人教版七下数学第21讲人教版七年级数学下代数新定义专题(学生版)
北师大版七年级数学上册专题2.5 新定义问题(压轴题专项讲练)(学生版)

专题2.5 新定义问题【典例1】小聪是一个聪明而又富有想象力的孩子.学习了“有理数的乘方”后,他就琢磨着使用“乘方”这一数学知识,脑洞大开地定义出“有理数的除方”概念.于是规定:若干个相同有理数(均不能为0)的除法运算叫做除方,如5÷5÷5,(﹣2)÷(﹣2)÷(﹣2)÷(﹣2)等,类比有理数的乘方.小聪把5÷5÷5记作f (3,5),(﹣2)÷(﹣2)÷(﹣2)÷(﹣2)记作f (4,﹣2).(1)直接写出计算结果,f (4,12)= ,f (5,3)= ;(2)关于“有理数的除方”下列说法正确的是 .(填序号) ①f (6,3)=f (3,6); ②f (2,a )=1(a ≠0);③对于任何正整数n ,都有f (n ,﹣1)=1; ④对于任何正整数n ,都有f (2n ,a )<0(a <0).(3)小明深入思考后发现:“除方”运算能够转化成乘方运算,且结果可以写成幂的形式,请推导出“除方”的运算公式f (n ,a )(n 为正整数,a ≠0,n ≥2),要求写出推导过程将结果写成幂的形式;(结果用含a ,n 的式子表示)(4)请利用(3)问的推导公式计算:f (5,3)×f (4,13)×f (5,﹣2)×f (6,12).【思路点拨】(1)根据题意计算即可;(2)①分别计算f (6,3)和f (3,6)的结果进行比较即可; ②根据题意计算即可判断;③分为n 为偶数和奇数两种情况分别计算即可判断; ④2n 为偶数,偶数个a 相除,结果应为正;(3)推导f (n ,a )(n 为正整数,a ≠0,n ≥2),按照题目中的做法推到即可; (4)按照上题的推导式可以将算式中的每一部分表示出来再计算. 【解题过程】解:(1)f (4,12)=12÷12÷12÷12=4,f (5,3)=3÷3÷3÷3÷3=127;故答案为:4;127.(2)①f (6,3)=3÷3÷3÷3÷3÷3=181,f (3,6)=6÷6÷6=16, ∴f (6,3)≠f (3,6),故错误;②f (2,a )=a ÷a =1(a ≠0),故正确;③对于任何正整数n ,当n 为奇数时,f (n ,﹣1)=﹣1;当n 为偶数时,f (n ,﹣1)=1.故错误;④对于任何正整数n ,2n 为偶数,所以都有f (2n ,a )>0,而不是f (2n ,a )<0(a <0),故错误; 故答案为:②.(3)公式f (n ,a )=a ÷a ÷a ÷a ÷…÷a ÷a =1÷(a n ﹣2)=(1a)n ﹣2(n 为正整数,a ≠0,n ≥2).(4)f (5,3)×f (4,13)×f (5,﹣2)×f (6,12)=127×9×(−18)×16 =−23.1.(2022•长安区模拟)用“☆”定义一种新运算:对于任何不为零的整数a 和b ,规定a ☆b =a b ﹣b 2.如(﹣1)☆2=(﹣1)2﹣22=﹣3,则(﹣2)☆(﹣1)的值为( ) A .﹣3B .1C .32D .−322.(2023秋•东港区期末)已知a 、b 皆为正有理数,定义运算符号为※:当a >b 时,a ※b =2a ;当a <b 时,a ※b =2b ﹣a ,则3※2﹣(﹣2※3)等于( ) A .﹣2B .5C .﹣6D .103.(2022•武威模拟)用“*”定义新运算,对于任意有理数a 、b ,都有a *b =b 3﹣1,则12*[3*(﹣1)]的值为( ) A .﹣1B .﹣9C .−12D .04.(2023秋•洪山区期末)定义:如果a 4=N (a >0,且a ≠1),那么x 叫做以a 为底N 的对数,记作x =log a N .例如:因为72=49,所以log 749=2;因为53=125,所以log 5125=3.则下列说法中正确的有( )个.①log 66=36;②log 381=4;③若log 4(a +14)=4,则a =50;④log 2128=log 216+log 28; A .4B .3C .2D .15.(2023秋•顺城区期末)观察下列两个等式:1−23=2×1×23−1,2−35=2×2×35−1,给出定义如下:我们称使等式a ﹣b =2ab ﹣1成立的一对有理数a ,b 为“同心有理数对”,记为(a ,b ),如:数对(1,23),(2,35)都是“同心有理数对”下列数对是“同心有理数对”的是( )A .(﹣3,47)B .(4,49)C .(﹣5,611) D .(6,713)6.(2023秋•旌阳区期末)定义一种对正整数n 的“F ”运算:①当n 为奇数时,结果为3n +5;②当n 为偶数时,结果为n 2k;(其中k 是使n2k为奇数的正整数),并且运算可以重复进行,例如,取n =26.则:若n =49,则第2021次“F ”运算的结果是( ) A .68B .78C .88D .987.(2023秋•大连月考)我们对任意四个有理数a ,b ,c ,d 定义一种新的运算:|abcd|=ad ﹣bc .则|−4−231|的值为 .8.(2023秋•郧西县月考)我们定义一种新运算,规定:图表示a ﹣b +c ,图形表示﹣x +y ﹣z ,则+的值为 .9.(2023秋•青浦区期中)若定义新的运算符号“*”为a *b =a+1b ,则(13*12)*2= . 10.(2023秋•西城区校级期中)用“△”定义新运算:对于任意有理数a 、b ,当a ≤b 时,都有a △b =a 2b ;当a >b 时,都有a △b =ab 2,那么,2△6= ;(−23)△(−3)= .11.(2023秋•绵阳期中)定义一种新的运算:x ⨂y ={x 2−2y ,x >y1,x =y−2xy ,x <y,例如2⨂1=22﹣2×1=2,2⨂3=﹣2×2×3=﹣12,1⨂1=1.计算:[(﹣3)⨂(﹣1)]+[4⨂(﹣2)]﹣(2021⨂2021)= .12.(2023•越秀区校级开学)定义两种新运算,观察下列式子:(1)x Θy =4x +y ,例如,1Θ3=4×1+3=7;3Θ(﹣1)=4×3+(﹣1)=11; (2)[x ]表示不超过x 的最大整数,例如,[2.2]=2;[﹣3.24]=﹣4; 根据以上规则,计算[1Θ(−12)]+[(−2)Θ194]= .13.(2023秋•西城区校级期中)用“☆”定义一种新运算:对于任意有理数a和b,规定a☆b= a+b+|a−b|2.(1)计算:(﹣6)☆5=.(2)从﹣9,﹣8,﹣7,﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5,6,7,8,9中任选两个有理数做a,b(a≠b)的值,并计算a☆b,那么所有运算结果中的最大值是.14.(2023秋•封丘县期末)对于有理数a,b,定义一种新运算“⨂”,规定a⨂b=|a+b|﹣|a ﹣b|.如3⨂5=|3+5|﹣|3﹣5|=8﹣2=6.(1)计算3⨂(﹣5)的值.(2)若(a+2)2+|b﹣1|=0,求a⨂b.15.(2023秋•茂名期中)已知a、b均为有理数,现定义一种新的运算,规定:a⨂b=a2+ab ﹣5,例如1⨂1=12+1×1﹣5.求:(1)(﹣3)⨂6的值;(2)[2⨂(−32)]﹣[(﹣5)⨂9]的值.16.(2023秋•沁阳市期中)同学们刚学完有理数相关运算后,老师又定义了一种新的“※(加乘)”运算,以下算式就是按照“※(加乘)”运算法则进行的运算:(+3)※(+4)=+7;(﹣6)※(﹣3)=+9;(+4)※(﹣3)=﹣7;(﹣1)※(+1)=﹣2;0※(+8)=+8;(﹣9)※0=+9;0※0=0.(1)综合以上情形,有如下有理数“※(加乘)”运算法则:两数进行“※(加乘)”运算,同号,异号,并把绝对值;特别地,一个数与0进行“※(加乘)”运算,都得.(2)计算:(﹣7)※(﹣4)=.(3)若(1﹣a)※(b﹣3)=0.计算:1a×b +1(a+2)×(b+2)+1(a+4)×(b+4)+1(a+6)×(b+6)+1(a+8)×(b+8)的值.17.(2023秋•晋江市期中)给出如下定义:如果两个不相等的有理数a ,b 满足等式a ﹣b =ab .那么称a ,b 是“关联有理数对”,记作(a ,b ).如:因为3−34=124−34=94,3×34=94.所以数对(3,34)是“关联有理数对”.(1)在数对①(1,12)、②(﹣1,0)、③(52,57)中,是“关联有理数对”的是 (只填序号);(2)若(m ,n )是“关联有理数对”,则(﹣m ,﹣n ) “关联有理数对”(填“是”或“不是”);(3)如果两个有理数是一对“关联有理数对”,其中一个有理数是5,求另一个有理数.18.(2022春•邗江区校级期中)阅读材料:如果10b =n ,那么b 为n 的“劳格数”,记为b =d (n ).由定义可知:10b =n 与b =d (n )表示b 、n 两个量之间的同一关系.如:102=100,则d (100)=2. 