高等数学-曲面及其方程
2021研究生考试-高等数学考点解读及习题特训

) U(Pc,,8) = {<x,y)IO < �(x-x0 问y-yo )2 <δ
(1)内点 (2)外点 (3)边界点 开集,闭集,连通集,区域,闭区域,有界集,无界集.
二、多元函数的概念
二元函数:设D是 R2 的一个非空子集,称映射 f:D →R为定义在D上的二元函数,通
no
+ 飞.,, z
在 xOy 面上的投影方程.
y 求 {匕 的 交 线 C
案 UA抽
zx= . fl4111、
y 2 - 叮/缸
nu
-y叫/-
AU
在古I) 例4设一 个立体由上半球面 z= 乒三亨利恍而 z=
所围成,求它在 xOy
而上的投i;在.
答案
zx rlll〈lll
2 -
E
VJ
、,.
= AU
【旋转曲面方程求法】
IF(x,y)=O
( 1)坐标面上的曲线{ I z=v
绕x轴旋转的曲面方程为 F(x,土石可?°)=0;
绕y轴的旋转曲面方程为 F(±乒亏豆,y)=O.
I F(x,y,z) = 0,
Ix= /(z),
l lY (2)空间曲线{ G(x,y,z) = 0, 绕z轴旋转的曲面方程,先从方程组中解出{
xα 面上的投影.
习题10.求旋转抛物面 z=r+y(O 三z 三4)在三坐标面上的投影.
习题参考答案
习题1【答案】 x+y-3z-4=0. 习题2【答案】 9y-z-2=0. 习题3【答案】一x-一-20-=一y一-3 2一=一z-一1 4-.
习题4【答案】 Sx- 9y- 22z -59 = 0.
lf(x,y)-AI < e
高等数学(下)教案曲面及其方程

高等数学(下)教案曲面及其方程教学目标:1. 理解曲面的概念,掌握曲面的基本性质。
2. 学习曲面的方程表示方法,掌握常见曲面的方程。
3. 能够利用曲面方程进行曲面的绘制和分析。
教学内容:一、曲面的概念与基本性质1. 曲面的定义2. 曲面的基本性质2.1 曲面的导数2.2 曲面的切线和法线2.3 曲面的曲率2.4 曲面的切平面和法平面二、曲面的方程表示方法1. 参数方程表示法2.1 参数方程的定义2.2 参数方程的求导和积分2. 普通方程表示法2.1 普通方程的定义2.2 普通方程的求导和积分3. 柱面和二次曲面的方程3.1 柱面的方程3.2 二次曲面的方程三、常见曲面的方程1. 圆锥面的方程2. 椭圆面的方程3. 双曲面的方程4. 抛物面的方程5. 直纹面的方程四、曲面的绘制和分析1. 利用参数方程绘制曲面2. 利用普通方程绘制曲面3. 曲面的切线和法线分析4. 曲面的曲率分析5. 曲面的切平面和法平面分析教学方法:1. 采用多媒体教学,通过图形和动画展示曲面的形状和性质。
2. 通过例题讲解和练习,使学生掌握曲面方程的求解和分析方法。
3. 引导学生运用曲面方程解决实际问题,提高学生的应用能力。
教学评价:1. 课堂讲解和练习的参与度。
2. 学生对曲面方程的掌握程度。
3. 学生能够运用曲面方程进行曲面的绘制和分析。
教学资源:1. 教学PPT和动画演示。
2. 曲面方程的相关教材和参考书。
3. 计算机软件进行曲面的绘制和分析。
六、曲面的切平面和法线1. 切平面的定义与性质6.1 切平面的定义6.2 切平面的性质2. 法线的定义与性质6.3 法线的定义6.4 法线的性质3. 切平面和法线的求法6.5 切平面和法线的求法七、曲面的曲率1. 曲率的定义与性质7.1 曲率的定义7.2 曲率的性质2. 曲率的计算7.3 曲率的计算方法3. 曲面的弯曲程度分析7.4 曲面的弯曲程度分析八、曲面的绘制与分析实例1. 实例一:圆锥面的绘制与分析8.1 圆锥面的参数方程8.2 圆锥面的普通方程8.3 圆锥面的切平面和法线分析2. 实例二:椭圆面的绘制与分析8.4 椭圆面的参数方程8.5 椭圆面的普通方程8.6 椭圆面的切平面和法线分析3. 