等差数列

合集下载

等差数列的基本公式

等差数列的基本公式

等差数列的基本公式1 等差数列等差数列是一种有规律的数字序列,其公式为a1, a1+d, a1+2d, a1+3d, a1+4d, a1+5d,……,其中a1表示等差数列的第一项,d表示公差,也就是说当前项减去前一项所得的数字是一个常数,这个常数就是公差d。

举个例子来说明等差数列,比如-3, -1, 1, 3, 5, 7,……,其中第一项是-3,所以a1=-3,现在我们求出d,找出当前项减去前一项所得的数字,也就是-1-(-3)=2,这里的2就是公差d,同理其他的项目也是这个d,结论:a1=-3, d=2。

通常情况下,等差数列的和可以通过下面的基本公式来求出:Sn=n/2*[2a1+(n-1)*d]其中n为等差数列的项数,a1表示等差数列的第一项,d表示公差。

终止项:如果要求出某个项数,我们可以使用下面的基本公式:an=a1+(n-1)*dan表示等差数列中的第n项,a1表示等差数列的第一项,d表示公差。

2 使用简而言之,用等差数列的基本公式可以计算出等差数列的任何一项以及它的和,从而方便的解决各种数学计算问题。

同时,它也是用来描述一些现实中的数学模型,比如在射门多少米才能射进一个球门的问题中,可以用等差数列对其进行模拟,从而得出精确的答案。

此外,等差数列还可以用来求解一些稍微复杂点的问题。

比如给定一组数据,要求求出其中每一项,我们可以首先把数据存入Excel 表格或者程序中,然后用有规律归纳出等差数列的基本公式,最后再将数据抽出进行计算,轻松的就得到了正确的答案。

总的来说,等差数列的基本公式是一个不可缺少的数学工具,它可以帮助我们快速、准确的计算出数学问题,也可以模拟出现实中的数学模型,发挥其广泛而有效的作用。

等差数列

等差数列

数列专题(一)——等差数列1.等差数列定义:⇔∈=-+为常数d N n d a a n n ),(*1数列}{n a 为等差数列。

2.等差数列的通项公式1(1)n a a n d =+-; 3.等差数列的前n 项和:公式1:2)(1n n a a n S +=;公式2:1(1)2n n n S na d -=+; 4.等差数列的性质公式: (1)()n m a a n m d =+-;n ma a d n m-=-,如:855(85),(5)n a a d a a n d =+-=+-等;(2)若q p n m +=+,则q p n m a a a a +=+,如11038a a a a +=+; (3)若2m n p +=,则2m n p a a a +=,如11162a a a +=;(4)n S 为等差数列}{n a 的前n 项和,则数列,...,,232m m m m m S S S S S --也是等差数列. 基础题1.已知等差数列}{n a 的前n 项和为n S ,若12,261=-=S a ,则6a 的值为( ) A.4 B.5 C.6 D.82.(15年安徽文科)已知数列}{n a 中,11=a ,211+=-n n a a (2≥n ),则数列}{n a 的前 9项和等于 。

3.设等差数列}{n a 的前n 项和为n S ,若2,11952-=+-=a a a ,则当n S 取最小值时,n 等 于( ) A. 9 B. 8 C. 7 D. 64.(15年广东理科)在等差数列{}n a 中,若2576543=++++a a a a a ,则82a a +=5.(15年新课标2文科)设n S 是等差数列{}n a 的前n 项和,若1353a a a ++=,则5S =( ) A .5 B .7 C .9 D .116.已知等差数列}{n a 中,其前n 项和为n S ,36,963==S S ,则._______987=++a a a 提高题1.(15年新课标2理科)设n S 是数列{}n a 的前n 项和,且11a =-,11n n n a S S ++=,则n S =________.2.已知等差数列}{n a 中,若,0,031110119<⋅<+a a a a 且数列}{n a 的前n 项和n S 有最大值,那么n S 取得最小正值时n 等于( ) A. 20 B. 17 C. 19 D. 213.已知等差数列}{n a 中,其前n 项和为n S ,且满足35124,2a a a a a n n n -=-=++,则7S =( ) A. 7 B. 12 C. 14 D. 214.在等差数列}{n a 中,前四项之和为20,最后四项之和为60,前n 项之和是100,则项数n 为( ) A. 9 B. 10 C. 11 D. 125.设n n T S ,分别是等差数列}{},{n n b a 的前n 项和,且5959=T S ,则35b a的值为_________.6.(15年福建文科)等差数列{}n a 中,24a =,4715a a +=. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设22n a n b n -=+,求12310b b b b +++⋅⋅⋅+的值.7.【2015高考山东,文19】已知数列{}n a 是首项为正数的等差数列,数列11n n a a +⎧⎫⎨⎬∙⎩⎭的前n 项和为21nn +. (I )求数列{}n a 的通项公式;(II )设()12n an n b a =+⋅,求数列{}n b 的前n 项和n T .一、等差数列3.等差数列的通项公式1(1)n a a n d =+-; 2.等差数列的前n 项和:公式1:2)(1n n a a n S +=;公式2:1(1)2n n n S na d -=+; 3.等差数列的性质公式: (1)()n m a a n m d =+-;n ma a d n m-=-,如:855(85),(5)n a a d a a n d =+-=+-等;(2)若q p n m +=+,则q p n m a a a a +=+,如11038a a a a +=+; (3)若2m n p +=,则2m n p a a a +=,如11162a a a +=. 基础题2.已知等差数列}{n a 的前n 项和为n S ,若12,261=-=S a ,则6a 的值为( ) A.4 B.5 C.6 D.8 答案:C5.(15年安徽文科)已知数列}{n a 中,11=a ,211+=-n n a a (2≥n ),则数列}{n a 的前 9项和等于 。

