1高中数学必修5第一章-解三角形全章教案(整理)
下学期高一数学第一章解三角形全章教案 必修5

下学期高一数学第一章解三角形全章教案1.1第1课时 正弦定理(1)教学目标(1)要求学生掌握正弦定理及其证明;(2)会初步应用正弦定理解斜三角形,培养数学应用意识; (3)在问题解决中,培养学生的自主学习和自主探索能力. 教学重点,难点正弦定理的推导及其证明过程. 教学过程 一.问题情境在直角三角形中,由三角形内角和定理、勾股定理、锐角三角函数,可以由已知的边和角求出未知的边和角.那么斜三角形怎么办?我们能不能发现在三角形中还蕴涵着其他的边与角关系呢?探索1 我们前面学习过直角三角形中的边角关系,在Rt ABC ∆中,设90C =︒,则sin a A c =, sin b B c =, sin 1C =, 即:sin a c A =, sin b c B =, sin c c C =, sin sin sin a b cA B C==. 探索2 对于任意三角形,这个结论还成立吗? 二.学生活动学生通过画三角形、测量边长及角度,再进行计算,初步得出该结论对于锐角三角形和钝角三角形成立.教师再通过几何画板进行验证.引出课题——正弦定理. 三.建构数学探索3 这个结论对于任意三角形可以证明是成立的.不妨设C 为最大角,若C 为直角,我们已经证得结论成立,如何证明C 为锐角、钝角时结论也成立? 证法1 若C 为锐角(图(1)),过点A 作AD BC ⊥于D ,此时有sin AD B c =,sin ADC b=,所以sin sin c B b C =,即sin sin b c B C =.同理可得sin sin a cA C=, 所以sin sin sin a b cA B C ==. 若C 为钝角(图(2)),过点A 作AD BC ⊥,交BC 的延长线于D ,此时也有sin AD B c =,且sin sin(180)AD C C b =︒-=.同样可得sin sin sin a b cA B C==.综上可知,结论成立.证法 2 利用三角形的面积转换,先作出三边上的高AD 、BE 、CF ,则sin AD c B =,sin BE a C =,sin CF b A =.所以111sin sin sin 222ABC S ab C ac B bc A ∆===,每项同除以12abc 即得:sin sin sin a b cA B C==.探索4 充分挖掘三角形中的等量关系,可以探索出不同的证明方法.我们知道向量也是解决问题的重要工具,因此能否从向量的角度来证明这个结论呢?在ABC ∆中,有BC BA AC =+.设C 为最大角,过点A 作AD BC ⊥于D (图(3)),于是BC AD BA AD AC AD ⋅=⋅+⋅.设AC 与AD 的夹角为α,则0||||cos(90)||||cos BA AD B AC AD α=⋅⋅︒++⋅,其中 ,当C ∠为锐角或直角时,90C α=︒-; 当C ∠为钝角时,90C α=-︒. 故可得sin sin 0c B b C -=,即sin sin b cB C=. 同理可得sin sin a cA C =. 因此sin sin sin a b c A B C==. 四.数学运用 1.例题:例1.在ABC ∆中,30A =︒,105C =︒,10a =,求b ,c .解:因为30A =︒,105C =︒,所以45B =︒.因为sin sin sin a b cA B C==, 所以sin 10sin 45102sin sin 30a B b A ︒===︒,sin 10sin1055256sin sin 30a C c A ︒===+︒.因此, b ,c 的长分别为102和5256+.例2.根据下列条件解三角形: (1)3,60,1b B c ==︒=; (2)6,45,2c A a ==︒=.解:(1)sin sin b cB C =,∴sin 1sin 601sin 23c B C b ⨯︒===, ,60b c B >=,∴C B <,∴C 为锐角, ∴30,90C A ==,∴222a b c =+=.(2)sin sin a cA C=,∴sin 6sin 453sin 22c A C a ⨯===,∴60120C =或, ∴当sin 6sin 756075,31sin sin 60c B C B b C =====+时,; ∴当sin 6sin1512015,31sin sin 60c B C B b C =====-时,; 所以,31,75,60b B C =+==或31,15,120b B C =-==.说明:正弦定理也可用于解决已知两边及一边的对角,求其他边和角的问题. 练习:在ABC ∆中,30a =,26b =,30A =︒,求c 和,B C .说明:正弦定理可以用于解决已知两角和一边求另两边和一角的问题. 2.练习: (1)在ABC ∆中,已知8b c +=,30B ∠=︒,45C ∠=︒,则b = ,c = . (2)在ABC ∆中,如果30A ∠=︒,120B ∠=︒,12b =,那么a = ,ABC ∆的面积是 .(3)在ABC ∆中,30bc =,1532ABC S ∆=,则A ∠= . (4)课本第9页练习第1题. 五.回顾小结:1.用两种方法证明了正弦定理:(1)转化为直角三角形中的边角关系;(2)利用向量的数量积.2.初步应用正弦定理解斜三角形. 六.课外作业:课本第9页练习第2题;课本第11页习题1.1第1、6题§1.1.1第2课时 正弦定理(2)教学目标(1)掌握正弦定理和三角形面积公式,并能运用这两组公式求解斜三角形; (2)熟记正弦定理2sin sin sin a b cR A B C===(R 为ABC ∆的外接圆的半径)及其变形形式.教学重点,难点利用三角函数的定义和外接圆法证明正弦定理. 教学过程 一.问题情境上节课我们已经运用两种方法证明了正弦定理,还有没有其他方法可以证明正弦定理呢? 二.学生活动学生根据第5页的途径(2),(3)去思考. 三.建构数学证法1 建立如图(1)所示的平面直角坐标系,则有(cos ,sin )A c B c B ,(,0)C a ,所以ABC ∆的面积为1sin 2ABC S ac B ∆=.同理ABC ∆的面积还可以表示为1sin 2ABC S ab C ∆=及1sin 2ABC S bc A ∆=,所以111sin sin sin 222ab C ac B bc A ==. 所以sin sin sin a b c A B C==. 证法2 如下图,设O 是ABC ∆的外接圆,直径2BD R =.(1)如图(2),当A 为锐角时,连CD ,则90BCD ∠=︒,2sin a R D =.又D A ∠=∠,所以2sin a R A =.(2)如图(3),当A 为钝角时,连CD ,则90BCD ∠=︒,2sin a R D =.又180A D ∠+∠=︒,可得sin sin(180)sin D A A =︒-=,所以2sin a R A =.(3)当A 为直角时,2a R =,显然有2sin a R A =.所以不论A 是锐角、钝角、直角,总有2sin a R A =.同理可证2sin b R B =,2sin c R C =.所以2sin sin sin a b cR A B C===. 由此可知,三角形的各边与其所对角的正弦之比是一个定值,这个定值就是三角形外接圆的直径. 由此可得到正弦定理的变形形式:(1)2sin ,2sin ,2sin a R A b R B c R C ===; (2)sin ,sin ,sin 222a b cA B C R R R===;(3)sin sin sin ::::A B C a b c =. 四.数学运用1.例题:例1.根据下列条件,判断ABC ∆有没有解?若有解,判断解的个数. (1)5a =,4b =,120A =︒,求B ; (2)5a =,4b =,90A =︒,求B ;(3)106a =,203b =45A =︒,求B ; (4)202a =203b =45A =︒,求B ;(5)4a =,33b =,60A =︒,求B . 解:(1)∵120A =︒,∴B 只能是锐角,因此仅有一解. (2)∵90A =︒,∴B 只能是锐角,因此仅有一解.(3)由于A 为锐角,而210632=,即A b a sin =,因此仅有一解90B =︒.(4)由于A 为锐角,而22032022031062>>=,即sin b a b A >>,因此有两解,易解得60120B =︒︒或.(5)由于A 为锐角,又1034sin 605<︒=,即sin a b A <,∴B 无解. 例2.在ABC ∆中,已知,cos cos cos a b cA B C==判断ABC ∆的形状.解:令sin ak A=,由正弦定理,得sin a k A =,sin b k B =,sin c k C =.代入已知条件,得sin sin sin cos cos cos A B C A B C==,即tan tan tan A B C ==.又A ,B ,C (0,)π∈,所以A B C ==,从而ABC ∆为正三角形.说明:(1)判断三角形的形状特征,必须深入研究边与边的大小关系:是否两边相等?是否三边相等?还要研究角与角的大小关系:是否两角相等?是否三角相等?有无直角?有无钝角? (2)此类问题常用正弦定理(或将学习的余弦定理)进行代换、转化、化简、运算,揭示出边与边,或角与角的关系,或求出角的大小,从而作出正确的判断.例3.某登山队在山脚A 处测得山顶B 的仰角为35︒,沿倾斜角为20︒的斜坡前进1000米后到达D 处,又测得山顶的仰角为65︒,求山的高度(精确到1米). 分析:要求BC ,只要求AB ,为此考虑解ABD ∆. 解:过点D 作//DE AC 交BC 于E ,因为20DAC ∠=︒, 所以160ADE ∠=︒,于是36016065135ADB ∠=︒-︒-︒=︒. 又352015BAD ∠=︒-︒=︒,所以30ABD ∠=︒. 在ABD ∆中,由正弦定理,得sin 1000sin13510002()sin sin 30AD ADB AB m ABD ∠︒===∠︒.在Rt ABC ∆中,sin 35235811()BC AB m =︒=︒≈. 答:山的高度约为811m .例4.如图所示,在等边三角形中,,AB a =O 为三角形的中心,过O 的直线交AB 于M ,交AC 于N ,求2211OM ON +的最大值和最小值. 解:由于O 为正三角形ABC 的中心,∴3AO =, 6MAO NAO π∠=∠=,设MOA α∠=,则233ππα≤≤,αβπβ-αACBD在AOM ∆中,由正弦定理得:sin sin[()]6OM OAMAO ππα=∠-+, ∴6sin()6OM πα=+,在AON ∆中,由正弦定理得:6sin()6ON πα=-,∴2211OM ON +22212[sin ()sin ()]66a ππαα=++-22121(sin )2a α=+, ∵233ππα≤≤,∴3sin 14α≤≤,故当2πα=时2211OM ON +取得最大值218a, 所以,当α=2,33or ππ时23sin 4α=,此时2211OM ON +取得最小值215a . 例5.在ABC ∆中,AD 是BAC ∠的平分线,用正弦定理证明:AB BDAC DC=. 证明:设BAD α∠=,BDA β∠=,则CAD α∠=,180CDA β∠=︒-.在ABD ∆和ACD ∆中分别运用正弦定理,得sin sin AB BD βα=,sin(180)sin AC DC βα︒-=, 又sin(180)sin ββ︒-=,所以AB AC BD DC =,即AB BDAC DC=. 2.练习:(1)在ABC ∆中,::4:1:1A B C =,则::a b c = ( D )A .4:1:1 B .2:1:1 CD(2)在ABC ∆中,若sin :sin :sin 4:5:6A B C =,且15a b c ++=,则a = , b = ,c = . 五.回顾小结:1.了解用三角函数的定义和外接圆证明正弦定理的方法; 2.