2=8,∴线段OF的最小值为8,故选:A.【点评】本题考查线段的最值问题,涉及三角形的三边关系、勾股定理、旋转的性质、正方形的性质、全等三角形的判定与性质等知识,添加辅助线构造全等三角形是解题关键.10.(2022秋•浦江县月考)阅读下面材料,并解决问题:(1)如图①等边△ABC P,若点P到顶点A、B、C的距离分别为3,4,5,求∠APB的度数.为了解决本题,我们可以将△ABP绕顶点A旋转到△ACP′处,此时△ACP′≌△ABP,这样就可以利用旋转变换,将三条线段P A、PB、PC转化到一个三角形中,从而求出∠APB=;(2)基本运用请你利用第(1)题的解答思想方法,解答下面问题已知如图②,△ABC中,∠CAB=90°,AB=AC,E、F为BC上的点且∠EAF=45°,求证:EF2=BE2+FC2;(3)能力提升如图③,在Rt△ABC中,∠C=90°,AC=1,∠ABC=30°,点O为Rt△ABC内一点,连接AO,BO,CO,且∠AOC=∠COB=∠BOA=120°,求OA+OB+OC的值.【分析】(1)根据旋转变换前后的两个三角形全等,全等三角形对应边相等,全等三角形对应角相等以及等边三角形的判定和勾股定理逆定理解答;(2)把△ABE绕点A逆时针旋转90°得到△ACE′,根据旋转的性质可得AE′=AE,CE′=CE,∠CAE′=∠BAE,∠ACE′=∠B,∠EAE′=90°,再求出∠E′AF=45°,从而得到∠EAF=∠E′AF,然后利用“边角边”证明△EAF和△E′AF全等,根据全等三角形对应边相等可得E′F=EF,再利用勾股定理列式即可得证.(3)将△AOB绕点B顺时针旋转60°至△A′O′B处,连接OO′,根据直角三角形30°角所对的直角边等于斜边的一半求出AB=2AC,即A′B的长,再根据旋转的性质求出△BOO′是等边三角形,根据等边三角形的三条边都相等可得BO=OO′,等边三角形三个角都是60°求出∠BOO′=∠BO′O=60°,然后求出C、O、A′、O′四点共线,再利用勾股定理列式求出A′C,从而得到OA+OB+OC=A′C.【解答】解:(1)∵△ACP′≌△ABP,∴AP′=AP=3、CP′=BP=4、∠AP′C=∠APB,由题意知旋转角∠PA P′=60°,∴△AP P′为等边三角形,P P′=AP=3,∠A P′P=60°,易证△P P′C为直角三角形,且∠P P′C=90°,∴∠APB=∠AP′C=∠A P′P+∠P P′C=60°+90°=150°;故答案为:150°;(2)如图2,把△ABE绕点A逆时针旋转90°得到△ACE′,由旋转的性质得,AE′=AE,CE′=BE,∠CAE′=∠BAE,∠ACE′=∠B,∠EAE′=90°,∵∠EAF=45°,∴∠E′AF=∠CAE′+∠CAF=∠BAE+∠CAF=∠BAC﹣∠EAF=90°﹣45°=45°,∴∠EAF=∠E′AF,在△EAF和△E′AF中,∴△EAF≌△E′AF(SAS),∴E′F=EF,∵∠CAB=90°,AB=AC,∴∠B=∠ACB=45°,∴∠E′CF=45°+45°=90°,由勾股定理得,E′F2=CE′2+FC2,即EF2=BE2+FC2.(3)如图3,将△AOB绕点B顺时针旋转60°至△A′O′B处,连接OO′,∵在Rt△ABC中,∠C=90°,AC=1,∠ABC=30°,∴AB=2,∴BC=,∵△AOB绕点B顺时针方向旋转60°,∴△A′O′B如图所示;∠A′BC=∠ABC+60°=30°+60°=90°,∵∠C=90°,AC=1,∠ABC=30°,∴AB=2AC=2,∵△AOB绕点B顺时针方向旋转60°,得到△A′O′B,∴A′B=AB=2,BO=BO′,A′O′=AO,∴△BOO′是等边三角形,∴BO=OO′,∠BOO′=∠BO′O=60°,∵∠AOC=∠COB=∠BOA=120°,∴∠COB+∠BOO′=∠BO′A′+∠BOO′=120°+60°=180°,∴C、O、A′、O′四点共线,在Rt△A′BC中,A′C=,∴OA+OB+OC=A′O′+OO′+OC=A′C=.