压力容器的强度计算

合集下载

压力容器之使用补强圈补强的接管补强计算

压力容器之使用补强圈补强的接管补强计算
mm
接管连接型式
插入式接管
接管实际内伸长度
0
mm
接管材料
20(GB8163)
接管焊接接头系数
1
名称及类型
管材
接管腐蚀裕量
1
mm
补强圈材料名称
凸形封头开孔中心至
封头轴线的距离
mm
补强圈外径
mm
补强圈厚度
mm
接管厚度负偏差C1t
0.6
mm
补强圈厚度负偏差C1r
mm
接管材料许用应力[σ]t
148.25
MPa
接管:B1,B2,φ108×4
计算方法: GB150.3-2011等面积补强法,单孔
设计条件
简图
计算压力pc
3.5
MPa
设计温度
150

壳体型式
圆形筒体
壳体材料
名称及类型
Q245R
板材
壳体开孔处焊接接头系数φ
1
壳体内直径Di
450
mm
壳体开孔处名义厚度δn
8
mm
壳体厚度负偏差C1
0.3
mm
壳体腐蚀裕量C2
8
mm2
A1+A2+A3=158
mm2,小于A,需另加补强。
补强圈面积A4
561
mm2
A-(A1+A2+A3)
430
mm2
结论:合格
封头轴线的距离
mm
补强圈外径
210
mm
补强圈厚度
6
mm
接管厚度负偏差C1t
0.6
mm
补强圈厚度负偏差C1r
0.3
mm
接管材料许用应力[σ]t

基于ANSYS分析的压力容器强度计算方法

基于ANSYS分析的压力容器强度计算方法

基于ANSYS分析的压力容器强度计算方法陈海新【期刊名称】《特种设备安全技术》【年(卷),期】2024()3【摘要】目的:基于ANSYS分析的压力容器强度计算方法。

方法:高压立式容器的支撑结构用于支撑整个容器的压力。

使用ANSYS软件建立高压立式容器模型,通过模拟结构反映出实际受载情况,采用ReForce载荷类型来进行加载,设置位移边界约束和力边界条件,对边界条件进行验证,确定设置的边界条件不会导致模型产生过度的约束或加载。

在容器中接入接管的方式有嵌入式、插入式和安放式,需要对三种接管的受力计算进行分析,判断其力学性能。

结果:在总受力方面,安放式接管的受力最大为9600N,嵌入式接管最小为9000N;安放式接管的支撑结构的反作用力为1700N,为三种方式的最大受力。

嵌入式接管的支撑结构的反作用力为1500N,为三种方式的最小受力。

结论:如果需要承受较大的内压和外压,且需要较大的支撑力,应优先选择安放式接管;如果对内压和外压要求不高,且支撑结构反作用力较小,可以选择嵌入式接管以减小整体结构尺寸和质量。

【总页数】3页(P8-9)【作者】陈海新【作者单位】中国昆仑工程有限公司辽锦分公司【正文语种】中文【中图分类】TP3【相关文献】1.基于ANSYS的压力容器筒体封头连接强度分析2.板壳理论在压力容器强度设计中的经典应用之二r——八种压力容器壳体的强度计算方法分析(上)3.板壳理论在压力容器强度设计中的经典应用之二--八种压力容器壳体的强度计算方法分析(下)4.基于有限元分析法的复合材料球头销成型过程仿真优化——评《压力容器全模型ANSYS分析与强度计算新规范》5.基于ANSYS对压力容器筒体连续大开孔强度分析因版权原因,仅展示原文概要,查看原文内容请购买。