理论上正弦定理可解决两类问题:(1)两角和任意一边,求其它两边和一角;(2)两边和其中一边对角,求另一边的对角,进而可求其它的边和角. 六.课外作业:课本第9页练习第3题;课本第11页习题1.1第2、8题.§1.1.2 第3课时 余弦定理(1)教学目标(1)掌握余弦定理及其证明;(2)使学生能初步运用余弦定理解斜三角形. 教学重点,难点(1)余弦定理的证明及其运用;(2)能灵活运用余弦定理解斜三角形. 教学过程 一.问题情境 1.情境:复习正弦定理及正弦定理能够解决的两类问题. 2.问题:在上节中,我们通过等式BC BA AC =+的两边与AD (AD 为ABC ∆中BC 边上的高)作数量积,将向量等式转化为数量关系,进而推出了正弦定理,还有其他途径将向量等式BC BA AC =+数量化吗?二.学生活动如图,在ABC ∆中,AB 、BC 、CA 的长分别为c 、a 、b . ∵BC AB AC +=∴()()AC AC AB BC AB BC ⋅=+⋅+22cos 2a B ac c +-=, 即B ac a c b cos 2222-+=;同理可证:A bc c b a cos 2222-+=, C ab b a c cos 2222-+=. 三.建构数学 1. 余弦定理上述等式表明,三角形任何一边的平方等于其他两边平方的和,减去这两边与它们夹角的余弦的积的两倍.这样,我们得到余弦定理. 2.思考:回顾正弦定理的证明,尝试用其他方法证明余弦定理.方法1:如图1建立直角坐标系,则(0,0),(cos ,sin ),(,0)A B c A c A C b .所以2222222222(cos )(sin )cos sin 2cos 2cos a c A b c A c A c A bc A b b c bc A=-+=+-+=+-同理可证B ac a c b cos 2222-+=,C ab b a c cos 2222-+=注:此法的优点在于不必对A 是锐角、直角、钝角进行分类讨论.方法2:若A 是锐角,如图2,由B 作BD AC ⊥,垂足为D ,则cos AD c A =,所以即A bc c b a cos 2222-+=,类似地,可以证明当A 是钝角时,结论也成立,而当A 是直角时,结论显 然成立.同理可证B ac a c b cos 2222-+=,C ab b a c cos 2222-+=.图1 图2 3.余弦定理也可以写成如下形式:bc a c b A 2cos 222-+= , ac b c a B 2cos 222-+=, acc b a C 2cos 222-+=.4.余弦定理的应用范围:利用余弦定理,可以解决以下两类有关三角形的问题: (1)已知三边,求三个角;(2)已知两边和它们的夹角,求第三边和其他两个角. 四.数学运用 1.例题:例1.在ABC ∆中,(1) 已知3b =,1c =,060A =,求a ;A BCcab(2) 已知4a =,5b =,6=c ,求A (精确到00.1).解:(1)由余弦定理,得2222202cos 31231cos607a b c bc A =+-=+-⨯⨯⨯=,所以 a =(2)由余弦定理,得222222564cos 0.752256b c a A bc +-+-===⨯⨯, 所以,041.4A ≈.例2. ,A B 两地之间隔着一个水塘,现选择另一点C ,测得182,CA m =126,CB m =063ACB ∠=,求,A B 两地之间的距离(精确到1m ). 解:由余弦定理,得所以,168()AB m ≈答:,A B 两地之间的距离约为168m .例3.用余弦定理证明:在ABC ∆中,当C 为锐角时,222a b c +>;当C 为钝角时,222a b c +<.证:当C 为锐角时,cos 0C >,由余弦定理,得222222cos c a b ab C a b =+-<+,即 222a b c +>.同理可证,当C 为钝角时,222a b c +<.2.练习:书第15页 练习1,2,3,4 五.回顾小结:1.余弦定理及其应用2.正弦定理和余弦定理是解三角形的两个有力工具,要区别两个定理的不同作用,在解题时正确选用;六.课外作业:书第16页1,2,3,4,6,7题§1.1.2 第4课时 余弦定理(2)教学目标(1)能熟练应用正弦定理、余弦定理及相关公式解决三角形的有关问题;(2)能把一些简单的实际问题转化为数学问题,并能应用正弦定理、余弦定理及相关的三角公式解决这些问题. 教学重点,难点能熟练应用正弦定理、余弦定理及相关公式解决三角形的有关问题,牢固掌握两个定理,应用自如. 教学过程 一.问题情境1.正弦定理及其解决的三角形问题(1)已知两角和任一边,求其它两边和一角;(2)已知两边和其中一边的对角,求另一边的对角,从而进一步其它的边和角. 2.余弦定理及其解决的三角形问题 (1)已知三边,求三个角;(2)已知两边和他们的夹角,求第三边和其他两个角. 四.数学运用 1.例题:例1.在长江某渡口处,江水以5/km h 的速度向东流,一渡船在江南岸的A 码头出发,预定要在0.1h 后到达江北岸B 码头,设AN 为正北方向,已知B 码头在A 码头的北偏东015,并与A 码头相距1.2km .该渡船应按什么方向航行?速度是多少(角度精确到00.1,速度精确到0.1/km h )?解:如图,船按AD 方向开出,AC 方向为水流方向,以AC 为一边、AB 为对角线作平行四边形ABCD ,其中 1.2(),50.10.5()AB km AC km ==⨯=.在ABC ∆中,由余弦定理,得2221.20.52 1.20.5cos(9015) 1.38BC =+-⨯⨯-≈, 所以 1.17()AD BC km =≈. 因此,船的航行速度为1.170.111.7(/)km h ÷=.在ABC ∆中,由正弦定理,得 0sin 0.5sin 75sin 0.41281.17AC BAC ABC BC ∠∠==≈, 所以 024.4ABC ∠≈所以 00159.4DAN DAB NAB ABC ∠=∠-∠=∠-≈.答:渡船应按北偏西09.4的方向,并以11.7/km h 的速度航行.例2. 在ABC ∆中,已知sin 2sin cos A B C =,试判断该三角形的形状.解:由正弦定理及余弦定理,得222sin ,cos sin 2A a a b c C B b ab+-==, 所以 22222a a b c b ab+-=,整理得 22b c =因为0,0b c >>,所以b c =.因此,ABC ∆为等腰三角形.例3.如图,AM 是ABC ∆中BC 边上的中线,求证:22212()2AM AB AC BC =+-.证:设AMB α∠=,则0180AMC α∠=-.在ABM ∆中,由余弦定理,得2222cos AB AM BM AM BM α=+-.在ACM ∆中,由余弦定理,得22202cos(180)AC AM MC AM MC α=+--.因为01cos(180)cos ,2BM MC BC αα-=-==, 所以2222122AB AC AM BC +=+,因此, 22212()2AM AB AC BC =+-. 例4.在ABC ∆中,BC a =,AC b =,,a b 是方程02322=+-x x 的两个根,且2cos()1A B +=,求:①角C 的度数; ②AB 的长度; ③ABC S ∆.解:①1cos cos(())cos()2C A B A B π=-+=-+=- ∴120C =;②由题设:232a b ab ⎧+=⎪⎨=⎪⎩,∴2222cos AB AC BC AC BC C =+-⋅⋅120cos 222ab b a -+=ab b a ++=22102)32()(22=-=-+=ab b a , 即10AB =;③ABC S ∆11133sin sin120222222ab C ab ===⋅⋅=.2.练习:(1)书第16页 练习1,2,3,4DCBA(2)如图,在四边形ABCD 中,已知AD CD ⊥,10AD =,14AB =, 60BDA ∠=, 135BCD ∠=, 求BC 的长.(3)在ABC ∆中,已知()()()456::::b c c a a b +++=,求ABC ∆的最大内角;(4)已知ABC ∆的两边,b c 是方程2400x kx -+=的两个根,的面积是2cm ,周长是20cm ,试求A 及k 的值; 五.回顾小结:1.正弦、余弦定理是解三角形的有力工具,要区别两个定理的不同作用,在解题时正确选用;2.应用正弦、余弦定理可以实现将“边、角相混合”的等式转化为“边和角的单一”形式; 3.应用余弦定理不仅可以进行三角形中边、角间的计算,还可以判断三角形的形状. 六.课外作业:书第17页5,8,9,10,11题§1.3正弦定理、余弦定理的应用(1)教学目标(1)综合运用正弦定理、余弦定理等知识和方法解决与测量学、航海问题等有关的实际问题;(2)体会数学建摸的基本思想,掌握求解实际问题的一般步骤;(3)能够从阅读理解、信息迁移、数学化方法、创造性思维等方面,多角度培养学生分析问题和解决问题的能力. 教学重点,难点(1)综合运用正弦定理、余弦定理等知识和方法解决一些实际问题; (2)掌握求解实际问题的一般步骤. 教学过程 一.问题情境 1.复习引入复习:正弦定理、余弦定理及其变形形式, (1)正弦定理、三角形面积公式:R CcB b A a 2sin sin sin ===; B acC ab A bc S ABC sin 21sin 21sin 21===∆.(2)正弦定理的变形:①C R c B R b A R a sin 2,sin 2,sin 2===;②RcC R b B R a A 2sin ,2sin ,2sin ===; ③sin sin sin ::::A B C a b c =.(3)余弦定理:bca cb A A bc c b a 2cos ,cos 2222222-+=-+=.二.学生活动引导学生复习回顾上两节所学内容,然后思考生活中有那些问题会用到这两个定理,举例说明.三.建构数学正弦定理、余弦定理体现了三角形中边角之间的相互关系,在测量学、运动学、力学、电学等许多领域有着广泛的应用.1.下面给出测量问题中的一些术语的解释:(1)朝上看时,视线与水平面夹角为仰角;朝下看时,视线与水平面夹角为俯角. (2)从某点的指北方向线起,依顺时针方向到目标方向线之间的水平夹角,叫方位角.(3)坡度是指路线纵断面上同一坡段两点间的高度差与其水平距离的比值的百分率.道路坡度100%所表示的可以这样理解:坡面与水平面的夹角为45度.45度几乎跟墙壁一样的感觉了. (4)科学家为了精确地表明各地在地球上的位置,给地球表面假设了一个坐标系,这就是经纬度线.2.应用解三角形知识解决实际问题的解题步骤:①根据题意作出示意图;②确定所涉及的三角形,搞清已知和未知;③选用合适的定理进行求解;④给出答案. 四.数学运用 1.例题:例1.如图1-3-1,为了测量河对岸两点,A B 之间的距离,在河岸这边取点,C D ,测得85ADC ∠=,60BDC ∠=,47ACD ∠=,72BCD ∠=,100CD m =.设,,,A B C D 在同一平面内,试求,A B 之间的距离(精确到1m ).解:在ADC ∆中,85ADC ∠=,47ACD ∠=,则48DAC ∠=.又100DC =,由正弦定理,得()sin 100sin 85134.05sin sin 48DC ADC AC m DAC ∠==≈∠.在BDC ∆中,60BDC ∠=,72BCD ∠=, 则48DBC ∠=.又100DC =, 由正弦定理,得()sin 100sin 60116.54sin sin 48DC BDC BC m DBC ∠==≈∠.在ABC ∆中, 由余弦定理,得3233.95≈, 所以 ()57AB m ≈答,A B 两点之间的距离约为57m .本例中AB 看成ABC ∆或ABD ∆的一边,为此需求出AC ,BC 或AD ,BD ,所以可考察ADC ∆和BDC ∆,根据已知条件和正弦定理来求AC ,BC ,再由余弦定理求AB .引申:如果A ,B 两点在河的两岸(不可到达),试设计一种测量A ,B 两点间距离的方法.可见习题1.3 探究拓展 第8题.例2.