理解运用:(1)根据“劳格数”的定义,填空:d (10﹣3)= ,d (1)= ;(2)“劳格数”有如下运算性质:若m 、n 为正数,则d (mn )=d (m )+d (n ),d (mn )=d (m )﹣d (n );根据运算性质,填空:d(a 3)d(a)= ;(a 为正数)(3)若d (2)=0.3010,计算:d (4)、d (5);(4)若d (2)=2m +n ,d (4)=3m +2n +p ,d (8)=6m +2n +p ,请证明m =n =p .19.(2022春•衡阳县期末)定义:对于确定位置的三个数:a ,b ,c ,计算a ﹣b ,a−c 2,b−c 3,将这三个数的最小值称为a ,b ,c 的“分差”,例如,对于1,﹣2,3,因为1﹣(﹣2)=3,1−32=−1,−2−33=−53,所以1,﹣2,3的“分差”为−53.(1)﹣2,﹣4,1的“分差”为 ;(2)调整“﹣2,﹣4,1”这三个数的位置,得到不同的“分差”,那么这些不同“分差”中的最大值是 ;(3)调整﹣1,6,x 这三个数的位置,得到不同的“分差”,若其中的一个“分差”为2,求x 的值.20.(2022春•房山区期中)现将偶数个互不相等的有理数分成个数相同的两排,需满足第一排中的数越来越大,第二排中的数越来越小.例如,轩轩将“1,2,3,4”进行如下分组:第一列第二列第一排 1 2第二排4 3然后把每列两个数的差的绝对值进行相加,定义为该分组方式的“M值”.例如,以上分组方式的“M值”为M=|1﹣4|+|2﹣3|=4.(1)另写出“1,2,3,4”的一种分组方式,并计算相应的“M值”;(2)将4个自然数“a,6,7,8”按照题目要求分为两排,使其“M值”为6,则a的值为.(3)已知有理数c,d满足c+d=2,且c<d.将6个有理数“c,d,﹣5,﹣2,2,4”按照题目要求分为两排,使其“M值”为18,求d的值.。
2022~2023学年北京市七年级第一学期期末数学试卷分类汇编——新定义(学生版)

2022~2023学年北京市七年级第一学期期末数学试卷分类汇编——新定义一.数轴(共3小题)1.(2022秋•延庆区期末)已知数轴上两点A,B,其中A表示的数为﹣3,B表示的数为2.给出如下定义:若在数轴上存在一点C,使得AC+BC=m,则称点C叫做点A,B的“m 和距离点”.如图,若点C表示的数为0,有AC+BC=5,则称点C为点A,B的“5和距离点”.(1)如果点N为点A,B的“m和距离点”,且点N在数轴上表示的数为﹣4,那么m 的值是;(2)如果点D是数轴上点A,B的“6和距离点”,那么点D表示的数为;(3)如果点E在数轴上(不与A,B重合),满足BE=AE,且此时点E为点A,B的“m和距离点”,求m的值.2.(2022秋•丰台区期末)在数轴上,点O表示的数为0,点M表示的数为m(m≠0).给出如下定义:对于该数轴上的一点P与线段OM上一点Q,如果线段PQ的长度有最大值,那么称这个最大值为点P与线段OM的“闭距离”.如图1,若m=﹣1,点P表示的数为3,当点Q与点M重合时,线段PQ的长最大,值是4,则点P与线段OM的“闭距离”为4.(1)如图2,在该数轴上,点A表示的数为﹣1,点B表示的数为2.①当m=1时,点A与线段OM的“闭距离”为;②若点B与线段OM的“闭距离”为3,求m的值;(2)在该数轴上,点C表示的数为﹣m,点D表示的数为﹣m+2,若线段CD上存在点G,使得点G与线段OM的“闭距离”为4,直接写出m的最大值与最小值.3.(2022秋•石景山区期末)对于数轴上的点P,Q,给出如下定义:记点P到原点的距离为m(m≠0),点Q到P的距离为n,如果n=m+2,那么称点Q是点P的关联点.(1)点A表示的数是1.若点B1,B2,B3表示的数分别是﹣2,2,4,则点B1,B2,B3中,是点A关联点的是;(2)若点C,D位于原点两侧,D是点C的关联点,则点D表示的数是;(3)点E表示的数为a,点F表示的数为3a﹣5.若点F是点E的关联点,则a的值是.二.有理数的混合运算(共3小题)4.(2022秋•西城区期末)小东对有理数a,b定义了一种新的运算,叫做“乘减法”,记作“a⊗b”.他写出了一些按照“乘减法”运算的算式:(+3)⊗(+2)=+1,(+11)⊗(﹣3)=﹣8,(﹣2)⊗(+5)=﹣3,(﹣6)⊗(﹣1)=+5,()⊗(+1)=,(﹣4)⊗(+0.5)=﹣3.5,(﹣8)⊗(﹣8)=0,(+2.4)⊗(﹣2.4)=0,(+23)⊗0=+23,0⊗(﹣)=+.小玲看了这些算式后说:“我明白你定义的‘乘减法’法则了.”她将法则整理出来给小东看,小东说:“你的理解完全正确.”(1)请将下面小玲整理的“乘减法”法则补充完整:绝对值不相等的两数相“乘减”,同号得,异号得,并;绝对值相等的两数相“乘减”,都得0;一个数与0相“乘减”,或0与一个数相“乘减”,都得这个数的绝对值.(2)若括号的作用与它在有理数运算中的作用相同,①用“乘减法”计算:[(+3)⊗(﹣2)]⊗[(﹣9)⊗0]=;②小东发现交换律在有理数的“乘减法”中仍然成立,即a⊗b=b⊗a.但是结合律在有理数的“乘减法”中不一定成立,请你举一个例子说明(a⊗b)⊗c=a⊗(b⊗c)不成立.5.(2022秋•朝阳区期末)阅读材料,并回答问题对于某种满足乘法交换律的运算,如果存在一个确定的有理数n,使得任意有理数a和它进行这种运算后的结果都等于a本身,那么n叫做这种运算下的单位元.如果两个有理数进行这种运算后的结果等于单位元,那么这两个有理数互为逆元.由上述材料可知:(1)有理数在加法运算下的单位元是,在乘法运算下的单位元是;在加法运算下,3的逆元是,在乘法运算下,某个数没有逆元,这个数是;(2)在有理数范围内,我们定义一种新的运算:x*y=x+y﹣xy,例如3*2=3+2﹣3×2=﹣1.①求在这种新的运算下的单位元;②在这种新的运算下,求任意有理数m的逆元(用含m的代数式表示).6.(2022秋•顺义区期末)如图表示3×3的数表:我们规定:a*b表示数表中第a行第b列的数.例如:数表中第2行第1列的数为4,记作2*1=4.请根据以上规定回答下列问题:(1)3*2=.(2)若3*3=1*2,则a=.(3)若2*3=(2x+1)*1,求x的值.三.列代数式(共1小题)7.(2022秋•大兴区期末)如图,点A,B,C是同一直线上互不重合的三个点,在线段AB,BC,CA中,若有一条线段的长度恰好是另一条线段长度的一半,则称A,B,C三点存在“半分关系”.(1)当点C是线段AB的中点时,A,B,C三点(填“存在”或“不存在”)“半分关系”;(2)已知AB=6cm,点C在线段AB上,若A,B,C三点存在“半分关系”,则AC的长为cm;(3)已知点D,O,E是数轴上互不重合的三个点,点O为原点,点D表示的数是t(t 是正数),且D,O,E三点存在“半分关系”,直接写出点E表示的数的最大值与最小值的差(用含t的式子表示).四.规律型:数字的变化类(共1小题)8.(2022秋•海淀区期末)对于由若干不相等的整数组成的数组P和有理数k给出如下定义:如果在数轴上存在一条长为1个单位长度的线段AB,使得将数组P中的每一个数乘以k 之后,计算的结果都能够用线段上的某个点来表示,就称k为数组P的收纳系数.例如,对于数组P:1,2,3,因为:=,=,,取A为原点,B为表示数1的点,那么这三个数都可以用线段AB上的某个点来表示,可以判断是P的收纳系数.已知k是数组P的收纳系数,此时线段AB的端点A,B表示的数分别为a,b(a<b).(1)对数组P:1,2,﹣3,在1,,这三个数中,k可能是;(2)对数组P:1,2,x,若k的最大值为,求x的值;(3)已知100个连续整数中第一个整数为x,从中选择n个数,组成数组P.①当x=﹣80,且a=3时,直接写出n的最大值;②当n=100时,直接写出k的最大值和相应的|a+b|的最小值.五.一元一次方程的解(共1小题)9.(2022秋•平谷区期末)如果两个方程的解相差k,且k为正整数,则称解较大的方程为另一个方程的“k—后移方程”.例如:方程x−3=0的解是x=3,方程x−1=0的解是x=1.所以:方程x−3=0是方程x−1=0的“2—后移方程”.(1)判断方程2x﹣3=0是否为方程2x﹣1=0的k—后移方程(填“是”或“否”);(2)若关于x的方程2x+m+n=0是关于x的方程2x+m=0的“2—后移方程”,求n的值;(3)当a≠0时,如果方程ax+b=1是方程ax+c=1的“3—后移方程”求代数式6a+2b ﹣2(c+3)的值.六.一元一次方程的应用(共3小题)10.(2022秋•东城区期末)已知数轴上两点A,B对应的数分别为﹣2,4,点P为数轴上一动点,其对应的数为x p.(1)若点P为线段AB的中点,则点P对应的数x p=;(2)点P在移动的过程中,其到点A、点B的距离之和为8,求此时点P对应的数x p 的值;(3)对于数轴上的三点,给出如下定义:若当其中一个点与其他两个点的距离恰好满足2倍关系时,则称该点是其他两个点的“2倍点”.如图,原点O是点A,B的2倍点.现在,点A、点B分别以每秒4个单位长度和每秒1个单位长度的速度同时向右运动,同时点P以每秒3个单位长度的速度从表示数5的点向左运动.设出发t秒后,点P恰好是点A,B的“2倍点”,请直接写出此时的t值.11.(2022秋•怀柔区期末)阅读理解:若数轴上点A,B,C所表示的数分别是a,b,c,规定A,C两点之间的距离可表示为两点所表示的数的差的绝对值,如AC=|c﹣a|(或AC=|a﹣c|).