压力容器设计

压力容器设计

六、封头
按构造形状分为: 半球形封头
凸形封头 椭圆形封头 碟形封头
锥形封头 平盖封头:
1、凸形封头
(1)半球形封头
是半个球壳。 从受力来看,
球形封头是最理想旳构造。 但整体冲压困难,加工工作 量大。
其厚度计算公式:
p c
Di
4[ ]t
p
c
(2)碟形封头
由球面、过渡段及圆柱 直边段三段构成。成型加 工以便,但在三部分连接 处,因为经线曲率发生突 变,受力情况不佳。
2、锥形封头
有两种,一种是无折边锥 形封头,另一种是与筒体连接 处有一过圆弧和一圆柱直边段 旳折边锥形封头。在厚度较薄 时,制造比较以便。
3、平板封头
是最简朴,制造 最轻易旳一种封头。 但相同直径和压力旳 容器,平板封头厚度 过大,材料花费过多 而且十分笨重。
第四节 压力容器附件
设备旳壳体能够采用铸造、铸造或焊接成一种整体, 但大多数化工设备是做成可拆旳几种部件,然后把它们 连接起来。这一方面是设备旳工艺操作需要开多种孔, 并使之与工艺管道或其他附件相连接;另一方面也是为 了便于设备制造、安装和检修。化工设备中旳可拆连接 应该满足下列基本要求:
在设计或选用压力容器零部件时需要将操作温 度下旳最高操作压力(或设计压力)调整为所要 求旳公称压力等级,然后再根据DN与PN选定零 部件旳尺寸。
练一练: P27,1-2,1-3 拟定计算压力、许用应力 P61,6,7 P62,2-3 拟定计算压力、许用应力
四、压力容器旳校核: 1、圆筒容器旳校核
筒体旳强度计算公式:
pD t
2
公式旳应用: 拟定承压容器旳厚度 对压力容器进行校核计算 拟定设计温度下圆筒旳最大允许工作压力 在指定压力下旳计算应力

关于化工压力容器的补强设计及计算

关于化工压力容器的补强设计及计算

关于化工压力容器的补强设计及计算发表时间:2020-04-07T15:17:02.053Z 来源:《基层建设》2019年第32期作者:赵华融[导读] 摘要:在压力容器设计过程中,满足强度的开孔补强设计及计算对压力容器的安全、平稳运行至关重要。

广州市浩鑫洁净工程技术有限公司摘要:在压力容器设计过程中,满足强度的开孔补强设计及计算对压力容器的安全、平稳运行至关重要。

基于此,笔者展开以下探讨以供参考。

关键词:化工压力容器;开孔补强1.化工压力容器开孔补强设计在化工压力容器开孔补强设计过程中,最主要的是截面的选取,通过对补强面积的确定和计算,求得开孔所需补强面积,再选择适当的补强方式。

补强圈在化工压力容器补强设计中得到较多应用,而厚壁接管补强在其设计制造中显现出的优势使其得到广泛的应用。

2.开孔补强设计在压力容器设计中的运用(1)补强圈补强设计在设备中,适当的补强面积可以使开孔设备拥有更加强大的承载力,适当降低开口边沿的应力峰值。

采用补强圈结构进行补强时,必须符合下面的几项规定:1)低合金钢的标准抗拉强度下限值<540MPa; 2)补强圈厚度小于或等于1.5倍壳体壁厚; 3)壳体名义厚度≤38mm。

此外,对于盛装毒性为极度危害与高度危害介质的压力容器,也不宜采用。

由于补强圈与壳体采用搭接连接方式,搭接结构处角焊缝会引起较大的局部应力。

补强圈与壳体金属间的热膨胀差会使补强局部区域产生热应力,因此,补强圈补强结构不能用于承受疲劳载荷的压力容器。

(2)厚壁接管补强设计针对容器壁的小孔径开孔补强设计,厚壁接管补强法是较为常用的方法,选用厚壁接管补强时,应保证接管内径满足工艺要求。

厚壁接管补强结构简单,焊缝少,焊接质量容易检验,补强效果较好,厚壁接管补强结构的加厚部分处于最大应力区域内,从而可以有效降低开孔边的应力集中系数。

厚壁接管补强可选择无缝钢管,也可选用锻件加工制造。

厚壁管补强与壳体的连接方式有内齐平式、内插入式和外安放式三种类型,见图1,按等面积法原则,内插入式能适当减小补强厚壁管壁厚。

内压薄壁圆筒和球壳的强度设计

内压薄壁圆筒和球壳的强度设计

极限应力的选取与结构的使 用条件和失效准则有关 极限应力可以是 t t t b、 s ( 0.2 )、 st ( 0.2 )、 D、 n
16
常温容器
b s 0.2 =min{ , }
nb ns
中温容器
=min{
t