实例三:双曲面的绘制与分析8.7 双曲面的参数方程8.8 双曲面的普通方程8.9 双曲面的切平面和法线分析九、曲面在实际问题中的应用1. 曲面在工程中的应用9.1 曲面在机械设计中的应用9.2 曲面在建筑设计中的应用2. 曲面在自然科学中的应用9.3 曲面在光学中的应用9.4 曲面在声学中的应用十、复习与练习1. 复习本章内容10.1 复习曲面的概念与基本性质10.2 复习曲面的方程表示方法10.3 复习常见曲面的方程2. 课堂练习10.4 完成课堂练习题3. 课后作业10.5 布置课后作业教学方法:1. 采用案例教学法,通过具体实例讲解曲面的绘制与分析方法。
高等数学(下)教案曲面及其方程

高等数学(下)教案曲面及其方程教案内容:一、教学目标1. 让学生理解曲面的概念,掌握曲面的表示方法。
2. 让学生了解曲面的性质,如曲率、切线和法线等。
3. 让学生学会求解曲面的方程,并能运用曲面方程解决实际问题。
二、教学内容1. 曲面的概念及其表示方法曲面的定义曲面的表示方法:参数方程、直角坐标方程、柱面方程等。
2. 曲面的性质曲率:定义、计算方法及应用切线和法线:定义、计算方法及应用曲面的形状和分类:平面、柱面、锥面、二次曲面等。
3. 曲面的方程求解曲面的参数方程求解曲面的直角坐标方程求解曲面的柱面方程求解三、教学方法1. 采用多媒体教学,通过图形、动画等方式展示曲面的形象,帮助学生直观理解曲面的概念和性质。
2. 结合实例讲解曲面的方程求解方法,引导学生通过实践掌握曲面方程的求解技巧。
3. 开展课堂讨论,鼓励学生提出问题,共同探讨曲面的性质和应用。
四、教学安排1. 课时:2学时2. 教学方式:课堂讲解、实践练习、课堂讨论3. 教学过程:曲面的概念及其表示方法(0.5学时)曲面的性质(0.5学时)曲面的方程求解(0.5学时)课堂讨论(0.5学时)五、教学评价1. 课堂练习:要求学生在课堂上完成曲面方程的求解练习,检验学生对曲面方程的掌握程度。
2. 课后作业:布置有关曲面方程求解的课后作业,巩固学生对曲面方程的知识。
3. 课程考试:设置有关曲面方程的考试题目,全面评估学生对曲面及其方程的掌握情况。
六、教学内容1. 曲面的切平面与法线切平面的概念及其求法法线的概念及其求法切平面和法线在几何图形中的应用2. 曲面的图形描绘利用参数方程描绘曲面的图形利用直角坐标方程描绘曲面的图形利用柱面方程描绘曲面的图形七、教学方法1. 采用案例分析法,通过具体实例讲解曲面的切平面和法线的求法。
2. 利用计算机软件,演示曲面的图形描绘过程,帮助学生直观理解曲面的图形。
3. 鼓励学生参与讨论,分享曲面图形的描绘技巧,提高学生的动手能力和解决问题的能力。
高等数学上册第七章第五节 曲面及其方程

0z 3
在
yOz面上的投影
z
3y2 ,
xOy面上的圆 x 2 y 2 R2
叫做它的准线,平行于 z 轴的直线 l 叫做它的母线。 其实在 yOz 面内的一条直线: y R, 绕z轴旋转而成的旋转
曲面就是该圆柱面,则圆柱面方程为: x 2 y 2 R. 即
x2 y2 R2.
9
P11
定义: 平行于定直线并沿定曲线C平行移动的直线 l形成的轨迹
方程 Fx, y 0, 在空间 z
Fx, y 0,
直角坐标系中表示:
o 母线平行于 z 轴的柱面,
其准线是 xOy 面上的曲线
y
C : Fx, y 0.
x
C
方程 Gx,z 0, 在空间
直角坐标系中表示:
方程中缺哪个字母,母线 平行于相应的轴。
母线平行于 y轴的柱面, 其准线是 xOz 面上的曲线
1
在空间解析几何中关于曲面的研究,有下列两个基本问题: (1) 已知曲面点的几何轨迹,求曲面的方程; (2) 已知曲面的方程,求这方程所表示的曲面的形状。
1、球面方程
例1 建立球心在 M 0 x0 , y0 , z0 ,
半径为 R 的球面 S 的方程.
