风电叶片灌注树脂固化性能研究

风电叶片灌注树脂固化性能研究
风电叶片灌注树脂固化性能研究

风电叶片灌注树脂固化性能的影响

刘魁1,杨孚标2,冯学斌1,雷志敏1,杜雷1,梁自禄1

(1.时代新材料科技股份有限公司,湖南株洲412007;2.

国防科学技术大学航天与材料工程学院,湖南长沙410073)

摘要:采用不同固化条件固化环氧浇铸体,对其进行玻璃化转变温度和静力学性能测试,研究不同固化条件对环氧固化物性能的影响。测试结果显示Tg存在最佳值。通过测试结果可知环氧树脂在40℃10h预固化后再经过70℃3h后固化测得的拉伸强度、弯曲强度和压缩强度分别较40℃10h固化提高了11.64%、14.72%和20.61%,可以达到更好的固化性能。通过研究环氧浇铸体拉伸和弯曲载荷-位移曲线,发现固化后的环氧树脂经过更高温度的后固化可以有效降低体系内的应力,获得更好更均匀的性能。

关键词:环氧树脂;固化工艺;力学性能;玻璃化转变温度

Study on the curing properties of wind blade epoxide resin LIU Kui1,YANG Fubiao2,FENG Xuebin1,LEI Zhimin1,DU Lei1,LIANG Zilu1

(1.Zhuzhou Times New Materials Science and T echnology Co,Ltd,Zhuzhou

412007,China;2.National Univ. of Defense Technology ,College of Aerospace and

Material Engineering , Changsha 410073,China)

Abstract: Cured the epoxide resin castings under different processes, tested the static mechanical properties and glass transition temperatures to study the influence on epoxide resin casting properties by different curing processes. The test results show that the best value of Tg is existing. The tensile strength, flexural strength and compressive strength of the epoxide resin casting under the process of 40℃10h pre-curing and 70℃3h post-curing are increased by 11.64%, 14.72% and 20.61% respectively comparing with the one under the curing process of 40℃10h. Obviously, the former one has better properties. It is found that the internal stress of epoxide resin casting can be effective

reduced by post-curing process of a higher temperature, and this process also bring us better and more homogeneous epoxide resin properties.

Keywords:epoxide resin, curing process, mechanical property, glass transition temperature

1 概述

随着风电叶片的快速发展,环氧树脂大量的应用于叶片的生产中,环氧树脂作为叶片成型的主要基体材料能提供良好的力学性能[1]。固化温度对固化物的性能具有重要影响[2],同一种树脂在不同固化条件下固化可能性能相差极大,因此需要寻求最佳固化制度[3]。固化不好的环氧树脂存在交联密度不均一、内应力大、质脆和抗冲击性差等缺点,在很大程度上限制了它在风电叶片上的应用。

固化反应属于化学反应,受固化温度影响很大,温度升高反应速度加快,但固化温度过高常使固化物性能下降,所以存在固化温度上限,必须选择合适的固化速度和固化物性能折中的温度作为合适的固化温度。按固化温度可以把固化剂分为四类:1)在室温下固化的固化剂;2)在室温至50℃固化的室温固化剂;3)在50℃-100℃的中温固化剂;4)在100℃以上的高温固化剂[4]。为了更好的保证环氧灌注树脂在叶片

作者简介:刘魁,男,硕士,高级工艺师,主要从事复合材料风力发电叶片的工艺研究

上的应用,通过对环氧树脂在进行室温固化、中温固化、室温预固化再中温后固化以及中温预固化再更高温度后固化等条件下的玻璃化转变温度和力学性能测试的数据,研究环氧树脂在不同固化条件下其性能的变化。

2 实验部分

2.1 材料与仪器

双酚A型低粘度环氧树脂(环氧值0.54-0.58)与多元胺为主体的固化剂,按照100:30的质量份配比。

万能拉力机:美特斯CMT5105

差示扫描量热议(DSC):瑞士梅特勒DSC821e

2.2实验方法

2.2.1树脂体系玻璃化转变温度(Tg)测试

环氧树脂和固化剂按照比例进行混配,按设定好的固化程序进行固化。采用梅特勒差示扫描量热仪对固化好的样品进行Tg分析。测试玻璃化转变温度以20℃/min进行升温,氮气流量为50ml/min。