等差数列公式大全

等差数列公式大全

等差数列公式大全等差数列是数学中的一个重要概念,指的是一个数列中的每个元素与它的前一个元素之差都相等。

等差数列的公式是求等差数列的通项公式,通常用字母a_n表示数列的第n个元素,d表示公差(即相邻两个元素之差)。

本文将为大家介绍等差数列的一些基本概念和相关公式。

1.等差数列的定义:等差数列是指一个数列中的每个元素与它的前一个元素之差都相等。

即对于等差数列{a_1,a_2,a_3,...,a_n},有a_n-a_(n-1)=d(常数d)。

2.第n个元素的通项公式:等差数列的第n个元素a_n可以通过通项公式求得,通项公式可以表示为:a_n=a_1+(n-1)d其中,a_1是数列的第一个元素,d是公差。

3.前n项和的公式:等差数列的前n项和可以通过求和公式求得,求和公式可以表示为:S_n=(n/2)(a_1+a_n)其中,S_n表示前n项和,a_1是数列的第一个元素,a_n是数列的第n个元素,n为自然数。

4.前n项和与末项的关系:等差数列的前n项和与数列的末项的关系可以表示为:S_n=(n/2)(a_1+a_n)=(n/2)[2a_1+(n-1)d]5.通项公式的推导:通过等差数列的基本概念可以推导出通项公式。

假设等差数列的第一个元素为a_1,公差为d。

那么:a_2=a_1+da_3=a_2+d=(a_1+d)+d=a_1+2d...a_n=a_(n-1)+d=a_1+(n-1)d可以看出,等差数列的第n个元素a_n与第一个元素a_1之间存在关系:a_n=a_1+(n-1)d6.递推公式的推导:通过等差数列的基本概念也可以推导出递推公式。

假设等差数列的第一个元素为a_1,公差为d。

那么:d=a_2-a_1d=a_3-a_2=(a_1+2d)-(a_1+d)=d...d=a_n-a_(n-1)=(a_1+(n-1)d)-(a_1+(n-2)d)=d可以看出,d等于a_n减去a_(n-1),且它等于两个数列元素之差。

等差数列所有公式

等差数列所有公式

等差数列所有公式
等差数列(ArithmeticProgression)是一种数学概念,它指的是一组有限的有序数列,其中任意两个邻接的数之差都是一个确定的值,即常数。

它的定义和表示非常简单,却又能帮助我们解决许多日常生活中的问题。

从数学的角度来看,等差数列可以用通项公式表示,通项公式是用于求解数列的各项元素的方法。

根据它的定义,等差数列的通项公式为:
Sn = an + a1 - d (n-1)
其中Sn表示等差数列中第n项的值,an表示等差数列中最后一项的值,a1表示等差数列中第一项的值,d表示等差数列中邻项的差值,n表示等差数列中的项数。