解:Mx, y, z S M0M R
M0 M x x0 2 y y0 2 z z0 2 ,
xz 0
o
x
y
12
小 结:
1.曲面的概念
2.球面方程 x x0 2 y y0 2 z z0 2 R2
3.平面方程 Ax By Cz D 0 作业:习题7-5
4.旋转曲面
作业纸P50
设 C : f y, z 0 yoz面
下次交P49-50
高等数学第七章:曲面及其方程

4/21
旋转过程中的特征:
如图 设 M (x, y, z),
(1) z z1
(2)点M 到z 轴的距离
z
d M1(0, y1, z1)
M f ( y,z) 0
o
y
d x2 y2 | y1 | x
将 z z1 6; 7 ;
(1)双曲线
x2 a2
z2 c2
1分别绕 x轴和z轴;
绕x 轴旋转
x2 a2
y2 c2
z2
1
旋 转
双
绕z 轴旋转
x2 a2
y2
z2 c2
1
曲 面
x
y z
y2
(2)椭圆
a
2
z2 c2
1绕 y 轴和z轴;
x 0
绕 y 轴旋转
y2 a2
x2 c2
z2
1
0
2
叫圆锥面的
半顶角.试建立顶点在坐标原点,旋转轴为z 轴,
半顶角为 的圆锥面方程. z
解 yoz面上直线方程为 z y cot
圆锥面方程
z x2 y2 cot x
M1(0, y1, z1 )
o
y
M( x, y, z)
例6 将下列各曲线绕对应的轴旋转一周, 求生成的旋转曲面的方程.
4/21
二、旋转曲面
定义 以一条平面 曲线绕其平面上的 一条直线旋转一周 所成的曲面称为旋 转曲面. 这条定直线叫旋转 曲面的轴.
4/21
03曲面及其方程、二次曲面

C:
f ( y, z) 0
x
0
绕oz轴旋转得旋转曲面
f( x2y2,z)0
2. yoz平面上的母线
C:
f ( y, z) 0
x
0
绕oy轴旋转得旋转曲面
f(y, x2z2)0
3.
xoy平面上的母线
C:
f (x,
z
0
y)
0
绕ox轴旋转得旋转曲面
x2 y2 z 2p 2q
( p与q同号 )
用截痕法讨论: 设 p0,q0
z
2019/10/17
o x
y
19
高等数学(下)主讲杨益民
(三)双曲面
(1)
x2 a2
by22
cz22
1
单叶双曲面
z
z
o
y
o
y
x x
.
2019/10/17
20
高等数学(下)主讲杨益民
(2)
x2 a2
by22
f(x, y2z2)0
2019/10/17
7
高等数学(下)主讲杨益民
例6
求xoz坐标面的上双曲线C:
x2 a2
z2 c2
1
分别绕x轴和z轴
一周生成的旋转曲面的方程。 y 0
解:
绕 x轴 旋 转 x2 a2
y2 z2 c2
1
旋 转
双
绕 z轴 旋 转x2a2y2 cz22 1
曲 面
直线L绕另一条与L相交的直线旋转一周,所得旋转曲面叫 圆锥面,两直线的交点叫圆锥面的顶点,两直线的夹角叫 圆锥面的半顶角。
03曲面及其方程、二次曲面27851

0
圆锥面方程
M(0, y, z)
o
y
zx2y2co t x
2019/7/24
9
高等数学(下)主讲杨益民
三、柱面 定义 沿定曲线C 移动的动直线L 所形成的曲面称为柱面。
这条定曲线C 叫柱面的准线,动直线L叫柱面的母线。
观察柱面的 形成过程:
2019/7/24
播放
10
柱面举例
高等数学(下)主讲杨益民
(4)用平面 xx1或yy1去截;
z
o
x
2019/7/24
y
17
高等数学(下)主讲杨益民
椭圆抛物面的图形如下: z
z o y
x
xo
y
p0, q0
p0, q0
特殊地:当p=q时,方程变为
x2 y2 z 2p 2p
旋转抛物面
2019/7/24
18
高等数学(下)主讲杨益民
(2)双曲抛物面(马鞍面)
x2 a2
z2 c2
1
表示什么曲面?
