静电纺丝法制备醋酸纤维素纳米纤维
静电纺丝法制备醋酸纤维素纳米纤维

20 0 8年 8月
文 章 编 号 :0 72 5 (0 8 0 - 1-4 10 -83 20 )40 90 0
静 电纺 丝 法 制 备 醋 酸 纤 维 素 纳 米 纤维
孥 璃
( 三明学院 化 学与生物工程 系 , 福建 三明 3 50 6 04)
摘要 : 静电纺丝是一种利 用聚合物溶 液或熔 体在 强 电场 作用下形成 喷射 流进 行纺 丝加工 的工艺 , 是一
项制备纳米级纤维材料简单 有效 的技术 . 本文 以六氟异丙醇 和甲酸为溶 剂 , 对静 电纺丝制备 醋酸纤维素 纳米纤维 的影响因素进行探讨 , 研究溶剂 、 电压 、 浓度及接 收距离对 纳米 纤维形貌和直径 的影响. 研究 结 果表明 : 以六氟异丙醇 ( I ) HFP 为溶剂 , 当纺丝液浓度为 8 、 % 电压为 1 2 V、 收版距离为 1 m时 , 5— 0k 接 6c
图 1 静 电纺 丝装 备 示 意 图
已有研究表明 , 电纺聚合物纤维 的直径和 均一性依赖于许多电纺过程参数. 电纺丝 的基 静 本参量主要包括 : 施加的电场强度 (V c ) ① k /m , 当纺 丝机构 型 固定 时 , 与 施 加 的静 电 电压 ( 它 V) 成正 比. 电纺流体的流动速率 , ② 当喷丝头孑 径 L
电导率 、 比热 、 热导 率 及相 变 热 ( 如熔 剂 的蒸 发 例
热或熔 体 的结 晶 热 ) 静 电 纺 丝 过 程 有 一 定 影 对 响. 时 , 流 周 围 的环 境 对 过 程 也 有 一定 的影 同 射 响, 真空、 如 空气 或 其 他气 氛 , 温度 、 度 、 体流 湿 气
1 静 电纺丝简介
静 电纺 丝是 获 得纳 米 纤 维 的一项 简 便 技 术 .
静电纺丝法制备醋酸纤维素纳米纤维

纤维素酯是天然聚合物的衍生物其溶液或熔体易被加工成膜和纤维关于纤维素电子纺丝的报道较少本文以醋酸纤维素为原料以六氟异丙醇和甲酸为溶剂对纳米纤维的静电纺丝形成过程和影响因素进行探讨研究不同溶剂施加的电压浓度及喷丝头与收集板之间的距离对纳米纤维形貌和直径的影响
第 25卷 第 4期
2008年 8月
纤维素是地球上最丰富的多糖化合物 ,广泛 存在于自然界. 纤维素不溶于水 ,但溶于浓盐酸和 浓硫酸. 纤维素酯是天然聚合物的衍生物 ,其溶液 或熔体易被加工成膜和纤维 ,关于纤维素电子纺 丝的报道较少 [ 3 ] .
本文以醋酸纤维素为原料 ,以六氟异丙醇和 甲酸为溶剂 ,对纳米纤维的静电纺丝形成过程和 影响因素进行探讨 ,研究不同溶剂 、施加的电压 、 浓度及喷丝头与收集板之间的距离对纳米纤维形 貌和直径的影响.
20
吉 林 化 工 学 院 学 报
2008年
固定时 ,射流平均速度显然与此成正比 ; ③ 喷丝 头与收集板之间的距离 ,距离增大 ,直径变小. 另 外 ,静电射流的流体的粘度或粘弹性 、表面张力 、 电导率 、比热 、热导率及相变热 (例如熔剂的蒸发 热或熔体的结晶热 ) 对静电纺丝过程有一定影 响. 同时 ,射流周围的环境对过程也有一定的影 响 ,如真空 、空气或其他气氛 ,温度 、湿度 、气体流 通速率等. 在电纺中 ,电纺液通常是高分子溶液 (偶尔为熔体 ) ,因此高分子和溶剂的种类十分重 要 ,同时必须考虑其平均相对分子质量 ,相对分子 质量分布及链结构的细节.