2.2.2树脂浇铸体制备及性能测试

将环氧树脂和组装好的模具放置烘箱中40℃放置1h,对环氧树脂和固化剂按比例配好,搅拌均匀后放入真空脱泡箱内当真空度达到-0.1Mpa后脱泡15min,待脱泡完毕后缓慢放气,将胶液引流注入浇铸体模具中,然后再将浇铸体模具放入真空脱泡箱脱泡15min,将脱好泡的浇铸体放入烘箱中按设定的加热程序进行加热固化,固化方案如表1所示。制备好的试样,在万能拉力机上按国标GB/T2567-2008测试其拉伸、弯曲和压缩性能。

表1 固化实验方案设计

固化程序室温固化中温固化

中温后固化中温后固化实验温度设置40℃10h 70℃3h

40℃10h+ 70℃3h+

3 结果与讨论

3.1 不同固化工艺对Tg的影响

Tg是链段从冻结到运动的转变温度,而链段运动是通过主链的单键内旋转而实现的,高分子链段的柔顺性越好其Tg越低。另外分子链端浓度对Tg也有影响,链端比分子链的中间段受到的制约要小些,运动比链中段要容易,所以分子链段越小链端浓度就越高其Tg就越低[5]。

表2 不同固化制度下的Tg温度

固化条件40℃10h

70℃3h 70℃3h

80℃2h

玻璃化温度52.04℃79.38℃79.69℃69.46℃不同固化制度下的Tg温度如表2所示,40℃10h固化其分子主要以线性大分子存在,但大分子没有充分交联成网络结构且分子的分子量不高,使得链端浓度较高,所以玻璃化温度较低。再经过70℃3h后固化测得样品的Tg明显升高,说明在后固化中体系内自由体积膨胀,大分子和体系内的活性基团进一步反应,提高分子的交联度,这与直接在70℃3h下固化时的Tg值相差不多。说明40℃10h固化的样品在70℃3h后固化中固化较完全。但70℃3h固化后再经过80℃2h的后固化Tg值明显降低。说明环氧树脂固化工艺存在最佳固化条件,当固化温度和固化时间超过最佳条件,其固化物的玻璃化转变温度会出现降低。

3.2 不同固化条件对力学性能的影响

不同固化条件下环氧树脂浇铸体的拉伸、弯曲载荷-位移曲线如图1-8所示,从图中拉伸和弯曲的载荷-位移曲线观察在初步固化反应结束后样件测试的载荷-位移曲线分散性较大,再进行较高温度的后固化其载荷-位移有很好的重合度,可以断定后固化可以使样件达到较好的力学均一性。从拉伸载荷-位移曲线观察40℃10h样件直接断裂无屈服阶段,样条的断裂伸长率为6.58%,比其它几组条件数据值要低,说明此条件可能固化温度较低反应物只形成了分子量不高的大分子交联体,没有充分交联成网络结构。

图1 40℃10h拉伸载荷-位移曲线图2 40℃10h70℃3h拉伸载荷-位移曲线

图3 70℃3h拉伸载荷-位移曲线图4 70℃3h80℃2h拉伸载荷-位移曲线

图5 40℃10h弯曲载荷-位移曲线图6 40℃10h70℃3h弯曲载荷-位移曲线

图7 70℃3h弯曲载荷-位移曲线图8 70℃3h80℃2h弯曲载荷-位移曲线对环氧浇铸体进行静力学性能测试,通过测试拉伸、弯曲、压缩的强度和模量比较4种固化条件下环氧固化物性能的变化,如表3。

表3 不同固化制度测得力学性能

固化制度

40℃10h 40℃10h70℃3h 70℃3h 70℃3h80℃2h 力学性能

弹性模量(Mpa) 3148.92 3152.76 3060.06 2748.35

最大载荷伸长率% 6.58 7.83 7.26 7.20

弯曲强度(Mpa) 97.42 111.76 79.84 94.13

弯曲模量(Mpa) 3305.16 3151.17 3013.18 2866.83

压缩强度(Mpa) 73.16 88.24 83.31 81.46

弹性模量(Mpa) 2367.30 2418.10 2370.91 2085.80 力学性能测试结果见表3。表3中的数据是所测试数据的平均值,可以看出环氧固化体在40℃10h70℃3h的各项拉伸、弯曲和压缩的强度及模量综合数据是4组工艺条件下最优的。本固化剂是脂肪族胺和芳香胺的混合物且脂肪胺占有主要成分。在温度较低时固化,伯胺反应占有绝对优势且叔胺本身存在空间位阻效应使得反应体系难以充分形成体形交联。在40℃10h固化完后再进行70℃3h后固化测得拉伸强度升高至69.44Mpa,在高温后固化中大分子链进一步交联,使得分子链之间交联在一起,提高体系的交联密度。经过70℃3h后固化其抗拉强度、弯曲强度和压缩强度分别较40℃10h固化提高了11.64%、14.72%和20.61%。