t b
nb
,

t s
t 0.2
第九章
内压薄壁圆筒和球壳设计
教学重点:
内压薄壁圆筒的厚度计算
教学难点:
厚度的概念和设计参数的确定
1
第一节 概述
一、压力容器工艺设计的任务: 根据工艺的要求确定其内直径,设计压力、设计
温度、处理的介质等工艺指标。
二、压力容器强度设计的任务:
根据给定的内直径、设计压力、设计温度以及介 质腐蚀性等工艺条件,设计计算出合适的容器厚度, 以保证新设备能在规定的使用寿命内安全可靠地运 行。
注:5mm为不锈钢常用厚度。
21
三、容器的厚度和最小厚度
1、厚度的定义 计 算 厚 度 设 计 厚 度 名 义 厚 度 有 效 厚 度 毛 坯 厚 度

d
C1
n
e
C2
C C1 C 2
圆整值 加工减薄量
图9-2 壁厚的概念
22
2、最小厚度 min 设计压力较低的容器计算厚度很薄。
26
(2)采用石油蒸馏产品进行液压试验时,试验温度应低于石 油产品的闪点或沸点。
(3)试验温度应低于液体沸点温度,对新钢种的试验应高于
材料无塑性转变温度。
(4)碳素钢、16MnR和正火的15MnVR钢制容器液压试验时,液 体温度不得低于5℃,其它低合金钢制容器(不包括低温容器) 液压试验时,液体温度不低于15 ℃。如果由于板厚等因素造 成材料无塑性转变温度升高,还要相应地提高试验液体温度。 (5)液压试验完毕后,应将液体排尽并用压缩空气将内部吹 干。

压力容器卷筒大开孔补强计算方法

压力容器卷筒大开孔补强计算方法

压力容器卷筒大开孔补强计算方法摘要:压力容器是能够承载一定压力的气体或液体容器,大开孔的压力容器为保证其抗压能力,需在开孔接管位置进行补强。

本文主要对压力容器大开孔补强的相关计算方法进行了分析,并对其进行比较,以找出最适合的补强方法。

关键词:压力容器;大开孔补强;计算方法随着工程技术的发展,对压力容器的要求也越来越高,压力容器常需要进行大的开孔接管工序,而在压力容器上进行开孔操作就会破坏原来的应力状态,使压力容器内的力平衡遭到破坏,因而为了恢复容器内应力平衡状态,需要对容器开孔位置进行补强,而对于补强的计算主要有以下几种方法。

1.压力面积法压力面积法是通过使圆筒、补强原件和接管有效截面产生的承载力与有效补强范围内产生的载荷相等来实现补强的一种计算方法,这种方法在计算时主要考虑补强材料薄膜应力即可,并没有涉及到容器开孔孔边弯曲强度问题,这一方法的计算方式虽然和以往等面积方法有所不同,但原理是一样的。

其计算通式是(Ap/Aσ+1/2)p≤[σ],其中Ap是指压力容器有效补强范围内的压力作用面积,而Aσ是指补强元件、接管等有效承载面积,p是容器圆筒的设计压力,[σ]则是指所应用的补强材料的许用应力,从上面的计算式就可以看出这一方法的计算是建立在补强截面薄膜应力计算的基础上,而不涉及孔边弯曲应力,因而在实际应用中,常会因实际应力与计算结果相差太大而失去补强的目的,因此这种方法在实际工程中应用较少。