如图1-3-2,某渔轮在航行中不幸遇险,发出呼救信号,我海军舰艇在A 处获悉后,测出该渔轮在方位角为45,距离为10n mile 的C 处,并测得渔轮正沿方位角为105的方向,以9/n mile h 的速度向小岛靠拢,我海军舰艇立即以21/n mile h 的速度前去营救.求舰艇的航向和靠近渔轮所需的时间(角度精确到0.1,时间精确到1min ). 解:设舰艇收到信号后x h 在B 处靠拢渔轮,则21AB x =,9BC x =,又10AC =,()45180105120ACB ∠=+-=.由余弦定理,得2222cos AB AC BC AC BC ACB =+-⋅∠,即()()222211092109cos 120x x x =+-⨯⨯∠.化简,得2369100x x --=,解得()()240min 3x h ==(负值舍去).由正弦定理,得图1-3-1图1-3-2sin 9sin12033sin 2114BC ACB x BAC AB x ∠∠===, 所以21.8BAC ∠≈,方位角为4521.866.8+=.答 舰艇应沿着方向角66.8的方向航行,经过40min 就可靠近渔轮.本例是正弦定理、余弦定理在航海问题中的综合应用.因为舰艇从A 到B 与渔轮从C 到B 的时间相同,所以根据余弦定理可求出该时间,从而求出AB 和BC ;再根据正弦定理求出BAC ∠. 例3.如图,某海岛上一观察哨A 在上午11时测得一轮船在海岛北偏东3π的C 处,12时20分测得轮船在海岛北偏西3π的B 处,12时40分轮船到达海岛正西方5km 的E 港口.如果轮船始终匀速前进,求船速. 解:设ABE θ∠=,船的速度为/km h υ,则43BC υ=,13BE υ=. 在ABE ∆中,153sin sin 30υθ=,15sin 2θυ∴=. 在ABC ∆中,()43sin120sin 180AC υθ=-, 4415sin 2033233322AC υθυυ⋅⋅∴===. 在ACE ∆中,22520202525cos150333υ⎛⎫⎛⎫⎛⎫=+-⨯⨯⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 22540077525100933υ=++=,293υ∴=, ∴船的速度93/km h υ=. 2.练习:书上P20 练习1,3,4题.五.回顾小结:1.测量的主要内容是求角和距离,教学中要注意让学生分清仰角、俯角、张角、视角和方位角及坡度、经纬度等概念,将实际问题转化为解三角形问题.2.解决有关测量、航海等问题时,首先要搞清题中有关术语的准确含义,再用数学语言(符号语言、图形语言)表示已知条件、未知条件及其关系,最后用正弦定理、余弦定理予以解决.六.课外作业: 书上P21页习题1.3 第2,3,4题.§1.3 正弦定理、余弦定理的应用(2)教学目标(1)能熟练应用正弦定理、余弦定理解决三角形等一些几何中的问题和物理问题;(2)能把一些简单的实际问题转化为数学问题,并能应用正弦、余弦定理及相关的三角公式解决这些问题;(3)通过复习、小结,使学生牢固掌握两个定理,应用自如.教学重点,难点能熟练应用正弦定理、余弦定理及相关公式解决三角形的有关问题。
高中数学必修5解三角形教案(2021年整理)

高中数学必修5解三角形教案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学必修5解三角形教案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学必修5解三角形教案(word版可编辑修改)的全部内容。
第2章 解三角形2。
1.1 正弦定理教学要求:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。
教学重点:正弦定理的探索和证明及其基本应用。
教学难点:已知两边和其中一边的对角解三角形时判断解的个数. 教学过程: 一、复习准备:1. 讨论:在直角三角形中,边角关系有哪些?(三角形内角和定理、勾股定理、锐角三角函数)如何解直角三角形?那么斜三角形怎么办?2。
由已知的边和角求出未知的边和角,称为解三角形. 已学习过任意三角形的哪些边角关系?(内角和、大边对大角) 是否可以把边、角关系准确量化? →引入课题:正弦定理 二、讲授新课:1. 教学正弦定理的推导:①特殊情况:直角三角形中的正弦定理: sin A =ca sin B =cb sin C =1 即c =sin sin sin a b cA B C==. ② 能否推广到斜三角形? (先研究锐角三角形,再探究钝角三角形)当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据三角函数的定义,有sin sin CD a B b A==,则sin sin a b A B =。
同理,sin sin a cA C=(思考如何作高?),从而sin sin sin a b cA B C==。
高二数学必修五解三角形教案

高二数学必修五第一章解三角形教案)(一)教学目标 1.知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。
2 . 过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。
3.情态与价值:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。
(二)教学重、难点重点:正弦定理的探索和证明及其基本应用。
难点:已知两边和其中一边的对角解三角形时判断解的个数。
(三)学法与教学用具学法:引导学生首先从直角三角形中揭示边角关系:,接着就一般斜三角形进行探索,发现也有这一关系;分别利用传统证法和向量证法对正弦定理进行推导,让学生发现向量知识的简捷,新颖。
教学用具:直尺、投影仪、计算器(四)教学设想 [创设情景] 如图1.1-1,固定 ABC的边CB及 B,使边AC绕着顶点C转动。
A 思考: C的大小与它的对边AB的长度之间有怎样的数量关系?显然,边AB的长度随着其对角 C的大小的增大而增大。
能否用一个等式把这种关系精确地表示出来? C B[探索研究] (图1.1-1) 在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。
如图1.1-2,在Rt ABC中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有,,又 , A 则 b c 从而在直角三角形ABC中, C a B (图1.1-2) 思考:那么对于任意的三角形,以上关系式是否仍然成立?(由学生讨论、分析)可分为锐角三角形和钝角三角形两种情况:如图1.1-3,当 ABC是锐角三角形时,设边AB上的高是CD,根据任意角三角函数的定义,有CD= ,则, C 同理可得, b a 从而 A c B (图1.1-3) 思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。
(完整word版)1高中数学必修5第一章_解三角形全章教案(整理)

课题: §1.1.1正弦定理如图1.1-1,固定∆ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。
思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系?在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。
从而在直角三角形ABC 中,sin sin sin abcA B C ==思考:那么对于任意的三角形,以上关系式是否仍然成立?可分为锐角三角形和钝角三角形两种情况:如图1.1-3,当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin a b A B =, C 同理可得sin sin c b C B =, b a 从而sin sin a b A B=sin c C= A c B从上面的研探过程,可得以下定理正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即 sin sin abA B =sin cC =[理解定理](1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k 使sin a k A =,sin b k B =,sin c k C =;(2)sin sin ab A B =sinc C=等价于sin sin a b A B =,sin sin c b C B =,sin a A =sin c C从而知正弦定理的基本作用为: ①已知三角形的任意两角及其一边可以求其他边,如sin sin b A a B=; ②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如sin sin a A B b=。
一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形。
例1.在∆ABC 中,已知045A =,075B =,40a =cm ,解三角形。
例2.在∆ABC 中,已知20=a cm ,202b =cm ,045A =,解三角形。
高中数学必修五第一章解三角形家教教案(最新整理)

正弦定理:A a sin =B b sin =C csin =2R ,其中R 是三角形外接圆半径.余弦定理:)形式一:,,2___________________a =2_________________b =2_________________c =,,,(角到边的转换)bc 2a c b A cos 222-+=ac 2b c a B cos 222-+=ab2c b a C cos 222-+=absinC=bcsinA=acsinB,S △=))()((c S b S a S S ---=Sr 1212c +,r 为内切圆半径)=R abc 4(R 为外接圆半径).在三角形中大边对大角,反之亦然.射影定理:a=bcosC+ccosB,b=acosC+ccosA,c=acosB+bcosA.三角形内角的诱导公式(1)sin(A+B)=sinC,cos(A+B)=-cosC,tanC=-tan(A+B),cos=sin , sin =cos 2C 2A B +2C 2A B+ABC 中,熟记并会证明tanA+tanB+tanC=tanA·tanB·tanC;、C 成等差数列的充要条件是B=60°;;;)。
7.如图3,位于A 处的信息中心获悉:在其正东方向相距40海里的B 处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°、相距20海里的C 处的乙船,现乙船朝北偏东θ的方向沿直线CB 前往B 处救援,求cos θ的值.图38.如图,测量河对岸的塔高时,可以选与塔底在同一水平面内的两个测点与.现测得AB B C D ,并在点测得塔顶的仰角为,求塔高.BCD BDC CD s αβ∠=∠==,,C A θAB本章思维总结1.解斜三角形的常规思维方法是:(1)已知两角和一边(如A 、B 、C ),由A +B +C = π求C ,由正弦定理求a 、b ;(2)已知两边和夹角(如a 、b 、c ),应用余弦定理求c 边;再应用正弦定理先求较短边所对的角,然后利用A +B +C = π,求另一角;(3)已知两边和其中一边的对角(如a 、b 、A ),应用正弦定理求B ,由A +B +C = π求C ,再由正弦定理或余弦定理求c 边,要注意解可能有多种情况;(4)已知三边a 、b 、c ,应余弦定理求A 、B ,再由A +B +C = π,求角C 。
(新课标)高中数学 第一章 解三角形教学设计 新人教A版必修5

