C10芳烃中四甲苯异构化制备均四甲苯

2-丁烯高值化开发利用综述

2-丁烯高值化开发利用综述(上) 《中国化工信息周刊》2012第16期 2012.04.23 中国石油化工股份公司天津分公司李明玉 随着我国乙烯工程的相继建成投产,加上炼油厂催化裂化装置加工能力迅速增长,2011年C4馏分总量已超过千万吨,如何合理利用C4资源,引起人们的广泛关注。当前业界已对C4中1-丁烯、丁二烯和异丁烯的利用进行了大量的研究,但对 2-丁烯(又称正丁烯)的利用途径则探讨的较少。随着MTBE生产装置的建设,特别是精密分馏出1-丁烯后,副产C4中2-丁烯的含量达到80%以上,大量的2-丁烯亟待高值化开发利用。 一、由2-丁烯制丙烯 1.由2-丁烯和乙烯/1-丁烯易位反应制丙烯 有关乙烯和2-丁烯易位反应制丙烯的报道很多。其中,成熟的技术主要有 ABB Lummus 公司的OCT技术和 IFP公司的 CCR-Meta-4工艺。 ABB Lummus公司的OCT技术主要采用乙烯和2-丁烯易位反应来制取丙烯。乙烯和丁烯混合进人固定床反应器,在催化剂作用下乙烯和 2-丁烯反应生成丙烯,同时将1-丁烯异构化为 2-丁烯,来自易位反应器的物流分馏成高纯度、聚合级的丙烯,未转化的乙烯和丁烯循环回反应器。该工艺丁烯的单程转化率>60%,正丁烯的总转化率为85%~92%,丙烯的选择性>98%。上海赛科90万吨乙烯装置副产的剩余C4即采用该技术生产丙烯。 IFP公司的CCR-Meta-4工艺使用高活性铼基催化剂,反应物中的粗C4物流通过三个步骤转化成丙烯和富异丁烯物流:第一,丁二烯和C4炔烃选择性加氢,1-丁烯同时加氢异构化;第二,异丁烯通过蒸馏或与甲醇醚化生成MTBE脱除;第三,富2-丁烯与乙烯易位反应转化成丙烯。该工艺中易位反应器的操作温度为35℃,压力为 6 MPa,通过C4馏分循环以提高2-丁烯的总转化率,2-丁烯总转化率达到90%,丙烯的选择性在 95%左右。中国台湾的中油公司应用该技术。 上海石油化工研究院开发了S-OMT增产丙烯技术,在过渡金属氧化物的作用下,在300℃、3.0 MPa、C4重量空速2.4h-1的条件下通过2-丁烯与乙烯歧化增产丙烯,催化剂选择性>96%,2-丁烯初始转化率>70%,通过2-丁烯循环总转化率>90%,目前已与燕山石化签订协议,首套20万吨的工业装置预计2012年将在燕山石化实现工业化。另外,大连化学物理研究所采用负载型MgMo/MCM22分子筛催化剂进行乙烯与2-丁烯歧化反应制丙烯,在

碳四芳烃异构化

碳四芳烃异构化 <申请号>=CN02805004.5 <名称>=制备(支化烷基)芳基磺酸盐的方法和(支化烷基)芳基磺酸盐组合物 <申请(专利权)人>=国际壳牌研究有限公司 <发明(设计)人>=P·M·阿约伯;L·A·菲诺尔;B·D·默雷 <申请日>=2002.02.15 <地址>=荷兰海牙 <摘要>=本发明涉及一种制备支化烷基芳烃的方法,该方 法包括在烷基化反应条件下将支化烯烃与一种芳烃进行接触, 其中所述支化烯烃是通过将一种脂族季碳原子含量0.5%或更 低的异构链烷烃组合物在适当催化剂上进行脱氢反应的方法 获得的,所述异构链烷烃组合物是通过石蜡的加氢裂化和加氢 异构化反应得到的,且异构链烷烃组合物包括碳原子数在7- 35范围的链烷烃,该链烷烃的至少一部分分子是支化的,平均 每个链烷烃分子的支链数为0.5-2.5,且支化包括甲基支化且 任选包括乙基支化,所述支化烯烃的季碳含量为0.5%或更低; 涉及一种制备(支化烷基)芳基磺酸盐的方法,包括将支化烷基 芳烃磺酸化,其中所述支化烷基芳烃通过所述的制备支化烷基 芳烃的方法制成的;和涉及可通过所定义方法获得的支化烷基 芳烃组合物和(支化烷基)芳基磺酸盐组合物。 <申请号>=CN97196039.9 <名称>=烷基芳烃的异构化方法 <申请(专利权)人>=埃克森化学专利公司 <发明(设计)人>=G·D·默尔;J·P·威多恩 <申请日>=1997.05.29 <地址>=美国得克萨斯州 <摘要>=一种用来异构化含烷基芳烃原料,比如单环烷基 芳烃和/或双环烷基芳烃的方法。该方法是通过在转换条件下将 这种原料与一种含一种中孔沸石晶体和一种含另一种沸石晶 体的粘结剂的经沸石粘结的沸石催化剂接触来进行。该方法特 别适合于异构化含乙苯并且二甲苯含量低于二甲苯与乙苯平 衡量的原料,并且在低芳环损失和二甲苯损失的前提下能生成 一种对—二甲苯含量高于平衡量的产物。 <申请号>=CN97195739.8 <名称>=芳烃转化方法和适用的沸石催化剂 <申请(专利权)人>=埃克森化学专利公司 <发明(设计)人>=D·E·汉德里克森;G·D·摩尔;R·S·史密斯;J·P·沃杜因