2.ASME计算法鉴于压力面积法在弯矩问题上的缺点,ASME方法就在压力面积法上增加了弯矩作用计算,在理论上就是在计算薄膜应力的同时增加弯矩应力计算,因而其计算通式是,Sb=,M=(/6+RRne)p,其中As是指开孔区域内的横截面面积,而I是指As面积中所对应的中性轴惯性矩,a是指中性轴和容器壁表面之间的距离,Rm是指课题平均的半径长度,Rnm是指接管颈平均的半径长度,e是指As面积中性轴和壳壁中面处之间的距离,由上面的计算式可以看出该计算方法对薄膜应力的计算和压力面积方法相同,并对补强范围进行了调整,然后在这一基础上增加了弯矩计算,弯矩应力主要包括两个部分,一是在实施开孔操作后在孔边缘产生的轴向拉力,二是开空前在开孔区域内压位置上差异不同所带来的弯矩,这一种计算方法较压力面积法更为进步,考虑了开孔位置边缘弯矩应力问题。

大直径玻璃钢压力容器强度分析

大直径玻璃钢压力容器强度分析引言大直径玻璃钢压力容器用于储存和输送高压液体或气体,广泛应用于化工、石油、医药等领域。

为确保大直径玻璃钢压力容器的安全运行,需要对其强度进行分析。

本文将对大直径玻璃钢压力容器的强度分析进行探讨。

1. 强度计算方法1.1 静压法静压法是一种常用的计算大直径玻璃钢压力容器强度的方法。

该方法基于达西定律,计算压力容器内外部分的应力和变形。

通过测量液体或气体压力和容器的几何参数,可以计算出容器的壁厚和所需的材料强度。

1.2 有限元法有限元法是一种数值计算方法,常用于计算大型和复杂结构的力学问题。

该方法通过将压力容器划分为有限个小单元,利用数学模型对每个单元进行计算,最终得到整个容器的应力和变形分布情况。

有限元法可以考虑容器的非线性效应,并能够对不同的载荷工况进行分析。

2. 材料强度参数大直径玻璃钢压力容器主要由树脂基玻璃钢复合材料制成,具有优良的耐腐蚀性和机械性能。

以下是常用的材料强度参数:•弹性模量(E):指材料在一定应力作用下,单位面积内所产生的应变。

大直径玻璃钢压力容器通常具有较高的弹性模量,以确保容器在承受内外部压力时不会发生过度变形。

•屈服强度(σy):指材料在无限细小的试样上的屈服应力。

大直径玻璃钢压力容器要求具有足够的屈服强度,以承受呈线性增加的外部压力。

•抗拉强度(σut):指材料在受拉过程中破坏时的最大抗拉应力。

大直径玻璃钢压力容器通常要求具有较高的抗拉强度,以确保容器在受到外力冲击时不会破裂。

3. 强度分析过程大直径玻璃钢压力容器的强度分析过程通常包括以下几个步骤:3.1 几何建模首先,对大直径玻璃钢压力容器进行几何建模,包括容器的内外直径、高度、壁厚等参数。