另外,我们还可以用相邻两项的比值来表示等差数列的公式,其公式为:
a n+1 / a n = c
其中c表示相邻项的比值,即等差数列中公差d的倒数。

- 1 -。

等差数列相关公式

等差数列相关公式

等差数列相关公式
等差数列是一类有序数列,它的每一项都等于前一项加上一个常数。

等差数列具有很多有用的性质,其中最重要的是其相关公式。

等差数列的首项和公差可以用a1和d表示,其中a1是数列的第一项,d是数列的公差。

同时,等差数列的第n项可以用an表示,其公式为:an=a1+(n-1)d。

等差数列的和可以用Sn表示,其公式为:Sn=n(a1+an)/2。

另外,等差数列的积可以用Pn表示,其公式为:Pn=a1a2a3...an。

等差数列的平方和可以用Sn2表示,其公式为:Sn2=n(2a1+d(n-1))(a1+an)/6。

等差数列相关公式的学习可以帮助我们更好地理解等差数列,进而更好地掌握数学知识。

等差数列的概念

等差数列的概念

等差数列的概念等差数列是数学中常见的一种数列,它的概念以及相关性质在数学领域中有着重要的地位。

本文将对等差数列进行详细的介绍和讨论。

一、等差数列的定义等差数列是指数列中相邻两项之间的差值保持不变。

也就是说,如果一个数列满足每一项与其后一项之间的差值都为同一个常数d,那么这个数列就是等差数列。

常数d称为等差数列的公差,用字母d表示。

例如:1, 3, 5, 7, 9, 11, ...这个数列中相邻两项之间的差值都是2,所以它是一个公差为2的等差数列。

二、等差数列的通项公式等差数列可以用一个通项公式来表示,通项公式可以根据等差数列的首项和公差来确定。

通项公式:an = a1 + (n-1)d其中,an表示等差数列的第n项,a1是第一项,d是公差。

通过这个公式,我们可以直接求出等差数列的任意一项。

三、等差数列的性质1. 等差数列的前n项和公式等差数列的前n项和可以通过以下公式来计算:Sn = n/2 * (a1 + an)其中,Sn表示前n项和,a1是第一项,an是第n项,n为项数。