(新课标)2015-2016学年高中数学第一章解三角形教学设计新人教A版必修5从容说课本章主要学习了正弦定理和余弦定理、应用举例以及实习作业.正弦定理、余弦定理是反映三角形边、角关系的重要定理.利用正弦定理、余弦定理,可以将三角形中的边的关系与角的关系进行相互转化,许多几何问题也可以转化为解三角形的问题来研究.本节课是人教版数学必修五第一章解三角形的全章复习教学重点1.在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形2.三角形各种类型的判定方法;三角形面积定理的应用3.正、余弦定理与三角形的有关性质的综合运用.教学难点定理及有关性质的综合运用.教具准备多媒体投影仪三维目标一、知识与技能1.掌握在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形确良;2.三角形各种类型的判定方法;3.三角形面积定理的应用二、过程与方法通过引导学生分析,解答典型例题,使学生学会综合运用正、余弦定理,三角函数公式及三角形有关性质求解三角形问题.三、情感态度与价值观通过正、余弦定理,在解三角形问题时沟通了三角形的有关性质和三角函数的关系,反映了事物之间的必然联系及一定条件下相互转化的可能,从而从本质上反映了事物之间的内在联系.教学过程导入新课师 本章我们共学习了哪些内容? 生本章我们学习了正弦定理与余弦定理师你能讲出正弦定理、余弦定理的具体内容吗?生 正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即R CcB b A a 2sin sin sin ===; 余弦定理: a 2=b 2+c 2-2bcco s A,b 2=a 2+c 2-2acco s B, c 2=b 2+a 2-2baco s Cabc b a C ac b c a cisB bc a c b A 2cos ,2,2cos 222222222-+=-+=-+=师很好!哪位同学来说说运用正弦定理、余弦定理可以解决哪些类型的问题? 生 正弦定理可以解决以下两类问题:(1)已知两角和一边解三角形;(2)已知两边及其中一边的对角解三角形.余弦定理可以解决以下两类问题:(1)已知三边解三角形;(2)已知两边及其夹角解三角形生 老师,我来补充.利用正弦定理的解题的类型(1)在有解时只有一解,类型(2)可有解、一解和无解;利用余弦定理的解题的两种类型有解时只有一解师 very good!除了以上这些,我们还学习了什么? 生 除了正弦定理、余弦定理我们还学习了三角形面积公式:C ab B ac A bc S sin 21sin 21sin 21===C ,利用它我们可以解决已知两边及其夹角求三角形的面积师 你说的非常完善,你是我们全班同学学习的榜样.希望我们全班同学都向他学习推进新课 多媒体投影生 老师,我也来补充.利用正弦定理、余弦定理我们还可以解决实际生活中的一些问题:有关测量距离、高度、角度的问题.师 看来同学们对解三角形这一章掌握得都不错.下面,我们来看一下例题与练习. [例题剖析]【例1】在△ABC 中,若sin A >sin B ,则A 与B 的大小关系为生 这个题目以前做过的,A 与B的大小关系不定. 师 对吗?生我认为不对.我以前做过的题目中没有“在△ABC 中”这个条件. (其他学生一致认可) 师 那本题应该怎么做呢?生 我觉得答案应该是A >B ,但是理由我说不上来. 生 我来说.因为在△ABC 中,由正弦定理得R CcB b A a 2s i n s i n s i n ===,所以 a =2Rsin A ,B =2Rsin B .又因为sin A >sin B ,所以A >B . 又因为在三角形中,大边对大角,所以A >B . 师 好,你解得非常正确.【例2】在△ABC 中,若△ABC 的面积为S ,且2S=(a +b )2-C 2,求t a n C 的值. 师 拿到题目你怎么考虑,从哪里下手?生 利用三角形的面积公式,代入已知条件2S=(A +B )2-C 2中,再化简师 用面积公式S=21 bc in A =21ac sin B =21ab sin C 中的哪一个呢? 生 用哪一个都可以吧生 不对,应该先化简等式右边,得A +B 2-C 2=A 2+2AB +B 2-C 2,出现了A 与B 的乘积:AB ,而2abco s C =a 2+b 2-c 2,因此面积公式应该用S=21ab sin C ,代入等式得ab sin C =a 2+b 2+2ab -C 2=2ab -2abco s C .化简得tan2C=2. 从而有344142tan 12tan2tan 2-=-=-=C CC. 师 思路非常清晰,请同学们思考本题共涉及到了哪些知识点? 生 正弦定理、余弦定理与三角形面积公式. 生还有余切的二倍角公式. 师 你能总结这类题目的解题思路吗?生拿到题目不能盲目下手,应该先找到解题切入口. 师 对,你讲得很好.生正弦定理、余弦定理都要试试.【例3】 将一块圆心角为120°,半径为20 c m 的扇形铁片裁成一块矩形,有如图(1)、(2)的两种裁法:让矩形一边在扇形的一条半径OA 上,或让矩形一边与弦AB 平行,请问哪种裁法能得到最大面积的矩形?并求出这个最大值师本题是应用题,怎么处理?生由实际问题抽象出数学模型,找到相应的数学知识来解决分析:这是一个如何下料的问题,从图形的特点来看,涉及到线段的长度和角度,将这些量放置在三角形中,通过解三角形求出矩形的边长,再计算出两种方案所得矩形的最大面积,加以比较,就可以得出问题的结论解:按图(1)的裁法:矩形的一边O P 在OA 上,顶点M 在圆弧上,设∠M OA =θ,则|MP|=20sin θ,|OP |=20co s θ, 从而S=400sin θco s θ=200sin2θ, 即当4πθ=时,S m a x按图(2)的裁法:矩形的一边PQ 与弦AB 平行,设∠M O Q=θ,在△M O Q 中,∠O QM=90°+30°=120°,由正弦定理,得|MQ|=θθsin 2340120sin sin 20=︒又因为|MN |=2|OM |sin(60°-θ),=40sin(60°-θ),所以S=|MQ |·|MN |=331600sin θsin(60°-θ)=331600{-21[co s60°-co s(2θ-60°)]}=33800[cos(2θ-60°)-co s60°]所以当θ=30°时,S m a x =33400由于33400>200,所以用第二种裁法可裁得面积最大的矩形,最大面积为33400c m 2评注:正弦定理、余弦定理在测量(角度、距离)、合理下料、设计规划等方面有广泛应用.从解题过程来看,关键是要找出或设出角度,实质是解斜三角形,将问题涉及的有关量集中在某一个或者几个三角形中,灵活地运用正弦定理、余弦定理来加以解决【例4】如果一个三角形的三边是连续的三个自然数,求所有这些三角形中的最大角的度数.(精确到0.1°) 师 已知什么,要求什么?生(齐答)已知三角形的三边,要求三角形中的角. 师 怎么处理呢?生用正弦定理或余弦定理实现三角形中边与角的转化,可是三条边的值不知道啊. 生条件中三角形的三边是连续的三个自然数,那么我们可以设这三个连续的自然数为n-1,n ,n+1,最大的角为θ,则)1(2321)1(24)1(2)1()1(cos 2222--=--=-+--+=n n n n n n n n n n θ师 接下来怎么做呢?生 因为co s θ是[0°,180°]内的减函数,所以要求θ的最大值即求co s θ的最小值.师cos θ的最小值怎么求呢? 生 因为cos θ>-1,从而有)1(2321--n >-1)1(23-⇒n <23n-1>1⇒n >又因为n 为自然数,所以当n=3时,(cos θ)=-41,所以θ的最大值为104.5°.(教师用多媒体投影)解:设这三个连续的自然数为n-1,n ,n+1,最大的角为θ,则)1(2321)1(24)1(2)1()1(cos 2222--=--=-+--+=n n n n n n n n n n θ因为cos θ是[0°,180°]内的减函数,所以要求θ的最大值即求co s θ的最小值,且cos θ>-1,从而有)1(2321--n >-1)1(23-⇒n <⇒23n-1>1⇒n >2.因此,当n=3时,(cos θ)min =-41,所以θ的最大值为104.5°. 师 下面我们来看一组练习 多媒体投影1.在△ABC 中,若A =30°,B =45°,C =6,则A 等于( )A.26-B.26(2-C.)26(3-D.)26(4-2.在△ABC 中,若a =7,b =4,c =5, 则△ABC 的面积为(精确到0.1)( ) A .B .C .10.3D .3.某人站在山顶向下看一列车队向山脚驶来,他看见第一辆车与第二辆车的俯角差等于他看见第二辆车与第三辆车的俯角差,则第一辆车与第二辆车的距离D 1与第二辆车与第三辆车的距离D 2之间的关系为( ) A.d 1>d 2B.d 1=d 2C.d 1<d 2D.大小确定不了4.在△ABC 中,若A ·co t A =bco t B ,则△ABC 是_______三角形.5.在异面直线A ,B 上有两点M 、N ,EF 是直线A ,B 的公垂线段,若EM =5,EF =3,FN =4,MN =6,则异面直线A ,B 所成的角为___________.(精确到1°) 练习题答案:4.等腰课堂小结同学们本节课你的收获是什么?生 正弦定理、余弦定理都是联系三角形边和角的关系式生 凡是可用正弦定理的时候,都可以用余弦定理;当关系式中有边的平方项时,可以考虑余弦定理生 已知两边一对角求解三角形时用余弦定理讨论二次方程,更容易判断是无解、一解还是两解的问题生 利用正弦定理和余弦定理解决几何问题的关键还是在于找出图形中的边角关系,然后假设有关的边和角,利用正弦定理和余弦定理建立边或角的关系式生 在运用正弦定理、余弦定理解决实际问题时,通常都根据题意,从实际问题中抽象出一个或几个三角形,然后通过解这些三角形,得出实际问题的解.其基本步骤是(1)分析:理解题意,弄清已知与未知,画出示意图(一个或几个三角形);(2)建模:根据已知条件与求解目标,把已知量与待求量尽可能地集中在有关三角形中,建立一个解斜三角形的数学模型;(3)求解:利用正弦定理、余弦定理解这些三角形,求得数学模型的解; (4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解布置作业1.已知锐角三角形的三边长分别为2、3、x ,则x 的取值范围是__________. 2.在△ABC 中,已知t a n A =21,t a n B =31,试求最长边与最短边的比. 3.某人坐在火车上看风景,他看见远处有一座宝塔在与火车前进方向成30°角的直线上,1分钟后,他看见宝塔在与火车前进方向成45°角的直线上,设火车的速度是100 km/h ,求宝塔离开铁路线的垂直距离. 答案:1.(5,132.解:因为t a n A =21,t a n B =31,所以1312113121tan tan 1tan tan )tan(=∙-+=-+=+BA BA B A .因为0°<A <45°,0°<B <45°,所以A +B = 45°. 所以3510103135sin sin sin =︒==B C b c ,所以最长边与最短边的比为35. 3.解:如图,设宝塔在C 点,先看时的位置为A ,再看时的位置为B ,由题意知∠BAC =45°-30°=15°,AB =3560100=(km ), AC =)13(3513515sin 53sin sin +=︒︒=∠∙∠=ABC BCA AB AC所以C 点到直线AB 的距离为d =AC ·sin30°=65(3+1)(km ).板书设计 例例3备课资料解三角形三角形的三条边和三个内角是三角形的六个基本元素.已知其中的三个基本元素(至少有一个是边)求其余的基本元素叫做解三角形. 1.直角三角形的解法因为直角三角形中有一个是直角,例如△ABC 中,C =90°,角A 、B 、C 的对边分别是A 、B 、C .那么利用以下关系式:(1)A +B =90°;(2)A 2+B 2=C 2;(3)A =c sin A =cco s B =B ·t a n A ;(4)B =cco s A =c sin B =acxtana . 可分四种情况来解直角三角形. (1)已知斜边和一锐角; (2)已知一条直角边和一锐角;(3)已知一斜边和一直角边; (4)已知两条直角边. 2.斜三角形的解法在一个三角形中,如果没有一个角是直角,那么这个三角形叫做斜三角形.斜三角形的解法可分以下四种情况:(1)已知两角和一边;(2)已知两边和其中一边的对角;(3)已知两边和它们的夹角;(4)已知三边.解斜三角形常常利用以下基本关系式: 1.三角形内角和为180°,即A +B +C =180°; 2.正弦定理,即R CcB b A a 2sin sin sin ===3.余弦定理,即(1)⎪⎩⎪⎨⎧+=+=+=;cos cos ,cos cos ,cos cos B a A b c A c C a b C b B ca(2)⎪⎩⎪⎨⎧-+=-+=-+=C ab b a c B ac c a b A bc c b a cos 2cos 2,cos 2222222222一般地说,在已知两边和其中一边的对角的情况下,解三角形时,问题不一定有解,如果有解也不一定有唯一解.对这类问题进行讨论,可得如下结论.A >B sin A A =B sin A A <B sin A两解 一解 无解。