若AC=2BC,即|c﹣a|=2|c﹣b|,我们称点C是[A,B]的“2倍关联点”.若BC=2AC,即|c﹣b|=2|c﹣a|,我们称点C是[B,A]的“2倍关联点”.例如:在图1中,点A表示的数为﹣2,点B表示的数为4.点C表示的数为2,因为AC =|2﹣(﹣2)|=4,CB=|4﹣2|=2,所以AC=2BC,我们称点C是[A,B]的“2倍关联点”;又如,点D表示的数0,因为AD=|0﹣(﹣2)|=2,DB=|4﹣0|=4,所以DB=2AD,我们称点D是[B,A]的“2倍关联点”.(1)若M,N为数轴上两点,点M所表示的数为﹣3,点N所表示的数为6.①在数﹣3和6之间,数所表示的点是[M,N]的“2倍关联点”;②在数轴上,数所表示的点是[N,M]的“2倍关联点”;(2)如图2,A,B为数轴上两点,点A所表示的数为﹣30,点B所表示的数为50.现有一只电子蚂蚁P从点B出发,以5个单位每秒的速度向左运动,到达点A停止,运动时间为t秒;同时另一只电子蚂蚁Q从A点的位置开始,以3个单位每秒的速度向右运动,并与P同时停止.若P是[A,Q]的“2倍关联点”,求t的值;(3)在(2)的条件下,若P,A,B中恰有一个点为其余两个点的“2倍关联点”,直接写出t的值.12.(2022秋•通州区期末)已知:点A、B、P为数轴上三点,我们规定:点P到点A的距离是点P到点B的距离的k倍,则称P是[A,B]的“k倍点”,记作:P[A,B]=k.例如:若点P表示的数为0,点A表示的数为﹣2,点B表示的数为1,则P是[A,B]的“2倍点”,记作:P[A,B]=2.(1)如图,A、B、P为数轴上三点,回答下面问题:①P[B,A]=;②若点C在数轴上且C[A,B]=1,则点C表示的数为;③点D是数轴上一点,且D[A,B]=2,求点D所表示的数.(2)数轴上,点E表示的数为﹣10,点F表示的数为50,从某时刻开始,若点M从原点O出发向右在数轴上做匀速直线运动,且M的速度为5单位/秒,设运动时间为t秒(t >0)当M[E,F]=3时,请直接写出t的值.七.角的计算(共1小题)13.(2022秋•昌平区期末)给出如下定义:如果∠AOC+∠BOC=90°,且∠AOC=k∠BOC (k为正整数),那么称∠AOC是∠BOC的“倍锐角”.(1)下列三个条件中,能判断∠AOC是∠BOC的“倍锐角”的是(填写序号);①∠BOC=15°;②∠AOC=70°;③OC是∠AOB的角平分线;(2)如图1,当∠BOC=30°时,在图中画出∠BOC的一个“倍锐角”∠AOC;(3)如图2,当∠BOC=60°时,射线OB绕点O旋转,每次旋转10°,可得它的“倍锐角”∠AOC=°;(4)当∠BOC=m°且存在它的“倍锐角”∠AOC时,则∠AOB=°.。
专题30代数中的新定义问题-挑战2023年中考数学压轴题之学霸秘笈大揭秘(学生版)

挑战2023年中考数学压轴题之学霸秘笈大揭秘(全国通用)专题30代数中的新定义问题【例1】(2022•重庆)对于一个各数位上的数字均不为0的三位自然数N ,若N 能被它的各数位上的数字之和m 整除,则称N 是m 的“和倍数”.例如:∵247÷(2+4+7)=247÷13=19,∴247是13的“和倍数”.又如:∵214÷(2+1+4)=214÷7=30……4,∴214不是“和倍数”.(1)判断357,441是否是“和倍数”?说明理由;(2)三位数A 是12的“和倍数”,a ,b ,c 分别是数A 其中一个数位上的数字,且a >b >c .在a ,b ,c 中任选两个组成两位数,其中最大的两位数记为F (A ),最小的两位数记为G (A ),若F(A)+G(A)16为整数,求出满足条件的所有数A .【例2】(2022秋•西城区校级期中)将n 个0或1排列在一起组成了一个数组,记为A =(t 1,t 2,…t n ),其中,t 1,t 2,…,t n 都取0或1,称A 是一个n 元完美数组(n ≥2且n 为整数).例如:(0,1),(1,1)都是2元完美数组,(0,0,1,1),(1,0,0,1)都是4元完美数组,但(3,2)不是任何完美数组.定义以下两个新运算:新运算1:对于x 和y ,x *y =(x +y )﹣|x ﹣y |,新运算2:对于任意两个n 元完美数组M =(x 1,x 2,…,x n )和N =(y 1,y 2,…,y n ),M ⊗N =12(x 1*y 1+x 2*y 2+…+x n *y n ),例如:对于3元完美数组M =(1,1,1)和N =(0,0,1),有M ⊗N =12(0+0+2)=1.(1)在(0,0,0),(2,0,1),(1,1,1,1),(1,1,0)中是3元完美数组的有: ;(2)设A =(1,0,1),B =(1,1,1),则A ⊗B = ;(3)已知完美数组M =(1,1,1,0)求出所有4元完美数组N ,使得M ⊗N =2;(4)现有m 个不同的2022元完美数组,m 是正整数,且对于其中任意的两个完美数组C ,D 满足C ⊗D =0;则m 的最大可能值是多少?写出答案,并给出此时这些完美数组的一个构造.【例3】(2022秋•茅箭区校级月考)对x ,y 定义一种新运算T ,规定T (x ,y )=ax 2+by 2x+y (其中a ,b 是非零常数,且x +y ≠0),这里等式右边是通常的四则运算.如:T (3,1)=a×32+b×123+1=9a+b 3+1,T (m ,﹣2)=am 2+4b m−2. (1)填空:T (4,﹣1)= (用含a ,b 的代数式表示);(2)若T (﹣2,0)=﹣2,且T (5,﹣1)=6.①求a 与b 的值;②若T (3m ﹣10,﹣3m )=T (﹣3m ,3m ﹣10),求m 的值.【例4】(2022•安顺)在平面直角坐标系中,如果点P 的横坐标和纵坐标相等,则称点P 为和谐点.例如:点(1,1),(12,12),(−√2,−√2),……都是和谐点. (1)判断函数y =2x +1的图象上是否存在和谐点,若存在,求出其和谐点的坐标;(2)若二次函数y =ax 2+6x +c (a ≠0)的图象上有且只有一个和谐点(52,52). ①求a ,c 的值;②若1≤x ≤m 时,函数y =ax 2+6x +c +14(a ≠0)的最小值为﹣1,最大值为3,求实数m 的取值范围.【例5】(2022•南通)定义:函数图象上到两坐标轴的距离都不大于n (n ≥0)的点叫做这个函数图象的“n 阶方点”.例如,点(13,13)是函数y =x 图象的“12阶方点”;点(2,1)是函数y =2x 图象的“2阶方点”.(1)在①(﹣2,−12);②(﹣1,﹣1);③(1,1)三点中,是反比例函数y =1x 图象的“1阶方点”的有 (填序号);(2)若y 关于x 的一次函数y =ax ﹣3a +1图象的“2阶方点”有且只有一个,求a 的值;(3)若y 关于x 的二次函数y =﹣(x ﹣n )2﹣2n +1图象的“n 阶方点”一定存在,请直接写出n 的取值范围.一.解答题(共20题)1.(2022•渝中区校级模拟)材料1:若一个数各个数位上数字之和能被9整除,则这个数本身也能被9整除;材料2:如果一个各个数位上的数字均不为0的四位正整数m 可以被9整除,且m 的百位上的数字比十位上的数字大2,则称m 为“够二数”;将m 的千位数字与个位数字交换,百位数字与十位数字交换,得到的数为m ',F(m)=m−m′+1818999,例如:m =8424,∵8+4+2+4=18=9×2,4﹣2=2,∴8424是“够二数”,F(8424)=8424−4248+1818999=6. (1)判断1314,6536是否是“够二数”,请说明理由,如果是“够二数”,请计算F (m )的值;(2)若一个四位正整数n =abcd 是“够二数”,且c F(n)为5的倍数,请求出所有的“够二数”n 的值.2.(2022•九龙坡区校级模拟)对于任意一个四位数m ,若满足千位上的数字与个位上的数字之和是百位上的数字与十位上的数字之和的2倍,则称这个四位数m 为“倍和数”、例如:m =6132,∵6+2=2×(1+3),∴6132是倍和数”;m =1374,∵1+4≠2×(3+7),∴1374不是“倍和数”;(1)判断1047和4657是否为“倍和数”?并说明理由.(2)当一个“倍和数”m 千位上的数字与个位上的数字不相等,且千位上的数字与个位上的数字之和等于8时,记这个“倍和数”m 的千位上的数字与个位上的数字之差的绝对值为T (m ),记百位上的数字与十位上的数字之差的绝对值为R (m ),令G (m )=T(m)R(m),当G (m )能被3整除时,求出满足条件的所有“倍和数”m .3.(2022•两江新区模拟)材料一:若一个两位数恰好等于它的各位数字之和的4倍,则称这个两位数为“巧数”.材料二:一个四位数N =abcd 满足各个数位数字都不为0,且它的千位数字与百位数字组成的两位数ab ,以及十位数字与个位数字组成的两位数cd 均为“巧数”,则称这个四位数为“双巧数”.若p =ac −bd ,q =ad −bc ,则记F (N )=q ﹣p .