高等数学——函数与极限

合集下载

高等数学第一章《函数与极限》

高等数学第一章《函数与极限》

第一章 函数与极限一、内容提要(一)主要定义【定义 1.1】 函数 设数集,D R ⊂如果存在一个法则,使得对D 中每个元素x ,按法则f ,在Y 中有唯一确定的元素y 与之对应,则称:f D R →为定义在D 上的函数,记作(),y f x x D =∈.x 称为自变量,y 称为因变量,D 称为定义域.【定义1.2】 数列极限 给定数列{}x n 及常数a ,若对任意0ε>,总存在正整数N ,使得当n N >时,恒有x a n -<ε成立,则称数列{}x n 收敛于a ,记为a x n n =∞→lim .【定义1.3】 函数极限(1)对于任意0ε>,存在()0δε>,当δ<-<00x x 时,恒有()ε<-A x f .则称A 为()f x 当0x x →时的极限,记为A x f x x =→)(lim 0.(2) 对于任意0ε>,存在0X >,当x X >时,恒有f x A ()-<ε.则称A 为()f x 当x →∞时的极限,记为lim ()x f x A →∞=.(3)单侧极限左(右)极限 任意0ε>,存在()0δε>,使得当000(0)x x x x δδ-<-<<-<时,恒有()ε<-A x f .则称当00()x x x x -+→→时)(x f 有左(右)极限A ,记为00lim ()(lim ())x x x x f x A f x A -+→→== 或00(0)((0))f x A f x A -=+=.单边无穷极限 任意0ε>,存在0X >,使得当x X >(x X <-)时, 恒有f x A ()-<ε, 则lim ()x f x A →+∞=(lim ()x f x A →-∞=) .【定义1.4 】 无穷小、无穷大 若函数()f x 当0x x →(或x →∞)时的极限为零(|()|f x 无限增大),那么称函数()f x 为当0x x →(或x →∞)时的无穷小(无穷大).【定义1.5】 等价无穷小 若lim 0,lim 0,lim 1βαβα===,则α与β是等价的无穷小.【定义 1.6】 连续 若)(x f y =在点0x 附近有定义,且)()(lim 00x f x f x x =→,称()y f x =在点0x 处连续.否则0x 为()f x 的间断点.(二)主要定理【定理1.1】极限运算法则 若a x u =)(lim , b x v =)(lim ,则 (1)()lim u v ±存在,()lim lim lim u v u v a b ±=±=±且; (2)()lim u v ⋅存在,()lim lim lim u v u v a b ⋅=⋅=⋅且; (3)当0≠b 时, limu v 存在,lim lim lim u u a v v b==且 推论 ⑴ lim lim Cu C u Ca ==; ⑵ ()lim lim nnnu u a ==. 【定理1.2】极限存在的充要条件⇔=→A x f x x )(lim 0lim ()x x f x -→=0lim ()x x f x A +→=.lim ()x f x A →∞=⇔lim ()x f x →-∞=lim ()x f x A →+∞=【定理1.3】极限存在准则 (1) 单调有界数列必有极限(2) 夹逼准则: 设数列{}n x 、{}n y 及{}n z 满足① n n n y x z ≤≤, ② lim =lim n n n n y z a →∞→∞=,则lim n n x →∞存在,且lim n n x a →∞=.【定理1.4】极限与无穷小的关系 若lim (),f x A =则(),f x A α=+其中lim 0.α=【定理1.5】两个重要极限 1sin lim0=→x x x ,e x xx =⎪⎭⎫⎝⎛+∞→11lim .【定理1.6】 初等函数的连续性 初等函数在其定义区间内连续. 【定理1.7】闭区间上连续函数的性质(1)最值定理 闭区间上连续函数在该区间上一定有最大值M 和最小值m . (2)有界定理 闭区间上连续函数一定在该区间上有界.(3)介值定理 闭区间上连续函数必可取介于最大值M 与最小值m 之间的任何值. (4)零点存在定理 设函数()x f 在[]b a ,上连续,()a f ()0<⋅b f ,则至少存在一个ξ∈()b a ,,使 ()0f ξ=.二、典型题解析函数两要素:定义域,对应关系定义域:使表达式有意义的自变量的全体,方法为解不等式 对应关系:主要方法用变量替换(一)填空题【例1.1】 函数23arccos2xy x =+的定义域是 . 解 由arccos y u =的定义域知11u -≤≤,从而23112xx -≤≤+, 即 (][][),21,12,-∞--+∞.【例1.2】 设()()()2sin ,1f x x f x xφ==-,则函数()x φ的定义域为 .解 由已知()()2sin[()]1fx x xφφ==-,所以()2sin(1)x arc x φ=-,则2111,x -≤-≤即x ≤.【例1.3】设1()(0,1),()([...()])1n n f x x x f x f f f x x =≠≠=+次,试求()n f x 解 由()1xf x x =-,则21()[()]11xx f x f f x x x x -===--,显然复合两次变回原来的形式,所以,2(),211n x n k f x x n k x =⎧⎪=⎨=+⎪-⎩(二)选择题【例 1.9】设函数()f x 在(),-∞+∞上连续,又0a >且1a ≠,则函数()()()sin 2sgn sin F x f x x =-是 [ ](A) 偶函数 (B) 奇函数 (C) 非奇非偶函数 (D) 奇偶函数. 解 因为()()sgn sin sgn sin x x -=-⎡⎤⎣⎦,所以()sgn sin x 为奇函数.而()sin 2f x -为偶函数,故()()sin 2sgn sin f x x -⋅为奇函数,故选 B .【例 1.10】设()f x 是偶函数,当[]0,1x ∈时,()2f x x x =-,则当[]1,0x ∈-时,()f x = [ ](A) 2x x -+(B) 2x x + (C) 2x x - (D) 2x x --.解 因为()()f x f x -=,取[]1,0x ∈-,则[0,1]x -∈,所以()()()22f x x x x x -=---=--, 故选 D .(三)非客观题 1.函数及其性质【例1.16】 求函数()lg(1lg )f x x =-的定义域. 解 要使()f x 有意义,x 应满足0,1lg 0x x >⎧⎨->⎩ 即010x <<,所以()f x 的定义域为 (0,10).【例1.17】 设函数()f x 的定义域是[0,1],试求()f x a ++()f x a -的定义域(0a >).解 由()f x 的定义域是[0,1],则0101x a x a ≤+≤⎧⎨≤-≤⎩,故1a x a ≤≤-,则当1a a =-时,即12a =时,函数的定义域为12x =; 当1a a ->时,即12a <时,函数的定义域为[],1a a -; 当1a a -<时,即12a >时,函数的定义域为空集. 【例1.18】设()2,x f x e =()()1f x x ϕ=-并且()0x ϕ≥,求()x ϕ及其定义域.解 因为()()2[()]1,x fx e x φϕ==-且()0x ϕ≥,故()x ϕ=,为使此式有意义,ln(1)0x -≥,所以函数()x ϕ的定义域为{}0x x ≤.【例1.19】 设()2422x xf x x ++=-,求()2f x -.解( 法一)配方法 ()2(2)422(2)2x f x x +-+=-++,所以()24224.x xf x x --=-+解(法二) 变量代换法 令2x t =-,代入得()2422t f t t -=-+,即()2422xf x x -=-+,则()24224xxf x x --=-+.【例1.20】 设()22,01,12x x f x x x ≤≤⎧=⎨<≤⎩,()ln g x x =,求()f g x ⎡⎤⎣⎦. 解 ()[]ln f g x f x =⎡⎤⎣⎦ 22ln ,0ln 1ln ,1ln 2x x x x ≤≤⎧=⎨<≤⎩[]()()222ln ,1,0, ln , ,0,x x e x x e e ⎧∈+∞⎪=⎨⎡⎤∈+∞⎪⎣⎦⎩[]222ln ,1,ln , ,x x e x x e e ⎧∈⎪=⎨⎡⎤∈⎪⎣⎦⎩【例1.21】 设()1,10,1x x x ϕ⎧≤⎪=⎨>⎪⎩,()22,12,1x x x x ψ⎧-≤⎪=⎨>⎪⎩,求 ()x ϕϕ⎡⎤⎣⎦,()x ϕψ⎡⎤⎣⎦. 解 ⑴ 当(),x ∈-∞+∞时,()01x ϕ≤≤ ,所以 ()()1,,x x ϕϕ≡∈-∞+∞⎡⎤⎣⎦.⑵ 因为 ()()()1,10,1x x x ψϕψψ⎧≤⎪=⎡⎤⎨⎣⎦>⎪⎩, 且 ()()1,12,1x x x x ψψ⎧==⎪⎨<≤≠⎪⎩ 1,故 ()1,10,1x x x ϕψ⎧=⎪=⎡⎤⎨⎣⎦≠⎪⎩. 【例1.22】 求函数()2312,1,121216,2x x f x x x x x ⎧-<-⎪=-≤≤⎨⎪->⎩的反函数.解 当21121,x y x <- -<-时,=则x =, 当312=8,x y x -≤≤ ≤≤时,-1则x =当212168,x y x > =->时, 则16,12y x +=所以()f x 的反函数为 ()111816,812x y f x x x x -⎧<-⎪⎪⎪==-≤≤⎨⎪+⎪>⎪⎩.【例 1.23】设()f x 在(,)-∞+∞上有定义,且对任意,(,)x y ∈-∞+∞有()()f x f y x y -<-,讨论()()F x f x x =+在(,)-∞+∞上的单调性.解 任取12,(,)x x ∈-∞+∞,不妨设21x x >,则由条件有()()()()21212121f x f x f x f x x x x x -<-<-=-,所以()()1221f x f x x x -<-,则可变形为()()1122f x x f x x +<+,即()()12F x F x <,故()F x 在(,)-∞+∞上单调增加.【例1.24】 求c 的一个值,使()sin()()sin()0b c b c a c a c ++-++=,这里b a >,且均为常数.解 令()sin f x x x =,则()f x 是一个偶函数,则有[]()()f b c f b c +=-+要使()(),()f b c f a c a b +=+≠成立,则有1()()()2a cbc c a b +=-+⇒=-+.极限与连续:不定式,等价关系,特殊极限 极限待定系数的确定原理 连续待定系数确定的原理【例1.4】 设2lim 8xx x a x a →∞+⎛⎫= ⎪-⎝⎭,则a = . 解 因为 233lim lim lim 1x x xx x x x a x a a a x a x a x a →∞→∞→∞+-+⎛⎫⎛⎫⎛⎫==+ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭3333lim 1x a axa x aa x a e x a --→∞⎛⎫=+= ⎪-⎝⎭再由3ln83ln 28ln 2aee e a ===⇒=.【例1.5】(2004数三)若()0sin lim cos 5x x xx b e a→-=-,则a = ,b = .解 因()0sin limcos 5x x xx b e a→-=-,而()0limsin cos 0x x x b →-=,则0lim 0x x e a →-=, 所以1a =,又0x →时,sin ,1x xx e x -,则()()000sin limcos lim cos limcos51x x x x x x x b x b x b x e →→→-=-=-=-,154b b -=⇒=-. 【例 1.6】 已知当0x →时,123(1)1ax +-与1cos x -是等价无穷小,则常数a = .解 由1230(1)1lim1,1cos x ax x→+-=-而1222ln(1)3112ln(1)2333220000(1)112limlim limlim1cos 1cos 32ax ax ax x x x x ax e a xx x x ++→→→→+--====--,故3.2a = 【例1.7】 (2004数二)设()()21lim1n n x f x nx →∞-=+,则()f x 的间断点为x = .解 ()()()22111limlim ,0110,0n n n x n x x f x xnx nx x →∞→∞⎧--=⋅=≠⎪=⎨++⎪=⎩而 ()001lim lim(0)x x f x f x→→===∞≠,故()f x 的间断点(无穷)为0x =.