异丁烯生产技术及国内外市场分析_王玉瑛

化工市场 第34卷第7期2009年7月 上海化工 Shanghai Chemical Industry ◆王玉瑛◆ 异丁烯生产技术及国内外市场分析 0概述 异丁烯是一种重要的基本有机化工原料。按照 纯度的不同,异丁烯大致可以分为以混合物状态存在的混合馏分异丁烯和高纯度异丁烯。混合馏分异丁烯主要指来自石油炼制装置和乙烯蒸汽裂解装置的混合C 4烃,其组成随着炼厂或乙烯裂解装置原料和操作条件的变化而有所不同。炼厂C 4馏分的丁烷 含量高,同时含有15%左右的异丁烯, 经过不同的丁烷脱除分离和化学反应工艺,脱除分离丁烷后,异丁烯的含量会有所增高。裂解C 4中,未经分离丁二烯前,主要以丁二烯(质量分数为40%~60%)、异丁烯(22%左右)和正丁烯的双键异构物(25%左右)为主。通常所谓的裂解C 4,是指抽提丁二烯后的抽余C 4,其中异丁烯含量达到44%~49%。高纯度异丁烯一般指异丁烯纯度高于99.5%的异丁烯产品。 异丁烯的化工利用途径主要包括混合C 4抽余异丁烯的利用和高纯异丁烯加工利用两种。前者主要用于生产甲基叔丁基醚(MTBE )和叔丁醇等,后者可用于生产丁基橡胶、聚异丁烯、甲基丙烯腈、叔丁基硫醇、叔丁酚、抗氧剂、叔丁胺等多种有机化工原料和精细化学产品。 1源于混合C 4烃的高纯度异丁烯技术状况分析 1.1 硫酸叔丁酯法 硫酸叔丁酯法利用C 4馏分中的异丁烯与硫酸 (纯度为45%~65%)进行选择性反应,生成硫酸叔丁酯,硫酸叔丁酯进而水解为叔丁醇,叔丁醇经脱水即得异丁烯。硫酸叔丁酯法在工业生产中代表性的流程有EXXON 、BASF 、CFR 等。其中CFR 法被认为是技术经济上最有竞争力的生产方法,该法可直接进行闭路循环,能耗较低,具有较强的适应性,产品纯 度的调整范围为99.0%~99.9%,异丁烯回收率可达 92.0%,缺点是对设备防腐要求较高。1.2 甲基叔丁基醚(MTBE )法 甲基叔丁基醚法是利用抽余C 4馏分中的异丁烯与甲醇反应得到的MTBE ,进一步裂解制取高纯 度异丁烯的方法。其简要工艺为: MTBE 与循环的M TBE-甲醇合并进入分解塔,催化裂解为异丁烯和甲醇。生成物经冷凝分离,上层为异丁烯,下层为甲醇。对上层物,除去副产物甲醚及轻组分,得到混有甲醇的异丁烯,送入异丁烯精馏塔中进行精馏,并进行水洗、干燥等工艺,即得高纯度异丁烯成品。MTBE 法的兴起,背景是甲基叔丁基醚合成工艺的迅速发展。但近年由于M TBE 对水体的污染,许多国家开始禁用M TBE 作汽油添加剂,迫切需要开拓M TBE 更广阔新的应用领域,因此,世界上主要工业国家对MTBE 裂解制异丁烯技术进行了广泛的研究。目前工业化的MTBE 裂解技术有意大利SNAMPROGETTI 公司、日本住友化学公司、韩国三星工业公司等。我国吉林石化锦江油化厂、燕山石化、南京梅山、兰州三叶等都建有不同规模的M TBE 法裂解制高纯度异丁烯工业装置,生产规模从千吨到万吨级不等。各公司有关M TBE 裂解的工艺流程大同小异,其主要差别是设备分布以及催化剂类型不同,而关键在于催化剂的选择。 1.3 叔丁醇(TBA )法 叔丁醇法是采用混合C 4烃中异丁烯水合制得的叔丁醇,在低于150℃条件下,通过强酸性离子交换树脂催化剂,脱水生成异丁烯,并对生成的异丁烯进行精馏提纯。精馏提纯后异丁烯产品纯度可达99.95%。混合C 4烃中异丁烯水合制得的粗叔丁醇,经过叔丁醇共沸精馏塔提浓后,进入叔丁醇反应精馏塔发生叔丁醇脱水反应,生成异丁烯含量较高的混合物,经加压、冷凝、干燥等工艺,进入异丁烯精馏33··

