风机振动的原因及案例
引风机:造成引风机震动大的原因有哪些?

引风机:造成引风机震动大的原因有哪些?引风机是工业生产中常见的设备之一,主要作用是将外界空气引入并对生产过程中的气流进行调整。
然而,有些引风机在使用过程中会出现震动较大的问题,这不仅会影响生产效率,还会影响设备的使用寿命。
那么,造成引风机震动较大的原因有哪些呢?本文就来一一解析。
1. 设备设计不合理造成引风机震动较大的一个原因是设备自身设计不合理。
这种情况通常表现为引风机内部结构的排布、支撑方式的设计不当。
引风机内部结构的不合理排布,容易导致空气流动不畅,产生“阻力”,从而引发震动;如果支撑方式设计不合理,引风机的重量难以得到均衡分布,引起震动。
2. 设备进口方向和出口方向不一致设备进口方向和出口方向不一致,也是引风机震动大的原因之一。
这种情况常常表现为进入风机的风流方向与风机鼓风的方向不统一,由此产生一个相互抵触的“阻力”,因此风机就会出现震动。
3. 过负荷运转如果引风机在生产过程中超过负荷运转,或是在大风量运行时不能适时调整风门,那么引风机便会产生过大的运转压力,这会导致其晃动或者震动。
4. 不当安装和调试不当的安装和调试也是引风机震动大的一种情况。
在安装时,如不牢固固定,或各部分组件瞬间或差异较大,就会导致设备在工作时发生晃动。
另外,调试过程中如果技术不够成熟或理解不够细致,可能会调整到不正确的运行方式,进而强制风机产生过大的震动。
5. 轴承问题引风机在运行过程中可能还会出现轴承问题,这也是引起设备震动的原因之一。
在轴承质量较差或者是未保质保量的情况下使用,会导致轴承磨损加剧,从而造成设备的振动。
综上所述,引风机震动大的原因是很多的,从设备设计到日常使用维护,都会影响其正常工作,使设备产生震动。
只有对问题进行逐一分析,找出产生震动的原因并进行相应的处理和改进,才能让引风机发挥其最大的作用。
某电厂4A一次风机轴承振动值波动原因分析

某电厂4A一次风机轴承振动值波动原因分析一、背景介绍一次风机是火力发电厂锅炉的重要辅机之一.。
它的主要作用是对磨煤机内的煤粉进行加热、干燥后将其吹送入炉膛内燃烧,并供给煤粉燃烧初期所需氧气.。
同时,一次风也是锅炉总风量的一部分,为锅炉燃烧提供氧气.。
风机在转动过程中,轴与轴承间的摩擦会产生热量,若热量积聚,会造成风机轴瓦温度过高甚至烧损.。
因此,一次风机配有润滑油系统为其轴承部分提供润滑与冷却.。
某电厂一次风机润滑油系统包括油泵、过滤装置、水冷却装置以及各种必要的阀门与检测仪表.。
润滑系统从油箱中抽出润滑油经过过滤、冷却装置,输送给主机设备,为主机设备的摩擦部提供一定压力、流量、温度的润滑油,进行润滑和冷却,从而满足主机正常运行的要求.。
某电厂一次风机润滑油系统图二、异常现象4号机组自上次重新启动后,4A一次风机逐渐出现风机轴承振动值波动现象,且多出现在中班或夜班期间.。
根据异常现象发生的时间段分析,可能存在下列原因:1、风机轴承振动测点失准;2、低负荷工况下风机发生喘振;3、环境温度降低造成油质变差.。
三、原因分析1、针对测点失准的怀疑,运行方面联系热控维护人员对4A一次风机轴承振动测点进行全面检查与校准.。
同时,使用手持式测振仪,就地对风机振动进行实测.。
检查结果显示,风机振动测点的测量、远传均正常,且就地实测值与远传画面显示值基本一致,排除了4A一次风机振动测点失准的可能.。
2、风机类转动设备,根据其构造特点,一般会存在喘振现象.。
即当转速或出力达到一定区域时,风机内气体动能平衡被打破,造成风机发生周期性振动.。
当振动与风机固有的共振頻率一致时,就会发生共振,威胁设备安全.。