【点评】本题考查了旋转的性质,全等三角形的判定与性质,等腰直角三角形的性质,勾股定理,读懂题目信息,理解利用旋转构造出全等三角形和等边三角形以及直角三角形是解题的关键.三.旋转对称图形(共3小题)11.(2022秋•平阳县校级月考)把如图所示的五角星图案,绕着它的中心旋转,若旋转后的五角星能与自身重合.则旋转角至少为()A.30°B.45°C.60°D.72°【分析】五角星图案,可以被平分成五部分,因而每部分被分成的圆心角是72°,并且圆具有旋转不变性,因而旋转72【解答】解:该图形被平分成五部分,旋转72度的整数倍,就可以与自身重合,因而A、B、C都错误,能与其自身重合的是D.故选:D.【点评】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.12.(2022秋•张湾区期中)把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为()A.30°B.90°C.120°D.180°【分析】根据图形的对称性,用360°除以3计算即可得解.【解答】解:∵360°÷3=120°,∴旋转的角度是120°的整数倍,∴旋转的角度至少是120°.故选:C.【点评】本题考查了旋转对称图形,仔细观察图形求出旋转角是120°的整数倍是解题的关键.13.(2023•婺城区模拟)规定:在平面内,如果一个图形绕一个定点旋转一定的角度α(0°<α≤180°)后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角度α称为这个图形的一个旋转角.例如:正方形绕着两条对角线的交点O旋转90°或180°后,能与自身重合(如图1),所以正方形是旋转对称图形,且有两个旋转角.根据以上规定,回答问题:(1)下列图形是旋转对称图形,但不是中心对称图形的是;A.矩形B.正五边形C.菱形D.正六边形(2)下列图形中,是旋转对称图形,且有一个旋转角是60度的有:(填序号);(3)下列三个命题:①中心对称图形是旋转对称图形;②等腰三角形是旋转对称图形;③圆是旋转对称图形.其中真命题的个数有个;A.0B.1C.2D.3(4)如图2的旋转对称图形由等腰直角三角形和圆构成,旋转角有45°,90°,135°,180°,将图形补充完整.【分析】(1)根据旋转图形,中心对称图形的定义判断即可.(2)旋转对称图形,且有一个旋转角是60度判断即可.(3)根据旋转图形的定义判断即可.(4)根据要求画出图形即可.【解答】解:(1)是旋转图形,不是中心对称图形是正五边形,故选B.(2)是旋转对称图形,且有一个旋转角是60度的有(1)(3)(5).故答案为(1)(3)(5).(3)命题中①③正确,故选C.(4)图形如图所示:【点评】本题考查旋转对称图形,中心对称图形等知识,解题的关键是理解题意,灵活运用所学知识解决问题.四.坐标与图形变化-旋转(共8小题)14.(2022秋•莲都区期中)如图,在平面直角坐标系中,将点P(2,3)绕原点O顺时针旋转90°得到点P',则P'的坐标为()A.(3,﹣2)B.(3,﹣1)C.(2,﹣3)D.(3,2)【分析】作PQ⊥y轴于Q,如图,把点P(2,3)绕原点O顺时针旋转90°得到点P'看作把△OPQ绕原点O顺时针旋转90°得到△OP'Q′,利用旋转的性质得到∠P′Q′O=90°,∠QOQ′=90°,P′Q′=PQ =2,OQ′=OQ=3,从而可确定P′点的坐标.【解答】解:作PQ⊥y轴于Q,如图,∵P(2,3),∴PQ=2,OQ=3,∵点P(2,3)绕原点O顺时针旋转90°得到点P'相当于把△OPQ绕原点O顺时针旋转90°得到△OP'Q′,∴∠P′Q′O=90°,∠QOQ′=90°,P′Q′=PQ=2,OQ′=OQ=3,∴点P′的坐标为(3,﹣2).故选:A.