电路相量法

合集下载

电路相量法讲义

电路相量法讲义

1. 正弦量与相量之间的联系和区别;
2. 元件电压相量和电流相量的关系、相量图。
. Im= 5∠45o A
45o
. Um= 100∠0o V
主要是相位关系 .
Z = U.m =20∠-45o W Im
与其它章节的联系 是学习第 9、10、11、12章的基础。 必须熟练掌握相量法的解析运算。
2024年7月17日星期三
qA
任意一个复数A=|A|ejqa乘以
ejq ,等于把A逆时针旋转q
qa
+1
角度,而模|A|保持不变。 o
ej
p
2
=j
-j p
e 2 = -j
e jp = -1
都是旋 转因子
A×j = jA,等于把 A 逆时针旋转90o。
A j
=
-jA,等于把
A
顺时针旋转90o。
2024年7月17日星期三
7
§8-2 正弦量
di dt
=wImcos(wt+fi
(2) i1(t) =10cos(100pt+30o)A
i2(t) =10cos(100pt-105o)A (2) j =30o-(-105o)=135o
(3) u1(t) =10cos(100pt+30o)V (3) w1≠w2,
u2(t) =10cos(200pt+45o)V 不能进行相位比较。
fi = 60o
由于最大值发生在计
o t1
t
时起点右侧 fi = - 60o
i(t) = 100cos(103t - 60o)
2. 当 103t = 60o = p3 时, 出现最大值
t1 =

电路第五版 8、相量法

电路第五版  8、相量法

=180.2 + j126.2 + 2.238 + j6.329
=182.5 + j132.5 = 225.5∠36
o
旋转因子: 旋转因子: e j = 1∠ 任何一个复数乘以一个旋转因子, 任何一个复数乘以一个旋转因子,就旋转一个角 j 例8-1 F=F1e j F F1 +1
π
2
特殊: 特殊:
同理,可得正弦电压有效值与最大值的关系: 同理,可得正弦电压有效值与最大值的关系:
1 U = Um 2

Um = 2U
若交流电压有效值为 U=220V ,
注意
U=380V 其最大值为 Um≈311V Um≈537V
工程上说的正弦电压、 电流一般指有效值, ① 工程上说的正弦电压 、 电流一般指有效值 , 如 设备铭牌额定值、电网的电压等级等。但绝缘水平、 设备铭牌额定值、电网的电压等级等。但绝缘水平、 耐压值指的是最大值。因此,在考虑电器设备的耐 耐压值指的是最大值。因此, 压水平时应按最大值考虑。 压水平时应按最大值考虑。
i2
i1 i2
i1+i2 →i3
ω
I1 o
ω
I2
i3
ω
I3
ωt
Ψ1
Ψ2
Ψ3
同频的正弦量相加仍得到同频的正弦量, 结论 同频的正弦量相加仍得到同频的正弦量, 所以,只需确定初相位和有效值。因此采用 所以,只需确定初相位和有效值。 正弦量 复数 变换的思想
§8. 2 正弦量的相量表示
一、正弦量的相量表示: 正弦量的相量表示:
F1 F2
F1 F2 = ( a1 a 2 ) + j ( b1 b2 )
(3)乘法运算: )乘法运算:

电路相量的运算法则

电路相量的运算法则

电路相量的运算法则1相量简介相量是表述交流电路中电压和电流的一种方法。

它是一个复数,包括大小和相位两个部分。

电压和电流的相量不仅可以进行加减运算,还可以进行乘除运算,使得我们更加方便地进行分析和计算。

2相量的表示方法相量可以用极坐标和直角坐标两种方式表示。

以电压为例,极坐标中大小表示电压的幅值,即其最大值;相位表示电压的相位角,即从时间轴开始算起,电压的正弦波的已过时间。

直角坐标中,实数轴表示电压的实部,即电压*cos相位角;虚数轴表示电压的虚部,即电压*sin相位角。

3相量加法在电路中,可以将相同频率下的电压或电流当作相量,进行加减运算。

相量加法有两种形式:数学形式和几何形式。

数学形式就是把电压或电流的实部和虚部相加,例如:U1=3cos(θ)+j3sin(θ)U2=4cos(θ+π/4)+j4sin(θ+π/4)则U=U1+U2=(3+4cos(π/4))cos(θ+π/4)+j(3+4sin(π/4))sin(θ+π/4)几何形式则是将相量用矢量的方式表示,然后使用平行四边形法则求和,例如:将U1和U2表示为两个矢量,其大小与相位角分别为(3,θ)和(4,θ+π/4)。

画出两个相量的矢量图,然后在起点处连线,得到相量的和U。

通过测量得到U大小约为(5.7,θ+0.18π)。

4相量减法和相量加法类似,相量减法也有两种形式。

数学形式为将两个相量的实部和虚部相减。

例如:设U1=3cos(θ)+j3sin(θ),U2=4cos(θ+π/4)+j4sin(θ+π/4)则U=U1-U2=(3-4cos(π/4))cos(θ-π/4)+j(3-4sin(π/4))sin(θ-π/4)几何形式则是将两个相量的矢量相减,例如:将U1和U2表示为两个矢量,其大小与相位角分别为(3,θ)和(4,θ+π/4)。