石脑油异构化技术调研及投资分析

石脑油异构化技术调研及投资分析 据IHS能源和化工最新研究报告《轻石脑油和重石脑油国际市场回顾》,随着北美地区页岩油开发到2020年,全球用于各种化学品生产的裂解原料——轻石脑油的过剩量可能达到140万吨/年。目前,轻石脑油主要用作发泡剂和乙烯裂解料,由于乙烯裂解原料呈现轻质化的趋势,乙烯装置原料中石脑油所占份额越来越小。发泡剂的市场也并不看好,为轻石脑油寻找出路是炼厂亟待解决的问题。 低辛烷值轻石脑油异构化技术作为改善汽油馏分辛烷值分布、提高汽油辛烷值和生产清洁汽油燃料的有效手段正日益受到各炼油企业的重视,国内大部分新建炼油厂都考虑或已经建设C5/C6烷烃异构化装置。调合高标号汽油时,在满足辛烷值要求的同时,对芳烃含量指标要求成为汽油调合的限制因素,而C5/C6烷烃异构化油低硫、无芳烃、无烯烃,可根据全厂调合要求生产RON77~92的异构化油,且调合性能好,同时可以调节汽油前端辛烷值,使汽油馏分辛烷值分布合理,从而改善发动机启动性能,是清洁汽油的理想组分。 1.原料及催化剂的选择 1.1原料的质量要求及处理 石脑油异构化装置的原料主要来自石脑油加氢装置及芳烃抽提装置的C5(或C6)组分,大多是由直馏石脑油经过重整预加氢处理脱除硫、氮等杂质后,切割分离出C5/C6组分。根据使用的催化剂不同,对于原料的杂质含量要求也不同,另外对苯、烯烃和C7+组分含量也有限制要求,不同催化剂对原料的质量要求见表1。 表1 不同催化剂对原料的质量要求 项目Pt/Cl-Al2O3低温固体超强酸分子筛中温型 (水)(μg·g-1) (硫)(μg·g-1)(氮)(μg·g-1) (砷)(ng·g-1) (氯)(μg·g-1) (烯烃)% (C7+)% (苯)% ≤0.1 ≤0.5 ≤0.1 ≤5 ≤10 ≤10 ≤0.5 ≤1 ≤0.5 <0.1 ≤2 ≤2 ≤50 ≤10 ≤1 ≤0.2 ≤3 一般通过对原料中的杂质进行预处理,就可以达到原料的要求。抚顺石油化工研究院开发了低温异构化原料深度处理技术,集成了反应注水、产品分馏系统、电脱水-聚结脱水、化学吸附脱硫等工艺过程,2014年在塔河炼化分公司30万吨/年异构化装置原料预处理单元实现工业应用。经过近10个月的工业运转结果表明,该技术可以满足对异构化装置进料中硫、氮含量的苛刻要求,并能够实现生产装置的长周期稳定运行。 1.2 催化剂的选择 用于C5/C6烷烃异构化工艺的催化剂为三类。第一类为Pt/Cl-Al2O3低温型,第二类为固体超强酸型,第三类为分子筛中温型。 分子筛中温型催化剂大多是采用贵金属载于改性丝光沸石上的催化剂。例如,美国环球油品公司(UOP)的HS-10 催化剂、Axens公司的IP632催化剂等。我国石油化工科学研究院研制的RISO型催化剂及金陵石化公司炼油厂等单位研制的CI-50 催化剂都属于这一类。这类催化剂具有较高的活性,无须注入活化剂氯化物,耐水、抗硫性好,抗杂质性能好,反应温度在210~300℃之间,反应压力在2.0MPa左右。其工艺流程简单,原料预处理要求不严格,适合于固定床催化重整装置的利旧改造。但由于反应温度相对较高,导致了该类催化剂在产物

正丁烯骨架异构化催化剂研究进展

专论与综述 正丁烯骨架异构化催化剂研究进展 焦宁宁 (兰化公司化工研究院 兰州73006) 论述了正丁烯骨架异构化活性位的性质、骨架异构化的主导机理和异构催化剂的最新进展。 指出正丁烯骨架异构化的主导机理是单分子性的,Br o nsted酸(OH)活性位是必需的位点。沸石的形状选择性和沸石类型对催化剂的选择性和稳定性有很大影响。 关键词:骨架异构化 异丁烯 催化剂 活性位 分子筛 0 前 言 异丁烯是重要的有机化工原料,能否充分利用异丁烯是C4烃类综合利用的关键所在。而异丁烯的主要用途是生产甲基叔丁基醚(MT BE)、丁基橡胶、聚异丁烯和甲基丙烯酸甲酯等。特别是近年来M TBE需求在全球范围迅猛增长,导致异丁烯需求量剧增。传统来源的异丁烯已不能满足M TBE对异丁烯的巨大需求,因而将正丁烯转化成异丁烯的技术对生产低公害的汽油添加剂M TBE是十分有价值的。此外,全球范围内正丁烯过剩,环境保护法又禁止将其直接用于汽油,故正丁烯转化成异丁烯具有现实意义。 1 正丁烯骨架异构化的活性位 C4烃类骨架异构化的催化剂有多种,但仅有少数几种能高效引发骨架异构化反应。正丁烯骨架异构化的最佳催化剂是金属氧化物。探索性研究表明〔1〕,只有氧化钨、氧化钼和氧化铝几种单正离子氧化物具有发展前景。特别是氧化铝表面经过热处理或用卤素改性后具有非常高的活性〔2-4〕。上述几种氧化物表面上呈现不同性质的活性位:(1)路易斯酸(LA)位点;(2)路易斯碱(LB)位点,以某种方式与LA位点呈缔合状态;(3) Br onsted酸(BA)位点,与LA位点呈缔合状态。这就需要确定哪类位点对正丁烯骨架异构化是最关键的。早期文献〔4〕给出了关于位点问题的某些有用信息,指出了BA位点的重要作用。而一些最新文献〔5〕则强调LA 位点或LA-LB双位点的重要作用。 Po nec〔5〕没有直接测定最重要的位点的数目和酸性强度,而是在氢气中对催化剂进行退火处理,有选择地使某些类型的位点中毒,并将氧化铝的卤化效应与早期报道的在活性位上的卤化效应进行比较,发现早期研究对BA位点的重要性估计不足。 为验证BA位点的作用,Ho uzv icka等〔6〕采用由H3PO4和SiO2制成的无孔隙催化剂 收稿日期:1998-06-20