(1)请任意写出两个“巧数”,并证明任意一个“巧数”的个位数字是十位数字的2倍;(2)若s ,t 都是“双巧数”,其中s =3010+100x +10y +z ,t =1100m +400+10n +2r ,(1≤x ,z ,n ≤9,1≤y ≤8,1≤m ≤5,1≤r ≤4,且x ,y ,z ,m ,n ,r 均为整数),规定K (s ,t )=F(s)F(t),当F (s )+F (t )=12时,求K (s ,t )的最大值.4.(2022•大足区模拟)对任意一个四位正整数m ,如果m 的百位数字等于个位数字与十位数字之和,m 的千位数字等于十位数字的2倍与个位数字之和,那么称这个数m 为“和谐数”.例如:m =7431,满足1+3=4,2×3+1=7,所以7431是“和谐数”.例如:m =6413,满足1+3=4,但2×1+3=5≠6,所以6413不是“和谐数”.(1)判断8624和9582是不是“和谐数”,并说明理由;(2)若m 是“和谐数”,且m 与22的和能被13整除,求满足条件的所有“和谐数”m .5.(2021•北碚区校级模拟)定义一种新运算:对于实数x 、y ,有L (x ,y )=ax +by (其中a ,b 均为非零常数),由这种运算得到的数称之为线性数,记为L (x ,y ),其中x ,y 叫做线性数的一个数对,若实数x ,y 都取正整数,称这样的线性数为正格线性数,这时的x ,y 叫做正格线性数的正格数对.(1)若L (x ,y )=2x +7y ,则L (3,﹣2)= ,L (32,−12)= ; (2)已知L (5,13)=503,L (2,25)=8. ①若L (m ﹣1,m +2)为正格线性数,求满足66<L (m ﹣1,m +2)<99的正格数对有哪些?②若正格线性数L (x ,y )=55,满足这样的正格数对中,有满足问题①的数对吗,若有,请找出;若没有,请说明理由.6.(2022秋•岳麓区校级期中)对x 定义一种新运算E ,规定E (x )=(ax +2)(2bx ﹣3),其中a ,b 是非零常数.如:当a =1,b =1时,E (x )=(x +2)(2x ﹣3)=2x 2+x ﹣6.(1)当a ,b 满足(a −12)2+|b +6|=0时,计算E (x ); (2)已知E(2−3x)=32x 2−2x −163,请求出a b 的值; (3)若当a =3,b =2时,关于x 的不等式组{E(x)−2x(6x +3)≤2k 4E(2+x)−E(2x −1)<228恰好有5个整数解,求k 的取值范围.7.(2022春•五华区校级期中)阅读材料:对实数a 、b ,定义T (a ,b )的含义为,当a <b 时T (a ,b )=a +b ;当a ≥b 时,T (a ,b )=a ﹣b .例如:T (1,3)=1+3=4,T (2,﹣1)=2﹣(﹣1)=3;根据以上材料,回答下列问题:(1)若T (m 2+1,﹣1)=6,则m = ;(2)已知x +y =8,且x >y ,求T (4,x )﹣T (4,y )的值.8.(2022春•巴中期末)定义:如果两个一元一次方程的解之和为1,我们就称这两个方程为“美好方程”.例如:方程2x ﹣1=3和x +1=0为“美好方程”.(1)请判断方程4x ﹣(x +5)=1与方程﹣2y ﹣y =3是否互为“美好方程”;(2)若关于x 的方程x2+m =0与方程3x ﹣2=x +4是“美好方程”,求m 的值; (3)若关于x 方程12022x ﹣1=0与12022x +1=3x +k 是“美好方程”,求关于y 的方程12022(y +2)+1=3y +k +6的解.9.(2022春•岳麓区校级期末)对a ,b 定义一种新运算T ,规定:T (a ,b )=(2a ﹣b )(ax﹣by )(其中x ,y 均为非零实数).例如:T (1,1)=x ﹣y .(1)已知关于x ,y 的方程组{T(1,3)=a +3T(2,0)=8a,若a ≤﹣1,求2x ﹣y 的取值范围; (2)在(1)的条件下,已知平面直角坐标系上的点A (x ,y )落在坐标轴上,将线段OA 沿x 轴向右平移2个单位,得线段O 'A ',坐标轴上有一点B 满足三角形BOA '的面积为15,请直接写出点B 的坐标.10.(2022春•遵义期末)我们规定.关于x ,y 的二元一次方程ax +by =c ,若满足a +b =c ,则称这个方程为“幸福”方程.例如:方程2x +3y =5,其中a =2,b =3,c =5,满足a +b =c ,则方程2x +3y =5是“幸福”方程,把两个“幸福”方程合在一起叫“幸福“方程组.根据上述规定,回答下列问题,(1)判断方程3x +5y =8 “幸福”方程(填“是”或“不是”);(2)若关于x ,y 的二元一次方程kx +(k ﹣1)y =9是“幸福”方程,求k 的值;(3)若{x =p y =q 是关于x ,y 的“幸福”方程组{mx +(m +1)y =n −1mx +2my =n的解,求4p +7q 的值.11.(2022秋•开福区校级期中)定义:若一个函数图象上存在纵坐标是横坐标2倍的点,则把该函数称为“青一函数”,该点称为“青一点”,例如:“青一函数”y =x +1,其“青一点”为(1,2).(1)①判断:函数y =2x +3 “青一函数”(填“是”或“不是”);②函数y =8x 的图象上的青一点是 ;(2)若抛物线y =(m −1)x 2+mx +14m 上有两个“青一点”,求m 的取值范围;(3)若函数y =x 2+(m −k +2)x +n 4−k 2的图象上存在唯一的一个“青一点”,且当﹣1≤m ≤3时,n 的最小值为k ,求k 的值.12.(2022秋•雨花区期中)2022年10月16日,习近平总书记在中共二十大会议开幕式上作报告发言,在阐述第四个要点“加快构建新发展格局,着力推动高质量发展”时,提出了两个“高水平”,即“构建高水平社会主义市场经济体制”和“推进高水平对外开放”在数学上,我们不妨约定:若函数图象上存在不同的两点A (x 1,y 1)、B (x 2,y 2)(x 1≠x 2),满足纵坐标相等,即y 1=y 2,则称点A 、B 为这个函数的一对“高水平点”,称这个函数为“高水平函数”.(1)若点P (2022,p )和点Q (q ,2023)为“高水平函数”y =|x +1|图象上的一对“高水平点”,求p +q 的值;(2)关于x 的函数y =kx +b (k 、b 为常数)是“高水平函数”吗?如果是,指出它有多少对“高水平点”,如果不是,请说明理由;(3)若点M (1,m )、N (3,n )、P (x 0,y 0)都在关于x 的“高水平函数”y =ax 2+bx +c (a 、b 、c 为常数,且a >0)的图象上,点M 、P 为该函数的一对“高水平点”,且满足m <n <c ,若存在常数w ,使得式子:w +13>−14x 02﹣x 0+2恒成立,求w 的取值范围.13.(2022秋•惠水县期中)九年级数学兴趣小组在课外学习时遇到这样一个问题:定义:如果二次函数y =a 1x 2+b 1x +c 1(a 1≠0,a 1,b 1,c 1是常数)与y =a 2x 2+b 2x +c 2(a 2≠0,a 2,b 2,c 2是常数)满足a 1+a 2=0,b 1=b 2,c 1+c 2=0,则这两个函数互为“旋转函数”.求函数y =2x 2﹣3x +1的“旋转函数”.小组同学是这样思考的,由函数y =2x 2﹣3x +1可知,a 1=2,b 1=﹣3,c 1=1,根据a 1+a 2=0,b 1=b 2,c 1+c 2=0,求出a 2,b 2,c 2就能确定这个函数的“旋转函数”.请参照小组同学的方法解决下面问题:(1)函数y =x 2﹣4x +3的“旋转函数”是 ;(2)若函数y =5x 2+(m ﹣1)x +n 与y =﹣5x 2﹣nx ﹣3互为“旋转函数”,求(m +n )2022的值;(3)已知函数y =2(x ﹣1)(x +3)的图象与x 轴交于A ,B 两点,与y 轴交于点C ,点A ,B ,C 关于原点的对称点分别是A 1,B 1,C 1,试求证:经过点A 1,B 1,C 1的二次函数与y =2(x ﹣1)(x +3)互为“旋转函数”.14.(2022秋•长沙期中)在平面直角坐标系中,我们不妨把纵坐标是横坐标3倍的点称为“一中点”,例如点(1,3),(2,6),(√3−1,3√3−3),……都是“一中点”.例如:抛物线y =x 2﹣4上存在两个“一中点”P 1(4,12),P 2(−1,−3).(1)在下列函数中,若函数图象上存在“一中点”,请在相应题目后面的括号中打“√”,若函数图象上不存在“一中点”的打“×”.①y =2x ﹣1 ;②y =x 2−1 ;③y =x 2+4 .(2)若抛物线y =−12x 2+(23m +3)x −29m 2﹣m +1上存在“一中点”,且与直线y =3x 相交于点A (x 1,y 1)和B (x 2,y 2),令t =x 12+x 22,求t 的最小值;(3)若函数y =14x 2+(b ﹣c +3)x +a +c ﹣2的图象上存在唯一的一个“一中点”,且当﹣1≤b ≤2时,a 的最小值为c ,求c 的值.15.