【例1.8】 设()1sin , 02, 0x x f x x a x ⎧≠⎪=⎨⎪=⎩,在0x =处连续,则a = . 解 要使()f x 在0x =处连续,应有()()0lim 0,x f x f a →==而()0001sin1122lim lim sin lim 222x x x xx f x x x →→→===, 所以12a =.(二)选择题 【例1.11】()1, 10,01x x f x x x --<≤⎧=⎨<≤⎩ ,则()0lim x f x →= [ ](A) -1 (B) 0 (C) 不存在 (D) 1. 解 ()0lim lim 0x x f x x →+→+==, ()()0lim lim 11x x f x x →-→-=-=-.因为()()0lim lim x x f x f x →+→-≠,所以()0lim x f x →不存在,故选 C.【例1.12】 下列结论正确的是 [ ] (A) 若1lim1n n na a +→∞=,则lim n n a →∞存在;(B) 若lim n n a A →∞=,则11lim lim1lim n n n n nn n a a A a a A ++→+∞→∞→∞===; (C) 若lim n n a A →∞=,若lim n n b B →∞=,则()lim n bB n n a A →+∞=;(D) 若数列{}2n a 收敛且()2210n n a a n --→→∞,则数列{}n a 收敛.解 (A)不正确,反例{}n a n =,(B)不正确,因为只有当lim 0n n a →∞≠时,才能运用除法法则:11lim lim lim n n n n nn n a a a a ++→+∞→∞→∞= ,(C)不正确,只有0A ≠时,()lim n b B n n a A →+∞=成立.故选 D.注意无穷大与有界量的乘积关系 【例1.13】 当0x →时,变量211sin x x是 [ ] (A) 无穷小; (C) 有界的,但不是无穷小量; (B) 无穷大; (D) 无界的,但不是无穷大量. 解 M ∀,1,22n x n ππ∃=+只要,2M n π⎡⎤>⎢⎥⎣⎦则()2,2n f x n M ππ=+> 所以211sin x x 无界.再令 12x k π=,()0,1,2,k =±±,则()20lim lim(2)x k f x k π→→∞=⋅ sin 20k π≡,故()lim x f x →∞≠∞.故选 D.趋向无穷大主要是最高次项 趋向无穷小主要是最低次项【例1.14】 当0x →时,下列4个无穷小关于x 的阶最高的是 [ ](A) 24x x + (B)1 (C)sin 1xx- (D)-解 242200lim lim(1)1x x x x x x→→+=+=,所以24x x +是x 的2阶无穷小. 当0x →111sin 22x x ,故(B )是x 的同阶无穷小. 311000sin 11sin 6lim lim lim k k k x x x x x x xx x xx ++→→→---==,要使极限存在2k =,故(C )是x 的2阶无穷小.0x x →→= 3001sin (1cos )1lim lim 24cos k k x x x x x x xx →→-==, 同理(D )是x 的3阶无穷小.故选D.指数函数的极限要注意方向【例1.15】(2005数二)设函数()111xx f x e-=-,则 [ ](A) 0x =,1x =都是()f x 的第一类间断点; (B) 0x =,1x =都是()f x 的第二类间断点;(C) 0x =是()f x 的第一类间断点,1x =是()f x 的第二类间断点; (D) 0x =是()f x 的第二类间断点,1x =是()f x 的第一类间断点. 解 因为()0lim x f x →=∞,则0x =是()f x 的第二类间断点;而()()11111111lim lim 0,lim lim 111xx x xx x x x f x f x ee++--→→→→--====---, 所以1x =是()f x 的第一类(跳跃)间断点,故选 D. (三)非客观题 求极限的各种方法(1) 用N ε-定义证明数列极限定义证明的关键是利用n x A ε-<倒推找正整数N (与ε有关),这个过程常常是通过不等式适当放大来实现.【例1.25】求证lim1n n→∞=. 证明 对0ε∀>,1ε-<成立,则需1-n n =n a n n +-<a nε=<只要1an n ⎡⎤>+⎢⎥⎣⎦,取1a N n ⎡⎤=+⎢⎥⎣⎦,当n N >时,1ε<.证毕. 【例1.26】 设常数1,a >用N ε-定义证明lim 0!nn a n →∞=. 证明 对0ε∀>,要使0!na n ε-<成立,则需[]0!1[]([]1)[]1n a n a a a a a aa k n a a n a ε-⎛⎫⋅⋅⋅⋅-=<⋅< ⎪⋅⋅+⋅⋅+⎝⎭,(其中1[]a ak a ⋅⋅=⋅⋅)只要lg []lg[]1k n a a a ε>++,为保证0,N >取lg max 1,[]lg []1k N a a a ε⎧⎫⎡⎤⎪⎪⎢⎥⎪⎪⎢⎥=+⎨⎬⎢⎥⎪⎪⎢⎥+⎪⎪⎣⎦⎩⎭,当n N >时,有 0!na n ε-<,证毕. (2)通过代数变形求数列极限 逐项平方差【例1.27】求极限2421111lim(1)(1)(1)(1)2222nn →∞++++解 2421111lim(1)(1)(1)(1)2222n n →∞++++=2111(1)(1)(1)222lim n →∞-++2n 1(1+)211-22(1)12lim(1)22n n +→∞=-=平方差公式【例1.28】求极限lim )n n n →∞.解lim )nn n →∞n =limn →∞=limn =12=. 等比求和【例1.29】 求极限221112333lim 111555nn n →∞+++++++. 解 由等比数列的求和公式2(1)1n nq q q q q q-+++=-将数列变形,则221113211113213333lim lim 11111155551515n n n n n n →∞→∞-+⨯++++-=+++-⨯-112123lim 11145n x n →∞⎛⎫+- ⎪⎝⎭=⎛⎫- ⎪⎝⎭1221014+==. 分项求和【例1.30】 求[]31lim(21)2(23)3(25)n n n n n n →∞-+-+-++.解 []31lim (21)2(23)3(25)n n n n n n →∞-+-+-++()311lim 221nn k k n k n →∞==-+∑()23111lim 212n nn k k n k k n →∞==⎡⎤=+-⎢⎥⎣⎦∑∑()()()()32111211lim 226n n n n n n n n →∞++++⎡⎤=-⎢⎥⎣⎦()()312111lim63n n n n n →∞++==.拆分原理【例1.31】 求极限2111lim()31541n n →∞+++-.解 因为()()1111212122121n n n n ⎛⎫=-⎪-+-+⎝⎭,则 2111lim()31541n n →∞+++-111111lim [(1)()()]23352121n n n →∞=-+-++--+ 111lim (1)2212n n →∞=-=+. 求和后拆分【例1.32】 求极限111lim(1)1212312n n→∞+++++++++.解 111lim(1)1212312n n→∞+++++++++(由等差数列的前n 项和公式)222lim 12334(1)n n n →∞⎡⎤=++++⎢⎥⨯⨯+⎣⎦ (逐项拆分) 111111lim 12()23341n n n →∞⎡⎤=+-+-++-⎢⎥+⎣⎦2lim 221n n →∞⎛⎫=-= ⎪+⎝⎭(3)利用夹逼准则求数列极限 【例1.33】求lim n解 11111n n ≤+<+,而1lim(1)1n n→∞+=,∴ 由夹逼准则得 lim 1n →∞=. 掌握扩大和缩小的一般方法 【例1.34】 求22212lim()12n nn n n n n n n →∞+++++++++. 解212n n n n +++++2221212nn n n n n n n<+++++++++2121n n n +++<++ 且 2121lim,2n n n n n →∞+++=++ 2121lim 21n n n n →∞+++=++, 由夹逼准则得 22212lim()12n nn n n n n n n →∞+++++++++=12. 【例1.35】 求极限226n nn →∞++.解≤≤,则2221nnnk k k===≤≤且 22111limlim 3nnn nk k →∞→∞====,由夹逼准则得原式21lim3nn k→∞===.以下两题了解一下即可 【例1.36】 证明 1;1(0)n n a ==>证明 1) 1n h =+,则22(1)(1)(1)122n nn n n n n n n n n n h nh h h h --=+=+++>,即 0n h <<由夹逼准则 lim 0,n n h →∞=从而lim(1) 1.n n n h →∞=+=2)当1a >时,0<<由夹逼准则1n =;当01a <<,令11b a=>,则lim lim 1n n →∞→∞==,从而1(0).n a =>注 【例1.36】的结果以后直接作为结论使用. 【例1.37】 求极限nk n a ++.(12,,,0k a a a >,k N ∈)解 记{}12max ,,,k aa a a =,则nk a≤++≤.且,n n n a a a ==⋅=,由夹逼准则得{}12max ,,,nk k n a a a a a ++==.(4)利用单调有界准则求数列极限给出前后项的关系,证明其单调,有界,设出极限解方程数列单调性一般采用证明110,1,nn n n x x x x ---≥≥或函数的单调性;数列的有界性方法比较灵活.【例1.38】 求lim n n a a a a →∞++++个根号.解 设n x a =++,则12x x ==…,n x =,从而 1n nx x -<,数列{}n x 单调增加;又n x =,21n nx a x -=+,111n n n n x a x x x -=+<+=,数列有上界,故{}n x 有极限.不妨设lim n n x A →∞=,将21n n x ax -=+两边取极限,有2A a A =+,故12A ±=【例1.39】 求33n .(共有n 个根号)解 设33n x =,显然1n n x x ->,{}nx单调增加;且1n x x =2x =3n x <,{}n x 有上界,所以数列极限存在.不妨设lim n n x A →∞=,将213n n x x -=两边取极限,有23A A =,则()3,0A A ==舍.【例1.40】 设2110,0,,1,2,2n n nx aa x x n x ++>>==,证明数列{}n x 收敛,并求极限.解 2102nn n na x x x x +--=≤,数列{}n x 单调递减;且21122n n n n n x a a x x x x +⎛⎫+==+ ⎪⎝⎭≥=,{}n x 有界,所以数列{}n x 收敛.令lim n n x A →∞=,对212n n nx a x x ++=两边取极限,有12a A A A ⎛⎫=+ ⎪⎝⎭,则A =. (5)利用无穷小的性质求数列极限 【例1.41】 求下列极限(1)(2)题的方法化为指数形式常用,(3)要说明无穷小乘有界量为无穷小 (1) lim 1)(0)n n a →∞-> (2)1121lim (33)n n n n +→∞- (3)2lim 1n nn →∞+解 (1)当1ln 11ln a nn e a n→∞-时, ,则 1ln lim 1)lim (1)a nn n n n e→∞→∞-=-1lim ln ln n n a a n→∞=⋅=(2)当n →∞时, 1ln 331nn-(n+1)(n+1),则11112211lim (33)lim3(31)nnn n n n n n ++→∞→∞-=-(n+1)121ln 3lim 3lim ln 3n n n n n+→∞→∞⋅=⋅=(n+1)(3)因为0n →∞=,而sin 1n ≤,由于无穷小与有界函数的乘积仍为无穷小,所以2lim 01n nn →∞=+ 注 limsin n n →∞不存在,故不能写成lim sin 0n n n n →∞→∞→∞=⋅=. 综合题了解一下即可【例1.42】 求())()22211131lim arctan !22311n n nn n n n →∞⎡⎤⎛⎫+⨯-+++⎢⎥ ⎪ ⎪⨯--⎢⎥⎝⎭⎣⎦. 