第八章 相量法
合集下载
第八章 相量法

ψ
0
ωt
Im , ω , ψ ——正弦量的三要素 正弦量的三要素 正弦量的
i(t)=Imcos(ω t+ψ) 二,正弦量的三要素 1, 幅值 (振幅, 最大值 m , 振幅, 振幅 最大值)I
i
ωT=2π π
ψ
0
ωt
2, 角频率ω : 反映正弦量变化的快慢. ω =d(ω t+ψ )/dt , 反映正弦量变化的快慢. 单位时间内变化的角度 单位: rad/s,弧度 秒 单位: ,弧度/秒 周期T 完成一个循环变化所需时间, 周期 : 完成一个循环变化所需时间,单位 s. . 频率f 每秒钟完成循环的次数,单位: 赫兹) 频率 : 每秒钟完成循环的次数,单位:Hz(赫兹 . 赫兹
T i 2 ( t ) Rdt R W交 = ∫0
周期电压如图所示.求其有效值U. 例 周期电压如图所示.求其有效值 . u(t)/V 2 1 0 1 2 3 4 5 6 t/s
根据有效值的定义, 解 根据有效值的定义,有
1 U= T =
∫
T 0
u 2 ( t )dt
2 3 1 1 2 2 1 dt + ∫ 2 dt + ∫ 0 2 dt = 1.29 V ∫0 1 2 3
π
UL
I
相量图
或
U I= ωL
I
3,相量形式: ,相量形式: jω L
+
UL
U L = jωLI = jX L I
XL=ω L,称为感抗,单位为 (欧姆 欧姆) ,称为感抗,单位为 欧姆
-ቤተ መጻሕፍቲ ባይዱ
相量模型 4,感抗的物理意义 ,
U (1) 表示限制电流的能力; I = 表示限制电流的能力; ωL (2) 感抗和频率成正比 ω =0 直流(XL=0) , ω→∞开路; 感抗和频率成正比, 直流( →∞开路 开路; XL
第八章相量法

ρ = a2 + b2
b
A (a + jb)
a = ρcosϕ, b = ρsinϕ ϕ ϕ
二.复数的加减 复数的加减 虚部(+j) 虚部 已知. 已知 A = a1 + jb1 , B = a2 + jb2 A A+B 则: A±B =(a1+jb1)±(a2 + jb2) ± ± ϕ1 =(a1±a2) +j (b1±b2) O ϕ2 实部(+1) 实部 jϕ1 ,B = ρ e-jϕ2 ϕ ϕ 如果. 如果 A = ρ1e 2 B 四边形法则 可用如图表示A± 可用如图表示 ±B
O ϕ -ϕ 虚部(+j) 虚部
A=a+jb
实部(+1) 实部
-b
A*= a–jb
§8-3. 正弦量的相量表示法
复数A 一.复数 =Im ωt + ϕ的旋转矢量表示 +j 复数 任一时刻旋转矢量OA 任一时刻旋转矢量 A 在横轴的投影为: 在横轴的投影为 A ω Imcos(ωt + ϕ) ω ωt+ϕ ϕ 在纵轴的投影为: 在纵轴的投影为 Im ϕ Imsin(ωt + ϕ) ω 复数A= Imcos(ωt + ϕ)+jImsin(ωt + ϕ)O 复数 ω ω 就是旋转矢量 的代数表示 旋转矢量OA的代数表示 的代数表示. 就是旋转矢量 此复数的实部即为正弦量. 此复数的实部即为正弦量 正弦量的复数 旋转矢量表示 复数,旋转矢量 二. 正弦量的复数 旋转矢量表示 ω i=Imcos(ωt + ϕ) = Re[Imej(ωt + ϕ)] ω 式中Re[ ]是取复数实部的意思 式中 是取复数实部的意思. 是取复数实部的意思
b
A (a + jb)
a = ρcosϕ, b = ρsinϕ ϕ ϕ
二.复数的加减 复数的加减 虚部(+j) 虚部 已知. 已知 A = a1 + jb1 , B = a2 + jb2 A A+B 则: A±B =(a1+jb1)±(a2 + jb2) ± ± ϕ1 =(a1±a2) +j (b1±b2) O ϕ2 实部(+1) 实部 jϕ1 ,B = ρ e-jϕ2 ϕ ϕ 如果. 如果 A = ρ1e 2 B 四边形法则 可用如图表示A± 可用如图表示 ±B
O ϕ -ϕ 虚部(+j) 虚部
A=a+jb
实部(+1) 实部
-b
A*= a–jb