画出两个相量的矢量图,然后将U2的矢量反向,得到相量的差U。

通过测量得到U大小约为(2.2,θ-0.18π)。

正弦交流电路的相量表示法

正弦交流电路的相量表示法

直观,但不便于分析计算。
便于完成正弦量的加减乘除运算
【 重点与难点 】
1.正弦量的三要素。
2.正弦量各种表达方法之间的互相转换
Im
对应
新中国成立后,我国的整个工业行业师从前苏联,电力行业也不例外,完全执行前苏联的国家标准。苏联当时采用的频率是50赫兹,这个标准与IEC国际电工委员会推荐值之一,并不矛盾,所以我国一直采用50赫兹。 这是一种国家制定的标准,从此以后,所有生产的发电及用电设备,都按50赫芝控制.这样全国就统一了,就不会乱.否则你北京造的电视机是50HZ的,天津造的是30HZ的,上海造的是100HZ的.那不乱套了嘛.这就和秦始皇统一汉字,度量衡是一个目的.现在有的日本电器,是60HZ的.在中国用还要连接变频器,多麻烦啊! 其实其它频率也是有的,以前日本在东北使用的是25Hz;我国电网是50Hz;香港沿袭英国的习惯使用60Hz。 使用低于50Hz的电网供电时的照明光源往往存在一个频闪问题;如果给电机供电其同步速仅为1500rpm。 50或60是有政治因素的,学苏联的肯定不可能学日本的, 100,1000高频率的话对硅钢片材料的要求更高,危险性更大,损耗大,那将是现在技术不行的, 如果现在提高频率肯定不利的,大量设备将不能用。
知识链接
相量的加、减、乘、除运算公式
设:U1、U2均为正实数。
U1±U2 =
(U1a±U2a)+j ( U1b±U2b)
ψ1+ ψ2
U1×U2 =
U1×U2
U1÷U2 =
ψ1- ψ2
U1÷U2
有U1=U1 ψ1=U1a+jU1b;
U2=U2 ψ2=U2a+jU2b;
平行四边形法则可以用于相量运算,但不方便。故引入相量的复数运算法。

正弦交流电路的相量表示法

正弦交流电路的相量表示法

03
相量表示法的应用
相量与复数的关联
01
相量是复数的一种表示形式,其 实部表示电压或电流的有效值, 虚部表示其相位角。
02
通过复数运算,可以方便地计算 正弦交流电路中的电压、电流和 阻抗等参数。
相量在电路分析中的应用
利用相量图,可以直观地分析正弦交 流电路中的电压、电流和阻抗之间的 关系。
通过相量法,可以简化正弦交流电路 的计算过程,提高计算效率和精度。
02
正弦交流电路的基本概念
正弦交流电的产生
交流发电机
通过机械能转换为交流电,发电 机转子旋转产生磁场,定子切割 磁力线产生感应电动势,从而产 生正弦交流电。
交流调压器
通过改变磁通量或改变匝数来调 节输出电压,从而产生正弦交流 电。
正弦交流电的特性
01
02
03
周期性
正弦交流电的电压、电流 等参数随时间按正弦规律 变化,具有周期性。
通过相量图,可以直观地理解电路的相位 关系和阻抗的性质。
03
02
简化了正弦交流电路的分析过程,使得计算 变得直观和方便。
04
局限性
相量法仅适用于线性时不变系统,对于非 线性或时变系统,相量法不再适用。
05
06
对于多频输入信号,相量法可能无法准确 描述信号的频谱特性。
未来研究方向
01
深入研究非线性电路和时变系统的相量表示法,以扩展相量法 的应用范围。
VS
电动机的启动和制动
利用相量法,可以研究电动机的启动和制 动过程,为电动机的控制提供理论支持。
滤波器问题
滤波器的频率响应
通过相量法,可以分析滤波器的频率响应特 性,从而设计出符合要求的滤波器。

电路分析课件第八章相量法

电路分析课件第八章相量法

KVL:任意时刻,任一回路,U=0
三、受控源的相量形式
i1
I1
R
正弦电流
i 1 电路时:
R
1I1
本章小结:
所谓相量法,就是电压、电流用相量表示, RLC元件用阻抗、感抗、容抗表示,画出电路的相 量模型,利用KCL、KVL和欧姆定律的相量形式写 出未知电压、电流相量的代数方程加以求解,因此, 应用相量法应熟练掌握:
∴ i =46.2 2cos(314t–27º)A j I1
+1 I
相量图
I2
注意:
在分析正弦交流电路时字母的写法:
i — 瞬时值 I — 有效值 Im — 最大值 I — 有效值相量 Im— 最大值相量
三、不同频率的正弦量不能用相量法运算。
相量只含有正弦量的有效值(最大值)和初相 位的信息,不包含频率的信息,即:在运用相量 法分析正弦量时,默认为同频率。
将 I (或 U)定义为电流i (或电压u) 的相量,它含有 正弦量的振幅和相位的信息。
注意:
有一个正弦量便可以得到一个相量; 有一个相量也可以写出对应的正弦
量。两者是一一对应的关系,决不
是相等的关系。
u=220 2 cos(314t+45º)V
U=220 45ºV u U
I=50 –30ºA 一一对应 i =50 2 cos(ωt–30º)A i I
U 相量形式电路图
相量关系既反映了u、i 的有效 值关系又反映了相位的关系。
I U 相量图
2、电感
iL
u
若:i = 2 Icos(ωt+ψi )
则:u=L
di dt
=–
2 IωLsin(ωt+ψi )