静电纺丝制备纳米纤维膜的研究

静电纺丝制备纳米纤维膜的研究纳米材料是当前材料科学领域的热门研究课题之一。
纳米材料具有大比表面积、高比强度、优异的力学、光学和电学性能等特点,是制备先进功能材料的重要基础。
而纳米纤维作为一类纤细的纳米材料,其低维结构和高比表面积也使其在材料科学中具有潜在的重要应用前景。
因此,纳米纤维的制备方法备受关注。
目前,制备纳米纤维主要有机械法、电化学法、热喷涂法、化学气相沉积法等多种方法。
而静电纺丝法由于其制备过程简单、实验设备较为容易获得、可制备的材料种类广泛等优点,成为了目前制备纳米纤维膜的先进技术之一。
静电纺丝,即利用高电场作用下带电纤维形成纤维膜的技术。
其基本原理是,在电场作用下,射流中极微小的液滴与地电极之间落差跨度最大的部位会受到很强的电吸引力,集中向电极聚集而成为纤维膜,同时浓缩了液滴中的聚集物,聚集的物质可以是聚合物、无机物质等。
静电纺丝法具有许多优点。
一方面,其能够在室温下制备纳米材料,同时具有较高的制备效率、较低的制备成本和适用于多种物质。
另一方面,静电纺丝可快速制备出具有优异纳米结构的纤维膜,同时其纤维直径与纤维排布可调控性高,形成的材料表面光滑,大小均匀,可用于纳米技术中制备模板、载体、过滤器、生物材料等方面的应用。
近年来,静电纺丝制备纳米纤维材料的研究也得到了持续关注和深入探讨。
一方面,不断有新的纳米纤维材料被开发和研究。
例如,聚合物、金属氧化物、碳纳米管、金属及金属合金等都可以利用静电纺丝方法进行制备;另外,研究人员也对静电纺丝的工艺和性能进行了不断探讨。
例如,通过改变静电纺丝的操作参数(如电压、电场强度、喷嘴直径、液体沉积浓度等)可以调整制备出的纳米纤维的结构、形态和尺寸,从而对其性能进行优化。
同时,纳米纤维材料的实际应用也越来越广泛。
例如,在生物医学中,利用纳米纤维材料制备的载体、膜、支架等用于组织工程、组织修复和组织再生等领域;在环境保护中,利用纳米纤维材料制备的过滤器、分离膜等用于水处理、空气过滤等领域;在电子显示和光学中,利用纳米纤维材料制备的电极、防伪材料等用于制作光电器件、液晶显示器等领域。
《化学纤维》静电纺丝方法制备纳米纤维膜实验

《化学纤维》静电纺丝方法制备纳米纤维膜实验实验目的1、了解静电纺丝机的原理。
2、掌握基本的静电纺丝操作步骤。
3、能够结合化学纤维课程对进一步理解静电纺丝成型机理。
实验原理纳米纤维由于具有极小的直径以及极大比表面积和表面积体积比的结构特点,其表面能和活性增大,从而在化学、物理(热、光、电磁等,等许多性能方面表现出特异性,可用于高性能吸附、过滤、防护、生物医用等材料。
聚合物纳米纤维的制备方法有静电纺丝法、复合纺丝法、分子喷丝板法、生物合成法、化学合成法等,静电纺丝是-- 种高效低耗的聚合物纳米纤维制备方法,是目前研究的热点,而且具有较大的发展前景。
静电纺丝是基于高压静电场下导电流体产生高速喷射的原理发展而水,其主要过程是通过电场,利用电极向聚合物熔融物或溶液上引入静电荷,在电场作用下拉伸,由于聚合物有一定的粘性,可以形成细丝而不会形成液滴。
静电纺丝在一般情况下可以得到直径在 0.1um 数量级的纤维,比普通挤出纺丝(10-100um)的纤维直径小得多。
很多种材料如聚合物,聚合物和其他材料的混合物,陶瓷、金属纳米线都曾经通过静电纺丝法直接或问接得到。
静电纺丝可以得到各种混合纤维,因此可以很大程度上改变纤维的性质,同时可以对纤维材料做定向的改性。
通过控制电场形状等参数,可以得到网状,平行排列,无规三维结构,弹簧状和游涡等形状的纤维。