经查询4A一次风机异常期间的历史曲线,抽样数据分别列出表1和表2:对比两张表格中数据可以发现,在两日夜班的前后两个时间段中,4A一次风机轴承振动值波动幅度出现显著差异.。
后一个时间段中风机轴承振动值波动幅度明显增大.。
风力发电机组振动原因分析和解决措施

风力发电机组振动原因分析和解决措施摘要:近年来,风力发电作为一种绿色能源在我国迅速发展,风电装机不断加大,机组数量不断增多,为保证机组设备的安全,风机厂家会相应对风机系统配置各种各样的保护,来确保机组在运行过程中发生异常时能够安全解列,其中风机振动超限就是一个常见的机组故障保护,主要是保证机组振动值在超过定值时机组停运,避免发生设备损毁或机组倒塌,我国早期投运的的1.5MW风机只配置两个振动传感器,振动监测较现在技术较为简单,当机组出现振动超限故障时,因涉及电气、传动、控制、结构、环境等多因素,分析处理都有一定难度,本文通过对某风场发生的振动超限故障进行研究,分析发生振动超限的原因,提出应对措施,提高风机安全和稳定性。
关键词:风机;振动;原因分析;解决措施引言:随着风力发电技术的发展,风机振动状态监测技术也得到较大的发展,目前,风机振动在线监测系统已成为风力发电机组一个重要的组成部分,对风机传动链进行24h监测。
而早期投产的风力发电机组,因技术限制,只在传动链上配置两个振动传感器,分别安装在齿轮箱和发电机下方,振动传感器拾取的振动信号不能够直接反映振动源的信号特征,而且还容易受外部干扰,所以机组运行过程中,经常会发生振动超限故障,影响风机稳定运行和造成一定电量损失,更严重的会影响到风机整机安全,所以,当风机发生振动超限故障,就需要运行单位尽快排查故障原因并采取措施,保证风机安全稳定运行。
一、风机振动原因分析云南某风电场作为较早在云南高海拔地方开发建设的风电场,安装的双馈式风力发电机组,2012年投产以后,机组经常发生振动超限故障,尤其在大风阶段,频率更高,严重影响风电场正常运营,为了彻底解决风机振动问题,通过对风场内风机发生的振动超限故障原因进行分析,发现主要为以下几个方面的问题:风向变化过快、风速湍流度大、传感器误报、传动链波动、叶片零位误差等几个方面原因。
(一)风向变化过快风力发电机组采取主动对风系统来捕捉风能,通过机组上安装的风向标来进行测风,风机位置与测风位置超过一定角度,控制系统启动对风。
风机喘振的原因现象及处理方法

风机喘振的原因现象及处理方法风机喘振是指风机在运行过程中出现的振动现象,通常表现为风机整体或部分结构的不稳定振动,会导致设备损坏甚至危及人身安全。
喘振的出现往往会给生产和运行带来严重的影响,因此对于喘振现象的原因和处理方法,我们有必要进行深入的了解和研究。
一、原因分析。
1. 气动力失稳。
风机在运行时,由于叶片的设计不合理或叶片表面的腐蚀、磨损等因素,会导致风机叶片受到气动力的不稳定作用,从而引起振动。
2. 结构失稳。
风机的结构设计不合理、材料疲劳、连接螺栓松动等因素都会导致风机结构的失稳,从而引起喘振现象。
3. 惯性失稳。
风机在运行过程中,由于叶轮的不平衡或转子的不对称等因素,会导致风机的惯性失稳,从而引起振动现象。
二、现象表现。
1. 频率跳变。
风机在运行中,频率突然发生跳变,表现为振动频率明显变化,这是喘振现象的典型表现。
2. 声音异常。
风机在喘振时,会发出异常的噪音,通常是低频、深沉的嗡嗡声,这是喘振现象的另一种表现形式。
3. 振动幅值增大。
喘振时,风机的振动幅值会明显增大,甚至超出正常范围,这是喘振现象的直观表现。
三、处理方法。
1. 优化设计。
针对风机叶片和结构的设计不合理问题,可以通过优化设计来解决。