解()arctan !2n π≤,()221=()2limarctan !0n n →∞∴=,有界量乘无穷小()1111lim lim 112231n n n n n →∞→∞⎡⎤⎛⎫+++=-=⎢⎥ ⎪⨯-⎝⎭⎣⎦,拆分求和2231lim 31n n n →∞+=-, 则 ()2211131lim 322311n n n n n →∞⎡⎤++++=⎢⎥⨯--⎣⎦ )()222131lim arctan !lim 1lim 1n n x n n n n n →∞→∞→∞+⎛⎫⎡⎤-- ⎪⎢⎥⎣⎦-⎝⎭故原式= 033=-=-.两极限都存在用四则运算法则注利用函数极限求数列极限见第三章;利用定积分定义求数列极限见第六章; 利用级数收敛的性质求极限见第十一章. 3.函数的极限(1)用εδ-定义或X ε-定义证明极限用εδ-定义证明函数极限关键是用倒推法适当放缩找到0x x -与ε的关系,确定()δε;而X ε-定义证明函数极限关键是用倒推法适当放缩找到x 与ε的关系,确定()X ε.【例1.43】 证明 22lim 4x x →= 此题典型要搞清楚自变量的约束范围的确定证明 对于0ε∀>,不妨设21,x -<则222225,x x x +≤+<-++< 要使242252x x x x ε-=+⋅-<⋅-<,只要取min{1,}5εδ=,当02x δ<-<时,有24x ε-<.证毕.注 函数在0x 的极限只与函数在0(,)U x δ的定义有关,与函数的整个定义范围无关.因此上例作了假设2 1.x -<也可假设122x -<等. 【例1.44】 用X ε-定义证明:232lim .33x x x →∞+=证明 对于0ε∀>,要使2322321333x x x x x xε++--==<,只要1.x ε>故取11,X ε=+当x X >时,均有23233x x ε+-<,即232lim .33x x x →∞+=(2)用极限存在的充要条件研讨极限 含有,xxe e-的表达式x →∞的极限;含有[]11,,,xxe e x x -的表达式0x →的极限;分段函数在分段点的极限,一般来说用极限存在的充要条件讨论.注意指数函数的极限,一般要考虑两边趋势【例1.45】 讨论极限 lim x xx xx e e e e --→∞-+.解 221lim lim 11x x x xx x x x e e e e e e --→-∞→-∞--==-++; 221lim lim 11x x xx x x x x e e e e e e--→+∞→+∞--==++. 所以 lim x xx xx e e e e --→∞-+不存在.【例1.46】 求1402sin lim 1x x x e x x e →⎡⎤+⎢⎥+⎢⎥+⎢⎥⎣⎦. 解 1402sin lim 1x x x e x x e +→⎡⎤+⎢⎥+⎢⎥⎢⎥+⎣⎦43402sin lim 0111x xx xe e x x e +--→-⎡⎤+⎢⎥=+=+=⎢⎥⎢⎥+⎣⎦; 1402sin lim 2111x x x e x x e -→⎡⎤+⎢⎥-=-=⎢⎥⎢⎥+⎣⎦; 所以 1402sin lim 1x x x e x x e →⎡⎤+⎢⎥+⎢⎥+⎢⎥⎣⎦1=. 【例1.47】 []x 表示不超过x 的最大整数,试确定常数a 的值,使[]210ln(1)lim ln(1)x x x e a x e →⎧⎫+⎪⎪+⎨⎬⎪⎪+⎩⎭存在,并求出此极限.解 由[]x 的定义知,[][]0lim 1,lim 0,x x x x -+→→=-=故所给极限应分左、右极限讨论. []22211110000ln(1)ln(1)lim lim lim lim .ln(1)ln(1)x x x x x x x x x x xe e e a x a a e a a e e e ----→→→→⎧⎫++⎪⎪+=-=-=-=-⎨⎬⎪⎪++⎩⎭[]222211110002ln(1)ln(1)ln (1)lim lim 0lim 01ln(1)ln (1)ln(1)x xxxx x x x x x xe e e e x a x e e e e x+++--→→→--⎧⎫+++⋅+⎪⎪+=+=+⎨⎬⎪⎪+⋅+++⎩⎭212ln(1)lim 21ln(1)xx xe e +-→-++==++.所以,当2a =-时所给极限存在,且此时极限为2.【例1.48】设21,1,()23, 1.x f x x x x ⎧≥⎪=⎨⎪+<⎩试求点1x =处的极限.解 211(10)lim ()lim(23)5x x f f x x --→→-==+=; 111(10)lim ()lim 1x x f f x x++→→+===; 即(10)(10)f f -≠+,1lim ()x f x →∴不存在.(3)通过代数变形求函数极限 【例1.49】求下列极限(1)22232lim 2x x x x x →-+++- (2)422123lim 32x x x x x →+--+ (3)11lim ,()1n x x n Z x +→-∈- 解 (1)原式222(1)(2)(1)(2)limlim (1)(1)(1)(11)x x x x x x x x x x →-→-++++==-+--++211lim.13x x x →-+==-(2)原式22211(1)(3)(1)(3)limlim 8.(2)(1)2x x x x x x x x x →→-+++===---- (3)原式121(1)(1)lim1n n x x x x x x --→-++++=- (提零因子)121lim(1)n n x xx x n --→=++++=.注 分子分母都为0必有共同的0因子① 因为分母极限为零,所以不能直接用计算法则; ② 当0x x →时,0x x ≠. 【例1.50】求下列极限注意多项式商的三种形式的规律0x x x a →∞→→,,,最高项,最低项,零因子(1)247lim 52x x x x x →∞-+++ (2)()()()3020504192lim 61x x x x →∞++- (3) 3225lim 34x x x x →∞-++解(1)原式234341170lim 0.5211x x x x x x→∞-+==++(2)原式3020501249lim 16x x x x →∞⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭=⎛⎫- ⎪⎝⎭1030205049263⋅⎛⎫== ⎪⎝⎭. (3)3225lim 34x x x x →∞-=∞++ (因为2334lim 025x x x x →∞++=-) 注 x →∞时有理函数求极限,分子、分母同时除以x 的最高幂次.即抓“大头”.综合题也可直接用结论 0101101,lim0,,m m m n n x n a n m b a x a x a n m b x b x b n m --→∞⎧=⎪⎪+++⎪=>⎨+++⎪∞<⎪⎪⎩. 【例1.51】求下列极限了解共轭因式,尤其是N 方差公式 (1))0lim 0x aa +→>. (2)0x → (3)limx解 ⑴原式0lim x a+→=limx a+→=lim x a+→==⑵ 原式=2x x →x →=32=⑶ 原式2limx=2123lim 1x --==.(4)利用两个重要极限求极限利用0sin lim 1x x x →=,1lim 1nn e n →∞⎡⎤+=⎢⎥⎣⎦求极限,则有0sin 1lim 1,lim(1)e →→∞=+=(此两式中的形式必须相同).【例1.52】 求下列极限 (1)201cos limx xx →-)(2)22sin sin lim x a x a x a→--(3)31lim sin ln(1)sin ln(1)x x x x→∞⎡⎤+-+⎢⎥⎣⎦解 (1)原式22200212sin sin1222limlim 2()2x x x xx x →→==.(2)原式()()sin sin sin sin limx ax a x a x a→-+=-()2limsin cos sin sin 22x a x a x a x a x a →-+=+-()sin2limcos sin sin 22x a x ax a x a x a →-+=⋅+-1cos 2sin sin 2a a a =⨯⨯=. (3)3lim sin ln(1)x x x →∞+ 3sin ln(1)33lim ln(1)0 limln(1)3ln(1)x x x x x x x→∞→∞++=⋅++ 33333lim ln 1ln lim[(1)]3x x x x x x⋅→∞→∞⎛⎫=+=+= ⎪⎝⎭同理 1lim sin ln(1)1x x x→∞+=,所以 31lim sin ln(1)sin ln(1)x x x x →∞⎡⎤+-+⎢⎥⎣⎦312=-=.【例1.53】 求下列极限 趋向常数的极限通常会做变量替换 (1)1lim(1)tan2x xx π→- (2)22sin lim1x xx ππ→- 解 (1)令1,t x =-则 原式02lim tan()lim cotlimlim222tan22t t t t ttt tt t ttππππππ→→→→=⋅-=⋅===(2) 令,x t π=-则原式2222200002sin()sin sin lim lim lim lim .()2(2)221t t t t t t t t t t t t t ππππππππππ→→→→-====----- 【例1.54】 求下列极限(1)32lim 22xx x x →∞-⎛⎫ ⎪-⎝⎭ (2)cot 0lim tan 4xx x π→⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦解 (1)原式1222111lim 1lim 11222222x xx x x x x --→∞→∞⎡⎤⎛⎫⎛⎫⎛⎫=+=+⋅+⎢⎥ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦1e e =⋅=(2)原式11tan t 001tan 1t lim()lim()1tan 1t x x t x x →→--==++122t 102t lim(1)1tt t t +-⋅-+→-=++02lim1122t02tlim(1)1t t ttt e →-++--→⎡⎤-=+=⎢⎥+⎣⎦.注 1∞型极限的计算还可用如下简化公式:设(),(),u u x v v x ==且lim 1,lim u v ==∞,则lim(1)lim .u vvu e-=(因为 (1)1lim(1)1lim lim [1(1)]u vu vvu u u e---⎧⎫⎪⎪=+-=⎨⎬⎪⎪⎩⎭)和ln lim lim .v v uu e=【例1.55】 求下列极限 (1)lim hx kx ax b ax c +→∞+⎛⎫⎪+⎝⎭(2)1sin sin 20cos lim cos 2x xx x x →⎛⎫⎪⎝⎭解 (1) 原式=()()lim 1lim x x ax b b c hx k hx k ax c ax c e e→∞→∞+-⎛⎫⎛⎫-++ ⎪ ⎪++⎝⎭⎝⎭=()b c hae-=(2) 原式22000cos 1cos cos 211cos cos 2lim 1lim limcos 2sin sin 2cos 2cos 222x x x x x x x xxx xx xxx eee→→→--⎛⎫⎛⎫-⋅⎪⎪⎝⎭⎝⎭===2222220011(2)1cos 21cos 322lim []lim []22224x x x x x xx x x xeee →→----===.(5)利用函数的连续性求极限① 设()f x 在x a =连续,按定义则有 lim ()()x af x f a →=.因此对连续函数求极限就是用代入法求函数值.② 一切初等函数在它的定义域上连续.因此,若()f x 是初等函数,a 属于它的定义域,则lim ()()x af x f a →=.③ 设lim ()x ag x A →=,若补充地定义()g a A =,则()g x 在x a =连续.若又有()y f u =在u A =连续,则由复合函数的连续性得 lim (())(lim ())()x ax af g x f g x f A →→==.【例1.56】 求下列极限(1)3225lim243x x x x →+++ (2)3x →解 利用函数的连续性得 (1)332252251lim243224233x x x x →+⨯+==++⨯+⨯+,(2)x →==(6)利用无穷小的性质求极限常用的几个重要等价无穷小代换(当0→x 时)有: sin arcsin tan arctan 1ln(1)x xx x x xe x -+x cos 1-~22x , 1-xa ~)0(ln >a a x , )1(log x +α~ln x a.1)1(-+αx ~x α(α为任意实数), 3tan sin ,2x x x -3sin .6x x x - 利用等价无穷小代换时,通常代换的是整个分子、分母或分子、分母的因子. 