本环氧固化剂是以多元胺为主体的固化剂,首先是伯胺的活泼氢与环氧反应本身生成仲胺,再进一步与环氧反应生成叔胺,最后形成交联的网络结构。伯胺基、仲胺基易发生反应[4],叔胺具有催化机能由于空间位阻现象使得在固化温度较低时反应中一般是伯胺基优先与环氧基进行反应,形成带有支链较少的大分子,而叔胺则较难参与反应。在70℃固化时,由于反应温度高,分子运动剧烈环氧基与伯胺基反应的优先程度降低,伯胺反应优先的情况下且高温下分子运动剧烈叔胺的空间位阻效应降低,链增长反应和分子间的交联反应同时进行,使得大分子迅速交联成体型网络结构。随着黏度上升体系迅速固化,分子之间作用力没有达到平衡状态,整个体系内应力较大,样件的力学分散性较大,且由于内应力的存在使得力学性能较40℃10h70℃3h测试的结果要低。由于高温反应体系反应剧烈,造成分子量均一性较差,所以70℃3h80℃2h的模量相对较低。40℃固化分子间反应较温和,体系内的分子量分布较均一,所以再经过70℃3h后固化使得体系充分交联,这样体系内的应力较低,且分子量也比较均一,所以样件在强度和模量上均可以达到较好的性能。

4 结论

1、本环氧树脂体系固化存在最佳固化条件,环氧Tg值不是随着固化温度的升高而升高,在经过70℃

复合材料风电叶片先进制造技术研究现状

复合材料风电叶片先进制造技术研究现状 摘要:在风电行业中,材料的选择对叶片的性能有重要的影响。随着科技水平 的进步,复合材料自出现就得到了认可,并在发展中快速推广,作为风电叶片复 合材料有自身优势。复合材料风电叶片也比常规材料风电叶片有更好的性能,因 此获得了广泛的应用。本文将围绕复合材料风电叶片的制造和发展进行分析,以 供参考。 关键词:复合材料;风电叶片;制造;发展 1.前言 当前,自动化技术在逐渐向制造业慢慢渗透,推进了制造业进入了自动化的 行业。为了抓住这个千载难逢的机会,我国的各个行业都在积极探索先进的自动 化技术,促进制造行业的快速转型,促进发展。 2.自动化智能化制造技术 2.1智能温控模具技术 模具是形成叶片的关键。现有的叶片模具加热方法通常是电加热或水加热。 电加热重量轻,温度迅速升高,并且可以轻松实现灵活的控制。它具有低成本的 水加热和稳定的温度控制能力。然而,这两种常规加热方法的缺点是不能实时反 映模具工作表面的温度。在叶片成型过程中,特别是在固化阶段,模具表面温度 的准确性直接影响叶片材料的最终性能。如果叶片的固化温度过低且固化程度不足,则产品性能将无法满足设计要求。如果温度太高,树脂的反应可能会恶化, 热量可能会集中,并且模具和产品可能会报废。因此,能够智能地控制和调节温 度的模具对于确保风力涡轮机叶片制造的可靠性至关重要。 2.2自动铺放技术 如今,复合风叶片的组件生产以劳动力手工作业为主,包括蒙皮,玻纤布、 腹板和大梁,沉重、复杂并且难以准确放置。有效地保证铺层的平坦度并不容易,并且最终叶片的质量和性能不稳定。由于叶片的尺寸较大且布局复杂,因此很难 将自动布局应用于叶片生产,因此,近年来,这项技术是划时代的并且已得到广 泛应用。 (1)主梁自动铺放及成型技术 主梁是叶片的主要承重组件,通常在铺设过程中不能有褶皱,并且需要很高 的放置精度,因此需要很长时间。通常,大叶片主梁层需要大约2个小时的铺设 时间。 (2)壳体自动铺放技术 当前,铺设玻纤布的主要方法是使用手工来铺设,但是耗时长,并且在铺设 过程中需要手动调节和铺设。由于用手拉动玻璃纤维布,因此会发生玻璃纤维布 的变形及其对产品质量的影响等问题。用于风力发电叶片的自动铺设装置主要包 括机械臂,放置头,光纤交叉输出,光纤交叉切割,压缩,光学位置检测,3D激光扫描仪。在此过程中,压辊在每个输出设备顶部和底部的反向移动以及织物上 的相对压力允许织物的运输。在机械臂的驱动下,铺层沿着导轨移动,从而完成 了在模具中铺布。 2.3自动打磨技术 目前,复合风轮机叶片的打磨主要是人工打磨,劳动强度大,污染环境,粉 尘对人体有害。当前,正在开发各种自动研磨技术和设备,其基本上使用机器人臂,自动引导车辆或导轨,智能控制系统,传感器等来根据预设程序来定位和定