【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.15.(2022秋•吴兴区期中)如图,在平面直角坐标系中,线段AB的端点在方格线的格点上,将AB绕点P 顺时针方向旋转90°,得到线段A′B′,则点P的坐标为.【分析】依据旋转的性质可得,将AB绕点P顺时针方向旋转90°,得到线段A′B′,则点P到对应点的距离相等,因此作出两对对应点连线的垂直平分线,其交点即为所求.【解答】解:如图所示,作线段AA'和BB'的垂直平分线,交于点P,则点P即为旋转中心,由图可得,点P的坐标为(1,2),故答案为:(1,2).【点评】本题主要考查了坐标与图形变换,解决问题的关键是掌握旋转的性质.一般情况,图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.16.(2022秋•苍南县期中)如图,点A的坐标为(0,3),点C的坐标为(1,0),B的坐标为(1,4),将△ABC沿y轴向下平移,使点A平移至坐标原点O,再将△ABC绕点O逆时针旋转90°,此时B的对应点为B′,点C的对应点为C′,则点C′的坐标为()A.(4,1)B.(1,4)C.(3,1)D.(1,3)【分析】首先根据点A的平移规律得到C的平移后坐标,再根据旋转规律得到C′的坐标.【解答】解:∵点A平移至坐标原点O,点A的坐标为(0,3),∴向下平移三个单位长度,∴C平移后的坐标为(1,﹣3),∵平移后再将△ABC绕点O逆时针旋转90°,∴点C′的坐标为(3,1).故选:C.【点评】此题主要考查了坐标与图形的变化中的旋转与平移,正确使用坐标与图形变化的规律是解题的关键.17.(2022秋•衢江区校级期末)如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(﹣1,4)的对应点A′的坐标是()A.(1,4)B.(4,1)C.(1,﹣4)D.(4,﹣1)【分析】由线段AB绕点O顺时针旋转90°得到线段A′B′可以得出∠AOA′=90°,AO=A′O,作AC ⊥y轴于C,A′C′⊥x轴于C′,就可以得出△ACO≌△A′C′O,就可以得出AC=A′C′,CO=C′O,由A的坐标就可以求出结论.【解答】解:∵线段AB绕点O90°得到线段A′B′,∴∠AOA′=90°,AO=A′O.作AC⊥y轴于C,A′C′⊥x轴于C′,∴∠ACO=∠A′C′O=90°.∵∠COC′=90°,∴∠AOA′﹣∠COA′=∠COC′﹣∠COA′,∴∠AOC=∠A′OC′.在△ACO和△A′C′O中,,∴△ACO≌△A′C′O(AAS),∴AC=A′C′,CO=C′O.∵A(﹣1,4),∴AC=1,CO=4,∴A′C′=1,OC′=4,∴A′(4,1).故选:B.【点评】本题考查了旋转的性质的运用,全等三角形的判定及性质的运用,点的坐标的运用,正确作出辅助线并证得△ACO≌△A′C′O是解决问题的关键.18.(2022秋•西湖区校级期中)在平面直角坐标系中,把点P(1,﹣2)绕原点O顺时针旋转90°,所得到的对应点Q的坐标为.【分析】作PQ⊥y轴于Q,如图,把点P(1,﹣2)绕原点O顺时针旋转90°得到点P'看作把△OPQ绕原点O顺时针旋转90°得到△OP'Q′,利用旋转的性质得到∠P′Q′O=90°,∠QOQ′=90°,P′Q′=PQ=2,OQ′=OQ=3,从而可确定P′点的坐标.【解答】解:作PQ⊥y轴于Q,如图,∵P(1,﹣2),∴PQ=1,OQ=2,∵点P(1,﹣2)绕原点O顺时针旋转90°得到点P'相当于把△OPQ绕原点O顺时针旋转90°得到△OP'Q′,∴∠P′Q′O=90°,∠QOQ′=90°,P′Q′=PQ=1,OQ′=OQ=2,∴点P′的坐标为:(﹣2,﹣1).故答案为:(﹣2,﹣1).【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.19.(2023•金华)在直角坐标系中,点(4,5)绕原点O逆时针方向旋转90°,得到的点的坐标.