必修五第一章 解三角形全章教案
1.1正弦定理和余弦定理1.1.1正弦定理从容说课本章内容是处理三角形中的边角关系,与初中学习的三角形的边与角的基本关系有密切的联系,与已知三角形的边和角相等判定三角形全等的知识也有着密切的联系.教科书在引入正弦定理内容时,让学生从已有的几何知识出发,提出探究性问题“在任意三角形中有大边对大角,小边对小角的边角关系.我们是否能得到这个边、角的关系准确量化的表示呢?”在引入余弦定理内容时,提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题”.这样,用联系的观点,从新的角度看过去的问题,使学生对于过去的知识有了新的认识,同时使新知识建立在已有知识的坚实基础上,形成良好的知识结构.教学重点1.正弦定理的概念;2.正弦定理的证明及其基本应用.教学难点1.正弦定理的探索和证明;2.已知两边和其中一边的对角解三角形时判断解的个数.教具准备直角三角板一个三维目标一、知识与技能1.通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;2.会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题.二、过程与方法1.让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系;2.引导学生通过观察、推导、比较,由特殊到一般归纳出正弦定理;3.进行定理基本应用的实践操作.三、情感态度与价值观1.培养学生在方程思想指导下处理解三角形问题的运算能力;2.培养学生探索数学规律的思维能力,通过三角函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一.教学过程导入新课师如右图,固定△ABC的边CB及∠B,使边AC绕着顶点C转动.师思考:∠C的大小与它的对边A B的长度之间有怎样的数量关系?生显然,边AB的长度随着其对角∠C的大小的增大而增大.师能否用一个等式把这种关系精确地表示出来?师在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式 关系.如右图,在 △R t ABC 中,设 BC =A ,AC =B ,AB =C ,根据锐角三角函数中正弦函数的定义,有 a b c a b c=sin A ,=sin B ,又 sin C =1= ,则ccc sinA sinB simCc.从而在直角三角形 ABC 中,a b csinA sinB simC推进新课 [合作探究].师那么对于任意的三角形,以上关系式是否仍然成立?(由学生讨论、分析) 生可分为锐角三角形和钝角三角形两种情况:如右图,当△ABC 是锐角三角形时,设边 A B 上的高是 CD ,根据任意角三角函数的定义,有CD =A sin B =B sin A ,则a b c b a b c ,同理,可得 .从而 sinA sinB sinC sinB sinA sinB sinC.(当△ABC 是钝角三角形时,解法类似锐角三角形的情况,由学生自己完成) 正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即a b c sinA sinB sinC师是否可以用其他方法证明这一等式?生可以作△ABC 的外接圆,在△ABC 中,令 BC =A ,AC =B ,AB =C ,根据直径所对的圆周角是直角以及同弧所对的圆周角相等,来证明a b csinA sinB sinC这一关系.师很好!这位同学能充分利用我们以前学过的知识来解决此问题,我们一起来看下面的证法. 在△ABC 中,已知 BC =A ,AC =B ,AB =C ,作△ABC 的外接圆,O 为圆心,连结 BO 并延长交圆于 B ′, 设 BB ′=2R.则根据直径所对的圆周角是直角以及同弧所对的圆周角相等可以得到 ∠BAB ′=90°,∠C =∠B ′,∴sin C =sin B ′=sinC sinBc2R∴csinC2R同理,可得a b2R,2R sinA sinB∴a b csinA sinB sinC2R这就是说,对于任意的三角形,上述关系式均成立,因此,我们得到等式a b csinA sinB sinC点评:上述证法采用了初中所学的平面几何知识,将任意三角形通过外接圆性质转化为直角三角形进而求证,此证法在巩固平面几何知识的同时,易于被学生理解和接受,并且消除了学生所持的“向量方法证明正弦定理是唯一途径”这一误解.既拓宽了学生的解题思路,又为下一步用向量方法证明正弦定理作了铺垫[知识拓展师接下来,我们可以考虑用前面所学的向量知识来证明正弦定理.从定理内容可以看出,定理反映的是三角形的边角关系,而在向量知识中,哪一知识点体现边角关系呢生向量的数量积的定义式A·B=|A||B|C osθ,其中θ为两向量的夹角师回答得很好,但是向量数量积涉及的是余弦关系而非正弦关系,这两者之间能否转化呢生可以通过三角函数的诱导公式s inθ=Co s(90°-θ)进行转化师这一转化产生了新角90°-θ,这就为辅助向量j的添加提供了线索,为方便进一步的运算,辅助向量选取了单位向量j,而j垂直于三角形一边,且与一边夹角出现了90°-θ这一形式,这是作辅助向量j垂直于三角形一边的原因师在向量方法证明过程中,构造向量是基础,并由向量的加法原则可得AC CB AB而添加垂直于AC的单位向量j是关键,为了产生j与AB、ACCB、的数量积,而在上面向量等式的两边同取与向量j的数量积运算,也就在情理之中了师下面,大家再结合课本进一步体会向量法证明正弦定理的过程,并注意总结在证明过程中所用到的向量知识点点评:(1)在给予学生适当自学时间后,应强调学生注意两向量的夹角是以同起点为前提,以及两向量垂直的充要条件的运用(2)要求学生在巩固向量知识的同时,进一步体会向量知识的工具性作用向量法证明过程(1)△ABC为锐角三角形,过点A作单位向量j垂直于CB-A,j与的夹角为90°-C AC,则 j 与AB的夹角为由向量的加法原则可得AC CB AB为了与图中有关角的三角函数建立联系,我们在上面向量等式的两边同取与向量j的数量积运算,得到j (AC CB)j AB 由分配律可得AC j CB j AB∴|j|AC Co s90°+|j|CB Co s(90°-C)=|j|AB Co s(90°-A∴A sin C=C sin A∴a c sinA sinC另外,过点C作与CB 垂直的单位向量j,则j与AC的夹角为90°+C,j与AB的夹角为c b90°+B,可得sinC sinB(此处应强调学生注意两向量夹角是以同起点为前提,防止误解为j与A C的夹角为90°-C,j与AB的夹角为90°-Ba b c ∴sinA sinB sinC(2)△ABC为钝角三角形,不妨设A>90°,过点A作与AC垂直的单位向量j,则j 与AB的夹角为A-90°,j与CB的夹角为90°-C由AC CB AB ,得j·AC C B=j·AB即A·Co s(90°-C)=C·Co s(A- ∴A sin C=C sin A∴a c sinA sinC另外,过点C作与C B垂直的单位向量j,则j与AC 的夹角为90°+C,j与AB夹角为90°+B.同理,可得b c sinB sinC∴a b csimA sinB sinC(形式1)综上所述,正弦定理对于锐角三角形、直角三角形、钝角三角形均成立师在证明了正弦定理之后,我们来进一步学习正弦定理的应用[教师精讲](1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k使A=ksin A,B=ksin B,C=ksin C;(2)a b c sinA sinB sinC等价于a b c b a c, ,sinA sinB sinC sinB sinA sinC(形式我们通过观察正弦定理的形式2不难得到,利用正弦定理,可以解决以下两类有关三角形问题.①已知三角形的任意两角及其中一边可以求其他边,如a bsinAsinB.这类问题由于两角已知,故第三角确定,三角形唯一,解唯一,相对容易,课本P的例1就属于此类问题②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如s inA ab sinB.此类问题变化较多,我们在解题时要分清题目所给的条件.一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形.师接下来,我们通过例题评析来进一步体会与总结[例题剖析]【例1】在△ABC中,已知A=32.0°,B=81.8°,A=42.9c m,解三角形分析:此题属于已知两角和其中一角所对边的问题,直接应用正弦定理可求出边B,若求边C,再利用正弦定理即可解:根据三角形内角和定理,C=180°-(A+B)=180°-根据正弦定理,b= c=a s inB42.9sin81.8sinA sin32.0oa s inC42.9sin66.2sinA sin32.0ooo≈80.1(c m)≈74.1(c[方法引导(1)此类问题结果为唯一解,学生较易掌握,如果已知两角和两角所夹的边,也是先利用内角和180°求出第三角,再利用正弦定理(2)对于解三角形中的复杂运算可使用计算器【例2】在△ABC中,已知A=20c m,B=28c m,A=40°,解三角形(角度精确到1°,边长精确到1c m).分析:此例题属于B sin A<a<b的情形,故有两解,这样在求解之后呢,无需作进一步的检验,使学生在运用正弦定理求边、角时,感到目的很明确,同时体会分析问题的重要性解:根据正弦定理,sin B=bsinA28sin40 a 20o因为0°<B<180°,所以B≈64°或B(1)当B≈64°时,C=180°-(A+B)=180°-(40°+64°)=76°,C=a s inC20sin76sinA sin40oo≈30(c4(2)当B≈116°时,C=180°-(A+B)=180°-(40°+116°)=24°,C =a s inC20sin24sinA sin40oo≈13(c[方法引导]通过此例题可使学生明确,利用正弦定理求角有两种可能,但是都不符合题意,可以通过分析获得,这就要求学生熟悉已知两边和其中一边的对角时解三角形的各种情形.当然对于不符合题意的解的取舍,也可通过三角形的有关性质来判断,对于这一点,我们通过下面的例题来体会变式一:在△ABC中,已知A=60,B=50,A=38°,求B(精确到1°)和C(保留两个有效数字).分析:此题属于A≥B这一类情形,有一解,也可根据三角形内大角对大边,小角对小边这一性质来排除B为钝角的情形解:已知B<A,所以B<A,因此B也是锐角∵sin B=bsinA50sin38 a 60o∴B∴C=180°-(A+B)=180°-∴C =a s in C 60sin111o sinA sin38o[方法引导同样是已知两边和一边对角,但可能出现不同结果,应强调学生注意解题的灵活性,对于本题,如果没有考虑角B所受限制而求出角B的两个解,进而求出边C的两个解,也可利用三角形内两边之和大于第三边,两边之差小于第三边这一性质进而验证而达到排除不符合题意的解变式二:在△ABC中,已知A=28,B=20,A=120°,求B(精确到1°)和C(保留两个有效数字).