采用流场仿真、结构分析等技术手段,对风机进行全面的设计优化,提高风机的稳定性和抗振能力。
2. 定期检测。
针对风机结构的材料疲劳、连接螺栓松动等问题,需要定期进行检测和维护。
通过振动监测系统、结构健康监测技术等手段,及时发现并处理风机结构的失稳问题。
3. 动平衡调整。
针对风机惯性失稳问题,可以通过动平衡调整来解决。
对风机叶轮、转子等部件进行动平衡校正,提高风机的运行平稳性。
4. 加强管理。
在风机运行过程中,加强对风机的管理和维护,做好日常巡检和保养工作,及时发现并处理风机的异常现象,防止喘振现象的发生。
综上所述,风机喘振是一种常见的振动现象,其产生的原因复杂多样,需要我们对风机的设计、运行和维护进行全面的考虑和处理。
引风机的振动故障分析及处理

引风机的振动故障分析及处理1. 引言1.1 引言引风机作为电厂中非常重要的设备之一,其正常运行对于保障电厂的安全和稳定运行起着至关重要的作用。
引风机在运行过程中可能会出现振动故障,给电厂的正常运行带来不利影响。
对引风机的振动故障进行分析和处理具有重要意义。
本文将首先对引风机振动故障的原因进行深入分析,包括可能的机械问题、电气问题等方面。
我们将介绍不同的处理方法,帮助读者更好地理解如何应对振动故障。
接着,我们会列举引风机振动故障常见的表现,以便读者能够及时发现和识别这些问题。
我们还会提出一些振动故障的预防措施,帮助读者避免振动故障的发生。
我们会介绍一些引风机振动故障的修复技术,帮助读者在出现振动故障时能够及时修复。
通过本文的阐述,希望读者能够更全面地了解引风机振动故障的原因、处理方法以及预防与修复技术,从而为电厂的安全运行提供更加坚实的保障。
2. 正文2.1 振动故障的原因分析1. 设备不平衡: 引风机如果在运转过程中出现不平衡的情况,会导致振动增大,进而引起振动故障。
设备不平衡的原因可能是安装不当、零部件损坏或磨损等。
2. 轴承故障: 轴承是引风机重要的零部件,如果轴承损坏或磨损严重,会导致引风机的振动增大。
轴承故障可能是因为润滑不良、使用时间过长或维护不当等原因造成的。
3. 转子失衡: 引风机转子失衡会导致设备振动,转子失衡的原因可能是设备设计缺陷、制造质量不过关或使用条件恶劣等。
4. 风叶损坏: 引风机风叶损坏会导致不均匀的气流通过,在高速运转时可能会产生振动。
风叶损坏的原因可能是使用过程中的磨损、腐蚀或碰撞等。
5. 安装松动: 引风机在运行过程中,如果有安装的螺栓松动或固定件松动,会导致设备振动。
定期检查设备安装状态十分重要。
以上是引风机振动故障的原因分析,只有找准问题的根源,才能有针对性地制定解决方案。
在实际运行中,需要密切关注设备运行情况,及时发现问题并采取有效的措施进行处理,以避免产生严重的事故。
动叶可调式轴流风机振动原因分析及预防措施制定

动叶可调式轴流风机振动原因分析及预防措施制定- 1 -摘要:针对某火电厂2号机组停运3个月后再次启动一次风机后出现的风机振动大的问题,通过对振动原因进行排查,发现了是由于风机动叶长期未进行活动,部分风机动叶根部生锈发生卡涩,最终导致调节芯轴弯曲,转子不对中产生振动。
提出机组长期停运应定期进行动叶开关活动,风机转子定期盘动,做好停运设备定期保养工作,防止部件生锈卡涩造成振动变大。
关键词:风机;振动;定期工作- 1 -0引言轴流式一次风机作为大型火电机组的主要锅炉辅机设备,主要承担着为锅炉燃烧输送煤粉的作用,其运行状况的好坏对电厂的安全与经济有着重大影响。
风机运行过程中如果发生振动,不仅会损坏设备,严重时还会导致锅炉灭火、机组停运,因此一次风机的正常稳定运行对保证机组的安全稳定运行至关重要。