而通过改变纺丝头的的结构,可以的得到空心结构。
实验仪器和试剂试剂:PVC,四氢呋喃仪器:SS—2535D0,220V50Hz,电流10A实验步骤a.电纺溶液的配置配置浓度为13%的PVC溶液,四氢呋喃作为溶剂。
1.称区1.3克PVC粉末放入塑料试管中,然后量取10ml四氢呋喃溶液加入其中使其溶剂。
2.用玻璃棒不断搅拌,使其全部溶解,并观察溶液浓度,浓度太高不行,浓度太低也不行。
b.电防过程1.用注射器抽取一定量PVC溶液2.将注射器固定在接高压正极的金属盘片中心孔中。
3.在注射器的的正前方放置好收集纳米线用的锡纸,在正下次也防止溶液滴落的锡纸。
多种增强增韧静电纺丝复合纳米纤维材料的制备方法

纤维同步增强增韧 CFRP 复合材料的制备方法,属于
复合材料领域。其特征为:以 CFRP 预成型体贴附的
一种具有高度取 向 MWNTs 的杂 化纳米纤维同步 增强增韧 CFRP 复合材料的制备 方法
可高速旋转辊筒作为静电纺丝的负极接收器,将具有 高度取向 MWNTs 的热塑性工程塑料杂化纳米纤维毡 李刚;李鹏; 或膜纺丝于预成型体上,所纺纳米纤维毡或膜相对于 CN201210 杨小平;贾 预成型体的树脂基体具有重量比例;将含有高度取向 217642.8 晓龙;朱博 MWNTs 的纳米纤维毡或膜的预成型体铺层,按照预 成型体中树脂基体的工艺制度固化,制备同步增强增 韧的 CFRP 复合材料。本发明工艺简单且复合材料结
艺性能,其定型纤维层能够有效粘接复合材料增强织
方法
朋;陈祥宝
物,从而起到良好的定型效果;同时,非织造布呈多
孔网状结构Leabharlann 具有优异的气、液透过性,在复合材料
液态成型过程中不会阻碍树脂的层间有效流动,有利
于提高复合材料的内部质量,提高液态成型复合材料
的成品率和质量稳定性。
本发明公开了一种具有高度取向 MWNTs 的杂化纳米
丝纤维膜用于油
纳米纤维膜。优点:通过在力学性能较差的 CA 内部
卫东;潘晖;
水分离
加入机械性能好的 PI,得到生物可降解性、成本低廉、
黄超伯
显著的柔韧性和机械强度的 CA-PI 纳米纤维膜;通过
对纤维膜表面修饰,得到功能性的纤维膜材料;此高
柔韧性的超疏水超亲油膜材料在油水分离、污水处理
以及深海石油泄漏中具有广阔的应用前景。
运花;张晨; 脂基体具有重量比例;将含有纳米纤维毡或膜的碳纤 063099.X
张慎;刘海 维的预成型体铺层,制备含纳米纤维夹芯结构的碳纤
制备纳米纤维的方法

制备纳米纤维的方法纳米纤维是一种具有纳米级直径的纤维材料,具有较大的比表面积和优异的力学性能,广泛应用于材料科学、生物医学和纳米技术等领域。
制备纳米纤维的方法主要包括静电纺丝法、模板法和溶液旋转法等。
以下将分别介绍这些方法的原理和步骤。
静电纺丝法是一种常用的制备纳米纤维的方法。
其原理是将高电压作用于高分子溶液或熔体,通过电场将溶液中的高分子链拉伸成纳米级纤维,并将其沉积在收集器上形成纤维膜。
具体制备步骤如下:1. 准备高分子溶液:选择适合的高分子材料,如聚合物、天然蛋白质等,并将其溶解在有机溶剂中,制备成一定浓度的高分子溶液。
2. 调整导丝距离和收集器形状:将高压电源连接导丝和收集器,调整导丝之间的距离和收集器形状,以控制纤维形成和排列方式。
3. 施加高压电源:打开高压电源,施加高电压于导丝和收集器之间,形成高强度的电场。
4. 注入高分子溶液:使用注射泵或导管将高分子溶液缓慢注入到导丝上,并通过电场作用使高分子溶液纳米纤维化。
5. 收集纳米纤维:高分子溶液经过电场拉伸成纳米纤维,并沉积在收集器上形成纤维膜。