§8-3. 正弦量的相量表示法
复数A 一.复数 =Im ωt + ϕ的旋转矢量表示 +j 复数 任一时刻旋转矢量OA 任一时刻旋转矢量 A 在横轴的投影为: 在横轴的投影为 A ω Imcos(ωt + ϕ) ω ωt+ϕ ϕ 在纵轴的投影为: 在纵轴的投影为 Im ϕ Imsin(ωt + ϕ) ω 复数A= Imcos(ωt + ϕ)+jImsin(ωt + ϕ)O 复数 ω ω 就是旋转矢量 的代数表示 旋转矢量OA的代数表示 的代数表示. 就是旋转矢量 此复数的实部即为正弦量. 此复数的实部即为正弦量 正弦量的复数 旋转矢量表示 复数,旋转矢量 二. 正弦量的复数 旋转矢量表示 ω i=Imcos(ωt + ϕ) = Re[Imej(ωt + ϕ)] ω 式中Re[ ]是取复数实部的意思 式中 是取复数实部的意思. 是取复数实部的意思
第8章 相量法_电气09级

*注意区分电压、电流的瞬时值、 注意区分电压、电流的瞬时值、 注意区分电压 最大值、有效值的符号。 最大值、有效值的符号。 宁波工程学院
i , Im , I
上页 下页
8-23
返回
第8章 相量法 章
正弦电流、 正弦电流、电压的有效值 ———— 同理,正弦电压有效值: 同理,正弦电压有效值: 1 T 2 I = √ —∫ 0 i dt 1 T U= Um 2 i = Imcos( ωt + ϕ ) 或 Um = 2U —————————— Im
+j b
F
F=a+jb
F
θ
称为复数 的模 +1
0
a
——— F = √ a2 + b2
a = Fcos θ b = Fsin θ
宁波工程学院
θ = arg F = arctan ( b/a )
称为复数 的辐角
8-5
上页
下页
返回
第8章 相量法 章
3 指数形式和极坐标形式
指数形式 欧拉公式
F = F(cosθ + jsinθ ) = Fe jθ e jθ = cosθ + jsinθ F = F/θ
正弦交流电变化的快慢; 正弦交流电变化的快慢; ϕu、ϕi 为正弦交流电的初相位。 为正弦交流电的初相位。
相位角
u = Umcos ( ωt + ϕu ) or u = Umsin( ωt + ϕu ) 瞬时值: 瞬时值:
宁波工程学院 简称相角或相( u = U m cos(ω t + ϕ u ) 简称相角或相 phase) 单位:弧度或度 单位: i = I m cos(ω t + ϕ i )
i , Im , I
上页 下页
8-23
返回
第8章 相量法 章
正弦电流、 正弦电流、电压的有效值 ———— 同理,正弦电压有效值: 同理,正弦电压有效值: 1 T 2 I = √ —∫ 0 i dt 1 T U= Um 2 i = Imcos( ωt + ϕ ) 或 Um = 2U —————————— Im
+j b
F
F=a+jb
F
θ
称为复数 的模 +1
0
a
——— F = √ a2 + b2
a = Fcos θ b = Fsin θ
宁波工程学院
θ = arg F = arctan ( b/a )
称为复数 的辐角
8-5
上页
下页
返回
第8章 相量法 章
3 指数形式和极坐标形式
指数形式 欧拉公式
F = F(cosθ + jsinθ ) = Fe jθ e jθ = cosθ + jsinθ F = F/θ
正弦交流电变化的快慢; 正弦交流电变化的快慢; ϕu、ϕi 为正弦交流电的初相位。 为正弦交流电的初相位。
相位角
u = Umcos ( ωt + ϕu ) or u = Umsin( ωt + ϕu ) 瞬时值: 瞬时值:
宁波工程学院 简称相角或相( u = U m cos(ω t + ϕ u ) 简称相角或相 phase) 单位:弧度或度 单位: i = I m cos(ω t + ϕ i )
第08章 相量法

α= π
2 , e
j
复
数
Im
ɺ + jI
π
2 =+j
ɺ I
π
2
= cos
j−
π
2
+ j sin
0
Re
ɺ − jI
α =−
π