【分析】利用旋转变换的性质作出图形可得结论.【解答】解:如图,点A(4,5)绕原点O逆时针方向旋转90°,得到的点B的坐标(﹣5,4).故答案为:(﹣5,4).【点评】本题考查坐标与图形变化﹣旋转,解题的关键是正确作出图形,利用图象法解决问题.20.(2022秋•柯桥区期中)在平面直角坐标系中,O为坐标原点,已知点B(0,4),点A在x轴负半轴上,且∠BAO=30°,将△AOB O顺时针旋转,得△COD,点A、B旋转后的对应点分别为C,D,记旋转角为α.(1)如图1,CD恰好经过点B时,①求此时旋转角α的度数;②求出此时点C的坐标;(2)如图2,若0°<α<90°,设直线AC和直线DB交于点P,猜测AC与DB的位置关系,并说明理由.【分析】(1)①根据旋转的性质得到OB=OD,求得∠ABO=60°=∠D,得到△BOD是等边三角形根据等边三角形的性质得到∠BOD=60°,于是得到结论;②过点C作CE⊥x轴于E,根据等腰三角形的性质得到CO=AO=4,求得∠AOC=60°,求得OE=2,CE=6,于是得到C(﹣2,6);(2)根据等腰三角形的性质得到∠OBD=90°﹣,求得∠ABP=180°﹣60°﹣(90°﹣)=30°+,根据垂直的定义即可得到结论.【解答】解:(1)①由旋转可知,OB=OD,∵∠BAO=30°,∴∠ABO=60°=∠D,∴△BOD是等边三角形,∴∠BOD=60°,∴旋转角α的度数为60°;②过点C作CE⊥x轴于E,∵∠AOB=90°,B(0,4),∴CO=AO=4,∵α=60°,∴∠AOC=60°,∴OE=2,CE=6,∴C(﹣2,6);(2)AC⊥BD,理由:∵∠AOC=α,OB=OD,∴∠OBD=90°﹣,∴∠ABP=180°﹣60°﹣(90°﹣)=30°+,∴∠PBA+∠PAB=60°﹣30°+=90°,∴∠APB=90°,∴AC⊥BD.【点评】本题考查了坐标与图形性质﹣旋转,等边三角形的性质,直角三角形的性质,旋转的性质,正确地作出辅助线是解题的关键.21.(2022秋•鄞州区校级期末)如图,在平面直角坐标系中,将边长为1的正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,继续旋转至2022次得到正方形OA2022B2022C2022,则点B2022的坐标是.【分析】根据图形可知:点B在以O为圆心,以OB为半径的圆上运动,再由旋转可知:将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45°,可得对应点B的坐标,然后发现规律是8次一循环,进而得出答案.【解答】解:∵点A的坐标为(1,0),∴OA=1,∵四边形OABC是正方形,∴∠OAB=90°,AB=OA=1,∴B(1,1),连接OB,如图:由勾股定理得:OB==,由旋转的性质得:OB=OB1=OB2=OB3=…=,∵将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45°,依次得到∠AOB=∠BOB1=∠B1OB2=…=45°,∴B1(0,),B2(﹣1,1),B3(﹣,0),B4(﹣1,﹣1),B5(0,﹣),B6(1,﹣1),…,发现是8次一循环,则2022÷8=252…6,∴点B2022的坐标为(1,﹣1),故答案为:(1,﹣1).【点评】本题考查了旋转的性质、正方形的性质、坐标与图形性质、勾股定理、规律型:点的坐标等知识,解题的关键是学会从特殊到一般的探究规律的方法,属于中考常考题型.五.作图-旋转变换(共5小题)22.(2023•龙游县一模)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).(1)把△ABC绕着原点O逆时针旋转90°得△A1B1C1,画出△A1B1C1,并写出C1的坐标.