本文针对某电厂一次风机振动大产生的原因展开分析,并从定期工作方面提出预防措施,保证一次风机的安全运行。
1设备概况河南某电厂2×1000MW机组,锅炉型号DG3063.81/29.3-Ⅱ1型超超临界参数、变压直流、一次中间再热、单炉膛、平衡通风、固态排渣、露天布置、全钢构架、对冲燃烧方式,锅炉。
一次风机由成都电力机械厂生产的GU24036-112型动叶可调轴流式风机。
该风机的主要工作原理为:由系统管道流入风机的气流经进气箱改变方向,经整流罩收敛加速后流向叶轮,电动机动力通过叶轮叶片对气流作功,叶片的工作角度可无级调节,由此改变风量、风压,满足工况变化需求;流经叶轮后的气流为螺旋运动,经后导叶导流为轴向流入扩压器,在扩压器内气体的大部分动能转化成静压能,再流至系统满足运行要求,从而完成风机出力的工作过程[1]。
一次风机的主要技术参数及极限运行参数如表1、表2。
表1 风机主要技术参数表2风机极限运行参数2 存在问题某电厂2号机组2020年1月11日通过机组168试运后停机备用,至2020年5月份计划启动机组进行保养工作,2020年5月6日进行机组启动前阀门活动试验过程中,发现2号一次风机动叶执行机构开至20%开度后卡涩,检修人员到现场打开芯筒人孔门对伺服阀执行机构连杆进行检查,发现连杆断裂,如图1图12020年5月13日该电厂启动2号锅炉1号一次风机过程中,DCS显示风机振动偏大,水平振动5.8mm/s,垂直振动3.7mm/s,较正常值明显偏大,就地检查地脚螺栓无松动,测量信号完好,停运该风机后吊开风机上机体,活动动叶发现一级叶片有7片叶片漂移,如图2,进一步解体检查发现调节机构芯轴肉眼可见弯曲,如3。
风机振动原因及处理方法
风机振动原因及处理方法摘要:随着我国科学技术水平的不断提升,越来越多的科技结晶出现在人们的生产、生活中。
风机作为先进的设备得到了广泛的应用,并且为行业发展带来了诸多便利。
然而在实践中不难发现,风机在使用过程中较容易出现振动加剧的状况,而造就这一现象的原因又多种多样,如若处理不慎,那么就较容易对人们的财产、生命造成威胁。
近些年来,安全生产目标的提出对企业的生产经营活动提出了新的要求。
如若想要实现这一目标,那么企业就需要加强对风机的关注,在分析其非正常振动成因的基础之上展开对问题的解决,避免安全隐患,将安全事故扼杀于萌芽状态。
本文将以风机作为研究对象,分析其振动的原因,并且提出解决这一问题的处理方法,旨在促进风机运行的稳定性、可靠性。
关键词:风机;振动原因;处理方法引言:风机主要是将机械能以特定的形式转化为气体,从而满足使用者的生产需求[1]。
相较于其他设备而言,风机所处的环境多种多样,且工程也相对复杂,所以工作人员需要定期对风机展开检测、维护,以保障其正常运行。
由于风机较容易出现振动,所以在实行检测与维护工作时,需要对振动原因展开分析,然后再对其进行处理。
一、风机振动的原因分析(一)转子质量不平衡所引起的振动在风机的振动故障中,风机轴承箱振动是最为常见的故障类型。
一般情况下,工作人员会借助外部检测的方式来达成对这一故障类型的诊断。
在检测过程中,若是测量所得到的数据显示出振动值径向较大,轴向较小,且振动值会随着转速的上升而上升的现象,那么就表明该振动故障为转子不平衡所引起的故障。
转子质量不平衡是较为常见的成因,之所以会出现转子质量不平衡的情况,有以下几种可能性:首先,可能是叶轮出现磨损或者是被腐蚀,从而使得叶轮表面呈现出不均匀的状况[2];其次,可能是叶轮表面存在积灰或者是其他附着物;最后,可能是叶轮出现了零部件松动或者是连接件不牢固的现象。
(二)滚动轴承异常所引起的振动风机的零部件质量也是风机振动的成因之一。