异丁烯的生产工艺及技术进展

异丁烯的生产工艺及技术进展 2.1 异丁烯生产工艺发展概述 目前,生产异丁烯的原料主要来源于石脑油蒸汽裂解制乙烯装置的副产C4馏分、炼油厂流化催化裂解(FCC)装置的副产C4馏分和Halcon法环氧丙烷合成中的副产叔丁醇(TBA)。各种C4馏分中异丁烯的含量有所不同。在C4馏分中,由于异丁烯和正丁烯的沸点只相差0.6℃,相对挥发度仅相差0.022℃,因此采用一般的物理方法很难将其分离,但由于异丁烯的化学活性仅次于丁二烯,所以工业上一般利用其化学活性来进行分离。 20世纪80年代以前,异丁烯主要通过硫酸萃取法进行生产,少数采用Halcon 共氧化联产法进行。硫酸萃取法技术成熟,工业上已经沿用40多年,但该方法的反应选择性不理想,设备腐蚀严重,存在废酸回收处理等问题,而Halcon共氧化法局限性较大,只有在大规模联产环氧丙烷和叔丁醇时才能使用。 进入20世纪80年代,异丁烯的生产纷纷转向技术经济更为合理的甲基叔丁基醚(MTBE)裂解法和树脂水合脱水法工艺。树脂脱水法的主要缺点是C4馏分中异丁烯单程转化率低(将增加进一步提取1-丁烯的难度),采用多段水合可提高转化率,但能耗较高。MTBE裂解法生产异丁烯收率和选择性均较高,工艺过程简单,投资费用较低,适宜于大规模生产。80年代后期,新建的从裂解C4馏分中分离出异丁烯的生产装置,绝大部分采用此法进行生产。进入90年代,又开发出异构化生产异丁烯的生产技术。目前,MTBE裂解法和异构化法已经成为世界上生产异丁烯的两种最主要的方法。

2.2 异丁烯的几种生产工艺 2.2.1甲基叔丁基醚(MTBE)裂解法 甲基叔丁基醚(MTBE)裂解制异丁烯是20世纪70年代末期研究开发成功的一种生产异丁烯的重要方法。和其它方法相比,该技术具有对设备无腐蚀,对环境无污染,工艺流程合理,操作条件缓和,能耗低,产品纯度高,装置规模灵活性大,可以根椐市场需求生产MTBE或异丁烯等特点,自开发成功至今一直是国内外生产异丁烯最主要的方法之一。 20世纪80年代后期,新建的异丁烯生产装置也大都采用MTBE裂解工艺。如Huels公司于1989年建成一套生产能力10万t/a的异丁烯生产装置;Exxon 于1986年在Baton Rouge 的丁基橡胶厂建成6.0万t/a 的异丁烯装置, 该公司于1989年又在英国的合资丁基橡胶厂建成6.5万t/a的异丁烯生产装置;匈牙利Tifo建的分别用于生产弹性体和MMA 的两套MTBE裂解生产异丁烯的装置;日本住友化学公司于1990年建成3.0万t/a MTBE裂解生产异丁烯生产装置,1984年又在Chiba建成5.1万t/a异丁烯生产装置;韩国大林工业公司于1990年采用Snam公司的技术建成用于生产丁基橡胶和MMA的异丁烯装置,三星公司于1992年在南韩建成 3.1万t/a异丁烯生产装置等。1998年Savla Chemical Ltd.(SCL)采用环境友好的MTBE裂解法建成一套4500t/a的异丁烯生产装置,产品主要用于生产家用化学品、抗氧剂和药品。SNAM、IFP、CR&L、住友以及Huls-UOP等公司均拥有自己的MTBE裂解生产异丁烯生产技术。 我国吉化锦江油化厂于1992年采用北京燕山石化公司研究院的技术建成了我国第一套MTBE裂解制异丁烯装置,当时装置规模为2000t/a,1999年燕山石化公司橡胶厂用研究院技术建成3.5万t/a生产装置,产品主要用于生产丁基橡胶。 甲基叔丁基醚(MTBE)裂解法是指在液相条件下,采用大孔强酸性离子交换树脂作催化剂,含异丁烯的C4馏分与甲醇进行选择性反应生产甲基叔丁基醚(MTBE),异丁烯转化率超过99.99%,然后,MTBE再裂解生成异丁烯的工艺方法。它包括甲基叔丁基醚的合成和甲基叔丁基醚的裂解两个过程。……