(2)若△ABC中的一点P(a,b),在①中变换下对应△A′B′C′中为P′点,请直接写出点P′的坐标(用含a、b的代数式表示)【分析】(1)根据图形旋转的性质画出△A1B1C1,并写出C1的坐标即可;(2)根据(1)中C点坐标找出规律即可得出结论.【解答】解:(1)如图所示,C1的坐标(1,4).(2)∵C(4,﹣1),C1(1,4),∴P’(﹣b,a).【点评】本题考查的是作图﹣旋转变换,熟知图形旋转不变性的性质是解答此题的关键.23.(2023•温州一模)如图,在6×4的方格纸中,已知线段AB(A,B均在格点上),请按要求画出格点四边形(顶点均在格点上).(1)在图1中画一个以AB为边的四边形ABCD,使其为轴对称图形.(2)在图2中画一个以AB为对角线的四边形AEBF,使其为中心对称图形.【分析】(1)根据轴对称图形的定义画出图形即可;(2)根据中心对称图形的定义画出图形即可.【解答】解:(1)如图,四边形即为所求作:;(2)如图,四边形即为所求作:.【点评】本题考查了作图﹣旋转变换,轴对称变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题.24.(2023•乐清市模拟)如图是由边长为1的小正方形构成的6×6的网格,点A,B均在格点上,请按要求画出以AB为对角线的格点四边形(顶点均在格点上).(1)在图1中画一个周长为整数的四边形ACBD;(2)在图2中画一个面积为8的四边形AEBF,且使其是中心对称图形但不是轴对称图形.【分析】(1)利用勾股定理作出,据此即可画出一个周长为整数的四边形ACBD;(2)根据三角形的面积公式以及平行四边形的性质即可画出一个面积为8的四边形AEBF,且使其是中心对称图形但不是轴对称图形.【解答】解:(1)如图,四边形ACBD即为所求作.(2)如图,四边形AEBF即为所求作.【点评】本题考查作图﹣旋转变换,勾股定理,平行四边形的性质等知识,解题的关键是理解题意,学会利用数形结合的思想解决问题.25.(2022•平阳县一模)如图,在10×8的方格纸巾,请按要求画图.(1)在图1中画一个格点C,使△ABC为等腰三角形.(2)在图2中两个格点F,G,使四边形DEFG为中心对称图形,且对角线互相垂直.【分析】(1)根据等腰三角形的概念作图即可(答案不唯一);(2)根据中心对称图形的概念及菱形、正方形的性质作图即可(答案不唯一).【解答】解:(1)如图所示,△ABC即为所求(答案不唯一).(2)如图所示,四边形DEFG即为所求(答案不唯一).【点评】本题主要考查作图—旋转变换,解题的关键是掌握旋转变换的定义与性质、等腰三角形的定义、菱形与正方形的性质.26.(2023•温州二模)如图在6×6的方格纸中,点A,B,C均在格点上,请按要求画出相应格点图形.(1)画出△ABC关于点C成中心对称的格点三角形△A1B1C(点A,B的对应点分别为A1,B1).(2)画出△ABD,使得S△ABD=3S△ABC.【分析】(1)根据中心对称的性质作图即可.(2)由图可得S△ABD=3S△ABC=6,结合三角形的面积找出点D的位置即可.【解答】解:(1)如图,三角形△A1B1C即为所求.(2)由图可得,S△ABC==2,∴S△ABD=3S△ABC=6.如图,△ABD1,△ABD2,△ABD3均满足要求.【点评】本题考查中心对称、三角形的面积,熟练掌握中心对称的性质、三角形的面积是解答本题的关键.六.利用旋转设计图案(共3小题)27.(2022秋•宁波期末)如图,在4×4的网格纸中,△ABC的三个顶点都在格点上,现要在这张网格纸的四个格点M,N,P,Q中找一点作为旋转中心.将△ABC绕着这个中心进行旋转,旋转前后的两个三角形成中心对称,且旋转后的三角形的三个顶点都在这张4×4的网格纸的格点上,那么满足条件的旋转中心有()A.点M,点N B.点M,点Q C.点N,点P D.点P,点Q【分析】画出中心对称图形即可判断【解答】解:观察图象可知,点P.点N满足条件.故选:C.