酚醛树脂的固化性能(技术汇总)

酚醛树脂的固化性能(技术汇总) (一)定义 酚和醛在合成反应设备中,通过加成和适当缩聚反应所得到的树脂,通常都是分子量不高的低聚物和各种羟甲基酚的混合体系,虽然Novolaks及Resoles以如上节所述,结构上是有差异的,但从物性上它们均应为可溶及可熔。这样的可溶、可熔性使得它们便于浸渍填充增强材料制成各种类型的塑料用于生产形态及性能多种多样的塑料制品,也便于用作黏结剂、成模剂、功能性助剂等应用于耐火材料、铸造造型材料、摩擦材料、涂料、电子封 装材料等多种府用领域。 然而,酚醛树脂只有在形成交联网状(或称体型)结构之后才具有优良的使用性能,包括力学性能、电绝缘性能、化学稳定性、热稳定性等。 酚醛树脂的固化就是使其转变为网状结构的过程,表现出凝胶化和完全固化的两个阶段,这一转变不仅是物理过程,更要强调的是,这是一个化学过程。所以酚醛树脂的固化绝不是熔体冷却到熔点以下的一般意义上的固化,而是高分子化学概念上的由线(支)型分子交联(cure)成网状分子导致失去可溶、可熔性的固化。 酚醛树脂固化后,在获得优良物理性质的同时,又失去了可溶、可熔性,不再有可加工性。因而其固化过程必然应在以酚醛树脂(Novolaks或Resoles)为黏结剂组成的塑料、油漆涂料及各种各样工程材料的使用或成型过程中完成。 正由于酚醛树脂的固化过程本质上是一种化学反应过程,所以表现出以下一些特点: (1)树脂在固化前的结构因素(组成、分子量大小、反应官能度等)影响显著; (2)固化反应受催化剂、固化剂、树脂pH值等的影响显著;(3)固化过程有热效应;(4)固化速率受温度、压力的影响显著;(5)固化过程有副产物(如水、甲醛等)产生;(6)固化反应是不可逆过程。 (二)热塑性酚醛树脂固化 Novolak型树脂的结构,一般可表示为: n一般为4~12,其值大小与起始反应原料中苯酚过量多少及反应时间有关。工业生产的此类树脂视应用领域不同而控制掌握n的大小,也就是分子量的大小。例如当竹值平均为5时,其平均分子量(Mn)约在500左右。