分析:此题属于A为钝角且A>B的情形,有一解,可应用正弦定理求解角B后,利用三角形内角和为180°排除角B为钝角的情形解:∵sin B=bsinA20sin120 a 28o∴B≈38°或B≈142°(舍去∴C =180°-(A+B)∴C=a s inC28sin22sinA sin120≈12.[方法引导]此题要求学生注意考虑问题的全面性,对于角B为钝角的排除也可以结合三角形小角对小边性质而得到(2)综合上述例题要求学生自我总结正弦定理的适用范围,已知两角一边或两边与其中一边的对角解三角形(3)对于已知两边夹角解三角形这一类型,将通过下一节所学习的余弦定理来解师为巩固本节我们所学内容,接下来进行课堂练习:1.在△ABC中(结果保留两个有效数字),(1)已知 C =3,A =45°,B =60°,求 B(2)已知 B =12,A =30°,B =120°,求 A解:(1)∵C =180°-(A +B )=180°-(45°+60°)=75°,b c sinB sin C,∴B =csinB 3 s in60 sin Csin75(2)∵a b sinA sinB,∴A =bsinA 12sin30sinB sin 120点评:此题为正弦定理的直接应用,意在使学生熟悉正弦定理的内容,可以让数学成绩较弱的 学生进行在黑板上解答,以增强其自信心2.根据下列条件解三角形(角度精确到 1°,边长精确到 (1)B =11,A =20,B =30°;(2)A =28,B =20,A (3)C =54,B =39,C =115°;(4)A =20,B =28,A解: (1) ∵a b sinA sinB∴sin A =a s inB 20sin30b 11∴A ≈65°,A1 2当 A ≈65°时,C =180°-(B +A )=180°-(30°+65°)=85°, 111bsinC 11sin 85 ∴C = 1sinsinB sin30当 A ≈115°时,C =180°-(B +A )=180°-2 22bsin C 11sin 35 ∴C = 2sinB sin30(2)∵sin B =bsinA 20sin45a 28∴B ≈30°,B1 2 由于 A +B =45°+150°>180°,故 B ≈150°应舍去(或者由 B <A 知 B <A ,故 B 应为锐角 2 2∴C =180°-(45°+30°)=105°∴C=a s inC 28sin 105 sinA sin45(3)∵b csinB sinC∴sin B =bsinC 39sin 115c 54∴B ≈41°,B1 2由于 B <C ,故 B <C ,∴B ≈139°应舍去2∴当 B =41°时,A =180°-1 2A =csinA54sin24 sinC sin115(4) sin B=bsinA28sin120a 20=1.212>∴本题无解点评:此练习目的是使学生进一步熟悉正弦定理,同时加强解三角形的能力,既要考虑到已知角的正弦值求角的两种可能,又要结合题目的具体情况进行正确取舍课堂小结通过本节学习,我们一起研究了正弦定理的证明方法,同时了解了向量的工具性作用,并且明确了利用正弦定理所能解决的两类有关三角形问题:已知两角、一边解三角形;已知两边和其中一边的对角解三角形布置作业(一)课本第10页习题1.1第1、2题(二)预习内容:课本P~P余弦定理5 8[预习提纲(1)复习余弦定理证明中所涉及的有关向量知识(2)余弦定理如何与向量产生联系(3)利用余弦定理能解决哪些有关三角形问题板书设计正弦定理1.正弦定理证明方法: 3.利用正弦定理,能够解决两类问题:a b csinA sinB sinC(1)平面几何法已知两角和一边(2)向量法(2)已知两边和其中一边的对角1.1.2余弦定理从容说课课本在引入余弦定理内容时,首先提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题”.这样,用联系的观点,从新的角度看过去的问题,使学生对过去的知识有了新的认识,同时使新知识建立在已有知识的坚实基础上,使学生能够形成良好的知识结构.设置这样的问题,是为了更好地加强数学思想方法的教学.比如对于余弦定理的证明,常用的方法是借助于三角的方法,需要对三角形进行讨论,方法不够简洁,通过向量知识给予证明,引起学生对向量知识的学习兴趣,同时感受向量法证明余弦定理的简便之处.教科书就是用了向量的方法,发挥了向量方法在解决问题中的威力.在证明了余弦定理及其推论以后,教科书从余弦定理与勾股定理的比较中,提出了一个思考问题“勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的关系?”并进而指出,“从余弦定理以及余弦函数的性质可知,如果一个三角形两边的平方和等于第三边的平方,那么第三边所对的角是直角;如果小于第三边的平方,那么第三边所对的角是钝角;如果大于第三边的平方,那么第三边所对的角是锐角.由上可知,余弦定理是勾股定理的推广”.还要启发引导学生注意余弦定理的各种变形式,并总结余弦定理的适用题型的特点,在解题时正确选用余弦定理达到求解、求证目的启发学生在证明余弦定理时能与向量数量积的知识产生联系,在应用向量知识的同时,注意使学生体会三角函数、正弦定理、向量数量积等多处知识之间的联系教学重点余弦定理的发现和证明过程及其基本应用教学难点1.向量知识在证明余弦定理时的应用,与向量知识的联系过程2.余弦定理在解三角形时的应用思路3.勾股定理在余弦定理的发现和证明过程中的作用.教具准备投影仪、幻灯片两张第一张:课题引入图片(记作A如图(1),在Rt△ABC中,有A2+B2=C2问题:在图(2)、(3)中,能否用b、c、A求解a第二张:余弦定理(记作1.1.2B余弦定理:三角形任何一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的积的两倍形式一: a2=b2+c2-2bcco s A,b2=c2+a2-2caco s B,c2=a2+b2-2abco s C形式二:co s A=b2c2a2c2a2b2a2b2,co s B=,co s C=2bc 2ca 2abc2三维目标一、知识与技能1.掌握余弦定理的两种表示形式及证明余弦定理的向量方法2.会利用余弦定理解决两类基本的解三角形问题3.能利用计算器进行运算二、过程与方法1.利用向量的数量积推出余弦定理及其推论2.通过实践演算掌握运用余弦定理解决两类基本的解三角形问题三、情感态度与价值观1.培养学生在方程思想指导下处理解三角形问题的运算能力;2.通过三角函数、余弦定理、向量的数量积等知识间的关系,来理解事物之间的普遍联系与辩证统一.教学过程导入新课师上一节,我们一起研究了正弦定理及其应用,在体会向量应用的同时,解决了在三角形已知两角、一边和已知两边与其中一边对角这两类解三角形问题.当时对于已知两边夹角求第三边问题未能解决,下面我们来看幻灯片1.1.2A,如图(1),在直角三角形中,根据两直角边及直角可表示斜边,即勾股定理,那么对于任意三角形,能否根据已知两边及夹角来表示第三边呢?下面我们根据初中所学的平面几何的有关知识来研究这一问题在△ABC中,设BC=A,AC=B,AB=C,试根据B、C、A来表示A师由于初中平面几何所接触的是解直角三角形问题,所以应添加辅助线构成直角三角形,在直角三角形内通过边角关系作进一步的转化工作,故作CD垂直于AB于D,那么在Rt△BDC中,边A可利用勾股定理用CD、DB表示,而CD可在Rt△ADC中利用边角关系表示,DB可利用AB-AD转化为AD,进而在△R t ADC内求解解:过C作CD⊥AB,垂足为D,则在△R t CDB中,根据勾股定理可得A2=CD2+BD2∵在Rt△ADC中,CD2=B2-AD2又∵BD2=(C-AD)2=C2-2C·AD+AD2∴A2=B2-AD2+C2-2C·AD+AD2=B2+C2-2C·AD又∵在Rt△ADC中,AD=B·CO s A∴a2=b2+c2-2ab c os A类似地可以证明b2=c2+a2-2caco s Bc2=a2+b2-2ab c os C另外,当A为钝角时也可证得上述结论,当A为直角时,a2+b2=c2也符合上述结论,这也正是我们这一节将要研究的余弦定理,下面我们给出余弦定理的具体内容.(给出幻灯片1.1.2B推进新课1.余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍在幻灯片1.1.2B中我们可以看到它的两种表示形式形式一a2=b2+c2-2bcco s Ab2=c+a2-2caco s Bc2=a2+b2-2abco s C形式二cosA cosB bc22c22bca22caab22cosC a2b22abc2师在余弦定理中,令C=90°时,这时c o s C=0,所以c2=a2+b2,由此可知余弦定理是勾股定理的推广.另外,对于余弦定理的证明,我们也可以仿照正弦定理的证明方法二采用向量法证明,以进一步体会向量知识的工具性作用[合作探究2.向量法证明余弦定理(1)证明思路分析师联系已经学过的知识和方法,可用什么途径来解决这个问题?用正弦定理试求,发现因A、B均未知,所以较难求边C.由于余弦定理中涉及到的角是以余弦形式出现,从而可以考虑用向量来研究这个问题.由于涉及边长问题,那么可以与哪些向量知识产生联系呢生向量数量积的定义式a·b=|a||b|co sθ,其中θ为A、B的夹角师在这一点联系上与向量法证明正弦定理有相似之处,但又有所区别.首先因为无须进行正、余弦形式的转换,也就少去添加辅助向量的麻烦.当然,在各边所在向量的联系上仍然通过向量加法的三角形法则,而在数量积的构造上则以两向量夹角为引导,比如证明形式中含有角C,则构造CBCA这一数量积以使出现CO s C.同样在证明过程中应注意两向量夹角是以同起点为前提(2)向量法证明余弦定理过程如图,在△ABC中,设AB、BC、CA的长分别是c、a、b由向量加法的三角形法则,可得∴AC AB BCAC AC (AB BC)(AB BC)AB22AB BC BC2AB 2AB BC cos(180B)BC2c22accosB a2,B即B2=C2+A2-2AC COBC AC AB由向量减法的三角形法则,可得∴BC BC(AC AB) (AC AB)AC22AC AB AB 2AC 2AC AB cosAAB2b22bccosA c2即a2=b2+c2-2bcco s AAB AC CB AC BC 由向量加法的三角形法则,可得∴AB AB (AC BC) (AC BC) AC22AC BC BC2 AC 22AC BC cosCBC2b22ba cosC a2,2 2即 c 2=a 2+b 2-2abco s C [方法引导(1)上述证明过程中应注意正确运用向量加法(减法)的三角形法则(2)在证明过程中应强调学生注意的是两向量夹角的确定,AC与A B属于同起点向量,则夹角为 A ; AB 与 BC 是首尾相接,则夹角为角 B 的补角 180°-B ; 则夹角仍是角 C[合作探究A C与 是同终点,师 思考:这个式子中有几个量?从方程的角度看已知其中三个量,可以求出第四个量,能 否由三边求出一角?生(留点时间让学生自己动手推出)从余弦定理,又可得到以下推论:cosAb2c 2 a 2a 2 c 2b 2b 2 a 2c 2,cosB,cosC2bc2ac2ba师 思考:勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角 形中三边平方之间的关系,如何看这两个定理之间的关系? 生(学生思考片刻后会总结出)若△ABC 中,C =90°,则 co s C =0,这时 c 2=a 2+b 2 .由此可知 余弦定理是勾股定理的推广,勾股定理是余弦定理的特例.