(2022春•雨花区校级月考)定义:若关于x 的一元二次方程ax 2+bx +c =0(a ≠0)的两个实数根为x 1,x 2如(x 1<x 2),分别以x 1,x 2为横坐标和纵坐标得到点M (x 1,x 2),则称点M 为该一元二次方程的衍生点.(1)若方程为x 2﹣3x =0,求出该方程的衍生点M 的坐标;(2)若关于x 的一元二次方程为x 2﹣(5m +1)x +5m =0的衍生点为M ,过点M 向x 轴和y 轴作垂线,两条垂线与坐标轴恰好围成一个正方形,求m 的值;(3)是否存在b ,c ,使得不论k (k ≠0)为何值,关于x 的方程x 2+bx +c =0的衍生点M 始终在直线y =kx +2(k +3)的图象上?若有,请求出b ,c 的值;若没有,请说明理由.16.(2022秋•如皋市校级月考)定义:一个函数图象上若存在横、纵坐标相等的点,则称该点为这个函数图象的“1倍点”,若存在纵坐标是横坐标的2倍的点,则称该点为这个函数图象的“2倍点”.例如,点(﹣1,﹣1)是函数y =4x +3图象的“1倍点”,点(−32,﹣3)是函数y =4x +3图象的“2倍点”.(1)函数y =x 2﹣8的图象上是否存在“2倍点”?如果存在,求出“2倍点”;(2)若抛物线y =ax 2+5x +c 上有且只有一个“1倍点”E ,该抛物线与x 轴交于M 、N 两点(点M 在点N 的左侧).当a >1时,求:①c 的取值范围;②直接写出∠EMN 的度数.17.(2022秋•开福区月考)在平面直角坐标系中,我们不妨把横坐标与纵坐标相等的点称为“立信点”,例如点(﹣1,﹣1),(0,0),(2022,2022)…,都是“立信点”.(1)①函数y =﹣2x +1图象上的“立信点”坐标为 ;②函数y =x 2+2x −2图象上的“立信点”坐标为 .(2)若二次函数y =x 2+2(k +2)x +k 2的图象上存在A (x 1,x 1),B (x 2,x 2)两个“立信点”和1x 1+1x 2=−1且求k 的值;(3)若二次函数y =ax 2+bx +1(a ,b 是常数,a >0)的图象上有且只有一个“立信点”,令s =b 2+4a ,当t ≤b ≤t +1时,s 有最小值t ,试求t 的值.18.(2022秋•岳麓区校级月考)我们将使得函数值为零的自变量的值称为函数的零点.例如,对于函数y =x ﹣1,令y =0,可得x =1,我们就说1是函数y =x ﹣1的零点.(1)求一次函数y =2x ﹣3的零点;(2)若二次函数y =x 2+bx +32b 的零点为x 1,x 2,A ,B 两点的坐标依次A (x 1,0),B (x 2,0),如果AB =2,求b 的值;(3)直线y =﹣2x +b 的零点为1,且与抛物线y =kx 2﹣(3k +3)x +2k +4(k ≠0)交于C 、D 两点,若m +1≤1k ≤m +2时,线段CD 有最小值3√5,求m . 19.(2022•顺德区校级三模)我们把一个函数图象上横坐标与纵坐标相等的点称为这个函数的不动点.(1)请直接写出函数y =2﹣x 的不动点M 的坐标;(2)若函数y =3x+8x+a有两个关于原点对称的不动点A ,B ,求a 的值; (3)已知函数y =ax 2+(b +1)x +(b ﹣1),若对任意实数b ,函数恒有两个相异的不动点,请直接写出a 的取值范围.20.(2022春•西城区校级期中)对任意的实数m 有如下规定:用[m ]表示不小于m 的最小整数,例如[52]=3,[5]=5,[﹣1.3]=﹣1,请回答下列问题: (1)①0≤[x ]﹣x <1;②[x ﹣2022]=[x ]﹣2022;③[3x ]=3[x ];④[x ]+[y ]=[x +y ];⑤若[x ]=a (a 为整数),则a ﹣1<x ≤a .以上五个命题中为真命题的是 (填序号).(2)关于x 的方程[x ﹣1]=2x +1的解为 .(3)某市出租车的起步价是13元(可行驶3千米),以后每多行1千米增加2.3元(不足1千米按1千米收费),现有某同学乘出租车从甲地到乙地共付费36元,如果他从甲地到乙地先步行800米,然后再乘坐出租车,车费也是36元.若该同学乘坐出租车从甲地出发去往乙地,由于突发情况,在距离乙地1公里处掉头原路返回,那么该同学返回甲地后应付费元.。
【暑假分层作业】第06练 实数及新定义问题-2022年七年级数学(人教版)(答案及解析)

第06练 实数及新定义问题知识点:实数实数(1)有理数的定义:任何有限小数或无限循环小数也都是有理数。
(2)无理数的定义:无限不循环小数叫无理数。
(3)实数的定义:有理数和无理数统称为实数。
1. 实数的分类(4)实数与数轴上点的关系:实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都是表示一个实数。
对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大。
2. 无理数的概念无限不循环小数称为无理数。
人们已经证明2是一个无限不循环小数,它的值为1.414 213 562 373 095 048 801 688 724 209 7…3,5,32,33,⋯⋯1010010001.0,⋯⋯-31456728.2等都是无理数。
知识点二:实数的大小比较1、实数的倒数、相反数和绝对值 (1)相反数实数与它的相反数是一对数(只有符号不同绝对值相同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。
(2)绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
正数的绝对值等于它本身;负数的绝对值等于它的相反数;零的绝对值既可以看成是它本身,也可看成它的相反数。
正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
(3)倒数如果ab=1,则a 与b 互为倒数,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
2、数轴和实数大小比较规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
比较大小时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。
(2)求差比较:设a 、b 是实数,,0b a b a >⇔>- ,0b a b a =⇔=- b a b a <⇔<-0(3)求商比较法:设a 、b 是两正实数;1;1;1b a bab a b a b a b a <⇔<=⇔=>⇔> (4)绝对值比较法:设a 、b 是两负实数,则b a b a <⇔>。
反比例函数章节复习:新定义【题集C1】(学生版)--初中数学四维三难【人教版】

反比例函数章节复习:新定义【题集C1】(1)(2)(3)1.定义:如图,点、把线段分割成、和,若以、、为边的三角形是一个直角三角形,则称点、是线段的勾股点.AB图已知点、是线段的勾股点,若,,求的长.如图,点是反比例函数上的动点,直线与坐标轴分别交于、两点,过点分别向、轴作垂线,垂足为、,且交线段于、.证明:、是线段的勾股点.xyO图如图,已知一次函数与坐标轴交于、两点,与二次函数交于、两点,若、是线段的勾股点,求的值.xyO图(1)(2)2.有一边是另一边的倍的三角形叫做智慧三角形,这两边中较长边称为智慧边,这两边的夹角叫做智慧角.已知为智慧三角形,且的一边长为,则该智慧三角形的面积为 .如图①,在中,,,求证:是智慧三角形.(3)如图②,是智慧三角形,为智慧边,为智慧角,,点,在函数的图象上,点在点的上方,且点的纵坐标为,当是直角三角形时,求的值.12(1)(2)(3)3.如图,在平面直角坐标系中,定义直线与双曲线的交点(、为正整数)为“双曲格点”,双曲线在第一象限内的部分沿着竖直方向平移或以平行于轴的直线为对称轴进行翻折之后得到的函数图象为其“派生曲线”.回答下列问题:双曲格点”的坐标为 .若线段的长为个单位长度,则.图中的曲线是双曲线的一条“派生曲线”,且经过点则的解析式为.画出双曲线的“派生曲线”(与双曲线不重合),使其经过“双曲格点”、、.。
初中数学 七年级上册数学必背概念、定义全部公式总结,新学期用上

初中数学七年级上册数学必背概念、定义全部公式总结,新学期用上初中数学 | 七年级上册数学必背概念、定义全部公式总结,新学期用上!_有理数_绝对值_个数人教版第一章有理数概念、定义:1、大于0的数叫做正数(positive number)。
2、在正数前面加上负号“-”的数叫做负数(negative number)。
3、整数和分数统称为有理数(rational number)。
4、人们通常用一条直线上的点表示数,这条直线叫做数轴(number axis)。
5、在直线上任取一个点表示数0,这个点叫做原点(origin)。
6、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value)。
7、由绝对值的定义可知:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