6. 进一步处理:将纤维膜进行干燥、固化和热处理等后续步骤,提高纤维的稳定性和力学性能。
模板法是一种利用模板的孔道结构制备纳米纤维的方法。
其原理是将高分子溶液或熔体置于模板孔道中,在模板的导向下,高分子物质逐渐凝固并形成纳米纤维。
具体制备步骤如下:1. 准备模板:选择适当的模板材料,如陶瓷、聚合物等,并制备具有一定孔径和孔道结构的模板。
2. 准备高分子溶液或熔体:选择适当的高分子材料,如聚合物、纳米颗粒等,并将其溶解在溶剂中,制备成一定浓度的高分子溶液或熔体。
3. 渗透模板:将高分子溶液或熔体置于模板孔道中,经过一定时间的渗透,高分子物质充分填充模板孔道。
4. 固化高分子物质:根据高分子物质的性质,选择适当的固化方法,如热固化、紫外光固化等,使高分子物质在模板中逐渐凝固。
5. 模板去除:通过化学溶解、机械破坏等方法,将模板从高分子纳米纤维中去除。
静电纺丝制备CA纳米纤维及其碱处理
静电纺丝制备CA纳米纤维及其碱处理宣小会;朱思敏;潘志娟【摘要】纤维素不易溶于普通溶剂,难以直接静电纺丝得到纤维素纳米纤维(CNF),故首先采用静电纺丝制备醋酸纤维素(CA)纳米纤维,然后对其进行碱处理以制备CNF,研究了碱溶液组成、浓度及时间对处理效果的影响,分析了CA纳米纤维和CNF的结晶结构及热学性能.结果表明,当氢氧化钠碱溶液中v(乙醇)∶v(水)=2∶1、处理液浓度为0.5 mol/L、处理时间为0.5h时,处理效果最佳.经过碱处理得到的CNF表面均匀光滑,平均直径为583 nm,具有纤维素Ⅰ型和Ⅱ型晶体结构的特征,无明显玻璃化转变温度.%Cellulose is difficult to dissolve in ordinary solvents and electrospin into cellulose nanofibers (CNFs) directly,so the cellulose acetate (CA) nanofibers were prepared by electrospinning firstly,and then subjected to alkali treatment to obtain CNFs.The influences of the composition and concentration of alkali solution and treating time on the treatment result were studied,and the crystal structure and thermal properties of CA nanofibers and CNFs were analyzed.It was found that when the volume fraction of ethanol and water is 2∶1 in the alkali solution with sodium hydroxide (NaOH),with concentration 0.5 mol/L and treating time 0.5 h,the optimum results were achieved.After alkali treatment,the CNFs exhibited smooth and uniform surface with an average diameter of 583 nm and features of cellulose Ⅰ and Ⅱ crystal structures,and had no obvious glass transition temperature.