芳烃联合装置歧化异构化技术探讨_宋闻慧

工艺与设备 化 工 设 计 通 讯 Technology and Equipment Chemical Engineering Design Communications ·105· 第43卷第5期 2017年5月 芳烃是重要的石油化工基础原料,在芳烃化合物中,苯、甲苯、二甲苯的产量和规模巨大,在石油化工和纺织工业应用广泛。芳烃通过芳烃联合装置进行大规模工业生产,生产流程中涉及的技术有催化重整、芳烃抽提、甲苯歧化、烷基转移、二甲苯异构化等。1 甲苯歧化 1.1 传统歧化技术 我国在20世纪90年代末由上海石油化工研究院开发了S-TDT 生产工艺,S-TDT 工艺使用HAT 高效催化剂,能够处理原料中含的C 10A ,生产装置节能效果好,物耗较低,目前该工艺技术已广泛应用于国内芳烃生产中。传统的歧化技术经过多年发展,不断提高进料空速,降低轻烃比例,同时不断提高催化剂性能,提升对重质芳烃的处理效果,增加二甲苯的产量。 重芳烃苯环上的甲基只有转移到甲苯上才能生成二甲苯,其他的多碳侧链烷基需要通过脱烷基反应去除掉。因此,为了最大化增产二甲苯,需要保护重芳烃苯环上的甲基,最大限度的脱除乙基、丙基、丁基等多碳侧链烷基。为了提高脱烷基效率,使用分子筛如ZSM-5、ZSM-12等作为甲苯歧化和烷基转移的催化剂活性成分,为进一步提升催化剂的脱烷基效率及性能稳定性,可使用Pt 、Re 、Ni 、Mo 等金属改进分子筛性能。 1.2 甲苯选择性歧化 甲苯选择性歧化能够大幅降低PX 分离的成本,通过择形歧化技术提高甲苯转化率、对位选择性和PX 收率,降低生产二甲苯的能耗,减少物料损耗。2 重芳香烃轻质化 为提高重芳烃的利用率,通常将重芳香烃转化成高附加值的BTX 芳烃,同时使苯环和甲基达到理想比例。上海石油化工研究院开发研制的重芳烃轻质化催化剂HAT-plus ,使用大孔纳米分子筛为活性剂,采用贵金属改性,纳米分子筛表面积大,具有丰富的二次孔,能够极大的方便芳烃的扩散,生成的二甲苯能够在短时间内扩散出去,避免出现深度脱甲基反应,显著提升重芳烃的转化率。 重芳烃轻质化催化剂HAT-plus 性能优越,不同工况下能够有效转化重芳香烃,C 9+A 含量达54%以上的原料也能有效 的转化。分子筛的酸性影响催化剂的性能,强酸中心能够提升多碳侧链烷基的脱基反应,同时也会导致深度脱烷基和积碳反应,使得二甲苯的收率降低。为进一步提升重芳烃的扩散速度,可对微孔分子筛进行扩孔处理,能够显著提高重芳烃的转化率。3 二甲苯异构化 二甲苯异构化能够提高二甲苯的收率,从而提高芳烃联合装置的经济性。目前常用的二甲苯异构化工艺有两种:一种方法是使乙苯向二甲苯转化,即乙苯转化型异构化;另一种方法是使乙苯脱烷基生成苯,即乙苯脱烷基异构化。乙苯转化型异构化工艺由于受到热力学平衡影响,转化率相对降低(不到30%),生成工艺的吸附分离和异构化单位负荷较大,导致二甲苯损失严重。乙苯脱烷基异构化工艺不受热力学平衡影响,生成工艺空速高,二甲苯转化率较高,且生成的苯产品可迅速分馏出去,解决了吸附分离单元和结晶分离单元的瓶颈限制,有利于芳烃生成装置的大型化设计。现阶段,C 8A 芳烃异构化技术发展迅速,在乙苯转化率、二甲苯收率及原料处理能力等方面取得了长足进步。4 芳烃联合装置 由上述介绍可知,甲苯选择性歧化工艺生产的二甲苯中PX 质量分数较高,但是该工艺不能有效利用C 9+A ,且产物中苯含量较高。因此,在芳烃联合装置中不能简单的使用选择性歧化工艺取代传统歧化工艺。国内上海石油化工研究院采用将部分甲苯进行选择性歧化,另一部分甲苯和C 9+A 进行歧化与烷基转移工艺流程,这种生产工艺既使用了甲苯选择性歧化工艺,也能有效利用C 9+A 资源,但是甲苯选择性歧化应用不够充分。 为了进一步优化工艺流程上海石油化工研究院研发了选择性歧化和烷基转移组合工艺流程,该工艺流程将苯与C 9+A 进行烷基转移,生成甲苯和C 8芳烃,生成的甲苯和重整生成油中的甲苯进行选择性歧化反应,最后生成的混合二甲苯具有较高的PX 浓度。采用该生产工艺使用相同的原料,PX 产量增加,能够有效降低生产成本,提高效益。使用新工艺对传统芳烃联合装置改造时,关键是新建选择性歧化装置,改造成本较低。使用BAT-1001苯和C 9烷基转移催化剂能够进一步提升效率。总之,组合工艺汲取各单项技术优势,取得了较好的综合效益。 参考文献 [1] 孔德金,杨为民.芳烃生产技术进展[J].化工进展,2011,30(1):16-25. 摘 要:目前芳烃的大规模工业生产使用的是芳烃联合装置,甲苯歧化、烷基转移、二甲苯异构化是芳烃生产中的关键技术,因此主要对这三项技术原理进行了探讨,介绍了芳烃联合装置的组合工艺流程。 关键词:芳烃联合装置;甲苯歧化;烷基转移中图分类号:TQ221.211 文献标志码:B 文章编号:1003–6490(2017)05–0105–01 Discussion on Disproportionation and Isomerization Technology of Aromatics Combination Unit Song Wen-hui Abstract :At present ,the industrial production of aromatics is the use of aromatics combination unit ,In this paper ,the three technical of toluenedisproportionation ,alkyl transfer and xylene isomerization are discussed ,and the combined process flow of aromatics combination unit is introduced. Key words :aromatics combination unit ;toluene disproportionation ;alkyl transfer 芳烃联合装置歧化异构化技术探讨 宋闻慧 (中国石化天津石化化工部,天津 300270) 收稿日期:2017–04–10作者简介: 宋闻慧(1988—),女,天津人,助理工程师,主要研究 方向为芳烃装置歧化异构化。

异构化催化剂

一、异构化原理 芳烃异构化反应是指在一定的温度、压力,临氢状态和催化剂作用下,将含贫对二甲苯(PX〈1%)的混合二甲苯转化为二甲苯的四种异构体(PX、MX、OX、EB)接近平衡的催化异构过程。其目的是为了降低吸附塔进料中乙苯的含量,提高对二甲苯的浓度,多生产对二甲苯产品。 二、催化剂性能介绍 二甲苯异构化采用法国Exxon Mobil的XyMax工艺。催化剂型号为EM-4500T/B,它是由氧化铝和丝光沸石为载体的载铂双功能催化剂。催化剂上层酸性比较强,主要是乙苯脱乙基转化成苯;下层金属功能比较强,主要是二甲苯异构。反应过程中乙苯转化率比较高,二甲苯损失率比较小。 主反应: 二甲苯异构化;乙苯加氢脱乙基生成苯和乙烷;乙苯通过环烷桥转化成二甲苯 副反应(造成C8A环损): 二甲苯歧化反应生成甲苯/C9或C10/苯;二甲苯加氢脱烷基生成甲苯与甲烷;加氢开环裂解 异构化反应条件: 三、EM-4500与SKI-100A性能对比 石科院研制的SKI-100A乙苯脱乙基催化剂2005年7月应用在洛阳石化芳烃装置上,2006年5月对催化剂进行了标定。两种催化剂标定情况对比如下:

从表中的数据对比可以看出进口催化剂有以下几点优势: 1、空速高:装置负荷一定的情况下,催化剂装填量少,反应器体积小。 2、轻烃比小:循环氢量少,循环氢压缩机体积小。 3、EB转化率高、C8A环损低:二甲苯产量大,PX产率高。 与国产异构化催化剂相比,使用进口催化剂,最大的优势是设备及管线规格小,可以减少了设备大型化的难度并节约投资。催化剂价格虽然贵,但是装填量少,而且二甲苯产率高。 但是使用Exxon Mobil的催化剂,反应压力比较高,反应温度也高一些,能耗高一些。 四、催化剂硫化 异构化催化剂在使用初期,要进行预硫化和钝化。预硫化的目的是通过向反应器内注硫来抑制催化剂的金属功能,控制开工阶段的反应温升,防止床层飞温;钝化是通过缓慢提高反应苛刻度,使催化剂少量积炭来抑制其酸性功能,减少芳环损失,提高C8A产率。 对于EM4500催化剂而言硫是暂时性毒物,硫化使催化剂暂时中毒,降低新鲜催化剂的初始活性,降低加氢和裂解反应、控制反应器温升。催化剂上的硫随着装置的运行会逐渐从高分顶部排出。钝化时间短,钝化完成以后,应尽快调整到正常的操作条件。预硫化和钝化对催化剂的寿命影响很小。

1-丁烯生产工艺进展 鲁红辉

1-丁烯生产工艺进展鲁红辉 发表时间:2018-03-20T15:52:50.200Z 来源:《基层建设》2017年第35期作者:鲁红辉 [导读] 摘要:1-丁烯产品主要的生产具有广阔的发展空间。 武汉炼化工程设计有限责任公司湖北武汉 430079 摘要:1-丁烯产品主要的生产具有广阔的发展空间。介绍了1-丁烯的来源及国内外生产工艺现状,通过对1-丁烯工艺方案的对比并结合我国1-丁烯生产情况对炼油厂建设1-丁烯装置提出了建议。 关键词:1一丁烯;碳四;生产技术; 1-丁烯是重要的化工原料,来源于乙烯装置及炼厂催化裂解装置副产碳四馏分和乙烯二聚。目前,碳四烃的利用包括燃料和化工两个方面。我国碳四烃的化工利用率不足3%,1-丁烯大部分作为燃料烧掉。1-丁烯的深加工对化工厂原料平衡具有重要作用,具有发展前景的是1-丁烯齐聚和均聚产品,包括聚1-丁烯、异辛烯及十二碳烯。另外,1-丁烯脱氢生产丁二烯、异构生产异丁烯及氧化制顺酐是其他应用的重要途径[1]。 1 1-丁烯的来源 1-丁烯没有天然的来源,可通过多种烃加工工艺而获得。目前工业生产中的1-丁烯主要来自于混合碳四分离方法、化学合成方法和异构化及分离技术。 1.1 混合碳四分离方法 目前各生产装置普遍利用萃取或化学反应的方法将混合碳四中的丁二烯、异丁烯脱除,再利用超精密精馏将1-丁烯之外的碳四馏分分离掉,得到高纯度的1-丁烯产品,故1-丁烯分离技术路线的选择是生产高纯度1-丁烯产品关键。 1.2 化学合成方法 化学合成方法即乙烯二聚法,化学反应的原理是在Zegler-Netta催化剂的作用下,利用裂解乙烯通过二聚反应制备1-丁烯,此种方法的化学反应方程式为: 主反应:C2H4 + C2H4 ——C4H8 副反应:C4H8 + C2H4 ——C6H12 1.3 异构化及分离技术 目前比较成熟的将2-丁烯转化为1-丁烯的技术有美国Lummus公司开发的共聚单体生产技术(CPT)、中石化上海石油化工研究院开发的碳四异构化技术,这两种技术都实现了工业化生产[2]。 美国Lummus公司共聚单体生产技术可以生产1-丁烯,其工艺原理如下:煤基混合碳四中的2-丁烯通过异构化及分离技术生产1-丁烯。 Lummus公司共聚单体生产技术工艺流程示意图如图1所示。混合碳四首先脱除二甲醚和碳五重组分,吸附脱除氧化物,再通过选择性加氢去除1,3-丁二烯,送入催化精馏单元脱除异丁烯和异丁烷;脱除后的物料送入丁烯精馏系统,在丁烯精馏系统中分离出1-丁烯(聚合级)、2-丁烯和丁烷;2-丁烯送入异构化单元,通过异构化转化为1-丁烯,再送回丁烯精馏系统分离出1-丁烯。 2 国内外1-丁烯分离工艺 2.1 德国Kruup Uhde技术 该技术以吗啉和N-甲基吗啡混合物作为萃取剂进行萃取,其特点是对丁烯的选择性高,溶解性较好,产品收率可达到95%。目前,已在国内3套甲乙酮装置中应用,效果较好。该方法流程简单,设备台数少,有热油作加热介质,空冷器作冷却设备,能耗较低。 2.2 日本瑞翁(Zeon)工艺 又称GPD工艺。该工艺处理的原料通常指从石脑油蒸汽裂解副产物碳四分馏中除去1,3-丁二烯和异丁烯后的碳四馏分,或者从FCC 副产的碳四烃类中除去异丁烯的碳四馏分。日本瑞翁公司开发了一极性溶剂为萃取剂的萃取蒸馏技术。 2.3 日本石油化工公司的NPC技术 日本石油化工有限公司开发的四塔蒸馏系列组成回收1-丁烯系统。其中前两个塔串联操作,从塔顶除去碳四中的异丁烷。后两个塔也是串联操作,以前两个蒸馏塔的塔底出料为原料回收1-丁烯,纯度大于99%,回收率达96%,但由于1-丁烯与正丁烷的相对挥发度仅为 1.1,故需要140多块理论塔板的精馏塔。 2.4 IFP分离技术 法国石油研究院采用一次普通精馏和一次萃取精馏相结合的工艺流程,可以从萃取精馏溶剂回收塔塔顶中得到高纯度的1-丁烯产品。 2.5 UOP分离技术 UOP公司提出了利用物理方法分离混合碳四,以制取高纯度1-丁烯的工艺流程。方案1:将混合碳四加氢脱除丁二烯后,采用本公司的Sorbutene工艺,用带旋转阀的模拟移动床,吸附剂为X型或Y型的结晶硅铝酸沸石分子筛,产品1-丁烯的纯度大于97.7%,回收率达88%。方案2:将醚化后的碳四用吸附分离烯烃和烷烃的FLEX工艺及丁烯异构化工艺相结合生产1-丁烯。方案3:将醚化后碳四中的2-丁烯