可以使用计算机辅助设计软件进行建模,得到容器的几何形状描述。

3.2 材料特性输入将大直径玻璃钢压力容器的材料特性输入到强度分析模型中,包括弹性模量、屈服强度和抗拉强度等参数。

这些参数可以通过实验测试或参考相关规范获得。

压力容器设计和计算机计算

压力容器设计和计算机计算在进行压力容器设计时,首先需要明确设计目标和具体要求,包括所需承受的工作压力、温度、材料强度、容积等。

根据这些要求,设计者可以选择合适的材料,一般工程中常用的材料包括钢和复合材料等。

在选择材料时,需要考虑其耐压强度、耐蚀性、耐磨损性等特性。

根据所选材料和容器形状,设计者需要进行计算以验证容器的强度安全性。

计算的过程通常包括以下几个方面:1.壁厚计算:根据设计规范和容器尺寸,通过应力分析推导出恰当的壁厚,以保证容器的安全性。

一般常用的规范包括ASME规范、GB150国家标准等。

2.焊缝计算:对于由多个壁板组成的容器,需要计算焊缝的强度,以保证焊缝的安全性。

焊缝的计算通常采用焊缝有效截面或焊缝强度的计算方法。

3.支承计算:压力容器在工作过程中需要支承,支承结构的设计需要考虑容器的压力、容量以及受力分布等因素。

根据这些因素,设计者需要计算支承结构的强度和刚度,以保证容器的稳定性。

4.泄漏和裂纹计算:容器在工作过程中可能出现泄漏或裂纹等问题,需要进行相应的计算以评估容器的安全性。

泄漏计算通常采用流量方程和有限元方法,裂纹计算则通常采用弹性力学和断裂力学理论。

计算机在压力容器设计中的应用主要体现在以下几个方面:1.三维建模与仿真:计算机辅助设计软件可以方便地进行容器的三维建模和可视化展示,并进行各种物理仿真分析。

通过仿真,可以模拟容器在实际工作环境中的受力分布和变形情况,从而优化设计。

2.强度计算与优化:计算机软件可以进行快速准确的强度计算,包括壁厚计算、焊缝强度计算等。

同时,还可以进行参数化设计和优化,自动调整容器的几何形状和尺寸,以满足设计要求。

3.受力分析与验证:计算机软件可以进行受力分析和验证,例如静态和动态承载能力、稳定性等。

通过计算机的辅助,可以更加客观地评估容器的安全性。

4.材料选择与性能评估:计算机软件可以提供大量的材料数据库和性能评估工具,帮助设计者选择合适的材料,并评估其在特定工作条件下的性能。

压力容器质量怎么计算公式

压力容器质量怎么计算公式压力容器质量计算公式。

压力容器是一种用于承受内部压力的容器,通常用于储存气体或液体。

在工业生产中,压力容器的质量是非常重要的,因为它直接影响到容器的安全性和使用寿命。

为了保证压力容器的质量,需要对其进行严格的计算和检验。

压力容器的质量可以通过以下公式进行计算:M = (P V) / (R T)。

其中,M表示压力容器的质量,P表示容器内的压力,V表示容器的体积,R 表示气体常数,T表示气体的温度。

上述公式是根据理想气体状态方程推导出来的,假设气体是理想气体,即气体分子之间没有相互作用力,体积可以忽略不计。

在实际应用中,由于气体的真实状态与理想状态之间存在一定的差异,因此需要进行修正。

修正后的压力容器质量计算公式如下:M = (P V) / (R T) Z。

其中,Z表示修正系数,用于修正理想气体状态方程的偏差。

修正系数的计算需要考虑气体的压缩因子、温度、压力等因素,通常需要借助实验数据或计算软件进行精确计算。

除了上述公式外,压力容器的质量还需要考虑到材料的强度和耐久性。

通常情况下,压力容器的设计和制造需要符合国家相关标准和规范,以确保容器具有足够的强度和安全性。

在实际生产中,压力容器的质量计算和检验是非常重要的环节。

首先,设计人员需要根据使用要求和工作环境确定压力容器的参数,包括压力、温度、体积等。

然后,制造人员需要根据设计要求选择合适的材料,并按照相关标准进行制造和焊接。

最后,对制造好的压力容器进行严格的检验和试压,以确保其质量达到要求。

除了制造和检验外,压力容器的使用和维护也是影响其质量的重要因素。

在使用过程中,需要定期对压力容器进行检查和保养,确保其处于良好的工作状态。

同时,需要遵守相关的安全操作规程,避免因操作不当而导致的事故发生。

总之,压力容器的质量计算是一个复杂而重要的工作。

只有严格按照相关标准和规范进行设计、制造、检验和使用,才能保证压力容器的质量达到要求,确保工业生产的安全和稳定。

压力容器常见结构的设计计算方法

第三章 压力容器常见结构的设计计算方法常见结构的设计计算方法4.1 圆筒4.2 球壳 4.3 封头4.4 开孔与开孔补强 4.5 法兰4.6 检验中的强度校核4.1.1 内压圆筒 1)GB150中关于内压壳体的强度计算考虑的失效模式是结 构在一次加载下的塑性破坏,即弹性失效设计准则。