回顾
1. 三元方程 F(x,y,z)=0表示空间的一张曲面S。
2. A x 2 A y 2 A z 2 B x C y D z E 0 表示一张球面。
3. A xB yC zD 0表示空间的一张平面。
4. yoz平面上的母线
2019/7/24
3
高等数学(下)主讲杨益民
例4 方程 z (x 1 )2 (y 2 )2 1 的图形是怎样的?
解 根据题意有 z1
用平面z c去截图形得圆:
z
( x 1 ) 2 ( y 2 ) 2 1 c( c 1 )
同济版高等数学第六版课件第八章第五节曲面及其方程

直纹曲面在建筑设计中的应用
总结词
设计曲面建筑外观
VS
详细描述
直纹曲面方程在建筑设计中用于描述复杂 的曲面结构。通过直纹曲面,建筑师可以 创造出独特且富有艺术感的建筑外观。直 纹曲面在建筑设计中的广泛应用,不仅提 高了建筑的审美价值,也为建筑师提供了 更多的创作空间。
方程
锥面的方程通常表示为 x^2 + y^2 = r^2(z),其中 (x, y) 是平面上的点,r 是锥顶到平面的距离,z 是锥面的参数。
性质
锥面是一个非对称的曲面,在锥顶处曲率为无穷大。
旋转曲面
定义
旋转曲面是由一条平面曲线绕 一条直线旋转一周所形成的曲
面。
方程
旋转曲面的方程通常表示为 x = x(t), y = y(t), z = z(t),其 中 t 是参数,x(t), y(t), z(t) 是
非标准曲面
定义
01
非标准曲面是指不符合常规形式的曲面,如参数曲面、隐式曲
面等。
性质
02
非标准曲面具有一些特殊的几何性质,如曲率、法向量等,这
些性质有助于理解曲面的几何结构。
应用
03
非标准曲面在计算机图形学、计算几何等领域有广泛的应用,
如动画设计、虚拟现实、游戏开发等。
曲面的微分性质
定义
曲面的微分性质是指曲面在局部的几何性质,如切线、法线、曲率 等。
给定的平面曲线。
性质
旋转曲面是一个具有旋转对称 性的曲面,其曲率随旋转角度
而变化。
直纹曲面
定义
直纹曲面是由一条直线按一定方式移动所形成的曲面 。
方程
直纹曲面的方程通常表示为 z = f(x, y),其中 f(x, y) 是给定的函数,(x, y) 是平面上的点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、曲面方程的概念
曲面的实例: 水桶的表面、台灯的罩子面等. 曲面在空间解析几何中被看成是点的几何轨迹. 曲面方程的定义:
如果曲面S 与三元方程F ( x, y, z) 0有下述关系: (1)曲面S 上任一点的坐标都满足方程; (2)不在曲面S 上的点的坐标都不满足方程; 那么,方程F ( x, y, z) 0 就叫做曲面S 的方程, 而曲面S 就叫做方程的图形.
当平面z c 上下移动时,
c
得到一系列圆
o
y
圆心在(1,2,c),半径为 1 c x
半径随c 的增大而增大. 图形上不封顶,下封底.
以上几例表明研究空间曲面有两个基本问题: (1)已知曲面作为点的轨迹时,求曲面方程.
(讨论旋转曲面)
(2)已知坐标间的关系式,研究曲面形状. (讨论柱面、二次曲面)
x 22 y 12 z 42 ,
化简得所求方程 2x 6 y 2z 7 0.
例4 方程 z ( x 1)2 ( y 2)2 1的图形是怎样的?
解 根据题意有 z 1
z
用平面z c 去截图形得圆:
( x 1)2 ( y 2)2 1 c (c 1)
同理: yoz 坐标面上的已知曲线 f ( y, z) 0 绕 y 轴旋转一周的旋转曲面方程为
f y, x2 z2 0.
平面曲线绕某轴旋转,轴坐标变量不变, 而将曲线方程中的另一变量改写成该变量与 第三个变量的平方和的正负平方根。
例 5 直线L绕另一条与L 相交的直线旋转一周,
以下给出几例常见的曲面.