1-丁烯无规共聚物生产技术开发进展

262010年第8期 总第188期 收稿日期:2010-07-13。 作者简介:孔德辉,毕业于天津大学化工系有机化工专业,先后就职于中国石化股份有限公司燕山分公司聚丙烯事业部、国家知识产权局专利审查协作中心、中国专利技术开发公司,现在中国石化北京 化工研究院从事知识产权管理工作,具有丰富的化工生产、专利审查、专利代理及专利管理经验。 孔德辉 (中国石化股份有限公司北京化工研究院,北京100013) 丙烯/1-丁烯无规共聚物生产技术开发进展 摘 要:综述了丙烯/1-丁烯无规共聚物的制备技术、结构与性能表征及其性能改进方向等研发 现状。 关键词:丙烯 1-丁烯 无规共聚物 生产技术 进展 丙烯与乙烯或其他α-烯烃无规共聚,可以降低材料的熔点和结晶度,进而使其热封性能、光学性能、低温抗冲击性能得到一定程度的改善,是聚丙烯产品多样化的重要分支。目前应用最广的是丙烯同少量乙烯的共聚物。然而,用非均相催化剂制备乙丙共聚物时,由于乙烯的竞聚率远高于丙烯,当乙烯含量超过较高时,会有乙烯连排的“聚乙烯”长链段存在,且乙烯在不同分子量级分间的分布也不均匀,易于分布在小分子量级分内,形成低分子、可溶于溶剂、易迁移的成分,影响材料的物理性能和使用性能。因此,有必要寻找其他的烯烃同丙烯共聚合,来提高产品的相应性能。 近年来,有关丙烯/1-丁烯无规共聚物的研究引起人们广泛的关注,凡是有关丙烯同其他α-烯烃单体共聚的专利中大都提到丙烯与1-丁烯的共聚合。国内外一些大的聚烯烃公司都竞相开展了丙烯/1-丁烯共聚物的研发。目前已知壳牌公司的Cefor、巴塞尔公司的Adsyl 3C30F、3X30F等牌号是丙烯与1-丁烯的无规共聚合产品。 在丙烯/1-丁烯无规共聚物中,丙烯结构单元和丁烯结构单元具有更好的相容性,使得其透明性也比丙烯-乙烯共聚物要好。可见,用1-丁烯同丙烯共聚对材料性能的改变有着独特的优势。本文将针对丙烯/1-丁烯无规共聚物生产技术开发情况进行总结和展望。 1 丙烯/1-丁烯无规共聚物的制备技术1.1?催化剂体系 丙烯/1-丁烯无规共聚物的制备技术已有很多文献[1-13]和专利[14-18]进行了报道。所用的催化剂体系主要有两种,即传统的负载型Z-N催化剂和茂金属催化剂。 Fisch [8]利用Z-N型催化剂制备了丙烯/1-丁烯无规共聚物,并根据13CNMR谱技术对无规共聚物的结构以及1-丁烯单元在聚丙烯主链上的插入量进行了定量分析。Gou等[9]利用 DSC、WAXD、AFM等手段对经升温淋洗分级(TREF)后的样品的晶体结构转变进行了详细的研究。Fabrico等[10, 11]分别采用高活性球型Z-N催化剂引发丙烯与1-丁烯本体共聚和高效氯化镁负载的Z-N催化剂引发丙烯与1-丁烯气相共聚,结果表明无论是液相聚合还是气相聚合,1-丁烯都能全部进入聚合物链中,使共聚物的熔融温度降低。国内的徐君庭等[1]采用负载型Z-N催化剂体系,常压、氮气气氛下,采用

轻烷烃异构化技术及发展

轻烷烃异构化技术及发展 论述了异构化技术在清洁汽油生产中的作用及异构化技术的发展现状,同时对轻烷烃异构化装置的经济性进行了简要分析:在降低重整反应温度后,液体收率、汽油收率均有所提高,同时还可以延长催化剂使用寿命,使重整装置运行的经济性有较大的提高。 关键词:清洁汽油异构化技术 随着我国国民经济的快速发展和人民生活水平的提高,大气污染越来越受到人们的密切关注,对汽车尾气的排放要求越来越高,对车用燃料质量要求也日趋严格,清洁燃料的生产已提到十分紧迫的日程上来。 我国车用汽油的主要成分是催化汽油和重整汽油,目前只有少数炼油厂在车用汽油中加入少量的MTBE和烷基化油,由于MTBE对地下水的污染,前途未卜,其应用受到限制。烷基化汽油又因现有的生产工艺对环境的污染、加工成本高等原因,国内大部分烷基化装置没有开工,这样炼油厂必须寻找其他高辛烷值的汽油调合组分,于是C5、C6异构化技术被提了出来。 1 轻烷烃异构化技术及发展 1.1 异构化技术 C5、C6烷烃各组分的辛烷值如表1。 5656 辛烷值较高的异构体。可供选择的原料有直馏或轻重整原料等。虽然异构化产品相对烷基化油、醚化产品等辛烷值并不高,但有以下优点:①硫含量很低,不含烯烃、芳烃和苯; ②可减少汽车发动机在低速条件下的爆震,使汽油具有较好的挥发性;③可提高汽油的前端辛烷值。因此,异构化汽油是较好的清洁汽油调合组分。 1.2 异构化技术的发展 我国的直馏汽油和催化裂化汽油所占比例较大,而适合环保需要的清洁汽油组分所占比例很小。这使得我国成品汽油的普遍存在苯、烯烃和芳烃等含量超标现象,因此发展环境友好汽油组分的生产已成为必然。 世界各地轻汽油异构化技术的加工能力见表2。 表2 1990-2010年异构化装置的加工能力