【例1.57】求下列极限(1)201lim sin 3x x e x →- (2)cos 0lim sin x x e e x x →- (3)0x →解 (1)当0x →时,212,sin 33xex x x -,∴200122limlim sin 333x x x e x x x →→-==. (2)当0x →时,1cos 0x -→,1cos 11cos xex -∴--.原式cos 1cos 1cos cos 22000(1)(1)lim lim lim x x x xx x x e e e e x x--→→→--==⋅20(1cos )1lim2x x x→-==(因为当210,1cos 2x x x →-). (3)原式0x →=0x x →→=012x →=201112lim 1222x xx x →==⋅.【例1.58】 已知()0ln 1sin lim 231x x f x x →⎡⎤+⎢⎥⎣⎦=-,求()20lim x f x x →. 解 由()0lim 310x x →-=及()0ln 1sin lim 231x x f x x →⎡⎤+⎢⎥⎣⎦=-,必有()0limln 10sin x f x x →⎡⎤+=⎢⎥⎣⎦, 所以 ()ln 1sin f x x ⎡⎤+⎢⎥⎣⎦~()sin f x xln3311x x e -=-~ln 3x 原式()0sin lim ln 3x f x x x →=()201lim ln 3sin x f x x x x →=⋅ ()201lim ln 3x f x x→==2,则 ()2lim2ln 3x f x x→=.【例1.59】 求 30sin tan limsin x x xx→- 解 原式33001sin (1)sin (cos 1)cos limlim sin cos sin x x x x x x x x x →→--==⋅23001()1lim lim cos 22x x x x x x→→⋅-=⋅=-⋅.注 3300sin tan limlim 0.sin sin x x x x x xx x→→--≠= 【例1.60】 求 213sin 2sin lim x x xx x→∞+解 213sin 2sin lim x x xx x→∞+=13sin 1lim2lim sin 1x x x x x x→∞→∞+, 1sin1lim1;lim 0,sin 1,1x x x x x x→∞→∞==≤ 则1lim sin 0x x x →∞=, ∴原式=303+=.(7)利用其它方法求极限① 利用导数定义求极限(见第二章) 利用导数定义=')(0x f 00)()(limx x x f x f x x --→可以将某些求极限问题转化为求导数;② 利用罗必达法则(详见第三章); ③ 利用微分中值定理(详见第三章); 【例1.61】 设()()00,0f f '=存在,求()limx f x x→. 解 因为()()00,0f f '=存在,所以()0limx f x x →()()()00lim 0x f x f f x→-'== *【例1.62】 求lim x→+∞解 令()f t =,显然当0x >时,()f t 在[,1]x x +上满足拉格朗日中值定理,所以有,()()()()f b f a f b a ξ'-=⋅-.所以,原式=cos ξ 其中1x x ξ≤≤+故lim lim cos 0x ξξ→+∞→+∞==4.函数的连续性(1)函数的连续性与间断点的讨论【例1.63】 设()2,0sin ,0a bx x f x bx x x⎧+≤⎪=⎨>⎪⎩在点0x =处连续,求常数a b 与的关系.解 ()00sin sin lim lim lim x x x bx bx f x b b x bx+++→→→==⋅= ()()200lim lim x x f x a bx a --→→=+=. 因为函数在点0x =连续,所以()0lim x f x +→b =()0lim x f x a -→==,故a b =. *【例1.64】 设()2122lim 1n n n x ax bxf x x +→∞++=+,当,a b 取何值时,()f x 在(),-∞+∞处连续.解 ()2,1,11,121,12a bx x x x ab f x x a b x ⎧+ <⎪>⎪⎪--=⎨=-⎪⎪++⎪=⎩,由于()f x 在()()(),1,1,1,1-∞--+∞上为初等函数,所以是连续的,只要选取适当的,a b ,使()f x 在1x =±处连续即可. 即11lim ()lim ()(1)x x f x f x f -+→→==; ()()()11lim lim 1x x f x f x f -+→-→-==-. 得 1011a b a a b b +==⎧⎧⇒⎨⎨-=-=⎩⎩. 【例1.65】 研究函数(),111,11x x f x x x -≤≤⎧=⎨<->⎩或的连续性,并画出函数的图形.解 ()f x 在(),1-∞-与()1,-+∞内连续, 在1x =-处间断,但右连续,因为在1x =-处,()()11lim lim 11x x f x x f ++→-→-==-=-,但()11lim lim 11x x f x --→-→-==,即()()11lim lim x x f x f x +-→-→-≠.【例1.66】 指出函数22132x y x x -=-+的间断点,说明这些间断点的类型.解 ()22132x f x x x -=-+在1x =、2x =点没有定义,故1x =、2x =是函数的间断点.因为 ()()()()2211111lim lim3212x x x x x x x x x →→-+-=-+--11lim 22x x x →+==--,所以1x =为第一类可去间断点.因为2lim x y →=∞,所以2x =为第二类无穷间断点.【例1.67】 讨论函数()221lim 1nnn x f x x →∞-=+的连续性,若有间断点,判别其类型.解 ()22 11lim0 1 1 1nnn x x x f x x x x x →∞⎧->⎪-===⎨+⎪<⎩, ()11lim lim 1x x f x x ++→→=-=-,()11lim lim 1x x f x x --→→==,()()11lim lim x x f x f x +-→→≠; ()11lim lim 1x x f x x ++→-→-==-,()11lim lim 1x x f x x --→-→-=-=,()()11lim lim x x f x f x +-→-→-≠.故 1x =±为第一类跳跃间断点.(2)闭区间上连续函数的性质【例1.68】 证明方程3910x x --=恰有三个实根. 证明 令()391f x x x =--,则()f x 在[]3,4-上连续,且()()310,290,f f -=-<-=> ()()010,4270f f =-<=>所以()f x 在()()()3,2,2,0,0,4---各区间内至少有一个零点,即方程3910x x --=至少有三个实根. 又它是一元三次方程,最多有三个实根.证毕【例1.69】 若n 为奇数,证明方程110n n n x a x a -+++=至少有一个实根.证 令()11n n n f x x a x a -=+++,则()1(1)nnn a a f x x xx=+++, 于是 lim (),lim ()x x f x f x →-∞→+∞=-∞=+∞,故存在1,x 使()10f x A =>;存在2,x 使()20f x B =<.所以()f x 在[]12,x x 至少有一个零点,即方程至少有一个实根.【例1.70】 设()f x 在[],a b 上连续,且()(),f a a f b b <>,试证:在(),a b 内至少有一点ξ,使得()fξξ=.证 令()()F x f x x =-,()F x 在[],a b 连续,且()0,()0,F a F b <>由介值定理得在(),a b 内至少存在一点ξ,使得()0F ξ=,即()fξξ=.【例1.71】 设()f x 在[]0,2a ()0a >上连续,且()()02f f a =,求证存在()0,a ξ∈,使()()ff a ξξ=+.证 构造辅助函数()()()g x f x a f x =+-,则()()()00g fa f =-,()()()2g a f a f a =-()()0f a f =--⎡⎤⎣⎦()0g =-,即()0g 与()g a 符号相反,由零点存在定理知存在()0,a ξ∈,使()0g ξ=,即()()ff a ξξ=+.【例1.72】 设()f x 在[],a b 上连续,且a c d b <<<,证明:在[],a b 内至少存在一点ξ,使得()()()()pf c qf d p q f ξ+=+,其中,p q 为任意正常数.证()f x 在[],a b 上连续,∴ ()f x 在[],a b 上有最大值M 和最小值m ,则()m f x M ≤≤.由于,[,]c d a b ∈,且,0p q >,于是有(),()pm pf c pM qm qf d qM ≤≤≤≤.⇒ ()()()()p q m pf c qf d p q M +≤+≤+, ⇒()()pf c qf d m M p q+≤≤+.由介值定理,在[],a b 内至少存在一点ξ,使得()()()pf c qf d f p qξ+=+,即()()()()pf c qf d p q f ξ+=+ 5.综合杂例【例1.73】 已知lim 2003,(1)ab bn n n n →∞=--求常数,a b 的值.解 lim lim lim 11(1)[1(1)](1)1aaa bbb n n n b b b n n n n n n n n-→∞→∞→∞-==------ 1lim lim 1a b a b n n n n bb n--+→∞→∞-==- 为使极限为2003,故10,a b -+=且12003,b =所以12002,.20032003b a ==- 【例1.74】 已知221lim2,sin(1)x x ax bx →++=-求常数,a b 的值. 解 由221lim 2,sin(1)x x ax bx →++=-则分子的极限必为0,即21lim()0x x ax b →++=, 从而 10a b ++=;另一方面,当1x →时,22sin(1)1x x --,因此2222221111lim lim 10lim sin(1)11x x x x ax b x ax b x ax a a b x x x →→→+++++--=++=--- 1(1)(1)lim2(1)(1)x x x a x x →-++==-+,从而11211a ++=+,即2,a =又10a b ++=, 得 3.b =【例1.75】已知lim ())0,x ax b →+∞+=求常数,a b 的值.解lim ())lim ())0,x x bax b x a x→+∞→+∞-+=+=而lim ,x x →+∞=∞要使原式极限为0,则lim()0,x ba x→+∞-+=所以 1.a =1lim )lim )lim.2x x x b ax x →+∞→+∞=-===【例1.76】 若 30sin 6()lim 0,x x xf x x →+=求206()lim .x f x x→+ 解 因为30sin 6()lim0,x x xf x x→+=由极限存在与无穷小的关系,得 3sin 6()0,x xf x x α+=+其中0lim 0.x α→=从而 2236()6sin 6,f x xx x x α+=-+ 所以 32233300006()6sin 66sin 6(6)lim lim()lim lim 366x x x x f x x x x x x x x x xα→→→→+-=-+=== 【例1.77】 已知0()lim4,1cos x f x x →=-求10()lim 1.xx f x x →⎛⎫+ ⎪⎝⎭解 因为200()2()limlim 4,1cos x x f x f x x x→→==-则20()lim 2x f x x →=.从而 221()()lim()200()()lim 1lim 1x x f x f x xf x x x x x f x f x e e x x →⋅→→⎛⎫⎛⎫+=+== ⎪ ⎪⎝⎭⎝⎭注 此题也可用极限存在与无穷小的关系求解.【例1.78】 当0x →x 的几阶无穷小量. 解3255x-=则203limx xx→→==∴x 的23阶无穷小.三、综合测试题。