2
π
2
, e
= cos(− ) + j sin(− ) = − j 2 2
π
π
ɺ −I
2>、反向因子-1 、反向因子
α = ±π , e j ±π = cos(±π ) + j sin(±π ) = −1
def
T
0
有效值也称均方根值 有效值也称均方根值(root-meen-square,简 也称均方根值 , 记为 rms。) 。
8. 1 正弦量的基本概念
电流有效值的物理意义: 电流有效值的物理意义: 周期性电流 i 流过电阻 R,在一周期 内吸收的 ,在一周期T 电能,等于一直流电流I 流过R 在时间T 电能,等于一直流电流 流过 , 在时间 内吸收的电 的有效值。 能,则称电流 I 为周期性电流 i 的有效值。 i(t) 如图: 如图: T 2
m
8. 2
一、复数A表示形式 复数 表示形式
复
数
Im b A
在平面上, 在平面上,由O指向A的有向 指向 线段(向量), ),表示复数 线段(向量),表示复数A。 1、直角坐标表示 、 代数形式: 代数形式:
O Im b
a A |A|
Re
A=a+jb
Re[A]=a Im[A]=b
1 j = =−j j j⋅ j
8. 1 正弦量的基本概念
2 , e
j
复
数
Im
ɺ + jI
π
2 =+j
ɺ I
π
2
= cos
j−
π
2
+ j sin
0
Re
ɺ − jI
α =−
π
2
π
2
, e
= cos(− ) + j sin(− ) = − j 2 2
π
π
ɺ −I
2>、反向因子-1 、反向因子
α = ±π , e j ±π = cos(±π ) + j sin(±π ) = −1
def
T
0
有效值也称均方根值 有效值也称均方根值(root-meen-square,简 也称均方根值 , 记为 rms。) 。
8. 1 正弦量的基本概念
电流有效值的物理意义: 电流有效值的物理意义: 周期性电流 i 流过电阻 R,在一周期 内吸收的 ,在一周期T 电能,等于一直流电流I 流过R 在时间T 电能,等于一直流电流 流过 , 在时间 内吸收的电 的有效值。 能,则称电流 I 为周期性电流 i 的有效值。 i(t) 如图: 如图: T 2
m
8. 2
一、复数A表示形式 复数 表示形式
复
数
Im b A
在平面上, 在平面上,由O指向A的有向 指向 线段(向量), ),表示复数 线段(向量),表示复数A。 1、直角坐标表示 、 代数形式: 代数形式:
O Im b
a A |A|
Re
A=a+jb
Re[A]=a Im[A]=b
1 j = =−j j j⋅ j
8. 1 正弦量的基本概念
电路原理课件 第8章 相量法

三. 相位差 :
两个同频率正弦量相位角之差。
i(t) 0
Im um
设 u(t)=Umcos(w t+ u)
2
i(t)=Imcos(w t+ i)
0
wt
则 相位差j : j = (w t+ u)- (w t+ i)
u- i
同频率正弦量的相位差等于它们的初相之差。 不同频率的两个正弦量之间的相位差不再是一个常数,而是 随时间变动。
j u与i正交; j u与i反相;
2
§8 - 3相量法的基础
1. 正弦量的相量表示
复函数 F F ej(wt)
没有物理意义
F cos(wt ) j F sin(wt Ψ )
若对F取实部:
Re[F] F cos(ωt Ψ ) 是一个正弦量,有物理意义。
对于任意一个正弦时间函数都可以找到唯一的与其对应的 复指数函数:
F e j
4、极坐标形式:
F F ej
=|F|
二 复数运算
(1)加减运算——代数形式
+j F2
若 F1=a1+jb1
F2=a2+jb2 O
则 F1±F2= (a1±a2) +j (b1±b2)
F= F1 +F1
F1 +1
+j
O - F2
F2 F1
F= F1 - F2 +1
(2) 乘除运算——指数形式或极坐标形式
⑶∫i2dt。
解: ⑴设 i i1 i2 2I cos(wt i ), 其相量为 I=I/Ψi