电路分析相量法

电路分析相量法

量的相量乘以 jω ,即表示di/dt 的相量为
j I I( i 90o )
该相量的模为ωI ,辐角则超前原相量π/2 。
对 i 的高阶导数 dni/dtn ,其相量为 ( j )。n I
3)正弦量的积分
设 i 2I cos( t i ),则
idt Re[ 2Ie j t ] dt Re[ (
F1F2 | F1 | 1 | F2 | 2 | F1 || F2 | (1 2 )
可见复数的乘法运算使用指数形式或极坐标形式较为简便。
3)除法运算
a)代数形式
F1 F2
a1 a2
jb1 jb2
(a1 (a2
jb1 )(a2 jb2 )(a2
jb2 ) jb2 )
(a1a2
b1b2 ) j(a2b1 a22 b22
设 F1 a1 jb1 , F2 a2 jb2 ,则
F1 F2 (a1 jb1 ) (a2 jb2 ) (a1 a2 ) j(b1 b2 )
平行四边形法则:
+j F1 +F2 F1
F2 o
+1
+j F1
F2 o
F1-F2 +1
2)乘法运算 a)代数形式
F1F2 (a1 jb1 )(a2 jb2 ) (a1a2 b1b2 ) j(a1b2 a2b1 )
di d Re[ 2Ie j t ] Re[ d ( 2Ie j t )] Re[ 2( j I)e j t ]
dt dt
dt
Re[ 2 Ie ] j( ti 90o ) 2 I cos( t i 90o )
上式表明:
复指数函数实部的导数等于复指数函数导数的实部;

电路原理课件 第8章 相量法

电路原理课件 第8章  相量法

三. 相位差 :
两个同频率正弦量相位角之差。
i(t) 0
Im um
设 u(t)=Umcos(w t+ u)
2
i(t)=Imcos(w t+ i)
0
wt
则 相位差j : j = (w t+ u)- (w t+ i)
u- i
同频率正弦量的相位差等于它们的初相之差。 不同频率的两个正弦量之间的相位差不再是一个常数,而是 随时间变动。
j u与i正交; j u与i反相;
2
§8 - 3相量法的基础
1. 正弦量的相量表示
复函数 F F ej(wt)
没有物理意义
F cos(wt ) j F sin(wt Ψ )
若对F取实部:
Re[F] F cos(ωt Ψ ) 是一个正弦量,有物理意义。
对于任意一个正弦时间函数都可以找到唯一的与其对应的 复指数函数:
F e j
4、极坐标形式:
F F ej
=|F|
二 复数运算
(1)加减运算——代数形式
+j F2
若 F1=a1+jb1
F2=a2+jb2 O
则 F1±F2= (a1±a2) +j (b1±b2)
F= F1 +F1
F1 +1
+j
O - F2
F2 F1
F= F1 - F2 +1
(2) 乘除运算——指数形式或极坐标形式
⑶∫i2dt。
解: ⑴设 i i1 i2 2I cos(wt i ), 其相量为 I=I/Ψi
I I1 I2 10/600A+22/-1500A=(5+j8.66)A+(-19.05-j11)A
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电路相量法(Phasor Method)是一种用复数形式表示交流电路中电压、电流和功率的方法。

它基于欧姆定律和基尔霍夫定律,并使用复数运算来简化交流电路的分析。

在电路相量法中,电压和电流被表示为复数形式,即相量(phasor)。

相量由幅值和相位角组成,幅值表示电压或电流的大小,相位角表示电压或电流相对于参考点的相位差。

使用相量法进行交流电路分析的步骤如下:
将交流电路中的电压源、电流源和阻抗等元件转换为复数形式。

使用复数表示法计算电路中的电压和电流,将它们表示为相量。

使用欧姆定律和基尔霍夫定律,根据电压和电流的相量关系,建立方程组。

解方程组,得到电路中各元件的电压和电流的幅值和相位。

根据需要,计算功率和功率因数。

电路相量法的优点在于可以通过复数运算简化计算过程,避免了复杂的三相计算和相量之间的几何图形。

它在分析交流电路中的电压、电流和功率时非常有用,尤其在稳态分析和频域分析中广泛应用。

相关文档
最新文档