高数重要知识点

高数重要知识点

高等数学上册重要知识点 第一章 函数与极限一。

函数的概念1 两个无穷小的比较设0)(lim ,0)(lim ==x g x f 且l x g x f =)()(lim(1)l = 0,称f (x )是比g (x )高阶的无穷小,记以f (x ) = 0[)(x g ],称g(x)是比f (x)低阶的无穷小.(2)l ≠ 0,称f (x )与g (x )是同阶无穷小.(3)l = 1,称f (x )与g (x )是等价无穷小,记以f (x ) ~ g (x )2 常见的等价无穷小 当x →0时sin x ~ x ,tan x ~ x ,x arcsin ~ x ,x arccos ~ x1− cos x ~ 2/2^x , x e −1 ~ x ,)1ln(x + ~ x ,1)1(-+αx ~ x α二 求极限的方法1.两个准则准则1.单调有界数列极限一定存在 准则2.(夹逼定理)设g (x ) ≤ f (x ) ≤ h (x ) 放缩求极限若A x h A x g ==)(lim ,)(lim ,则A x f =)(lim2.两个重要公式公式11sin lim0=→x xx 公式2e x x x =+→/10)1(lim3.用无穷小重要性质和等价无穷小代换 4.★用泰勒公式当x 0→时,有以下公式,可当做等价无穷小更深层次)()!12()1(...!5!3sin )(!...!3!2112125332++++-+++-=++++++=n n nn nxx o n x x x x x x o n x x x x e )(!2)1(...!4!21cos 2242n n n x o n x x x x +-+++-=)()1(...32)1ln(132n nn x o nx x x x x +-++-=++ )(!))1()...(1(...!2)1(1)1(2n n x o x n n x x x +---++-++=+ααααααα)(12)1(...53arctan 1212153+++++-+-+-=n n n x o n x x x x x 5.洛必达法则定理1 设函数)(x f 、)(x F 满足下列条件:(1)0)(lim 0=→x f x x ,0)(lim 0=→x F x x ;(2))(x f 与)(x F 在0x(3))()(lim 0x F x f x x ''→存在(或为无穷大)这个定理说明:当)()(lim 0x F x f x x ''→存在时,)(lim 0x F x x →也存在且等于)()(lim 0x F x f x x ''→;当)()(lim0x F x f x x ''→为无穷大时,)()(lim 0x F x f x x →也是无穷大. 这种在一定条件下通过分子分母分别求导再求极限来确定未定式的极限值的方法称为洛必达(H L 'ospital )法则。