I I1 I2 10/600A+22/-1500A=(5+j8.66)A+(-19.05-j11)A
第八章 相量法

Um U= = 0.707U m 2
1 T u2dt (8-14) T 0
或者: Um = 2U
#
(8-15)
u = 2U cos(t + u )
§8.2 正弦量 相位差:两正弦量间的相位之差称为相位差。 线性电路中,如果全部激励都是同一频率的正弦量,则电路 中的响应一定是同一频率的正弦量 。因此,在正弦交流电路中, u,i 常常遇到同频率的正弦量,设 任意两个同频率的正弦量 Im u =Umcos(ωt+φu ) Um i = Imcos(ωt+φi ) 从波形图中可看出u和i的频 率相同,而振幅、初相不同。
T
V
R
i 在一T内所产生的热量为: Q~= i2Rdt (J)
0
-
I 在一T内所产生的热量为: Q-= I2RT (J)
T
按定义两者的Q应相等,即
0
i2Rdt= I2RT
+ uS -
i
R
由此得有效值定义式:
I=
1 T i2dt T 0
(8-12)
§8.2 正弦量 将有效值定义用于正弦电流。 设:i =Imcos(ωt+φi ), 由(8-12)式得:
§8.3 相量法基础 Im= Ime jφi = Im φi 有效值相量为: I= Ie jφi = I φi (8-18)
(e jφi为旋转因子) (8-19)
任何一个正弦量通过上述变换都可以对应得到(8-19)式。 有效值相量与最大值相量的关系为:I = 2I m 例如: 已知正弦电压 u = 220 2 cos( 314t + 450 )V 所对应的有效值相量为: U= 220 450
.
.
第八章相量法

i i
i
i
i
如 i 26 2 cos(t 60) A 26e j 60 A 2660 A I 对应的有效值相量为:
Im 26 2e j 60 A 26 260 A 其最大值相量为:
U 同理若有: 220e j 30V 则有; u 220 2 cos(t 30)V 2.相量图 相量是一个复数,它在复平面上的图形称为相量图。 若用旋转相量表示为,2Ie j e jt 其中复常数 2Ie j 2I i 称为旋转相量的复振幅, e jt 是一个随时间变化而以角速度不断逆时针旋转 的因子,两者的乘积即表示复振幅在复平面上不断 逆时针旋转,故称之为旋转相量,这就是复指数 函数的几何意义。
dt 2
③正弦量的积分
i 2I cos(t i ) 则 idt Re [ 2 Ie jt ]dt Re [ 2 Ie jt dt ] 如
jt I I Re [ 2 ( )e ] 2 cos(t i ) j 2
即正弦量的积分为同频率正弦量,其相量等于原 j 相量 I 除以 . I I 表示为: ( i ) idt
F F1 F2 F1 F2 [cos( 1 2 ) j sin(1 2 )]
F1 a1 jb1 (a1 jb1 )(a2 jb2 ) a1a2 b1b2 a2 b1 a1b2 j 2 2 2 2 F2 a2 jb2 (a2 jb2 )(a2 jb2 ) a2 b2 a2 b2
1
i1 I1m cos(t i 1 ) A 和 i2 I 2 m cos(t i 2 ) A 则 i1 与 i 2 如 的相位差 12 (t i1 ) (t i 2 ) i1 i 2 (初相之差)
i
i
i
如 i 26 2 cos(t 60) A 26e j 60 A 2660 A I 对应的有效值相量为:
Im 26 2e j 60 A 26 260 A 其最大值相量为:
U 同理若有: 220e j 30V 则有; u 220 2 cos(t 30)V 2.相量图 相量是一个复数,它在复平面上的图形称为相量图。 若用旋转相量表示为,2Ie j e jt 其中复常数 2Ie j 2I i 称为旋转相量的复振幅, e jt 是一个随时间变化而以角速度不断逆时针旋转 的因子,两者的乘积即表示复振幅在复平面上不断 逆时针旋转,故称之为旋转相量,这就是复指数 函数的几何意义。
dt 2