【期刊名称】《纺织学报》【年(卷),期】2013(034)009【总页数】6页(P6-11)【关键词】醋酸纤维素纳米纤维;纤维素纳米纤维;碱处理;结构;性能【作者】宣小会;朱思敏;潘志娟【作者单位】苏州大学纺织与服装工程学院,江苏苏州215123;苏州大学纺织与服装工程学院,江苏苏州215123;苏州大学纺织与服装工程学院,江苏苏州215123;现代丝绸国家工程实验室(苏州),江苏苏州215123【正文语种】中文【中图分类】TQ340.64随着人们环保意识的增强,纤维素作为自然界中取之不尽、用之不竭的天然高分子材料,越来越受到科学家们的青睐。
静电纺丝技术制备聚合物纳米纤维膜的研究
静电纺丝技术制备聚合物纳米纤维膜的研究聚合物纳米纤维膜是一种新型的材料,由于其具有优异的物理和化学性质而受到越来越多的关注。
目前,研究人员开展了大量的工作,以开发制备这种材料的新方法。
静电纺丝技术是一种被广泛应用于聚合物纳米纤维膜制备的方法。
该方法以高压静电场为驱动力,通过将聚合物分子从液态转变为固态,从而制备具有纳米级尺度的聚合物纤维。
本文将介绍静电纺丝技术制备聚合物纳米纤维膜的原理、优点以及应用。
一、静电纺丝技术的原理静电纺丝技术是指将含有聚合物溶液的“滴”,通过高压静电场的作用,使溶液从液态转变为纳米级尺度的聚合物纤维的过程。
该技术涉及两个相反的过程:传输和荷电。
在传输过程中,溶液从喷嘴中被喷出,形成溶液“滴”,然后通过高压静电场的作用,这些滴获得了荷电,移动到地面或由电极吸附。
在荷电过程中,因为这些荷电粒子被静电力所吸引,所以它们沿着高压电极向下运动。
当这些荷电粒子接近到一定距离,它们之间的静电引力就足以克服表面张力,形成纳米级尺度的聚合物纤维。
二、静电纺丝技术的优点制备聚合物纳米纤维膜的传统方法包括溶液浸渍、熔融拉伸等技术,但这些方法都存在着一些局限性,如工艺复杂、成本高等。
相比之下,静电纺丝技术具有如下优点:1.高效性:该技术可在较短时间内制备大量的纳米级聚合物纤维,并可实现连续性生产。
2.灵活性:静电纺丝技术可以制备出不同形态、大小和形状的聚合物纳米纤维。
3.高质量:该技术制备的聚合物纳米纤维具有高度纯度、尺寸一致性好和结构紧密等特点,使其应用广泛。
三、聚合物纳米纤维膜的应用聚合物纳米纤维膜由于其纳米级尺度的尺寸和优良的物理化学性质,在多个领域中都有着广泛的应用。
下面简要介绍其主要应用领域。
1.过滤和分离领域:聚合物纳米纤维膜由于其纤维间距非常小,同样尺寸的纳米级颗粒、蛋白质等大分子物质可以被过滤掉,这使其在液体过滤和气体过滤领域有广泛的应用。
2.生物医学领域:在不同细胞之间建造三维聚合物纳米纤维膜支架,使得细胞能够依附并形成新的组织,有利于修复受损的组织和器官。
静电纺丝制备醋酸纳米纤维膜研究【开题报告】
毕业设计开题报告纺织工程静电纺丝制备醋酸纳米纤维膜研究一、选题的背景、意义如今,对生态的保护和环境的治理工作日益严峻,尤其是淡水水系的污染问题突显,部分地区人们的饮水严重困难,一些曾经淡水资源充沛的地区也因为河流、湖泊、地下水被污染而出现缺水。
人们不禁要问,为何水汽循环往复,源源不断,还为什么会出现缺水。
那是因为很多水源未经处理不能直接作为生活用水使用。
而在水处理领域,膜分离的应用十分广泛,膜分离是借助膜的选择透过作用,对混合物溶质和溶剂进行分离、分级、提纯和富集的方法,膜分离可比传统的方法耗能低、过程简单、经济性好而且效率高。