这个公式可以用来计算等差数列的前n项和,方便进行数值计算。

2. 等差数列的性质(1)等差数列的项数奇偶性对于一个等差数列,如果首项、公差和末项已知,我们可以根据等差数列的性质来判断该数列的项数是奇数还是偶数。

- 当末项an已知时,如果公差d为正数,则an > a1,项数n为奇数;如果公差d为负数,则an < a1,项数n为偶数。

- 当末项an已知时,如果公差d为正数,则an < a1,项数n为偶数;如果公差d为负数,则an > a1,项数n为奇数。

(2)等差数列的中项对于一个项数为奇数的等差数列,我们可以根据等差数列的性质求出它的中项。

中项可以通过以下公式计算:中项 = (首项 + 末项) / 2四、等差数列的应用等差数列在数学中有着广泛的应用。

它不仅在数学领域中有重要作用,也在其他学科和实践中得到广泛的应用。

等差数列的概念

等差数列的概念

等差数列的概念等差数列是指数列中相邻两项之差恒定的数列。

在数学中,等差数列是一种重要的数列类型,具有广泛的应用。

它在数学、物理、经济等领域都有着重要的地位和作用。

一、等差数列的定义等差数列的定义比较简单,即数列中任意两项之差都相等。

数列的通项公式可以表示为:an = a1 + (n-1)d,其中an表示第n项,a1表示首项,d表示公差。

二、等差数列的性质1. 公差:等差数列中相邻两项之差称为公差,常用字母d表示。

公差可以是正数、负数或零,代表着数列中每一项之间的间隔。

2. 首项和末项:等差数列中的第一项为首项,常用字母a1表示;最后一项为末项,常用字母an表示。

3. 通项公式:等差数列的通项公式可以用来表示数列中任意一项的值。

根据公式an = a1 + (n-1)d,我们可以轻松地求得数列中任意一项的值。

4. 总和公式:等差数列的前n项和可以用总和公式来表示。

总和公式为Sn = (n/2)(a1 + an),其中Sn表示前n项和。

5. 递推关系:等差数列中的每一项都可以通过前一项加上公差得到。

这种递推关系使得我们可以通过已知条件计算出其他项的值。

三、等差数列的应用等差数列在数学上具有广泛的应用,它们可以通过表达式和性质来解决各种问题。

1. 数学应用:等差数列常常用来解决一次方程和一次不等式的问题。

通过等差数列的性质和公式,我们可以求解未知项的值,计算前n项和,判断数列的增减性等。

2. 物理应用:等差数列在物理学中也有重要的应用。

例如,物体匀速运动的位移、速度和加速度等可以通过等差数列来表示和计算。

3. 经济应用:等差数列在经济学中的应用也非常广泛。

例如,在贷款计算和投资分析中,我们常常需要利用等差数列的公式来计算每期的利息、本金和回报率等。

四、等差数列的例题分析为了更好地理解等差数列的概念和应用,我们来看几个例题。

例题1:已知等差数列的首项为2,公差为3,求该数列的前5项和。

解法:根据等差数列的总和公式Sn = (n/2)(a1 + an),代入已知条件,得到S5 = (5/2)(2 + 2 + 3×4) = 35。

高中等差数列公式大全

高中等差数列公式大全

高中等差数列公式大全一、等差数列的定义。

如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。

设等差数列{ a_n}的首项为a_1,则a_n-a_n - 1=d(n≥slant2)二、等差数列的通项公式。

1. 基本公式。

- a_n=a_1+(n - 1)d- 推导:a_2=a_1+d,a_3=a_2+d=a_1+2d,a_4=a_3+d=a_1+3d·s,以此类推可得a_n=a_1+(n - 1)d。

2. 变形公式。

- a_n=a_m+(n - m)d(m,n∈ N^*)- 推导:由a_n=a_1+(n - 1)d,a_m=a_1+(m - 1)d,两式相减得a_n-a_m=(n - m)d,移项可得a_n=a_m+(n - m)d。

三、等差数列的前n项和公式。

1. 公式一。

- S_n=frac{n(a_1+a_n)}{2}- 推导:S_n=a_1+a_2+·s+a_n,S_n=a_n+a_n - 1+·s+a_1,将这两个式子相加得2S_n=n(a_1+a_n),所以S_n=frac{n(a_1+a_n)}{2}。

2. 公式二。

- S_n=na_1+(n(n - 1))/(2)d- 推导:因为a_n=a_1+(n - 1)d,将其代入S_n=frac{n(a_1+a_n)}{2}中,得到S_n=frac{n<=ft[a_1+a_1+(n - 1)d]}{2}=na_1+(n(n - 1))/(2)d。

四、等差数列的性质。

1. 若m,n,p,q∈ N^*,且m + n=p + q,则a_m+a_n=a_p+a_q。

- 特别地,当m + n = 2k(m,n,k∈ N^*)时,a_m+a_n=2a_k。

2. 在等差数列{ a_n}中,若a_n=m,a_m=n(m≠ n),则a_m + n=0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§2.2等差数列
教学目标
知识与技能:了解公差的概念,明确一个数列是等差数列的限定条件,能根据定义判断一个数列是等差数列; 正确认识使用等差数列的各种表示法,能灵活运用通项公式求等差数列的首项、公差、项数、指定的项
过程与方法:经历等差数列的简单产生过程和应用等差数列的基本知识解决问题的过程。

情感态度与价值观:通过等差数列概念的归纳概括,培养学生的观察、分析资料的能力,积极思维,追求新知的创新意识。

教学重点
等差数列的概念,等差数列的通项公式。

教学难点
等差数列的性质
教学过程
Ⅰ.课题导入
[创设情境]
上两节课我们学习了数列的定义及给出数列和表示的数列的几种方法——列举法、通项公式、递推公式、图象法.这些方法从不同的角度反映数列的特点。

下面我们看这样一些例子。

课本P41页的4个例子:
①0,5,10,15,20,25,…
②48,53,58,63
③18,15.5,13,10.5,8,5.5
④10072,10144,10216,10288,10366
观察:请同学们仔细观察一下,看看以上四个数列有什么共同特征?
·共同特征:从第二项起,每一项与它前面一项的差等于同一个常数(即等差);(误:每相邻两项的差相等——应指明作差的顺序是后项减前项),我们给具有这种特征的数列一个名字——等差数列
Ⅱ.讲授新课
1.等差数列:一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d ”表示)。

⑴.公差d 一定是由后项减前项所得,而不能用前项减后项来求;
⑵.对于数列{n a },若n a -1-n a =d (与n 无关的数或字母),n ≥2,n ∈N +,则此数列是等差数列,d 为公差。