芳烃异构化装置先进控制系统的设计

芳烃异构化装置先进控制系统的设计 张菁 张培贵 施大鹏 张菁女士,中国石化洛阳石油化工工程公司仪电室工程师;张培贵先生,中国石油吉林石化分公司炼油厂联合芳烃车间工程师;施大鹏先生,清华大学自动化系高级工程师。 关键词:先进控制 芳烃异构化装置 软测量 状态空间模型 石油化工生产过程具有生产连续、多变量相关、 存在不可实时测量变量、时间滞后大、动态特性复 杂、难于准确建模及安全平稳性要求高等特点。先 进控制技术在石油化工过程中的应用提高了生产装 置的平稳率、处理量和目的产品的产率,可使装置 在约束的边界条件下平稳操作,具有可观的经济效 益。 异构化单元是芳烃联合装置的重要岗位,包括 反应和分馏两部分。在反应部分,贫邻二甲苯(OX) 的C8芳烃在催化剂作用下发生异构化反应,C8芳烃 4种异构体趋向热力学平衡。分馏部分从反应产物中 分离苯、甲苯和二甲苯产品。为了增强装置控制系 统的稳定性,克服干扰的影响,设计了基于机理的 异构化装置先进控制系统,该系统包括异构化反应 热软测量系统、异构化反应预测控制系统和分馏单 元预测控制系统3部分。 一异构化反应热软测量系统 1. 反应机理 芳烃异构化反应就是在一定的温度、压力、临氢状态和催化剂作用下,将含邻二甲苯(OX)较少的混合二甲苯转化为二甲苯4种异构体(PX、MX、OX、EB)接近平衡的催化异构过程。本装置采用了联合油品公司(UOP)的异构化工艺,原料是贫OX的C8芳烃,基本反应有两种,即异构化和乙苯脱烷基,生成目标产品混合二甲苯和副产品苯。主要反应为:二甲苯异构化、乙苯转化为二甲苯和乙苯脱烷基。 2. 软测量模型 芳烃异构化反应器(DC501)为径向固定床反应器,反应原料和循环氢经异构化加热炉(BA501)加热后进入反应器。原控制方案为反应器入口温度—燃料气压力串级PID控制。反应温度、催化剂活性、氢油比、停留时间以及原料组成等都影响反应深度。因此,仅仅控制反应温度的平稳,并不能保证在任何情况下维持反应深度的平稳。 本方案用宏观反应热(单位原料在反应时所需的热量)实时衡量反应深度,由实测过程变量和动态数学模型在线实时计算反应热,进一步实施反应热的控制,使反应深度平稳。基于反应过程机理的宏观反应热动态数学模型为:

二甲苯异构化工艺过程用能分析及优化

二甲苯异构化生产工艺对比分析及用能优化研究 摘要: 通过将二甲苯异构化的两种不同的工艺进行比对分析,探讨两种工艺存在的差异,主要针对两种二甲苯异构化工艺在循环氢气分离、脱除庚烷以下的轻组分的方式上的不同,进行相应的用能诊断及调优,比对两种工艺对能量的利用上的不同,并给出分析结论。 本研究将立足于二甲苯异构化的生产工艺,把“夹点分析”技术应用于整个生产工艺中的能量诊断以及优化之中,利用“问题表格法”计算出二甲苯异构化过程中的夹点,并根据计算得出的结果进行用能的诊断以及调优。 关键词:二甲苯异构化;夹点分析;问题表格法;用能优化; 第一章绪论 1.1 引言 能源是人类社会赖以生存和发展的重要物质基础。作为世界上一个战略地位十分重要的发展中国家,中国的能源资源有以下两个特点:1、人均能源资源拥有量较低。中国人口众多,人均能源资源拥有量在世界上处于较低水平。煤炭和水力资源人均拥有量相当于世界平均水平的50%,石油、天然气人均资源量仅为世界平均水平的1/15左右。2、资源约束突出,能源效率偏低。中国优质能源资源相对不足,制约了供应能力的提高;能源资源分布不均,也增加了持续稳定供应的难度;经济增长方式粗放、能源结构不合理、能源技术装备水平低和管理水平相对落后,导致单位国内生产总值能耗和主要耗能产品能耗高于主要能源消费国家平均水平,进一步加剧了能源供需矛盾。单纯依靠增加能源供应,难以满足持续增长的消费需求。 1.2过程系统用能分析及调优研究进展简述 过程系统的用能分析,是建立在应用分析数学,计算机学科以及以过程模拟、系统分析为手段的一门系统优化技术,该技术以整个系统过程的用能为基础进行设计,在明晰了系统全局与各个子系统的关系之后给出子系统优化策略的方法。 而在过程能量集成研究方面,Linnhoff的“夹点分析技术”以及依据夹点技术所建立的“洋葱模型”,即每个子系统的设计都必须遵循一定的原则,同时需要兼顾与该过程中其他

相关文档
最新文档