师 从余弦定理和余弦函数的性质可知,在一个三角形中,如果两边的平方和等于第三边的 平方,那么第三边所对的角是直角;如果两边的平方和小于第三边的平方,那么第三边所对 的角是钝角,如果两边的平方和大于第三边的平方,那么第三边所对的角是锐角.从上可知, 余弦定理可以看作是勾股定理的推广.现在,三角函数把几何中关于三角形的定性结果都变 成可定量计算的公式了.师 在证明了余弦定理之后,我们来进一步学习余弦定理的应用(给出幻灯片 1.1.2B通过幻灯片中余弦定理的两种表示形式我们可以得到 ,利用余弦定理,可以解决以下两类有 关三角形的问题(1)已知三边,求三个角这类问题由于三边确定,故三角也确定,解唯一,课本 P 例 4 属这类情况8(2)已知两边和它们的夹角,求第三边和其他两个角这类问题第三边确定,因而其他两个角唯一,故解唯一,不会产生类似利用正弦定理解三角形 所产生的判断取舍等问题接下来,我们通过例题来进一步体会一下 [例题剖析]【例 1】在△ABC 中,已知 B =60 c m ,C =34 c m ,A =41°,解三角形(角度精确到 1°,边长 精确到 1 c m )解:根据余弦定理,a 2 =b 2+c 2-2bcco s A =602+342 -2·60·34co s41°≈3 600+1 156-所以 A ≈41 c 由正弦定理得 sin C =csinA 34 sin41 34 0.656≈a 41 41因为 C 不是三角形中最大的边,所以 C 是锐角.利用计数器可得 C B =180°-A -C =180°-41°-【例 2】在△ABC 中,已知 a =134.6 c m ,b =87.8 c m ,c =161.7 c m ,解三角形BC解:由余弦定理的推论,得co s A =co s B =bc 22c 2 a 2 87.82 161.72 134.6 2bc 2 87.8 161.7a 2b 2 134.62 161.72 87.8 2ca 2 134.6 161.722≈0.554 3,A≈0.839 8,BC =180°-(A +B )=180°-[知识拓展 补充例题:【例 1】在△ABC 中,已知 a =7,b =10,c =6,求 A 、B 和 C .(精确到分析:此题属于已知三角形三边求角的问题,可以利用余弦定理,意在使学生熟悉余弦定理的 形式二解:∵cosA b2c 2 a 2 102 62 72 2bc 2 10 60.725∴A∵c os C =a2b 2c 2 72 102 62 113 2ab 2 7 10 140∴C∴B =180°-(A +C )=180°- [教师精讲(1)为保证求解结果符合三角形内角和定理 ,即三角形内角和为 180°,可用余弦定理求出 两角,第三角用三角形内角和定理求出(2)对于较复杂运算,可以利用计算器运算【例 2】在△ABC 中,已知 a =2.730,b =3.696,c =82°28′,解这个三角形(边长保留四个有效 数字,角度精确到分析:此题属于已知两边及其夹角解三角形的类型,可通过余弦定理形式一先求出第三边,在 第三边求出后其余角求解有两种思路 :一是利用余弦定理的形式二根据三边求其余角 ,二是 利用两边和一边对角利用正弦定理求解,但根据 1.1.1 斜三角形求解经验,若用正弦定理需 对两种结果进行判断取舍,而在 0°~180°之间,余弦有唯一解,故用余弦定理较好 解:由 c 2=a 2+b 2-2abco s C =2.7302+3.6962-2×2.730×3.696×co s82°28′, 得 c∵c os A =b2c 2 a 2 3.696 2 4.297 2 2.730 2bc 2 3.696 4.2972∴A∴B =180°-(A +C )=180°- [教师精讲通过例 2,我们可以体会在解斜三角形时,如果正弦定理与余弦定理都可选用,那么求边 用两个定理均可,求角则用余弦定理可免去判断取舍的麻烦【例 3】在△ABC 中,已知 A =8,B =7,B =60°,求 C 及 分析:根据已知条件可以先由正弦定理求出角 A ,再结合三角形内角和定理求出角 C ,再利用△SABC正弦定理求出边 C ,而三角形面积由公式 S = △ABC12ac sin B 可以求出若用余弦定理求 C ,表面上缺少 C ,但可利用余弦定理 b 2=c 2+a 2-2caco s B 建立关于 C 的方程,亦 能达到求 C 的目的 下面给出两种解法解法一:由正弦定理得8 7sinA sin60∴A =81.8°,A = 1 2∴C =38.2°,C1 27 c 由sin60 sin C,得 c =3,c 1 2= △∴S ABC 1 1 ac sinB 6 3 或 = 2 2ac sinB 10 3 2 解法二:由余弦定理得 b 2=c +a 2-2caco s B∴72=c +82-2×8×cco 整理得 c 2-8c解之,得 c =3,c =5. = 12 △∴S ABC[教师精讲]1 1 ac sinB 6 3 或 S =2 2ac sinB 10 3 2 在解法一的思路里,应注意由正弦定理应有两种结果,避免遗漏;而解法二更有耐人寻味 之处,体现出余弦定理作为公式而直接应用的另外用处,即可以用之建立方程,从而运用方程 的观点去解决,故解法二应引起学生的注意综合上述例题,要求学生总结余弦定理在求解三角形时的适用范围 ;已知三边求角或已 知两边及其夹角解三角形,同时注意余弦定理在求角时的优势以及利用余弦定理建立方程的 解法,即已知两边、一角解三角形可用余弦定理解之课堂练习1.在△ABC 中(1)已知 c =8,b =3,b =60°,求 A(2)已知 a =20,b B =29,c =21,求 B (3)已知 a =33,c =2,b =150°,求 B (4)已知 a =2,b =2,c =3+1,求 A解: (1)由 a 2=b 2+c 2-2bcco s A ,得 a 2=82+32-2×8×3co s60°=49.∴A(2)由cosBc2a 2b 2202 212 292 ,得 c osB2ca2 20 21.∴B(3)由 b 2=c 2+a 2-2caco s B ,得 b 2=(33)2+22-2×33×2co s150°=49.∴b(4)由cosAb2c 2 a 2 2bc ,得cosA( 2)2 ( 3 1)2 22 2 2( 3 1)2 2.∴A评述:此练习目的在于让学生熟悉余弦定理的基本形式 ,要求学生注意运算的准确性及解题 效率2.根据下列条件解三角形(角度精确到 (1)a =31,b =42,c (2)a =9,b =10,c△S ABC1 △ABC 1。
高中数学第一章解三角形教案新人教A版必修5
解三角形复习课(一)●教学目标知识与技能:能够运用正弦定理、余弦定理等知识和方法进一步解决有关三角形的问题。
过程与方法:采用启发与尝试的方法,让学生在温故知新中学会正确识图、画图、想图,帮助学生逐步构建知识框架,并通过练习、训练来巩固深化解三角形实际问题的一般方法。
教学形式要坚持引导——讨论——归纳,目的不在于让学生记住结论,更多的要养成良好的研究、探索习惯,让学生在具体的实践中结合图形灵活把握正弦定理和余弦定理的特点,有利地进一步突破难点。
情感态度与价值观:让学生进一步巩固所学的知识,加深对所学定理的理解,提高创新能力;进一步培养学生研究和发现能力,让学生在探究中体验愉悦的成功体验 ●教学重点1. 三角形的形状的确定(大边对大角,“两边和其中一边的对角”的讨论);2. 应用正、余弦定理进行边角关系的相互转化问题(内角和的灵活运用)。
●教学难点让学生转变观念,由记忆到理解,由解题公式的使用到结合图形去解题和校验。
●教学过程【复习导入】近年广东高考中,解三角形的题目已填空、选择为主,难度要求每年有所不同,结合大题16题出题也不鲜见;关键是借三角形对于我们结合图形分析做题,以及锻炼严谨慎密的逻辑思维大有裨益。
1. 正弦定理:R CcB b A a 2sin sin sin === (2R 可留待学生练习中补充) B ac A bcC ab S sin 21sin 21sin 21===∆.余弦定理 :A bc c b a cos 2222-+= B ac c a b cos 2222-+=C ab b a c cos 2222-+=求角公式:bc a c b A 2cos 222-+= acb c a B 2cos 222-+= ab c b a C 2cos 222-+=点评:文字语言有助于记忆, 符号语言方便应用。
2.思考:各公式所能求解的三角形题型?正弦定理: 已知两角和一边或两边和其中一边的对角球其他边角,或两边夹角求面积。
人教版高中必修5(B版)第一章解直角三角形教学设计
人教版高中必修5(B版)第一章解直角三角形教学设计一、教学目标1.了解直角三角形的概念及其特殊的三角函数关系;2.掌握正弦、余弦、正切函数的定义及其基本性质;3.应用所学的三角函数知识解决一些实际问题;4.培养学生探究问题,实践操作和分析解决问题的能力。
二、教学重点和难点教学重点:1.掌握直角三角形及其相关概念,掌握三角函数的定义、性质和计算方法;2.掌握正弦、余弦、正切函数的定义及其基本性质,并能有效解决相关问题。
教学难点:1.能够利用直角三角形及其三角函数关系解决实际问题;2.了解解三角形三边、三角形面积的相关公式,灵活运用求解。
三、教学内容和过程教学内容1.直角三角形概念及相关概念。
2.正弦函数、余弦函数、正切函数的定义及其基本性质。
3.应用三角函数知识解决实际问题,如计算高度、角度、距离等。
教学过程课前预习环节(5分钟)教师布置题目:小明在造房子时,发现房子旁有一条小溪,想知道自己房子与溪流之间的距离,但是溪流的宽度比较难以测量,请帮他计算一下。
导入环节(10分钟)板书“什么是直角三角形?”>简单介绍直角三角形的定义和特殊性质板书“什么是三角函数?”>简单介绍三角函数以及三角函数的基本性质讲授环节(20分钟)1.讲解正弦函数、余弦函数、正切函数的定义和性质2.利用实例辅助讲解如何求出直角三角形中的角度、高度、距离等练习环节(30分钟)1.给出多个直角三角形例题进行练习,例如:1.在一个直角三角形中,一角为45度,直角边长为4 cm,请计算斜边的长度。
2.在一个直角三角形中,斜边长为5 cm,一角为30度,请计算其它两条边的长度。
3.在一个直角三角形中,一角为60度,斜边长为1,请计算高度和底边长。
2.学生在配合教师纠正答案和思路错误的同时独立完成。
总结环节(5分钟)老师指导学生梳理本节课学习的知识点和重点,强化记忆。
四、教学评价1.学生能够熟练掌握直角三角形的概念及其特殊的三角函数关系;2.学生能够掌握正弦、余弦、正切函数的定义及其基本性质;3.学生能够灵活运用所学的三角函数知识解决一些实际问题。
高中数学第一章解三角形新教案人教A版必修5 教案
A BCj图1-2图1-1新课标理念下高中数学必修5第一章 解三角形教法学法的探究交流本章概述:本章是在学习三角函数、平面向量的基础上,通过对任意三角形边角关系的探究,发现并掌握三角形中的边长与角度之间的数量关系,并运用它们解决一些与测量和几何计算有关的实际问题。
本章的主要内容是两个重要定理,即正弦定理和余弦定理以及这两个定理在解斜三角形中的应用。
教材地位:本章是在学习了三角函数、平面向量等知识的基础上,进一步学习如何解三角形的。
正、余弦定理是我们学习有关三角形知识的继续和发展,它们进一步揭示了三角形边与角之间的关系,在生产、生活中有着广泛的应用,是我们求解三解形的重要工具。
本章内容与三角形定性研究的结论相联系,与三角函数相联系,同时也体现了向量及其运算的应用。
高考中常与三角函数和向量知识联系起来考查,是高考的一个热点内容。
课标要求:1、理解并掌握正弦定理和余弦定理,并能解决一些简单的三角形度量问题。
2、能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题。
学法指导:1、重视数学思想方法的运用。
解三角形作为几何度量问题,要突出几何背景,注意数形结合思想的运用,具体解题时,要注意函数与方程思想的运用。
2、加强新旧知识的联系。
本章知识与初中学习的三角形的边、角关系有着密切联系。