8、正数大于0,0大于负数,正数大于负数。
9、两个负数,绝对值大的反而小。
10、有理数加法法则(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的负号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。
(3)一个数同0相加,仍得这个数。
11、有理数的加法中,两个数相加,交换交换加数的位置,和不变。
12、有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
13、有理数减法法则减去一个数,等于加上这个数的相反数。
14、有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值向乘。
任何数同0相乘,都得0。
15、有理数中仍然有:乘积是1的两个数互为倒数。
16、一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。
17、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
18、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
19、有理数除法法则除以一个不等于0的数,等于乘这个数的倒数。
20、两数相除,同号得正,异号得负,并把绝对值相除。
2024年秋新人教版七年级上册数学课件 第三章 代数式 3.1代数式(第1课时)代数式的意义

同一个代数式可以表示不同实际问题中 的数量或数量关系
字母与字母相乘,乘号可以省略不用 “ ·”表示. 一般情况下,按26个字母 的顺序从左到右来写
相同字母相乘时应写成幂的形式
例2
1.填空:
(1)每包书有10册,6包书有 60 册,n包书有 10n 册;
(2)王芳今年m岁,她去年 (m-1)岁,6年后 (m+6) 岁;
工作量=工作效率×工作时间
(1)该机器人10 s能识别的范围(单位:m2)是 5×10=50
60 s能识别的范围(单位:m2)是 5×60=300
t s能识别的范围(单位:m2)是
在含有字母的式子中如果出 现乘号,通常将数放在字母 前,乘号写作“·”或省略不写. 例如,5×t可以写成5·t或5t
5×t =5t 用字母t表示时间,可以把数量关系简明的表达出来,也可以表示运算的结果,
例1
(1)苹果原价是每千克p元,按9折优惠出售,用代数式表示苹果的 售价; (2)一个长方形的长是0.9 m,宽是p m,用代数式表示这个长方形 的面积; (3)某产品前年的产量是n 件,去年的产量比前年产量的2倍少10件, 用代数式表示去年的产量; (4)一个长方体水池底面的长和宽都是a m,高是h m,池内水的体 积占水池容积的三分之一,用代数式表示池内水的体积.
(3)将p kg糖装入n个包装袋中,每袋糖的质量相同,每袋
装入糖 np kg;
(4)棱长为a的正方形的体积是
.
解:(1)a的2倍与c的3倍的和; (2)m与n的差的3倍; (3)a的平方与1的和; (4)a的3倍除以b的5倍的商
1.在下列表述中,不能表示“4a”的意义的是 ( D )
A. 4的a倍
2+4=6 2+4×2=10 2+4×3=14 … 4n+2
第三章 代数式(大单元教学设计,新教材)七年级数学上册(人教版2024)

第三章代数式大单元教学设计活动设计:设计更多具有层次性和挑战性的教学活动,让学生在活动中逐步深化对知识的理解和应用.合作学习:鼓励学生进行小组合作学习,通过互相讨论和启发,促进学生之间的交流和分享,提高学习效率和质量.信息技术融合:充分利用信息技术手段,如数学软件、多媒体教学资源等,将抽象的数学知识直观化、具体化,帮助学生更好地理解和掌握.单元教学结构图教学设计课题代数式学习活动设计教师活动学生活动设计意图情景引入:科赫雪花,也被称为科赫曲线,是一种由瑞典数学家赫尔格·冯·科赫(Helge von Koch)在1904年提出的分形曲线.它的形态独特,类似于雪花,因此得名.科赫雪花的构造过程充满了数学的魅力和趣味性,科赫雪花的构造始于一个等边三角形,具体步骤如下:首先,画一个等边三角形作为起点,然后将三角形的每条边等分为三段,然后以中间一段为底边,向外作一个等边三角形,并去掉原来的中间一段,如此往复即可得到.如果用a表示等边三角形的边长,那么第二个图形中红色方框内的线段长度之和为多少?新知探究:1.果果在暑暑假间取北京天安门观看升旗仪式,假设果果所住宾馆距离天安门广场s千米,出租车的平均速度学生尝试理解科赫雪花的形成过程,尝试解答教师提出的问题.学生回答:1.vs2.mn为学生创造一个有趣的学习情境,激发激发学生的学习兴趣,同时为后面渗透数学文化做铺垫.引导学生用字母在思考数学问题.由简单的文字语言转化为符号语言,培养学活动一:列代数式表示数量关系6. 当“1”与任何字母相乘时,“1”省略不写;当“-1”乘字母时,只要在那个字母前加上“-”号.练习:判断下列式子中,哪些是代数式 (1)4x+5y (2)3y (3)2x+3y≠2(4)2+1=3 (5)10 (6)3x>0练习:判断下列各式是否符合代数式书写格式,若不符合,请指出不符合哪条要求,并写出规范格式(1) 4×a (2) xy6 (3)aa-1 (4) (5) (m+n) ÷2思考:字母式子除了能表示数与等量关系以外,还能表示什么呢?正方体的底面积和体积怎样计算? S 表示正方体的底面积,V 表示正方体的体积.你能用字母表示正方体的底面积和体积公式吗?除了正方形和正方体,我们还学过哪些图形的面积或者公式?用公式表示一些常见图形的面积,请填写下表: 图形名称 面积公式长方形 ab S =正方形2a S =y 311学生回顾前面学习过的有理数的运算法则和运算律,举手回答计算45+32+68+55时,可以利用加法交换律和结合律;计算36×25+36×75时,可以利用乘法分配律;计算125×25×32时,可利用乘法交换律和结合律.学生填表(2)有理数乘法交换律和结合律ba ab =)()(bc a c ab =(3)有理数乘法分配律ac ab c b a +=+)(看一看这些公式与以往的文字公式相比,你有什么感觉?你知道历史上第一个开始用字母表示数的人是谁呢?你知道最早有意识地系统使用字母来表示数的人是谁吗?他就是法国数学家韦达.韦达一生致力于对数学的研究,做出了很多重要贡献,成为那个时代最伟大的数学家.自从韦达系统使用字母表示数后,引出了大量的数学发现,解决了很多古代的复杂问题.再来看情景引入的问题:第二个图形中红色方框内的线段长度之和3443a a l =⨯=. 因此第二个线段之和l 与原来正三角形边长a 是成正比例的量,它们成正比例关系.学生思考,发表看法教师总结用字母表示数的优越性,解释为什么要用字母表示数,同时介绍相应的数学文化.通过情景引入的案例让学生再次强化用字母表示数的过程,同时理解正比例关系.渗透数学文化,了解数学历史.综合考察学生对本节知识的掌握情况情景引入学校阶梯教室第1排有18个座位,往后每排比前一排多2个座位,问:(1)第2排、第3排、第4排各有多少个座位?(2)第n排有多少个座位?(用含n 的代数式表示)(3)假设教室无限大,那么第2025排有多少个座位?新知探究在研学旅行中,有一节课是制作航天模型,我校七年级有300名同学参加了航模制作,其中有25的同学制作了a个模型,其余同学每人制作3个模型.你能用代数式表示他们制作的航天模型的总个数吗?(1)他们共制作模型个;(2)当a=3时,他们共制作模型个;(3)当a=4时,他们共制作模型个.(4)a能为-2吗?a能为3吗?一般地,用数值代替代数式中的字母,按照代数式中的运算关系计算得出的结果,叫作代数式的值.当字母取不同数值时,代数式的值也一般不同. 用火柴棒按如下方式搭小鱼典例精析例1.搭20条“小鱼”用多少根火柴棒?搭100条“小鱼”呢?填表:从所填的数据看,所用火柴棒的根数随所搭“小鱼”条数的增加而 .(填“减少”或“增加”)例2.当a =2,b =-1,c =-3时,求下列各代数式的值: (1)24b ac -;(2)2()a b c ++;分析:(1)什么叫代数式的值?(2)用负数代替字母时,需要注意些什么? 教师总结:计算代数式的值就像下面的机器一样,输入字母等于的数字,通过代数式的计算法则,得到的结果就是代数式的值.例3.中国电力发展迅速,2024年6月规模以上工业发电量达到7685亿千瓦时,同比增长a%,请你预测一下,如果按照当前速度增长,明年6月的发电量将能达到多少亿千瓦时?若a=2.3,明年6月的发电量将能达到多少亿千瓦时?24b ac-242⨯⨯=(-1)-(-3)12425+==;(2)当a =2,b =-1,c =-3时,2()a b c ++2=(2-1-3)24=(-2)=为学习一元二次方程判别式打基础1.计算时,先代入,再计算;2.代数式的值是由字母的取值决定,所以必须先写“当···时”,表示在此情况下求得.3.不能笼统地说代数式的值是多少,只能说,当字母取何值时,代数式的值是多少.解:明年6月的发电量为 7685×(1+a%)(亿千瓦时), 当a=2.3时,明年6月的发电量为7685×(1+2.3%)=7861.8(亿千瓦时).