③正弦量的积分
i 2I cos(t i ) 则 idt Re [ 2 Ie jt ]dt Re [ 2 Ie jt dt ] 如
jt I I Re [ 2 ( )e ] 2 cos(t i ) j 2
即正弦量的积分为同频率正弦量,其相量等于原 j 相量 I 除以 . I I 表示为: ( i ) idt
F F1 F2 F1 F2 [cos( 1 2 ) j sin(1 2 )]
F1 a1 jb1 (a1 jb1 )(a2 jb2 ) a1a2 b1b2 a2 b1 a1b2 j 2 2 2 2 F2 a2 jb2 (a2 jb2 )(a2 jb2 ) a2 b2 a2 b2
1
i1 I1m cos(t i 1 ) A 和 i2 I 2 m cos(t i 2 ) A 则 i1 与 i 2 如 的相位差 12 (t i1 ) (t i 2 ) i1 i 2 (初相之差)
第八章 相量法

时域形式:
(j 1 为虚数单位)
(j 1 为虚数单位)
2.电感
时域形式:
(j 1 为虚数单位)
U L wLI L i 2
相量关系:
相量形式:
3.电容
时域形式:
(j 1 为虚数单位)
I C wCU C u 2
相量关系:
(j 1 为虚数单位)
上式表明:流入某一结点的所有正弦电流用相量表示 时仍满足KCL;任一回路所有支路正弦电压用相量表 示时仍满足KVL.
2. 电路的相量模型(phasor model)
(j 1 为虚数单位) 时域电路
的相量模型:电压、电流用相量;元件用相量模型。
4.指数形式
F Fe
j
极坐标形式 F F
(j 1 为虚数单位) 二、复数运算
1.加减运算----代数形式
2.乘除运算----极坐标形式
(j 1 为虚数单位)
解:
(j 1 为虚数单位)
Im 3.旋转因子 F• ej
O
F Re
(j 1 为虚数单位)
所以,电流表4的读数为5A;电流表5的读数为7.07A。
小结:
1. 求正弦稳态解是求微分方程的特解,应 用相量法将该问题转化为求解复数代数方程 (j 1 为虚数单位) 问题。 2. 引入电路的相量模型,不必列写时域微 分方程,而直接列写相量形式的代数方程。
(j 1 为虚数单位)
注意:
1. 只有正弦量才能用相量表示,非正弦量 不可以.
(j 相量只是表示正弦量 1 为虚数单位) ,不是等于正弦量. 2.
3. 只有同频率的正弦量才能画在一张相量 图上,不同频率不行.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章 相量法
例8-1 计算 复数
解:
本题说明进行复数的加减运算时应先把极坐标形式转为代数形式。
例8-2 计算 复数
解:
本题说明进行复数的乘除运算时应先把代数形式转为极坐标形式。
例8-3 已知正弦电流波形如图所示, ω= 103rad/s , (1)写出正弦 i(t) 表达式;
(2)求正弦电流最大值发生的时间 t 1
解: 根据图示可知电流的最大值为 100A , t=0 时电流为 50A ,因此有:
解得
由于最大值发生在计时起点右侧故取
所以
当时电流取得最大值,即:
例8-4计算下列两正弦量的相位差。
解:(1)
转为主值范围:
说明i1滞后i2。
(2)先把i2变为余弦函数:
则
说明i1超前i2。
(3)因为两个正弦量的角频率,故不能比较相位差。
(4)
则
说明i1超前i2
本题说明两个正弦量进行相位比较时应满足同频率、同函数、同符号,且在主值范围比较。
例8-5计算两正弦电压之和,已知:
解:两正弦电压对应的相量为 :
相量之和为:
所以
本题也可借助相量图计算,如下图所示。
相量图
例8-6试判断下列表达式的正、误,并给出正确结果。
解:(1)错,瞬时式和相量混淆,正确写法为:
(2)错,瞬时式不能和相量相等,正确写法为:
(3)错,有效值和相量混淆,正确写法为:
(4)对
(5)错,感抗和容抗混淆,正确写法为:
(6)错,有效值和相量混淆,正确写法为:
(7)错,电容和电感的VCR混淆,正确写法为:或。