同时,要注意与三角函数、平面向量等知识的联系,将新知识融入已有的知识体系,从而提高综合运用知识的能力。
3、提高数学建模能力。
利用解三角形解决相关的实际问题,根据题意,找出量与量之间的关系,作出示意图,将实际问题抽象成解三角形模型。
学科实践:本章知识在现实生活中有着广泛的应用,如天文测量、航海测量、地理测量以及日常生活中的距离、高度、角度的测量等,解三角形的理论被用于解决许多测量问题。
因此,通过本章的学习,能提高学生解决关于测量和几何计算的实际问题的能力和数学建模能力。
知识点1 正弦定理1、正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即CcB b A a sin sin sin == 正弦定理给出了任意三角形中,三条边及其对应角的正弦值之间的对应关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题: §1.1.1正弦定理如图1.1-1,固定∆ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。
思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系?在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。
从而在直角三角形ABC 中,sin sin sin abcA B C ==思考:那么对于任意的三角形,以上关系式是否仍然成立?可分为锐角三角形和钝角三角形两种情况:如图1.1-3,当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin a b A B =, C 同理可得sin sin c b C B =, b a 从而sin sin a b A B=sin c C= A c B从上面的研探过程,可得以下定理正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即 sin sin abA B =sin cC =[理解定理](1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k 使sin a k A =,sin b k B =,sin c k C =;(2)sin sin ab A B =sinc C=等价于sin sin a b A B =,sin sin c b C B =,sin a A =sin c C从而知正弦定理的基本作用为: ①已知三角形的任意两角及其一边可以求其他边,如sin sin b A a B=; ②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如sin sin a A B b=。
一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形。
例1.在∆ABC 中,已知045A =,075B =,40a =cm ,解三角形。
例2.在∆ABC 中,已知20=a cm ,202b =cm ,045A =,解三角形。
练习:1.在∆ABC 中,已知045A =,030C =,10c =cm ,解三角形。
2.在∆ABC 中,已知060A =,045B =,20c =cm ,解三角形。
3.在∆ABC 中,已知20=a cm ,102b =,030B =,解三角形。
4.在∆ABC 中,已知102c =cm ,20b =cm ,045B =,解三角形。
补充:请试着推理出三角形面积公式(利用正弦)课题: §1.1.2余弦定理如图1.1-4,在∆ABC 中,设BC=a,AC=b,AB=c,已知a,b 和∠C ,求边c联系已经学过的知识和方法,可用什么途径来解决这个问题?用正弦定理试求,发现因A 、B 均未知,所以较难求边c 。
由于涉及边长问题,从而可以考虑用向量来研究这个问题。
A如图1.1-5,设CB a =u u r r ,CA b =u u r r ,AB c =u u r r ,那么c a b =-r r r ,则 b r c r()()222 2 2c c c a b a b a a b b a b a b a b =⋅=--=⋅+⋅-⋅=+-⋅r r r r r r r r r r r r r r r r r C a r B 从而 2222cos c a b ab C =+- (图1.1-5)同理可证 2222cos a b c bc A =+-2222cos b a c ac B =+-于是得到以下定理余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍。
即 2222cos a b c bc A =+-2222cos b a c ac B =+-2222cos c a b ab C =+-思考:这个式子中有几个量?从方程的角度看已知其中三个量,可以求出第四个量,能否由三边求出一角? 从余弦定理,又可得到以下推论:222cos 2+-=b c a A bc222cos 2+-=a c b B ac[理解定理]从而知余弦定理及其推论的基本作用为:①已知三角形的任意两边及它们的夹角就可以求出第三边;②已知三角形的三条边就可以求出其它角。
思考:勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的关系?若∆ABC 中,C=090,则cos 0=C ,这时222=+c a b由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例。
例1.在∆ABC 中,已知=a c 045B =,求b 及A练习:在∆ABC 中,若222a b c bc =++,求角A 。
例1.在∆ABC 中,已知,,a b A ,讨论三角形解的情况 分析:先由sin sin b A B a =可进一步求出B ; 则0180()C A B =-+ 从而sin a C c A= 1.当A 为钝角或直角时,必须a b >才能有且只有一解;否则无解。
2.当A 为锐角时,如果a ≥b ,那么只有一解;如果a b <,那么可以分下面三种情况来讨论:(1)若sin a b A >,则有两解;(2)若sin a b A =,则只有一解;(3)若sin a b A <,则无解。
(以上解答过程详见课本第9:10页)评述:注意在已知三角形的两边及其中一边的对角解三角形时,只有当A 为锐角且sin b A a b <<时,有两解;其它情况时则只有一解或无解。
练习:(1)在∆ABC 中,已知80a =,100b =,045A ∠=,试判断此三角形的解的情况。
(2)在∆ABC 中,若1a =,12c =,040C ∠=,则符合题意的b 的值有_____个。
(3)在∆ABC 中,a xcm =,2b cm =,045B ∠=,如果利用正弦定理解三角形有两解,求x 的取值范围。
例2.在∆ABC 中,已知7a =,5b =,3c =,判断∆ABC 的类型。
练习:(1)在∆ABC 中,已知sin :sin :sin 1:2:3A B C =,判断∆ABC 的类型。
(2)已知∆ABC 满足条件cos cos a A b B =,判断∆ABC 的类型。
例3.在∆ABC 中,060A =,1b =,面积为32,求sin sin sin a b c A B C ++++的值练习:(1)在∆ABC 中,若55a =,16b =,且此三角形的面积2203S = C(2)在∆ABC 中,其三边分别为a 、b 、c ,且三角形的面积2224a b c S +-=,求角C作业(1)在∆ABC 中,已知4b =,10c =,030B =,试判断此三角形的解的情况。
(2)设x 、x+1、x+2是钝角三角形的三边长,求实数x 的取值范围。
(3)在∆ABC 中,060A =,1a =,2b c +=,判断∆ABC 的形状。
(4)三角形的两边分别为3cm ,5cm,它们所夹的角的余弦为方程25760x x --=的根,求这个三角形的面积。
§2.2解三角形应用举例(2)例1、如图,设A 、B 两点在河的两岸,要测量两点之间的距离,测量者在A 的同侧,在所在的河岸边选定一点C ,测出AC 的距离是55m ,∠BAC=︒51,∠ACB=︒75。
求A 、B 两点的距离(精确到0.1m)变式练习:两灯塔A 、B 与海洋观察站C 的距离都等于a km,灯塔A 在观察站C 的北偏东30︒,灯塔B 在观察站C 南偏东60︒,则A 、B 之间的距离为多少?例3、AB 是底部B 不可到达的一个建筑物,A 为建筑物的最高点,设计一种测量建筑物高度AB 的方法。
例4、如图,在山顶铁塔上B 处测得地面上一点A 的俯角α=5404'︒,在塔底C 处测得A 处的俯角β=501'︒。
已知铁塔BC 部分的高为27.3 m,求出山高CD(精确到1 m)例3、在∆ABC 中,求证:(1);sin sin sin 222222CB A c b a +=+ (2)2a +2b +2c =2(bccosA+cacosB+abcosC )变式练习1:已知在∆ABC 中,∠B=30︒,b=6,c=63,求a 及∆ABC 的面积S变式练习2:判断满足下列条件的三角形形状,(1) acosA = bcosB(2) sinC =B A B A cos cos sin sin ++附加例题:例1.在ABC ∆中,已知45B ︒=,60C ︒=,1c =。
试求最长边的长度。
例2.在ABC ∆中,已知::2a b c =,试判断此角形的形状并求出最大角与最小角的和。
解三角形归纳提高一、知识点梳理:1、正弦定理:在△ABC 中,R Cc B b A a 2sin sin sin === 注:①R 表示△ABC 外接圆的半径 ②正弦定理可以变形成各种形式来使用2、余弦定理:在△ABC 中,A bc c b a cos 2222-+=B ac c a b cos 2222-+=C ab b a c cos 2222-+= 也可以写成第二种形式:bc a c b A 2cos 222-+=,ac b c a B 2cos 222-+=,abc b a C 2cos 222-+= 3、△ABC 的面积公式,B ac A bc C ab S sin 21sin 21sin 21===二、题组训练:1、在△ABC 中, a=12,A=060,要使三角形有两解,则对应b 的取值范围为2、判定下列三角形的形状在△ABC 中,已知38,4,3===c b a ,请判断△ABC 的形状。
在△ABC 中,已知C B A 222sin sin sin <+,请判断△ABC 的形状。
在△ABC 中,已知bc a A ==2,21cos ,请判断△ABC 的形状。
在△ABC 中,,sin sin 3)sin sin )(sin sin sin (sin C B A C B C B A =-+++请判断△ABC 的形状。
3、在△ABC 中,已知030,4,5===A b a ,求△ABC 的面积。
4、在△ABC 中,若△ABC 的面积为S ,且22)(2c b a S -+=,求tanC 的值。
5、在△ABC 中,已知87cos ,6,0222===--A a c bc b ,求△ABC 的面积。
6、在△ABC 中,已知,sin sin ,360C B ab ==△ABC 的面积为315,求边b 的长。
7、在△ABC 中,求证:2222112cos 2cos b a b B a A -=-2、在ABC △中,内角A B C ,,对边的边长分别是a b c ,,,已知2c =,3C π=.(Ⅰ)若ABC △,求a b ,;(Ⅱ)若sin sin()2sin 2C B A A +-=,求ABC △的面积.3、设ABC △的内角A B C ,,所对的边长分别为a b c ,,,且cos 3a B =,sin 4b A =. (Ⅰ)求边长a ;(Ⅱ)若ABC △的面积10S =,求ABC △的周长l .2、在ABC △中,5cos 13B =-,4cos 5C =.。