风机振动故障处理探讨
风机振动故障处理探讨作者:梁艳秋来源:《大东方》2018年第05期摘要:风机振动故障模式会因设备结构、安装方式、运行工况不同而各异。
现场诊断和治理要从多方面入手,采用科学的分析手段,注重故障细节表征。
风机振动机理分析法和频谱分析法对风机振动故障分析是行之有效的方法,在实际问题中合理运用一种或多种结合运用将起到事半功倍的效果。
实践证明,综合运用上述方法对风机振动的大力整治,使风机振动故障率大大降低,有力地保证了通风系统的高效稳定运行。
关键词:风机;振动;诊断一、风机振动评价标准风机作为一种量大、面广的通用机械设备,其有着广泛的使用范围。
振动故障作为风机故障中常见的一类故障,其对于生产、运行以及环境都会产生较大影响。
虽然如今风机设计和制造技术都有了较大进步,但是工业发展也对风机的性能有了较高的要求,风机振动故障也变得越来越复杂。
风机振动测点主要布置在风机轴承座,测量振动执行的标准为《JB/T 8689—1998 通风机振动检测及其限值》。
根据标准,按振动速度度量,要求风机振动的刚性支承VRMS≤4.6 mm/s,挠性支承VRMS≤7.1 mm/s。
通常情况下,低频(f≤5 Hz)时的振动强度由位移值度量,中频(5 Hz二、风机振动原因分析影响风机振动的因素很多,如设计制造上的缺陷、安装技术水平、系统参数变化等,都会引起风机振动故障。
一般来说,风机振动的原因可以分为机械方面和工作介质2 大类。
机械方面:(1)转子不平衡导致的振动:①在进行制造的过程之中出现误差,或者是在进行安装的过程之中出现不均匀,导致质量不平衡;②转子弯曲变形,或者是有部件出现了松动,或者是转子部件上出现了不均匀磨损等情况。
(2)系统安装误差引起的振动:①安装时驱动电机和风机的连接不对中;②皮带张力过紧或皮带抖动过大;③节流器与机壳间隙不均匀;④地脚螺栓松动或设备安装基础不平;⑤系统管道变形。
(3)动、静部件间的相碰或摩擦引起的振动:①由于安装不良造成运行过程中转子的变形或转动件与静止件发生摩擦;②润滑油脂不足或变质产生的动、静干摩擦。
引风机振动的原因及处理方法
引风机振动的原因及处理方法摘要:本文针对某电厂双级动叶可调轴流式引风机出现较大的振动问题,通过对其结构特性的试验,从实测的振动数据来看,其两级动叶存在着质量不均衡现象。
在此基础上,采取了一种单面动平衡的方法,对其进行了振动分析。
关键词:双级轴流式引风机;振动;动平衡引言在电力、石化、冶金等工业领域,涡轮机、发电机、风机、泵等都是必不可少的设备。
这些装置一旦出现故障,往往会造成重大的经济损失。
振动是设备失效的主要原因,它直接影响设备的安全稳定运行。
引风机是火力发电厂三大风机中的一种,当它的振动异常时,就会导致机组的负载下降,从而影响到电力系统的正常运行。
因此,在引风机发生振动故障的时候,对其进行及时、准确的诊断是非常必要的。
引风机作为火力发电厂的重要辅助设备,它的工作状态对机组的安全、稳定、经济性都有很大的影响。
近年来,双级动叶片可调轴流式引风机因其效率高、流量大、工作区宽、调峰能力大而被广泛地应用于电厂。
以本文通过对某电厂一台双级动叶片可调轴流式引风机的振动原因进行了研究,并对其进行了动平衡处理。
一、双级轴流式引风机介绍1.1结构双级轴流式引风机包括进气室、集流器、两级叶轮、导叶、扩压器、动叶调节装置等。
在轴承室的两个端部设置一双层叶轮,在空气导向筒的转子和马达的转子之间设置一中空轴,马达的转子和风扇的转子都装有挠性耦合器,并由四个轴承和一个推力轴承支撑。
双级轴流式引风机配有液压调节机构,可调节叶片的安装角度,调节风压和风量[1]。