例 1 建立球心在点M0 ( x0 , y0 , z0 )、半径为R
的球面方程.
解 设M( x, y, z)是球面上任一点,
根据题意有 | MM0 | R
x x0 2 y y0 2 z z0 2 R 所求方程为 x x0 2 y y0 2 z z0 2 R2
将 z z1 , y1 x2 y2 代入
f ( y1, z1 ) 0
将 z z1, y1 x2 y2 代入 f ( y1, z1 ) 0
得方程 f x2 y2 , z 0,
yoz 坐标面上的已知曲线 f ( y, z) 0绕z 轴旋
转一周的旋转曲面方程.
实 例
y2 b2
z2 c2
1
椭圆柱面 // x轴
x2 a2
y2 b2
1
双曲柱面 // z轴
x2 2 pz 抛物柱面 // y 轴
四、小结
曲面方程的概念 F ( x, y, z) 0. 旋转曲面的概念及求法. 柱面的概念(母线、准线).
思考题
指出下列方程在平面解析几何中和空 间解析几何中分别表示什么图形?
所得旋转曲面叫圆锥面.两直线的交点叫圆锥面的
顶点,两直线的夹角
0
2
叫圆锥面的半顶
角.试建立顶点在坐标原点,旋转轴为z 轴,半顶
角为 的圆锥面方程.
z
解 yoz面上直线方程为 z y cot
圆锥面方程
M1(0, y1, z1 )
o
y
z x2 y2 cot x
二、旋转曲面
定义 以一条平面
曲线绕其平面Βιβλιοθήκη 的一条直线旋转一周所成的曲面称为旋
转曲面.
这条定直线叫旋转
曲面的轴.
播放
旋转过程中的特征:
如图 设 M ( x, y, z),
(1) z z1
(2)点M 到z 轴的距离
z
d M1(0, y1, z1)
M f ( y,z) 0
o
y
d x2 y2 | y1 | x
M( x, y, z)
例6 将下列各曲线绕对应的轴旋转一周,求 生成的旋转曲面的方程.
(1)双曲线
x2 a2
z c
2 2
1分别绕x
轴和z 轴;
绕x 轴旋转
x2 a2
y2 z2 c2
1
旋 转
双
绕z 轴旋转
x2 a2
y2
z2 c2
1
曲 面
y2 z2 (2)椭圆 a 2 c2 1绕y 轴和z 轴;
所求方程为
x
22
y
12
z
42
116 .
3
3 9
例 3 已知A(1,2,3),B(2,1,4),求线段AB 的
垂直平分面的方程. 解 设M( x, y, z)是所求平面上任一点,
根据题意有 | MA || MB |,
x 12 y 22 z 32
x 0
绕 y 轴旋转
y2 a2
x2 c2
z2
1
旋 转
椭
绕z 轴旋转
x2 a2
y2
z2 c2
1
球 面
(3)抛物线 y2 2 pz 绕z 轴; x 0
x2 y2 2 pz 旋转抛物面
三、柱面
定义 平行于定直线并沿定曲线 C 移动的直线 L 所形成的曲面称为柱面.
(1) x 2;
(2) x2 y2 4;
(3) y x 1.
思考题解答
方程
平面解析几何中 空间解析几何中
x2
平行于y 轴的直线 平行于 yoz 面的平面
圆心在(0,0) ,
x2 y2 4
半径为2 的圆
以z 轴为中心轴的圆柱面
y x 1 斜率为1的直线 平行于z 轴的平面
特殊地:球心在原点时方程为 x2 y2 z2 R2
例 2 求与原点O 及M0 (2,3,4)的距离之比为1 : 2 的
点的全体所组成的曲面方程.
解 设M( x, y, z)是曲面上任一点,
根据题意有 | MO | 1 , | MM0 | 2
x2 y2 z2
1,
x 22 y 32 z 42 2
这条定曲线 C 叫柱面的准线 ,动直线 L 叫
柱面的母线.
观察柱面的形
成过程:
播放
柱面举例
z
z
y2 2x
o
y
o
x
x
抛物柱面
平面
y
y x
从柱面方程看柱面的特征:
只含 x, y 而缺z 的方程F ( x, y) 0 ,在
空间直角坐标系中表示母线平行于z 轴的柱
面,其准线为 xoy面上曲线C . (其他类推)