2)壁厚设计釆用材料力学解(中径公式)计算应力,利用第一强度理论作为控制。

轴向应力:环向应力:(取单位轴向长度的半个圆环)校核:σ1=σθ,σ2=σz ,σ1=0 σθ≤[σ]t ·φ对应的极限压力:2)弹性力学解(拉美公式)讨论:1)主应力方向?应力分布规律?径向、环向应力非线形分布(内壁应力绝对值最大),轴向应力均布; 2)K 对应力分布的影响?越大分布越不均匀,说明材料的利用不充分; 例如,k =1.1时,R =1.1内外壁应力相差10%; K =1.3时,R =1.35内外壁应力相差35%; 4 常见结构的设计计算方法 962)弹性力学解(拉美公式)主应力:σ1=σθ,σ2=σz ,σ3=σr 屈服条件:σⅠ=σ1=σθ=σⅡ=σ1-μ(σ2+σ3)=σⅢ=σ1-σ3=σⅣ=3)GB150规定圆筒计算公式(中径公式)的使用范围为:p/[σ]·φ≤0.4(即≤1.5)4.1.2 外压圆筒1)GB150中关于外压壳体的计算所考虑的失效模式:弹性失效准则和失稳失效准则(结构在横向外压作用下的横向端面失去原来的圆形,或轴向载荷下的轴向截面规则变化)2)失稳临界压力的计算长圆筒的失稳临界压力(按Bresse公式):长圆筒的失稳临界压力(按简化的Misse公式):失稳临界压力可按以下通用公式表示:圆筒失稳时的环向应力和应变:定义——外压应变系数于是取稳定系数m=3,有·应变系数A的物理意义-系数A是受外压筒体刚失稳时的环向应变,该系数仅与筒体的几何参数L、D。

、δe 有关,与材料性能无关·应力系数B的物理意义:与系数A之间反映了材料的应力和应变关系(应力),可将材料的δ-ε曲线沿σ轴乘以2/3而得到B-A曲线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

青岛科技大学机电工程学院装控系 化工设备机械基础讲稿 第11章 1 第11章 压力容器的强度计算 本章重点要讲解内容: (1)理解内压容器设计时主要设计参数(容器内径、设计压力、设计温度、许用应力、焊缝系数等)的意义及其确定原则; (2)掌握五种厚度(计算壁厚、设计壁厚、名义壁厚、有效壁厚、最小壁厚)的概念、相互关系以及计算方法;能熟练地确定腐蚀裕度和钢板负偏差; (3)掌握内压圆筒的厚度设计; (4)掌握椭圆封头、锥形封头、半球形封头以及平板封头厚度的计算。 (5)熟悉内压容器强度校核的思路和过程。

第一节 设计参数的确定 1、我国压力容器标准与适用范围 我国现执行GB150-98 “钢制压力容器”国家标准。该标准为规则设计,采用弹性失效准则和稳定失效准则,应用解析法进行应力计算,比较简便。 JB4732-1995《钢制压力容器—分析设计标准》,其允许采用高的设计强度,相同设计条件下,厚度可以相应地减少,重量减轻。其采用塑性失效准则、失稳失效准则和疲劳失效准则,计算比较复杂,和美国的ASME标准思路相似。 2、容器直径(diameter of vessel) 考虑压制封头胎具的规格及标准件配套选用的需要,容器筒体和封头的直径都有规定。对于用钢板卷制的筒体,以内径作为其公称直径。

表1 压力容器的公称直径(mm)