二、引风机振动原因分析2.1 轴流式引风机转动部分质量不平衡引起的振动引风机旋转时,由于转子本身的不平衡重量,也就是转子的重心发生了偏置,导致了转子的侧向振动,并通过支承转子的轴承向外扩散。
因此,在运转时,整个风机都会发出振动和噪音。
叶片质量不均、叶轮表面粉尘分布不均匀、防磨剂剥落、轴心温度升高、曲轴弯曲、叶轮强度不够引起叶轮断裂、叶轮部件松动、联接不牢等。
2.2 膜片联轴器中心不符合要求引起的振动双级轴流式引风机使用了一种具有误差补偿、减振、无需维护的弹性膜片联轴器。
某型脱硫增压风机二倍频振动的诊断与处理
2、振动原因分析
1
Hale Waihona Puke α2联轴器偏角不对中
3、振动处理
基于以上分析,确定复查联轴器中心。检查发现电机侧
膜片联轴器中心合格,而靠近风机的膜片联轴器上张口为
1.24mm,其标准值是下张口0.20-0.30mm,说明靠近风机的 膜片联轴器张口远远大于标准值,属于严重角度不对中。
3、振动处理
上张口
膜片联轴器 膜片联轴器 #3 轴承 #2 轴承 #1 轴承 #4 轴承
联轴器中心,使联轴器张口处于合格范围之内,短时间消除
了振动故障。
4、结束语
4.2从该设备的测试、诊断和处理上,对于膜片联轴器的不 对中应引起重视,虽然膜片联轴器属于半扰性联轴器,传统 观点认为容许有较大的不对中量,但是如果二转子轴线存在
很大的偏角,也会造成严重的振动故障。因此膜片联轴器中
心调整同刚性联轴器一样,应严格执行检修工艺标准。
1、情况简介
#3轴承水平振动频谱图
1、情况简介
#3轴承水平振动波形图
1、情况简介
振动数据 振动 #1轴承→ #2轴承→ #2轴承⊥ #3轴承→
通频
基频 2倍频
50
20 30
92
22 77
52
9 35
185
53 108
1、情况简介
振动特点: (1)设备振动主要表现在风机侧#3轴承的水平方向 上。 (2)振动频率以2倍频为主,基频振动较小,振动 类型是比较典型的2倍频振动故障。 (3)从振动大小上来看,靠近风机叶轮侧轴承振动 最大,其次是靠近风机侧的电机轴承,电机自由 端轴承振动最小。 (4)振动与静调开度等运行参数之间无明显的对应 关系。;
该论文发表在《电站系统工程》2014年第9期上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
风机振动的原因及案例
1风机轴承振动超标
风机轴承振动是运行中常见的故障,风机的振动会引起轴承和叶片损坏、螺栓松动、
机壳和风道损坏等故障,严重危及风机的安全运行。
风机轴承振动超标的原因较多,如能
针对不同的现象分析原因采取恰当的处理办法,往往能起到事半功倍的效果。
1.1不停炉处置叶片非工作面积灰引发风机振动
这类缺陷常见于锅炉引风机,现象主要表现为风机在运行中振动突然上升。
这是因为
当气体进入叶轮时,与旋转的叶片工作面存在一定的角度,根据流体力学原理,气体在叶
片的非工作面一定有旋涡产生,于是气体中的灰粒由于旋涡作用会慢慢地沉积在非工作面上。
机翼型的叶片最易积灰。
当积灰达到一定的重量时由于叶轮旋转离心力的作用将一部
分大块的积灰甩出叶轮。
由于各叶片上的积灰不可能完全均匀一致,聚集或可甩走的灰块
时间不一定同步,结果因为叶片的积灰不均匀导致叶轮质量分布不平衡,从而使风机振动
增大。
在这种情况下,通常只需把叶片上的积灰消灭,叶轮又将再次达至均衡,从而增加风
机的振动。
在实际工作中,通常的处置方法就是临时电石后关上风机机壳的人孔门,检修
人员步入机壳内去除叶轮上的积灰。
这样不仅环境恶劣,存有不安全因素,而且导致机组
的非计划停驶,检修时间短,劳动强度小。