大学高数第一章函数和极限ppt课件

大学高数第一章函数和极限ppt课件
例如函数 y x2 在 (, 0) 上单调递减, 在 (0, ) 上单调递增
7
3.函数的奇偶性
如函数 y f (x) 的定义域 D 关于原点对称,且对于任意 xD ,均有: f (x) f (x) ,则称该函数在其定义域内是偶函数; 若是 f (x) f (x) ,则称该函数在其定义域内是奇函数;
lim 3x
x
28
2、当 x x0 时函数极限
定义 1.6 设函数在点 x0 附近有定义(但在这一点可以没有
定义),若 x ( x x0 )无论以怎样的方式趋近于 x0 ,函
数 f (x) 都无限趋近于一个常数 A ,就称当 x 趋近于 x0 时,
函数以 A 为极限,记为:
lim f (x) A 或
(2)
1 x 1
ln(x 0
1)

1

1

e
x
1 1
x

e
1
D :[1 1, e 1] e
12
邻域的概念
以 x0 为中心的任何开区间称为点 x0 的邻域,记作 N x0 。 设 为任一正数,称开区间 x0 , x0 为 x0 的 邻 域,记作 N x0 , , x0 称为邻域的中心, 称为邻域的半
无界的。
如:函数 y sin x ,在 ,内有界,且:| y | 1
10
1.1.3复合函数
定义 1.2 如变量 y 是变量 u 的函数,变量 u 又是
变量 x 的函数,即: y f (u) , u (x) , 且 u (x) 的值域与 y f (u) 的定义域有公共部分, 则称 y 是 x 的复合函数,记作: y f [(x)]

高等数学-第一章-函数与极限-函数的极限-同济大学

高等数学-第一章-函数与极限-函数的极限-同济大学
f (x) A ,
经过不等式的变形, 得到关系
f (x) A M x x0 ,
其中 M是一个与x无关的常量. 再取 , 则当
0 x x0 时, 有:
M
f (x) A M x x0 ,
此即说明 lim f (x) A. x x0
例1 证明下列极限
⑴ lim(2x 1) 5; x2
xn
是函数 f
x
xx0
定义域中的一个任意数列,
xn
x0 ,

lim
n
xn
x0,
则相应的数列 f xn 收敛, 且
lim
n
f
(xn )
lim
x x0o
f
(x).
o

设 lim f (x) A, xx0
则存在U (x0, ), 当x U (x0, ), 有
f (x) A ,
o
又因
lim
n
x
证令
xn
1,
1
2n
2
yn
1
2n
,

lim
n
xn
lim
n
yn
0,
且 xn
0, yn , 0,

lim
n
f
(xn )
1, lim n
f
( yn )
0,
所以 lim sin π 不存在.
x0
x
对于数列, 相应的归并性定理为
定理
设数列
lim
n
xn 存在,
则对于
xn
的任一子列(xnk )

lim
2x 2(x2 1)
1 x

高等数学第一章:函数与极限

高等数学第一章:函数与极限

第一章:函数与极限第一节:函数1、函数的性质:单调性,有界性(包括有界与无界),奇偶性,周期性。

(重点在于单调性与奇偶性)单调性:)()(,,212121x f x f x x X x x <⇒<∈∀单调增加。

)()(,,212121x f x f x x X x x >⇒<∈∀单调减少 有界性:M x f X x M ≤∈∀>∃)(,,0 无界性:M x f X x M >∈∃>∀)(,,0奇偶性:)()(x f x f -=偶,)()(-x f x f -=奇。

奇函数如果连续则一定经过0点,值为0周期性:)()(T x f x f +=,注意,a T x f a x f ++=+)()(, 如果)()(b ax f x f +=,T 为)(x f 的周期,则周期为aT第二节:极限1、数列极限定义:εε<->>∃>∀⇔=∞→A x N n N A x n n n ,,0,0limM x N n N M x n n n >>>∃>∀⇔∞=∞→,,0,0lim性质:1) 唯一性:收敛数列极限唯一 2) 有界性:收敛数列必有界3) 子数列收敛:注意震荡数列并不是,一个数列收敛,则它的所有子数列都收敛。

4) 保号性:A x n n =∞→lim ,当A>0时,存在从某个N 开始,n x > 0.5) 有序性: n n y x ≤,则n n n n y x ∞→∞→≤lim lim 。

四则运算:1) b a y x n n n +=+∞→)(lim2) b a y x n n n ⋅=⋅∞→)(lim3) bay x n n n =∞→)(lim ,(b ≠0) 2、函数极限定义:εε<->>∃>∀⇔=∞→a x f X x X a x f x )(,0,0)(lim 时,当εδδε<-<-<>∃>∀⇔=→a x f x x a x f x x )(0,0,0)(lim 00,当性质:1) 唯一性,左极限等于右极限。