和步骤.学生通过思考过程,充分发挥学习的主动性,同时也培养了学生分析问题的能力.归纳求解代数式的值的注意事项和常见易错点.通过国家统计局的数据编辑成例题,让学生注意关注周围的世界,理解数学来源于生活,又服务于生活.代数式分析:(1)增长率是什么意思?(2)怎样计算明年的发电量?例4.已知8a-8b+17=1,3ab-2=10,求5a-2ab+5b的值.分析:1.字母a、b的值是什么?2.能否很快求出a、b的值?3.你能求出a-b和ab的值吗?4.如何求代数式的值?例5.芷涵对变成非常感兴趣,经过不断努力,不但成绩直线上升,而且现在还能设计程序计算呢!如图就是芷涵设计的一个程序.当输入x的值为2024时,你能求出输出的值吗?当输入x的值为2025时,你能求出输出的值吗?例6.在长和宽分别是a、b的矩形纸片的四个角都剪去一个边长为m的正方形.(1)用a、b,m表示纸片剩余部分的面积;(2)当a=9,b=8,且剪去部分的面积等于剩余部分的面积时,求正方形的边长.再来看情景引入的问题:学校阶梯教室第1排有18个座位,往后每排比前一排多2个座位,问:(1)第2排、第3排、第4排各有多少个座位?(2)第n排有多少个座位?(用含n 的代数式表示)(3)假设教室无限大,那么第2025排有多少个座位?分析:第1排:18个座位;第2排:18+2=20个座位,比第1排多2个座位;18+2第3排:20+2=22个座位;比第1排多2×2个座位,18+2×2;第4排:22+2=24个座位,比第1排多2×3个座位,18+2×3;......以此类推课堂训练1.如图所示,某水渠的横断面为梯形,如果水渠的上口宽为a m,水渠的下口宽和深都为b m.(1)请你用代数式表示水渠的横断面面积;(2)计算当a =3、b =1时,水渠的横断面面积.2.下面的三角形是由火柴棒围成的.第1个 第2个第3个 第4个(1)第n 个图形需要多少根火柴围成?(2)第2024个图形需要多少根火柴围成?1.我们知道,用字母表示的代数式是具有一般意义的.义的例子中不正确的是()A .若葡萄的价格是3元/千克,则3aB .若a 表示一个等边三角形的边长,则C .某校七年级共有3个班,每个班平均有D .若3和a 分别表示一个两位数中的十位数字和个位数字,则【答案】D正确,故C 不符合题意;D 、若3和a 分别表示一个两位数中的十位数字和个位数字,则30a +表示这个两位数,此选项错误,故D 符合题意. 故选:D .2.按如图所示的运算程序,能使运算输出的结果为1的是( )A .3x =,4y =B .=1x -,1y =-C .2x =,1y =-D .2x =-,3y =【答案】D【分析】本题考查了代数式求值,以及有理数的混合运算,把各自的值代入运算程序中计算,使其结果为1即可,熟练掌握运算法则是解本题的关键. 【详解】解:A 、把3x =,4y =输入, ∵x y <,∴223451x y -=-=≠,不符合题意; B 、把=1x -,1y =-输入, ∵x y =,∴()()221121x y -=---=≠,不符合题意; C 、把2x =,1y =-输入, ∵x y >,∴()222131x y +=+-=≠,不符合题意; D 、把2x =-,3y =输入, ∵x y <,∴()22231x y -=--=,符合题意. 故选:D3.某数m 的平方的5倍与1的差的一半,用代数式表示是( ) A .2152m -B .21(5)2m -C .2(5)12m -D .2512m -【答案】D【分析】本题考查了列代数式.数m 的平方为2m ,2m 的5倍是25m ,再表示25m 与1的差,最后表示出差的一半,即可.【详解】解:某数m 的平方的5倍与1的差的一半,用代数式表示是2512m -.故选:D .4.下面各式中,符合书写要求的是( ) A .8a B .1xC .5x yD .()2x y +【答案】D【分析】本题主要考查了代数式的书写.根据代数式的书写要求,逐项判断即可求解. 【详解】解:A 、应该是8a ,故本选项不符合题意; B 、应该是x ,故本选项不符合题意; C 、应该是5xy ,故本选项不符合题意; D 、()2x y +,书写正确,故本选项符合题意; 故选:D5.4m n +=,则代数式331m n +-的值为 . 【答案】11【分析】本题考查了整体代入法求代数式的值,运用整体思想是本题的关键.利用整体代入法即可求得代数式的值. 【详解】解:4m n +=,∴()3313134111m n m n +-=+-=⨯-=,故答案为:11.6.按照如图所示的计算机程序计算,若开始输入的x 值为2,第一次输出的结果是1,第二次输出的结果为4,…,第2024次输出的结果为 .【答案】41,2121,212珠笔共需()34m n +元. 故答案为:()34m n +.9.如图是1个纸杯和若干个叠放在一起的纸杯的示意图,在探究纸杯叠放在一起后的总高度H 与杯子数量n 的变化规律的活动中,我们可以获得以下数据(字母),请选用适当的字母表示H = .①杯子底部到杯沿底边的高h ;②杯口直径D ;③杯底直径d ;④杯沿高a .【答案】h an +【分析】本题考查的是列代数式,由总高度H 等于杯子底部到杯沿底边的高h 加上n 个杯子的杯沿高na 即可得到答案; 【详解】解:由题意可得:H h an =+, 故答案为:h an +;10.某种水果售价是每千克5元,小红按八折购买了a 千克,需付 元(用含a 的代数式表示). 【答案】4a【分析】本题考查了代数式的运用,掌握运用代数式表示数或数量关系是的方法是解题的关键.【详解】解:根据题意得,580%4a a ⨯=, 故答案为:4a .11.已知有理数a ,b ,c ,d ,e ,其中a ,b 互为倒数,c ,d 互为相反数,e 的绝对值为2,求1325c dab e +++的值. 【答案】162或152-【分析】本题考查代数式求值,涉及倒数定义与性质、相反数定义与性质、绝对值定a3.已知代数式2326y y -+的值是8,那么264y y -的值是( )A .1B .2C .3D .4 【答案】D【分析】本题主要考查代数式的代入求值.根据代数式2326y y -+的值是8,可求出2322y y -=的值,由此即可求解.【详解】解:23268y y -+=,∴移项,2322y y -=,∴()2222464232y y y y ==⨯-=-,故选:D .4.若345x y z ==,则22x y z +-= . 【答案】0【分析】本题考查“三元一次方程的应用”,先设345x y z k ===,即可得到345x k y k z k ===,,,然后代入即可得到答案.【详解】解:设345x y z k ===, ∴345x k y k z k ===,,,∴2264100x y z k k k +-=+-=,故答案为:0.5.将长方形ABCD 分割成如图所示的7个正方形,其中两个正方形内的三块空白为长方形.若两个阴影部分周长之和为68,则长方形ABCD 的周长为 .【答案】58【分析】题目主要考查列代数式,设正方形①的边长为x ,正方形②的边长为y ,则43CD x AB y ===,设3,4x k y k ==,根据题意确定k =1,即可得出边长,然后求周长即可,找准图中各边的关系是解题关键. 【详解】解:设正方形①的边长为x ,正方形②的边长为y ,则左下角正方形的边长为2y ,右上角正方形边长为3x ,∴43CD x AB y ===,设3x k =,则4y k =,∵两个阴影部分周长之和为68,∴342468x y ⨯+⨯=即3217x y +=,∴9817k k +=,解得:k =1,∴正方形①的边长为33x k ==,正方形②的边长为44y k ==,∴412,2317AB x AD y x ===+=,∴长方形的周长为:()1217258+⨯=,故答案为:58.6.如图,正方形 ABCD 与正方形 EFGC 的边长分别为 a 、b , B 、C 、G 三点在同一直线上, 连接 BD BF 、.(1)求阴影部分图形的面积(用含 a 、b 的代数式表示);(2)若 8,15a b ab +==,求阴影部分图形的面积.【答案】(1)()2132a b ab ⎡⎤+-⎣⎦(2)192【分析】此题考查了利用数形结合解决问题的能力以及完全平方公式的应用,关键是能根据图形达到正确的数量关系并列式计算.(1)根据正方形与三角形的面积公式即可求出答案;(2)把已知代入(1)式即可求出答案.【详解】(1)解:阴影部分的面积可表示为:()2221122a b a b a b +--+ 2222111222a b a ab b =+--- 2212a ab b ()2132a b ab ⎡⎤=+-⎣⎦; 阴影部分的面积是()2132a b ab ⎡⎤+-⎣⎦; (2)当8,?15a b ab +==时, 原式()22831511191922=⨯==⨯⨯-. 7.如图1是一个数表,现用一个矩形在数表中图中所示的方式任意框出4个数,若任意框出的数为图2中的a ,b ,c ,d 四个数,请根据数表中的规律解决如下问题:(1)若17b =,则d = ;c = ;(2)a 与c 的数量关系是 ;(3)当79a c +=时,求22a b c d +++的值.