经过研究,明确提出了一个经实际证明行之有
效的处置方法。
例如图1右图,在机壳喉舌处(a点,径向对着叶轮)安装一排燃烧室(4~5个),将燃烧室阳入成相同角度。
燃烧室与冲灰水泵相连,将跳灰水做为冲洗积灰的动力介质,减少负荷后停在单侧风机,在停在风机的瞬间快速关上阀门,利用叶轮的惯
性作用喷洗叶片上的非工作面,关上在机壳底部安装的阀门将跳灰水排跑。
这样就同时实
现了不停炉而处置风机振动的目的。
用冲灰水并作清灰的介质,和用蒸汽和压缩空气较之,具备对燃烧室结构建议高、清灰范围小、效果不好、对叶片磨损大等优点。
1.2不停炉处理叶片磨损引起的振动
磨损就是风机中最常用的现象,风机在运转中振动缓慢下降,通常就是由于叶片磨损,均衡毁坏后导致的。
此时处置风机振动的问题通常就是在电石后搞动平衡。
根据风机的特点,经过多次课堂教学,总结了以下可以在不停炉的情况下对风机展开动平衡试验工作。
1)在机壳喉舌径向对着叶轮处(如图1)加装一个手孔门,因为此处离叶轮外圆边缘距离最近,只有200
mm多,人站在风机外面,用手可以展开内部操作方式。
风机正常运转的情况下手孔门停用。
2)振动发生后将风机停下(单侧停风机),将手孔门打开,在机壳外对叶轮进行试
加重量。
3)打听回去均衡后,排序纽韦尔角的重量和边线,对叶轮展开冲压工作。
在实际工
作中,用三点法打听动平衡较为简单便利。
试加重量的计算公式为
p<=250×a0×g/d(3000/n)2(g)
为了尽快找出纽韦尔角的重量和边线,应当根据平时的数据多总结经验。
根据经验,
y4-73-11-22d的风机振动0.10mm时不均衡重量为2000
g;m5-29-11-18d的排粉机振动0.10mm时不平衡重量120g;轴流asn2125/1250型引风机振动为0.10
mm时不均衡重量只有80
g左右。
为了达到不停炉处理叶片磨损引起的振动问题的目的,平时须加强对风门挡
板的维护,减少风门挡板的漏风,在单侧风机停运时能防止热风从停运的送风机处漏出以
维持良好的工作环境。
1.3觑预器的锈蚀引致风机振动间断性抽检
这种情况通常发生在燃油锅炉上。
燃油锅炉引风机前一般没有电除尘,烟、风道较短,
觑预器的波纹板和定位板由于低温锈蚀,波纹板锈蚀成小薄钢片,大薄钢片随烟气一
起轻易压制在风机叶片上,一方面导致风机的受迫振动,另一方面一些大薄钢片方形在叶
片上,由于叶片的动不均衡并使风机振动。
这种现象就是笔者在长期的实际生产中观测至
的结果。
处置方法就是及时更改锈蚀的波纹板,使用方法避免觑预器的低温锈蚀,提升冷
却系统温度和送风温度(通常应当低于60℃以躲避露点),波纹板也可以采用耐腐蚀的苏乙钢或金属搪瓷。
1.4风道系统振动导致引风机的振动
烟、风道的振动通常可以引发风机的受迫振动。
这就是生产中难发生而又难忽略的情况。
风机出口蔓延筒随负荷的减小,入、出来风量减小,振动也可以随之发生改变,而通
常蔓延筒的下部只有4个支点,例如图2右图,另一边的接点石棉帆布就是硬接点,这样
一来整个蔓延筒的60%重量就是底盘受力。
从图中可以窥见轴承座的振动轻易与蔓延筒有关,故负荷越大,轴承产生振动越大。
针对这种状况,在蔓延筒出口端的下面减少一个活
支点(例如图3),无色无臭此是可移动。
当机组负荷变化时,只需微调该支点,即可消
解振动。
经过现场课堂教学效果非常明显。
该种情况在风道较短的情况下更容易发生。
1.5动、静部分相碰引起风机振动
在生产实际中引发颤抖、静部分互不相让的主要原因:
(1)叶轮和进风口(集流器)不在同一轴线上。
(2)运行时间长后进风口损毁、变形。
(3)叶轮松动使叶轮晃动度大。
(4)轴与轴承收紧。