高等数学-——函数与极限.pdf

高等数学-——函数与极限.pdf

《高等数学》第一章-——函数与极限练习题(A)一、判断正误题(判断下列各题是否正确,正确的划√,错误的划×)(1){}{}{}(,)0U a x x a x a x a x a x a δδδδ=<−<=−<<∪<<+()(2)关系式221x y −=表示y 是x 的函数()(3)关系式{}{}max ,1min ,1y x x =+−表示y 是x 的函数()(4)关系式2arccos ,2y u u x ==+表示y 是x 的函数()(5)若()sgn f x x =,则21,0,()0,0.x f x x ≠⎧=⎨=⎩()(6)若2()ln ,()2ln ,f x x g x x ==则()()f x g x =.()(7)2sin y x =是周期为π的函数.()(8)()00000lim ()()lim ()()0x x f x x f x f x x f x Δ→Δ→+Δ=⇔+Δ−=.()(9)0y =是曲线21y x =的水平渐近线.()(10)()y f x =在0x 连续的充要条件是000()()()f x f x f x −+==.()(11)收敛数列的极限不唯一.()(12)lim ()().f x A f x A α=⇔=+(其中lim 0α=).()(13)212limn nn →+∞++⋅⋅⋅+=()(14)设()f x ,()g x 在(,)−∞+∞内有定义.若()f x 连续且()0f x ≠,()g x 有间断点,则()()g x f x 必有间断点()二、填空题(将正确答案填写在横线上)1.若(),(())1,xf x e f x x ϕ==−则()x ϕ=2.2arctan limn nn →+∞=3.212lim 10n n n →+∞⎛⎞+=⎜⎟⎝⎠4.0lim x x →=5.()()220lim 11sin x x x x x →⎡⎤++−+=⎣⎦6.221lim sin n n n →+∞⎛⎞=⎜⎟⎝⎠7.2lim 31nn n →+∞⎛⎞−=⎜⎟⎝⎠8.()3sin 2limtan x x x→=9.若lim ,n n x a →∞=则lim n n x →∞=10.若lim ,n n x a →∞=则2lim n n x →∞=11.()22limh x h x h→+−=12.231lim 1x x x →∞−=+13.331lim 1x x x →∞+=−三、选择题(将正确答案的序号填写在括号内)(1)设函数()f x 的定义域为D ,数集X D ⊂,则下列命题错误的是()A :若()f x 在X 上有界,则()f x 在X 上既有上界也有下界B :若()f x 在X 上有界,则()f x 在X 上也有界C :若()f x 在X 上有界,则1()f x 在X 上必无界D :若()f x 在X 上无界,则()f x 在X 上也无界(2)下列结论错误的是()A :sin y x =在定义域上有界B :tan y x =在定义域上有界C :arctan y x =在定义域上有界D :arccos y x =在定义域上有界(3)下列结论正确的是()A :arcsin y x =的定义域是(,)−∞+∞B :arctan y x =的值域是(,)−∞+∞C :cos y x =的定义域是(,)−∞+∞D :cot y arc x =的值域是(,22ππ−(4)若lim n n x a →+∞=,则下列结论错误的是()A :{}n x 必有界B :必有11limn nx a →∞=C :必有221lim lim n n n n x x a−→∞→∞==D :必有1000lim n n x a+→∞=(5)下列结论正确的是()A :若函数()f x 在点0x 处的左右极限存在,则0lim ()x x f x →一定存在B :若函数()f x 在点0x 处无定义,则0lim ()x x f x →一定不存在C :若0lim ()x x f x →不存在,则必有0lim ()x x f x →=∞D :0lim ()x x f x →存在的充要条件是函数()f x 在点0x 处的左右极限存在且相等E :若函数()f x 在点0x 处的左右极限存在但不相等,则01lim()x x f x →一定存在(6)若lim ()0,lim ()x x f x g x →∞→∞==∞,则下列结论错误的是()A :()lim ()()x f x g x →∞±不存在B :()lim ()()x f x g x →∞不一定存在C :lim[2()]x f x →∞一定存在D :()lim()x f x g x →∞不存在(7)下列结论正确的是()A:绝对值很小的数一定是无穷小B:至少有两个常数是无穷小C:常数不可能是无穷小D:在自变量的某一变化过程中,趋向0的函数是无穷小(8)下列结论正确的是()A :有界函数与无穷大的积不一定为无穷大B :无限个无穷小的和仍为无穷小C :两个无穷大的和(积及商)仍为无穷大D :无界函数一定是无穷大(9)下列等式不成立的是()A :1lim2n n n →+∞=B :1limln(1)n n →+∞=+C :lim 2n n →+∞=+∞D:lim1n →+∞−=(10)下列结论错误的是()A :单调有界数列必收敛B :单增有上界的数列必收敛C :单调数列必收敛D :单减有下界的数列必收敛(11)下列结论正确的是()A :当0x →时,1xe −是比2x 高阶的无穷小B :当1x →时,1x −与21x −是同阶的无穷小C :当n →+∞时,21n 是比1n低阶的无穷小D :当0x →时,若sin tan ax x ∼,则2a =(12)下列结论不正确的是()A :0x =是()xf x x=的跳跃间断点B :2x π=是()tan xf x x =的可去间断点C :()cot f x x =只有一个间断点D :0x =是1()sin f x x=的第二类间断点(13)下列结论不正确的是()A :若lim ,n n x a →+∞=则10lim n n x a+→+∞=B :01lim 1tan x x e x →−=C :若10n x n<≤,则lim 0n n x →+∞=D :123lim 121x x x x +→∞+⎛⎞=⎜⎟+⎝⎠(14)下列数列收敛的是()A :11,1,1,,(1),n +−− B :2,4,8,,2,nC :123,,,,,2341n n + D :233333,,,,,2222n⎛⎞⎛⎞⎛⎞⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠⎝⎠(15)下列数列发散的是()A :1sin2n n x n π=B :1(1)nn x n=−C :215n x n=+D :(1)nn x n =−(16)下列变量在给定变化过程中,不是无穷大量的是()A :lg ,(0)x x +→B :lg ,()x x →+∞C :21,(0)x x +→D :1,(0)xe x −−→(17)下列结论错误的是()A :0(,)x ∀∈−∞+∞,00lim sin sin x x x x →=B :2lim ln sin 0x x π→=C :0(1,1)x ∀∈−,0lim arccos arccos x x x x →=D :0lim sgn sgn x x x x →=四、计算题1.)lim arcsinx x →+∞−.2.2121lim()11x x x→−−−.3.3tan sin lim1x x x x e →−−. 4.()22lim 13tan cot xx x →+.5.1lim 1x x →−.五、证明题1.证明函数,()1sin ,x f x x x ⎧⎪=⎨⎪⎩>≤x x 在点0=x 处连续.2.证明2sin ,0(),0xx xf x a x x ⎧>⎪=⎨⎪+≤⎩在定义域内连续的充要条件是1a =.3.设()f x 在[0,1]上连续,且(0)0f =,(1)1f =,证明存在(0,1)ξ∈,使得()1f ξξ=−.4.证明222111lim 012n n n n n →∞⎛⎞++⋅⋅⋅+=⎜⎟+++⎝⎠.5.设()f x 在[0,2]上连续,且(0)(1)(2)3f f f ++=,求证:存在[0,2]ξ∈,使()1f ξ=.6.证明方程531x x −=在1与2之间至少存在一个实根.《高等数学》第一章---函数与极限练习题(B)一、判断正误题(判断下列各题是否正确,正确的划√,错误的划×)(1)2322(1,0)(3,4)x x x −−<⇔∈−∪()(2)以1为中心,2为半径的去心邻域为{}{}(1,2)1113U x x x x =−<<∪<<()(3)关系式2arcsin(3)y x =+表示y 是x 的函数()(4)关系式{}max ,1min{,5}y x x =+表示y 是x 的函数()(5)若函数()f x 的定义域为[1,4],则函数2()f x 的定义域为[1,2]()(6)若2(1)(1)f x x x −=−,则2()(1)f x x x =−()(7)函数1,0()0,01,0x x f x x x x −<⎧⎪==⎨⎪+>⎩是偶函数()(8)函数()cos 4f x x =的反函数1()arccos 4f x x−=()(9)若()()sgn ,f x g x x ==则()()f x g x =.()(10)sin 2tan 2xy x =+是周期为π的函数.()(11)函数lg y u x ==能构成复合函数y =的充分必要条件是[1,10]x ∈()(12)曲线211x y e−−=的水平渐近线是1y =()(13)若0lim ()x x f x →不存在,则必有00()()f x f x −+≠()(14)),0()0,0,0x a x f x x x a x +>⎧⎪==⎨⎪−<⎩在0x =连续的充要条件是0a =()(15)设()f x ,()g x 在(,)−∞+∞内有定义,()f x 为连续,且()0f x ≠,若()g x 有间断点,则222()()g x f x 必有间断点()(16)1x =是函数()2sgn(1)1y x =−+的可去间断点()(17)4x π=是2tan 21y x =−的无穷间断点()(18)lim ()1()1.f x f x α=⇔=+(其中lim 0α=)()(19)2080100(1)(100)lim 1(1)n n n n →∞−+=+()(20)222212lim 0n n n →+∞++⋅⋅⋅+=()二、填空题(将正确答案填写在横线上)1.若(),(())1,xf x e f x x ϕ==−则()x ϕ=2.24arctan(1)(sin 1)lim100n n n n →+∞−+=−3.417lim 100n n n →+∞⎛⎞+=⎜⎟⎝⎠4.()1lim 1sgn(1)x x x →−−=5.22301lim (3cos )2x x x x →⎡⎤++=⎢⎥+⎣⎦6.242lim sin n n n →+∞⎛⎞=⎜⎟⎝⎠7.24lim 101nn n →+∞⎛⎞−=⎜⎟⎝⎠8.()10050sin 4lim(tan 2)x x x →=9.若lim ,n n x a →+∞=则221lim n n n x x −→+∞⎡+⎤=⎣⎦10.225lim 2x x x →−=−11.()33limh x h x h→+−=12.20010001lim1x x x →∞−=+13.2lim ln sin x x π→=14.0x →=三、选择题(将正确答案的序号填写在括号内)(1)下列结论错误的是()A :由于函数()sin f x x =在[,]22ππ−上单调递增,因此()f x 的反函数1()f x −必存在且1()fx −的定义域为[1,1]−,值域为[,]22ππ−B :在同一平面坐标系中,函数()y f x =与其反函数1()y f x −=的图形关于直线y x =对称C :由于函数()tan f x x =在,22ππ⎛⎞−⎜⎟⎝⎠上单调递增且连续,因此()f x 的反函数1()f x −在(),−∞+∞上也是单调递增且连续.D :函数()cot f x arc x =的定义域为(,)−∞+∞,值域为,22ππ⎛⎞−⎜⎟⎝⎠(2)下列数列收敛的是()A ::1,1,1,1,1,1,n x −−−B ::0,1,2,3,4,5,n xC ::0,ln 2,ln 3,ln 4,ln 5,n xD :111:0,,0,,0,,248n x(3)下列数列发散的是()A :(1)1n n ⎧⎫−+⎨⎬⎩⎭B :3110n⎧⎫+⎨⎬⎩⎭C :{}(2)n−D :1ln(1)n n ⎧⎫⎨⎬+⎩⎭(4)下列结论错误的是()A :单调有界数列必收敛B :发散的数列必无界C :数列收敛的充要条件是任意子列都收敛于同一个数D :收敛的数列必有界(5)若lim ()f x 与lim ()g x 都不存在,则()A :[]lim ()()f x g x +与[]lim ()()f x g x 都不存在B :[]lim ()()f x g x +与[]lim ()()f x g x 一定都存在C :[]lim ()()f x g x −与()lim ()f x g x ⎡⎤⎢⎥⎣⎦都不存在.D :[]lim ()()f x g x ±、[]lim ()()f x g x 与()lim ()f x g x ⎡⎤⎢⎥⎣⎦可能存在,也可能不存在(6)下列结论正确的是()A :若0lim ()lim ()x x x x f x g x →→>,则必有()()f x g x >B :若()()f x g x >,则必有0lim ()lim ()x x x x f x g x →→>C :若0lim (),x x f x A →=则()f x 必有界D :0lim ()x x f x A →=的充要条件是对任意数列00,,n n x x y x →→有lim ()lim ()n n n n x x y x f x f y A→→==(7)下列结论正确的是()A :若数列n x 无界,则数列n x 一定发散B :若lim 0,lim 1,n n n n a b →∞→∞==则lim n n nba →∞一定存在C :若lim n n x a →+∞=,则必有lim n n x a→+∞=D :若221lim lim n n n n x x a −→+∞→+∞==,则lim n n x →+∞一定不存在(8)当x →∞时,下列变量中不是无穷小量的是()A :3211x x x −++BC :221(1)sin1x x x−−D :2211sin1xx x −−(9)下列变量在给定的变化过程中为无穷大量的是()A :41sin(0)x x x→B :21sin (0)x x x →C :cos ()x x x →∞D :1cos (0)x x x→(10)当0x →时,下列变量中与2tan x 为等价无穷小量的是()AB :xC :2xD :3x(11)设当x →0时,tan sin x x −是比sin narc x 高阶的无穷小,则正整数n 等于()A :1或2B :4C :5D :3.(12)设()1,()ln(1),,mx n x ex x m n N αβ+=−=+∈,则当x →0时,下列结论正确的是()A :当m n >时,()x α必是()x β等价的无穷小B :当m n =时,()x α必是()x β高阶的无穷小C :当m n <时,()x α是()x β的低阶无穷小D :当m n <时,()x α是()x β的同阶无穷小(13)设若,,ααββ′′∼∼则下列结论可能不正确的是()A :αβαβ′′∼B :αβαβ′′±±∼C :αβαβ′′∼D :(0)C C C αα′≠∼(14)()xf x x=在0x =有()A :跳跃间断点B :可去间断点C :震荡间断点.D :无穷间断点(15)函数1(3)ln y x x=−的间断点有()A :1个;B :2个C :3个D :4个(16)当x →∞时,若2111ax bx c x ∼++−,则,,a b c 的值一定为()A :0,1,1a b c ===−B :0,1,a b c ==为任意常数C :0,,a b c =为任意常数D :,,a b c 为任意常数(17)下列极限中结果等于e 的是()A :sin 0sin 2lim 1xxx x x →⎛⎞+⎜⎟⎝⎠B :sin sin lim 1xxx x x →∞⎛⎞−⎜⎟⎝⎠C :sin sin lim 1x xx x x −→∞⎛⎞−⎜⎟⎝⎠D :()2cot 0lim 1tan xx x →+(18)函数111()01x e x f x x −−⎧⎪≠=⎨⎪=⎩在点1x =处()A :连续B :不连续,但右连续或有右极限C :不连续,但左连续或有左极限D :左、右都不连续(19)下列结论正确的是()A :若函数()f x 在(,)a b 内连续,则()f x 在(,)a b 内一定有界B :若函数()f x 在[,]a b 内有间断点,则()f x 在[,]a b 上一定没有最值C :若函数()u x ϕ=在点0x x =处连续,且00()x u ϕ=,而函数()y f u =在点0u u =处连续,则复合函数[()]y f x ϕ=在点0x x =处也是连续的D :一切初等函数在其定义域内都是连续的四、计算题1.设()0.10x e x f x x ⎧≤=⎨>⎩求)(x f 在0x =的极限2.求lim x →+∞3.求3211lim()11x x x x →−−−4.求)21sin limtan x arc xx →− 5.求lim ln(1)ln(1)n n nn n →∞⎛⎞−⎜⎟−+⎝⎠五、讨论题1.讨论2sin ,0;()1,0.xx x f x x x ⎧≠⎪=⎨⎪+=⎩在定义域内的连续性2.讨论a 取何值可使1sin arccos ,0;()0,0;ln(1),0.x x x f x x x a x ⎧>⎪⎪==⎨⎪−+<⎪⎩在定义域内连续.六、证明题1.设()f x 在[0,1]上连续,且(1)0f >,证明存在(0,1)ξ∈,使()1f ξξξ=−2.证明lim 1n →∞⎛⎞+⋅⋅⋅+=3.设()f x 在[0,2]上连续,且(0)(1)(2)3f f f ++=,求证:存在[0,2]ξ∈,使()1f ξ=4.证明曲线423710y x x x =−+−在1x =与2x =之间至少存在与x 轴有一个交点5.证明0p >时,函数1sin ,0()0,px x f x xx ⎧≠⎪=⎨⎪=⎩0>≤x x 在点0=x 处连续.6.证明:0lim ()()x x f x A f x A α→=⇔=+,其中0lim 0x x α→=.《高等数学》第一章-——函数与极限自测题(A)题号一二三四五六总分得分一.判断题(判断下列各题是否正确,正确的划√,错误的划×。