【点评】本题考查利用旋转设计图案,中心对称等知识,解题的关键是理解题意,灵活运用所学知识解决问题.28.(2022秋•定海区校级月考)在冬奥会开幕式上,美丽的冬奥雪花呈现出浪漫空灵的气质.如图,雪花图案本身的设计呈现出充分的美感,它是一个中心对称图形.其实“雪花”图案也可以看成自身的一部分围绕图案的中心依次旋转一定角度得到的,这个角的度数可以是()A.30°B.45°C.60°D.90°【分析】根据图形的对称性,用360°除以6计算即可得解.【解答】解:∵360°÷6=60°,∴旋转角是60°的整数倍,∴这个角的度数可以是60°.故选:C.【点评】本题考查了旋转对称图形:如果某一个图形围绕某一点旋转一定的角度(小于360°)后能与原图形重合,那么这个图形就叫做旋转对称图形.常见的旋转对称图形有:线段,正多边形,平行四边形,圆等.29.(2022秋•慈溪市期末)美丽的冬奥雪花呈现出浪漫空灵的气质.如图,雪花图案是一个中心对称图形,也可以看成自身的一部分围绕它的中心依次旋转一定角度得到的,这个角的度数可以是()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

旋转知识梳理
一、 图像的旋转
1. 定义:在平面内,将一个图形绕一个顶定沿某个方向旋转一个角度,这样的
图形运动称为旋转。这个定点称为旋转中心,旋转的角度称为旋转角。
2. 特征:图形旋转过程中,图形上每一个点都绕旋转中心沿相同方向转动了相
同角度;注意每一对对应点与旋转中心的连线所成的角度都是旋转角,旋转
角都相等;对应点到旋转中心的距离相等。
二、 中心对称、中心对称图形
1. 中心对称:把一个图形绕着某一点旋转180度,如果它能与另一个图形重合,
那么,这两个图形成中心对称,该点叫做对称中心。
2. 中心对称图形:一个图形绕着某一点旋转180度后能与自身重合,这种图形
叫中心对称图形,该点叫对称中心。
3. 性质:在中心对称的两个图形中,连接对称点的线段都经过对称中心且被对
称中心评分。
三、 轴对称、轴对称图形
1. 轴对称图形:如果一个图形沿某条直线对着,对折的两部分是完全重合的,
那么就称这样的图形为轴对称图形,这条直线称为对称轴,对称轴一定为直
线。
2. 轴对称:把一个图形沿着某一条直线翻折后,如果它能与另一个图形重合,
那么称这两个图形成轴对称,两个图形中的对应点(即两个图形重合时互相
重合的点)叫对称点。
3. 轴对称的性质:(1)对应线段相等,对应角相等:对称点的连线被对称轴垂
直平分。
(2) 轴对称图形变化的特征是不改变图形的形状和大小只改
变图形的位置。新旧图形具有对称性
4. 轴对称的两个图形,它们对应线段或延长线相交,交点在对称轴上。
四、轴对称图形与中心对称图形的识别
1. 识别轴对称图形:轴对称图形是一个具有特殊形状的图形,若把一个图形沿
某条直线折,
两部分完全重合,则称该图形为轴对称图形,这条直线称为它的对称轴。轴
对称图形有
一条或几条对称轴。
2. 识别中心对称图形:看是否能存在一点,把图形绕该点旋转180度后能与原
图形重合。
3. 等边三角形是轴对称图形,但不是中心对称图形。
平行四边形是中心对称图形但不是轴对称图形。
五、轴对称图形与对称轴的区别和联系
1. 轴对称图形是针对一个图形而言,它是指一个图形所具有的对称性质,而轴
对称则是针对两个图形而言,它描述的是两个图形的一种位置关系,轴对称
图形沿对称轴对折后,其自身的一部分与另一部分重合,而轴对称的两个图
形沿对称轴对折后一个图形与另一个图形重合,
2. 把轴对称的两个图形看成一个整体时,它就成了一个轴对称图形。
六、图形的平移
1. 定义:在平面内,将某个图形沿某个方向移动一定的距离,这样的图形运动
称为平移。
2. 特征:平移后,对应线段相等且平行,对应点所连的线段平行且相等。
平移后,对应角相等且对应角的两边分别平行,方向相同。
平移不改变图形的形状和大小,只改变图形的位置。平移后新旧两图
形全等

相关文档
最新文档