(5)轴承损坏。
(6)主轴伸展。
根据不同情况采取不同的处理方法。
引起风机振动的原因很多,其它如连轴器中心偏差大、基础或机座刚性不够、原动机振动引起等等,有时是多方面的原因造成的结果。
实际工作中应认真总结经验,多积累数据,掌握设备的状态,摸清设备劣化的规律,出现问题就能有的放矢地采取相应措施解决。
2轴承温度低
风机轴承温度异常升高的原因有三类:润滑不良、冷却不够、轴承异常。
离心式风机轴承置于风机外,若是由于轴承疲劳磨损出现脱皮、麻坑、间隙增大引起的温度升高,一般可以通过听轴承声音和测量振动等方法来判断,如是润滑不良、冷却不够的原因则是较容易判断的。
而轴流风机的轴承集中于轴承箱内,置于进气室的下方,当发生轴承温度高时,由于风机在运行,很难判断是轴承有问题还是润滑、冷却的问题。
实际工作中应先从以下几个方面解决问题。
(1)助威与否恰当。
应按照定期工作的建议给轴承箱助威。
轴承助威后有时也可以发生温度低的情况,主要就是助威过多。
这时现象为温度持续不断下降,到达某点后(通常在比正常运转温度低10℃~15℃左右)就可以保持维持不变,然后可以逐渐上升。
(2)冷却风机小,冷却风量不足。
引风机处的烟温在120℃~140℃,轴承箱如果没有有效的冷却,轴承温度会升高。
比较简单同时又节约厂用电的解决方法是在轮毂侧轴承设置压缩空气冷却。
当温度低时可以不开启压缩空气冷却,温度高时开启压缩空气冷却。
(3)证实不存有上述问题后再检查轴承箱。
轴流风机动叶调节是通过传动机构带动滑阀改变液压缸两侧油压差实现的。
在轴流风机的运行中,有时会出现动叶调节困难或完全不能调节的现象。
出现这种现象通常会认为是风机调节油系统故障和轮毂内部调节机构损坏等。
但在实际中通常是另外一种原因:在风机动
叶片和轮毂之间存有一定的空隙以同时实现动叶角度的调节,但不全然冷却导致碳垢或灰尘阻塞空隙导致动叶调节困难。
动叶卡黑涩的现象在燃油锅炉和使用水膜除尘的锅炉比较广泛,化解的措施主要存有
(1)尽量使燃油或煤燃烧充分,减少碳黑,适当提高排烟温度和进风温度,避免烟气中的硫在空预器中的结露。
(2)在叶轮进口设置蒸汽吹起洗管道,当风机停机时对叶轮展开打扫,维持叶轮洁净,蒸汽压力<=0.2mpa,温度<=200℃。
(3)适时调整动叶开度,防止叶片长时间在一个开度造成结垢,风机停运后动叶应间断地在0~55°活动。
(4)经常检查动叶传动机构,适度提润滑油。
4旋转失速和喘振
转动减速就是气流冲角达至临界值附近时,气流可以返回叶片凸面,出现边界层拆分从而产生大量区域的涡流导致风机风压上升的现象。
火星塞就是由于风机处于不稳定的工作区运转发生流量、风压大幅度波动的现象。
这两种不正常工况就是相同的,但是它们又存有一定的关系。
风机在火星塞时通常可以产生转动气流,但转动减速的出现只同意于叶轮本身结构性能、气流情况等因素,与风烟道系统的容量和形状毫无关系,火星塞则风机本身与风烟道都存有关系。
转动减速用减速探针去检测,火星塞用u形管采样,两者都就是压差信号驱动差压控制器报警或跳机。
但在实际运转中存有两种原因并使差压控制器难发生误动作:1)烟气中的灰尘阻塞减速探针的测量孔和u形管难阻塞;2)现场条件振动小。
该维护的可靠性极差。
由于风机出现转动减速和火星塞时,炉膛风压和风机振动都会出现很大的变化,在风机调试时通过动叶加装角度的发生改变并使风机正常工作点靠近风机的不能稳定区,随着目前风机设计生产水平的提升,可以将风机停水维护中火星塞维护中止,改成“发讯”,当发生转动减速或火星塞信号后运转人员通过调节动叶开度并使风机瓦解转动退流区或火星塞区而维持风机已连续平衡运转,从而增加风机的不幸停驶。