思考:数列①、②、③、④的通项公式存在吗?如果存在,分别是什么?
2.等差数列的通项公式:d n a a n )1(1-+=【或=n a d m n a m )(-+】 等差数列定义是由一数列相邻两项之间关系而得若一等差数列{}n a 的首项是1a ,公差是d ,则据其定义可得:
d a a =-12即:d a a +=12
d a a =-23即:d a d a a 2123+=+=
d a a =-34即:d a d a a 3134+=+=
……
由此归纳等差数列的通项公式可得:d n a a n )1(1-+=
∴已知一数列为等差数列,则只要知其首项1a 和公差d ,便可求得其通项n a 。

由上述关系还可得:d m a a m )1(1-+=
即:d m a a m )1(1--=
则:=n a d n a )1(1-+=d m n a d n d m a m m )()1()1(-+=-+--
即等差数列的第二通项公式 =n a d m n a m )(-+ ∴ d=
n
m a a n m -- 例1 ⑴求等差数列8,5,2…的第20项
⑵ -401是不是等差数列-5,-9,-13…的项?如果是,是第几项?
解:⑴由35285,81-=-=-==d a n=20,得49)3()120(820-=-⨯-+=a ⑵由4)5(9,51-=---=-=d a 得数列通项公式为:)1(45---=n a n 由题意可知,本题是要回答是否存在正整数n ,使得)1(45401---=-n 成立解之得n=100,即-401是这个数列的第100项
例2 已知数列{n a }的通项公式q pn a n +=,其中p 、q 是常数,那么这个数列是否一定是等差数列?若是,首项与公差分别是什么?
分析:由等差数列的定义,要判定{}n a 是不是等差数列,只要看1--n n a a (n ≥2)是不是一个与n 无关的常数。

解:当n ≥2时, (取数列{}n a 中的任意相邻两项1-n a 与n a (n ≥2)) ])1([)(1q n p q pn a a n n +--+=--p q p pn q pn =+--+=)(为常数
∴{n a }是等差数列,首项q p a +=1,公差为p 。

注:①若p=0,则{n a }是公差为0的等差数列,即为常数列q ,q ,q ,…
②若p ≠0, 则{n a }是关于n 的一次式,从图象上看,表示数列的各点均在一次函数y=px+q 的图象上,一次项的系数是公差,直线在y 轴上的截距为q.
③数列{n a }为等差数列的充要条件是其通项n a =pn+q (p 、q 是常数),称其为第3
④判断数列是否是等差数列的方法是否满足3个通项公式中的一个。

Ⅲ.课堂练习
课本P39练习1、2、3、4
[补充练习]
1.(1)求等差数列3,7,11,……的第4项与第10项.
分析:根据所给数列的前3项求得首项和公差,写出该数列的通项公式,从而求出所求项.
解:根据题意可知:1a =3,d =7-3=4.∴该数列的通项公式为:n a =3+(n -1)×4,即n a =4n -1(n ≥1,n ∈N *)∴4a =4×4-1=15, 10a =4×10-1=39.
评述:关键是求出通项公式.
(2)求等差数列10,8,6,……的第20项.
解:根据题意可知:1a =10,d =8-10=-2.
∴该数列的通项公式为:n a =10+(n -1)×(-2),即:n a =-2n +12,∴20a =-2×20+12=-28.
评述:要注意解题步骤的规范性与准确性.
(3)100是不是等差数列2,9,16,……的项?如果是,是第几项?如果不是,说明理由.
分析:要想判断一数是否为某一数列的其中一项,则关键是要看是否存在一正整数n 值,使得n a 等于这一数.
解:根据题意可得:1a =2,d =9-2=7. ∴此数列通项公式为:n a =2+(n -1)×7=7n -5.
令7n -5=100,解得:n =15, ∴100是这个数列的第15项.
(4)-20是不是等差数列0,-3
2
1,-7,……的项?如果是,是第几项?如果不是,说明理由. 解:由题意可知:1a =0,d =-3
21 ∴此数列的通项公式为:n a =-27n +2
7, 令-27n +27=-20,解得n =747 因为-27n +27=-20没有正整数解,所以-20不是这个数列的项.
Ⅳ.课时小结
通过本节学习,首先要理解与掌握等差数列的定义及数学表达式:n a -1-n a =d ,(n ≥2,n ∈N +
).其次,要会推导等差数列的通项公式:d n a a n )1(1-+=,并掌握其基本应用.最后,还要注意一重要关系式:=n a d m n a m )(-+和n a =pn+q (p 、q 是常数)的理解
Ⅴ.课后作业
课本P40习题2.2[A组]的第1题。

相关文档
最新文档