[1]中空纤维膜是目前为止效率最高的分离膜的形式,具有充填密度高,比表面积大,自支撑作用强,可进行高压操作的特点,因此广泛用于污水处理、饮用水净化、海水淡化处理等诸多领域。
中空纤维膜也有一些自身缺陷,如内部多孔结构在增加其通量的同时也降低了纤维的力学性能,膜清洗难度高等。
选择合适的制膜材料是成功制备中空纤维膜的首要前提,从近几年国内外发表的科技文献来看,聚砜类材料如聚醚砜和改性聚醚砜,聚偏氟乙烯,聚丙烯,壳聚糖等成为了主要选择,改性方法主要有共混、共聚和接枝。
周媛等[2]将聚氨酯弹性体作为制备PVDF中空纤维膜的共混添加剂,使其具有良好的抗酸碱性能和抗污染性能。
Tai-Shung等[3]使用硅脂作为密封层,聚4-乙烯基吡啶作为选择性层,聚醚砜作为支持材料,进行共混制备用于气体分离的中空纤维膜,研究了层与中空纤维膜性能之间的联系,发现选择性层对纤维性能的影响最为显著。
肖通虎[4]等制了壳聚糖中空纤维膜,研究采用乙醇和正己烷液—液交换干燥,有效地避免了膜结构的完全致密化,壳聚糖中空纤维膜膜应用于渗透汽化分离碳酸二甲酯/甲醇混合物,可突破恒沸组成的限制,而且渗透通量较大。
聚醚砜树脂(PES)是一种综合性能优异的热塑性高分子材料,是目前得到应用的为数不多的特种工程塑料之一。
它具有优良的耐热性能,热变型温度在200~220℃,可耐150~160℃热水或蒸气,在高温下也不受酸、碱的侵蚀。
纳米纤维的制备方法及应用
纳米纤维的制备方法及应用纳米纤维是一种纤细程度在纳米级别的纤维材料,具有独特的结构和性能,广泛应用于纺织、电子、医药等领域。
本文将介绍纳米纤维的制备方法以及其在各个领域的应用。
纳米纤维的制备方法有很多种,下面将介绍其中几种常见的方法。
首先是静电纺丝法。
这种方法是最常见也是最直接的一种方法。
通过将高分子溶液或胶体材料注入到高压电极中,当电极电压升高时,材料的表面张力会被克服,形成细丝状的纳米纤维。
静电纺丝法的优点是制备纳米纤维的过程简单,成本低廉,但纤维的纯度较低。
其次是模板法。
这种方法利用孔洞结构的模板,将高分子溶液填充进孔洞,经过干燥或者其他处理后得到纳米纤维。
模板法制备的纳米纤维具有良好的结构和分散性,能够控制纤维的尺寸和形状,但是对模板的要求较高。
还有液晶法。
这种方法利用液晶相态的高分子材料,在特定的条件下经过自组装形成纳米纤维。
液晶法制备的纳米纤维具有优异的力学性能和热稳定性,适用于制备高品质的纳米纤维。
然而,液晶法的制备过程相对较复杂。
纳米纤维在各个领域有着广泛的应用,下面将介绍几个典型的应用案例。
首先是纺织领域。
纳米纤维具有出色的透气性、柔软度和耐用性,可以用来制备高性能的纺织品。
例如,运动服、户外服装和内衣等产品都可以采用纳米纤维材料,提高服装的舒适性和功能性。
此外,纳米纤维还可以用于制备阻燃纺织品和抗菌纺织品,具有广阔的市场应用前景。
其次是电子领域。
纳米纤维材料具有良好的导电性和光学性能,可用于制备具有高导电性的电子器件。
例如,利用纳米纤维可以制备高性能的柔性电子器件,如柔性显示屏、柔性电池等。
此外,纳米纤维也可以用作光学传感器、光催化剂等方面的材料,在提升电子器件性能和功能方面具有广泛应用前景。
还有医药领域。
纳米纤维具有较大的比表面积和良好的生物相容性,可以用于制备各种功能性纳米纤维材料,如药物缓释材料、组织工程材料等。
例如,纳米纤维可以用于制备各种纳米纤维薄膜,用于药物缓释系统,可以实现药物的定向和持续释放。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。