高等数学中的极限与函数

高等数学中的极限与函数

高等数学中的极限与函数引言在高等数学的学习过程中,极限与函数是非常重要的概念。

极限是数学中的基础概念之一,而函数则是极限的应用之一。

本教案将重点讲解高等数学中的极限与函数的概念、性质以及应用。

一、极限的概念与性质1.1 极限的定义极限是描述数列或函数趋向于某个确定值的概念。

在数学中,我们用极限来描述数列或函数在某个点或无穷远处的行为。

极限的定义可以分为数列极限和函数极限两种。

1.2 极限的性质极限具有一些重要的性质,包括保号性、局部有界性、唯一性等。

这些性质在数学推导和证明中起到了重要的作用,帮助我们更好地理解和应用极限的概念。

二、函数的极限与连续性2.1 函数的极限函数的极限是指函数在某个点处的极限。

通过函数的极限,我们可以描述函数在某个点的趋势和特性。

函数的极限与数列的极限有着密切的联系,是数学中的重要概念之一。

2.2 函数的连续性函数的连续性是指函数在某个区间上的连续性。

连续函数是数学中非常重要的一类函数,它在实际问题中有着广泛的应用。

函数的连续性与函数的极限密切相关,通过函数的极限可以判断函数的连续性。

三、极限的应用3.1 极限的应用于导数导数是函数在某点处的变化率,是极限的一种应用。

通过求导数,我们可以求出函数的斜率、切线以及函数的最值等重要信息。

导数在物理、经济等领域有着广泛的应用。

3.2 极限的应用于积分积分是函数的反导数,是极限的另一种应用。

通过求积分,我们可以计算曲线下的面积、函数的累积变化等重要信息。

积分在物理、统计学等领域也有着广泛的应用。

结语极限与函数是高等数学中的重要概念,对于学习和应用数学都具有重要意义。

通过深入理解极限与函数的概念、性质以及应用,我们可以更好地掌握高等数学的基本原理和方法。

希望本教案能够帮助学生们更好地理解和应用极限与函数的知识。

高等数学函数与极限知识点总结

高等数学函数与极限知识点总结

高等数学函数与极限知识点总结高等数学是数学的重要分支之一,其中包括了函数与极限的内容。

函数与极限是高等数学的基础,也是数学建模和应用的重要工具。

本文将从函数的定义、性质和分类、极限的定义和性质等方面进行总结。

1. 函数的定义函数是一种映射关系,它将一个集合中的每个元素唯一地对应到另一个集合中的元素。

函数可以用数学表达式、图像或图表等形式来表示。

在高等数学中,常见的函数有多项式函数、指数函数、对数函数、三角函数等。

2. 函数的性质和分类函数具有很多性质,其中包括定义域、值域、奇偶性、周期性等。

定义域是函数自变量的取值范围,而值域是函数因变量的取值范围。

函数的奇偶性是指函数图像关于y轴对称或关于原点对称的性质。

周期性是指函数在一定范围内的取值具有重复性。

根据函数的性质和表达式的特点,可以将函数分为多项式函数、有理函数、指数函数、对数函数、三角函数等不同类型。

多项式函数是由常数和自变量的幂组成的函数,有理函数是两个多项式函数的比值,指数函数是以常数e为底的幂函数,对数函数是指数函数的反函数,三角函数是以角度或弧度为自变量的函数。

3. 极限的定义和性质极限是函数与自变量趋于某一值时函数取值的稳定性。

当自变量无限接近某一值时,函数的取值也趋于某一值,这个值就是函数的极限。

极限可以用数列、函数或图像的趋势来描述。

函数的极限有以下性质:- 唯一性:函数的极限只有一个唯一值。

- 保序性:如果函数在某一点左侧的极限小于右侧的极限,则函数在该点不存在极限。

- 有界性:如果函数在某一点的左侧和右侧都有极限,则函数在该点存在极限。

- 代数运算性质:如果函数的极限存在,则函数的和、差、积、商的极限也存在。

4. 极限的计算方法极限的计算方法有很多种,常见的方法包括代入法、夹逼法、无穷小量法、洛必达法则等。

- 代入法是将自变量的值代入函数中,计算函数在该点的取值。

- 夹逼法是通过找到两个函数,一个上面界和一个下面界,夹逼自变量的值,确定函数的极限。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等数学——函数与极限高等数学是现代数学的一个重要分支,它主要研究函数、极限、导数、积分等概念及其性质和应用。

其中,函数和极限是高等数学中最基础的概念之一,它们在数学的各个领域都有着广泛的应用。

一、函数的概念与性质
函数是数学中最重要的概念之一,它描述了一种特殊的对应关系,将一个数集中的每个元素唯一地对应到另一个数集中的元素。

函数通常表示为f(x),其中x 是自变量,f(x)是因变量。

函数可以是连续的,也可以是离散的。

函数的性质包括单调性、奇偶性、周期性、有界性等。

单调性是指函数在某一区间内随自变量的增大而增大或减小的性质;奇偶性是指函数满足f(-x)=f(x)或f(-x)=-f(x)的性质;周期性是指函数满足f(x+T)=f(x)的性质,其中T是函数的周期;有界性是指函数在某一区间内的取值范围是有界的。

二、极限的概念与性质
极限是高等数学中另一个重要的概念,它描述了一个数列或函数在某一点或无穷远处的变化趋势。

极限通常用符号lim表示,例如:
lim x->a f(x) = L
表示当x趋近于a时,f(x)的极限为L。

极限的性质包括唯一性、局部保号性、迫敛性等。

唯一性是指如果一个数列或函数在某一点或无穷远处有极限,那么这个极限是唯一的;局部保号性是指如果一个数列或函数在某一点或无穷远处的极限为正(或负),那么在这一点或无穷附近的数列或函数的值也保持正(或负);迫敛性是指如果一个数列或函数在某一点或无穷远处的极限存在,且有两个子数列或子函数的极限也存在,且这两个子数列或子函数的极限相等,那么这个数列或函数在该点或无穷远处的极限也存在,且等于这两个子数列或子函数的极限。

三、函数与极限的关系
函数和极限是高等数学中最基础的概念之一,它们之间有着密切的联系。

首先,函数的极限可以用来研究函数的性质,例如函数的连续性、可导性等。

其次,函数的极限可以用来计算函数的值,例如在计算定积分时就需要用到函数的极限。

此外,函数的极限还可以用来解决一些实际问题,例如在物理学和经济学中就需要用到函数的极限来描述某些物理量或经济量的变化趋势。

四、总结
高等数学中的函数和极限是两个非常重要的概念,它们在数学和其他领域中都有着广泛的应用。

了解函数和极限的概念和性质以及它们之间的关系,可以帮助我们更好地理解和应用这些概念,并为后续的学习和研究打下坚实的基础。

相关文档
最新文档