【答案】(1)22,21∴1x =±时771y x y =±=±=±,;时,; ∴6x y -=±,∴()236x y -=,故选A .2.如图数字三角形被称为“杨辉三角”,图中两平行线之间的一列数:1,3,6,10,15,…,我们把第一个数记为1a ,第二个数记为2a ,第三个数记为3a …,第n 个数记为n a ,则20a = .【答案】210【分析】此题考查了数字变化规律问题,通过归纳出第n 个数记为()112n n +,再进行求解即可.【详解】解:根据题意知 11,a =2123a =+=,31236a =++=,4123410,a =+++=,则()112312n a n n n =++++=+, ()201202012102a ∴=⨯⨯+=, 故答案为:210.3.【阅读材料】如何化简整式()()()42a b a b a b +++-+呢?数学教材第76页提示,可以把()a b +看成一个整体,进而()()()()()()42421555a b a b a b a b a b a b +++-+=+-+=+=+.“看成一个整体”在数学中称为“整体思想”,它往往能把复杂问题简单化,在数学问题的解决中应用广泛.请参考阅读材料,解决以下问题:【尝试应用】(1)填空:已知22x y -=,1xy =-,则()()2x y xy y ---=______;【拓展探究】(2)若关于x 的一元一次方程107x x k -=-+的解是1x =,求关于y 的方程()()2238302183y y k --=--+的解是多少;【迁移提升】(3)如图,OB OC 、分别为定角AOD ∠内的两条动射线,当OB OC 、运动到如图的位置时,AOC BOD m ∠+∠=︒,AOB COD n ∠+∠=︒,求AOD ∠的度数.【答案】(1)3;(2)3=±y ;(3)2m n AOD +⎛⎫∠=︒ ⎪⎝⎭. 【分析】(1)首先由22x y -=得()22x y y -=-,然后将()22x y y -=-,1xy =-,代入()()2x y xy y ---之中进行计算即可得出答案;(2)首先设28y a -=则方程()()2238302183y y k --=--+可转化为330213a a k -=-+,进而得107a k -=-+,然后结合已知可得出1a =,进而得 281y a -==,由此解出y 即可;(3)设AOB α∠=,BOC β∠=,COD θ∠=,则AOC AOB BOC αβ∠=∠+∠=+BOD BOC COD βθ∠=∠+∠=+,然后将m αθ+=︒代入2m αβθ++=︒之中得 2m n β-⎛⎫=︒ ⎪⎝⎭,继而由AOD αβθ∠=++可得出答案; 此题考查了求代数式的值,解一元一次方程,角度的计算,理解题意,熟练掌握整体思想的应用是解题的关键.【详解】(1)∵22x y -=,∴222x y y -=-,即()22x y y -=-,又∵1xy =-,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第21讲专题人教版七年级数学下代数新定义(原卷版)
专题诠释
“新定义”题型问题成为近年来中考的热点。
所谓“新定义”题型,就是在问题中定义了学生还没有学过的一些新概念、新符号、新运算,学生须在已有的知识基础上读懂题意,理解新定义,再根据新定义进行运算,推理解决问题。
“新定义”题型能有效地考查学生的自学能力、思维能力、运用新知识解决问题的能力。
“新定义”题型对于一些习惯于听讲然后再练的学生,一旦碰到没有讲过的“新”题型,就蒙了,傻眼了,思维短路了。
解决新定义题型关键是把握两点:意识根据问题原型的特点寻求问题解决的方法,二是根据变化的问题情境,认真思考探究,合理进行思想方法的迁移。
第一部分典例剖析+针对训练
类型一“新运算”型专题
典例1请你阅读如图框内老师的新定义运算规定,然后解答下列各小题.
(1)若x⊕y=1,x⊕2y=﹣2,分别求出x和y的值;
(2)若x满足x⊕2≤0,且3x⊕(﹣8)>0,求x的取值范围.
针对训练1
1.已知一种新运算定义为:a⊕b=a•b﹣|a﹣2|,则不等式组{(−2)⊙x>2
x⊙1
2
≥−8
的非正整数解有()
A.1个B.2个C.3个D.4个
2.对于任意实数m,n,定义一种运算m⊕n=mn-m-n+3,例如:3⊕5=3×5-3-5+
3.请根据上述定义解决问题:若a<2⊕x<7,且关于x的解集中有两个整数解,则a的取值范围是.
3.在实数范围内定义一种新运算“⊕”,其运算规则为:a⊕b=2a+3b.如:1⊕5=2×1+3×5=17,则不等式x⊕4<2的解集为.
典例2 新定义,若关于x ,y 的二元一次方程组⊕{a 1x +b 1y =c 1a 2x +b 2y =c 2的解是{x =x 0y =y 0
,关于x ,y 的二元一次方程组⊕{e 1x +f 1y =d 1e 2x +f 2y =d 2的解是{x =x 1y =y 1
,且满足|x 1−x 0x 0|≤0.1,|y 1−y 0y 0|≤0.1,则称方程组⊕的解是方程组⊕的模糊解,关于x ,y 的二元一次方程组{x +y =2m +22x −y =10m +4的解是方程组{x +y =10x +3y =−10
的模糊解,则m 的取值范围是 .
针对训练2
4.对于平面直角坐标系xOy 中的点P (a ,b ),若点P ′的坐标为(a +kb ,ka +b )(其中k 为常数,且k ≠0),则称点P ′为点P 的“k 属派生点”.例如:P (1,4)的“2属派生点”为P ′(1+2×4,2×1+4),即P ′(9,6).若点P 在x 轴的正半轴上,点P 的“k 属派生点”为P ′点,且线段PP ′的长度为线段OP 长度的3倍,则k 的值 .
5.喜欢探索数学知识的小明遇到一个新的定义:对于三个互不相等的正整数,若其中任意两个数乘积的算术平方根都是整数,则称这三个数为“老根数”,其结果中最小的整数称为“最小算术平方根”,最大的整数称为“最大算术平方根”.例如:1,4,9这三个数,√1×4=2,√1×9=3,√4×9=6,其结果分别为2,3,6都是整数,所以1,4,9这三个数称为“老根数”,其中“最小算术平方根”是2,“最大算术平方根”是6.
(1)请证明:2,8,50这三个数是“老根数”,并求出任意两个数乘积的最小算术平方根与最大算术平方根;
(2)已知16,a ,36,这三个数是“老根数”,且任意两个数乘积的算术平方根中,最大算术平方根是最小算术平方根的2倍,求a 的值.
典例3新定义:如果一元一次方程的解是一元一次不等式组的解集中的一个,则称该一元一次方程为该不等式组的关联方程.
(1)在方程⊕2x ﹣1=0,⊕x +1=0,⊕x ﹣(3x +1)=﹣5中,不等式组{
−x +3>x −43x −1>−x +2的关联方程是 ;(填序号)
(2)若不等式组{
x −2<11+x >−3x +6的一个关联方程的解是整数,则这个关联方程可以是 ;(写出
一个即可)
(3)若方程6﹣x =2x ,7+x =3(x +13)都是关于x 的不等式组{x <2x −m x −2≤m 的关联方程,直接写出m 的取值范围.
针对练习3
6.如果两个二元一次方程只有一个未知数的系数不同,那么由这两个方程构成的二元一次方程组叫做和谐
方程组.如:{y −2x =6y −3x =6
,就是和谐方程组. (1)下列方程组是和谐方程组的是( )
A .{−x +y =4x +y =−1;
B .{2x −2y =5x −2y =6;
C .{m −4n =5m −3n =5
. (2)请你补全和谐方程组{y +2x =3()
,并求解.
类型四阅读材料题型中的新定义典例4阅读下列材料解答问题:
新定义:对非负数x“四舍五入”到个位的值记为<x>,即:当n为非负整数时,如果n−1
2≤x<n+1
2
,
则<x>=n;反之,当n为非负整数时,如果<x>=n,则n−1
2≤x<n+1
2
.例如:
<0.1>=<0.49>=0,<1.51>=<2.48>=2,<3>=3,<4.5>=<5.25>=5,…
试解决下列问题:
(1)⊕<π+2.4>=(π为圆周率);
⊕如果<x﹣1>=2,则数x的取值范围为;
(2)求出满足<x>=5
4
x﹣1的x的取值范围.
针对训练4
7.【阅读新知】
定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,那么和我们所学的实数对应起来叫做复数,表示a+bi(a,b为实数),a叫做这个复数的实部,b叫做这个复数的虚部,它的加、减、乘法等运算和法则与实数的运算类似.
例如计算:i3=i2•i=﹣1•i=﹣i;
(12+i)+(13﹣14i)=(12+13)+(1﹣14)i=25﹣13i;
(5+i)×(3﹣4i)=15﹣20i+3i﹣4i2=15﹣17i+4=19﹣17i.
【应用新知】
(1)填空:i6=;i9=.
(2)计算:⊕3i(2+i);⊕(1+3i)(1﹣3i).
(3)请将5+i
5−i
化简成a+bi的形式.。