如果筒体是使用无缝钢管直接截取的,规定使用钢管的外径作为筒体的公称直径。 表2 无缝钢管制作筒体时容器的公称直径(mm) 青岛科技大学机电工程学院装控系 化工设备机械基础讲稿 第11章 2 3、设计压力(design pressure) (1)相关的基本概念(除了特殊注明的,压力均指表压力)  工作压力PW :在正常的工作情况下,容器顶部可能达到的最高压力。

① 由于最大工作压力是容器顶部的压力,所以对于塔类直立容器,直立进行水压试验的压力和卧置时不同; ②工作压力是根据工艺条件决定的,容器顶部的压力和底部可能不同,许多塔器顶部的压力并不是其实际最高工作压力(the maximum allowable working pressure)。 ③ 标准中的最大工作压力,最高工作压力和工作压力概念相同。  设计压力 指设定的容器顶部的最高压力,与相应的设计温度一起作为设计载荷条件,其值不低于工作压力。 ① 对最大工作压力小于0.1Mpa 的内压容器,设计压力取为0.1Mpa; ② 当容器上装有超压泄放装置时,应按“超压泄放装置”的计算方法规定。 ③ 对于盛装液化气体的装置,在规定的充满系数范围内,设计压力由工作条件下,可能达到的最高金属温度确定。(详细内容,参考GB150-1998,附录B(标准的附录),超压泄放装置。)  计算压力PC 是GB150-1998 新增加的内容,是指在相应设计温度下,用以确定元

件厚度的压力,其中包括液柱静压力,当静压力值小于5%的设计压力时,可略去静压力。 ① 注意与GB150-1989 对设计压力规定的区别; 《钢制压力容器》规定设计压力是指在相应设计温度下,用以确定容器壳壁计算厚度的压力,亦是标注在铭牌上的设计压力,取略高或等于最高工作压力。当容器受静压力值大于5%设计压力时,应取设计压力与液柱静压力之和进行元件的厚度计算。 使许多设计人员误将设计压力和液柱静压力之和作为容器的设计压力。 ② 一台设备的设计压力只有一个,但受压元件的计算压力在不同部位可能有所变化。 ③ 计算压力在压力容器总图的技术特性中不出现,只在计算书中出现。 4、设计温度(Design temperature) 设计温度是指容器在正常工作情况下,在相应的设计压力下,设定的受压元件的金属温度。主要用于确定受压元件的材料选用、强度计算中材料的力学性能和许用应力,以及热应力计算时设计到的材料物理性能参数。 ●设计温度不得低于元件金属在工作状态可能达到的最高温度; ●当设计温度在0℃以下时,不得高于元件金属可能达到的最低温度; ●当容器在各部分工作状态下有不同温度时,可分别设定每一部分的设计温度; 5、许用应力(Maximum allowable stress values) 许用应力是以材料的极限应力除以适当的安全系数,在设计温度下的许用应力的大小,直接决定容器的强度,GB150-1998 对钢板、锻件、紧固件均规定了材料的许用应力。

表3 钢制压力容器中使用的钢材安全系数 青岛科技大学机电工程学院装控系 化工设备机械基础讲稿 第11章

3 6、焊接接头系数(Joint efficiency)的影响 (1)焊接接头的影响 焊接接头是容器上比较薄弱的环节,较多事故的发生是由于焊接接头金属部分焊接影响区的破裂。一般情况下,焊接接头金属的强度和基本金属强度相等,甚至超过基本金属强度。但由于焊接接头热影响区有热应力存在,焊接接头金属晶粒粗大,以及焊接接头中心出现气孔和未焊透缺陷,仍会影响焊接接头强度,因而必须采用焊接接头强度系数,以补偿焊接时可能产生的强度消弱。焊接接头系数的大小取决于焊接接头型式、焊接工艺以及焊接接头探伤检验的严格程度等。 (2)焊接接头系数的选取:由接头形式和无损探伤的长度确定 ●双面焊对接接头和相当于双面焊的全焊透对接接头:

100%无损探伤, =1.00; 局部无损探伤,  =0.85; ●单面焊的对接接头,沿焊接接头根部全长具有紧贴基本金属的垫板: 100%无损探伤,  =1.00; 局部无损探伤,  =0.8;

●无法进行探伤的单面焊环向对接焊缝,无垫板: =0.6; 第二节 内压容器筒体与封头厚度的设计 1、内压圆筒(cylindrical shell)的厚度设计 (1)理论计算厚度(required thickness) GB150-1998 定义:按各章公式计算得到的厚度,为能安全承受计算压力PC(必要时尚需计入其他载荷)。 内压圆筒壁内的基本应力是薄膜应力,由第三强度理论可知薄膜应力的强度条件为:

tr][3



,trPD][23 (1)

式中: t][--制造筒体钢板在设计温度下的许用应力; 考虑到焊接接头的影响,公式(1)中的许用应力应使用强度可能较低的焊接接头金属的许用应力,即把钢板的许用应力乘以焊缝系数。

trPD][23

,则有:itPD2[]

式中D为中径,当壁厚没有确定时,则中径也是待定值,利用D=Di+则有: citc

PD=

2[]-P

 (2)

公式(2)一般被简化为:citPD=2[] (3) (2)设计壁厚d(design thickness) 计算壁厚与腐蚀余量C2之和称为设计壁厚。可以将其理解为同时满足强度、刚度和使用寿命的最小厚度。 2dC (4) 青岛科技大学机电工程学院装控系 化工设备机械基础讲稿 第11章 4 C2为腐蚀裕度 根据介质对选用材料腐蚀速度和设计使用寿命共同考虑。 C2=k· a, mm; k—腐蚀速度(corrosion rate),mm/a; a—设计年限(desired life time)。 对碳素钢和低合金钢,C2≥ 1mm;对于不锈钢,当介质腐蚀性能极微时,取C2=0。

(3)名义厚度d(normal thickness) 设计厚度d加上钢板负偏差C1后向上圆整至刚才标准规格的厚度,即标注在设计图样上的壳体厚度。 1ndC (5)

C1—钢板负偏差。任何名义厚度的钢板出厂时,都允许有一定的负偏差。钢板和钢管

的负偏差按钢材标准的规定。当钢板负偏差不大于0.25mm,且不超过名义厚度的6%时,负偏差可忽略不计。 表4 钢板负偏差值 钢板厚度(mm) 2 2.2 2.5 2.8~3.0 3.2~3.5 3.8~4.0 4.5~5.5 负偏差(mm) 0.18 0.19 0.2 0.22 0.25 0.3 0.5 钢板厚度(mm) 6~7 8~25 26~30 32~34 36~40 42~50 52~60 负偏差(mm) 0.6 0.8 0.9 1.0 1.1 1.2 1.3

(4) 有效厚度e

名义厚度n减去腐蚀裕量和钢材厚度负偏差,从性质上可以理解为真正可以承受介质压强的厚度,成为有效厚度。数值上可以看作是计算厚度加上向上钢材圆整量。 12enCC (6)

厚度系数:圆筒的有效厚度和计算厚度之比称为圆筒的厚度系数。 (5)最小厚度min 为满足制造、运输及安装时刚度要求,根据工程经验规定的不包括腐蚀裕量的最小壁厚。 ○1碳素钢和低合金钢制造的容器,最小壁厚不小于3mm; ○2高合金钢制容器,(如不锈钢制造的容器),最小壁厚不小于2mm。 当筒体的计算厚度小于最小厚度,应取最小厚度作为计算厚度,这时筒体的名义厚度可以分为两种不同的情况分别计算。

(1) 当min1->C,nmin2=+C+,()可以等于零

(2) 当min1-C时,必须考虑钢板负偏差,nmin21=+C+C+ 表5 钢板的常用厚度表

相关文档
最新文档