风电叶片灌注树脂固化性能的影响

风电叶片灌注树脂固化性能的影响 刘魁1,杨孚标2,冯学斌1,雷志敏1,杜雷1,梁自禄1 (1.时代新材料科技股份有限公司,湖南株洲412007;2. 国防科学技术大学航天与材料工程学院,湖南长沙410073) 摘要:采用不同固化条件固化环氧浇铸体,对其进行玻璃化转变温度和静力学性能测试,研究不同固化条件对环氧固化物性能的影响。测试结果显示Tg存在最佳值。通过测试结果可知环氧树脂在40℃10h预固化后再经过70℃3h后固化测得的拉伸强度、弯曲强度和压缩强度分别较40℃10h固化提高了11.64%、14.72%和20.61%,可以达到更好的固化性能。通过研究环氧浇铸体拉伸和弯曲载荷-位移曲线,发现固化后的环氧树脂经过更高温度的后固化可以有效降低体系内的应力,获得更好更均匀的性能。 关键词:环氧树脂;固化工艺;力学性能;玻璃化转变温度 Study on the curing properties of wind blade epoxide resin LIU Kui1,YANG Fubiao2,FENG Xuebin1,LEI Zhimin1,DU Lei1,LIANG Zilu1 (1.Zhuzhou Times New Materials Science and Technology Co,Ltd,Zhuzhou 412007,China;2.National Univ. of Defense Technology ,College of Aerospace and Material Engineering , Changsha 410073,China) Abstract: Cured the epoxide resin castings under different processes, tested the static mechanical properties and glass transition temperatures to study the influence on epoxide resin casting properties by different curing processes. The test results show that the best value of Tg is existing. The tensile strength, flexural strength and compressive strength of the epoxide resin casting under the process of 40℃ 10h pre-curing and 70℃3h post-curing are increased by 11.64%, 14.72% and 20.61% respectively comparing with the one under the curing process of 40℃10h. Obviously, the former one has better properties. It is found that the internal stress of epoxide resin casting can be effective reduced by post-curing process of a higher temperature, and this process also bring us better and more homogeneous epoxide resin properties. Keywords:epoxide resin, curing process, mechanical property, glass transition temperature 1概述 随着风电叶片的快速发展,环氧树脂大量的应用于叶片的生产中,环氧树脂作为叶片成型的主要基体材料能提供良好的力学性能[1]。固化温度对固化物的性能具有重要影响[2],同一种树脂在不同固化条件下固化可能性能相差极大,因此需要寻求最佳固化制度[3]。固化不好的环氧树脂存在交联密度不均一、内应力大、质脆和抗冲击性差等缺点,在很大程度上限制了它在风电叶片上的应用。 固化反应属于化学反应,受固化温度影响很大,温度升高反应速度加快,但固化温度过高常使固化物性能下降,所以存在固化温度上限,必须选择合适的固化速度和固化物性能折中的温度作为合适的固化温度。按固化温度可以把固化剂分为四类:1)在室温下固化的固化剂;2)在室温至50℃固化的室温固化剂;3)在50℃-100℃的中温固化剂;4)在100℃以上的高温固化剂[4]。为了更好的保证环氧灌注树脂在叶片 作者简介:刘魁,男,硕士,高级工艺师,主要从事复合材料风力发电叶片的工艺研究

复合材料风电叶片的检查保护及维修

复合材料风电叶片的检查保护及维修 发表时间:2019-09-19T17:26:28.827Z 来源:《当代电力文化》2019年第8期作者:雷山山杨成玲[导读] 风电场的负责人需要意识到,复合材料的风电叶片需要由专业的人员定期的进行检查与维护。新疆伊犁库克苏河水电开发有限公司新疆伊宁835000摘要:复合材料风电叶片在使用的过程中直接面对风载荷的威胁,还需要长期的面对恶劣环境的干扰,风叶片的工作的发电功率与使用寿 命的长短有着很大的影响,风电场的负责人需要意识到,复合材料的风电叶片需要由专业的人员定期的进行检查与维护。这是保障复合材料风电叶片能够顺利工作的重要前提关键词:复合材料;风电;保护;叶片;维修风力发电目前是我国目前大力发展的一种发电方式,其独特的优点无污染、可持续科学的发电.各大国家不断地研究使用,风电叶片能够利用其叶片的转动将风能通过机械转化为电能,其中风电叶片是风力发电机在将风能转化为电能过程中,直接暴露在外部环境的重要机械,叶片的状态直接会影响到机械发电的转换效率。我国目前采用的复合材料所构成的风电叶片是由特殊的树脂型材料制作,复合材料本身具有中空性、纤维材料其独特的严密性也使得它制成叶片十分优质,但是也因为其特殊性,一般的技术人员难以对其进行维修与检查。 一、复合材料风电叶片存在检查维修的隐患 1.1、复合材料风电叶片的运输隐患 风电叶片从生产的场地出发将其制作成风力发电机的其中一部分机械,一般需要将其需要运输到相应的场地,一般有两种运输的方式,将叶片组装到发电机上再将其运输与将叶片装到运输车上再将其运输两种,在安装复合材料叶片至发电机组上时,操作稍有不当,就会导致材料造成损坏,另外在运输的过程中还会发生意外的损害,例如交通事故的发生。也会对叶片造成损害1.2、复合材料风电叶片所处环境隐患 通常来讲。复合材料风电叶片与发电机械所处的位置一般不同,发电机组通常在安装完成之后会将其安装在离叶片一定距离的位置,且具有金属材料外壳进行保护,叶片因为其工作的特殊性,需要常年的裸露在外部的恶劣环境,而且通常风电机组的安装位置大多在地理位置较为偏远的地方,长年的处于风力较大,甚至伴随雷雨的状态下,复合材料的风电叶片虽然具有较强的防腐蚀性,但是由于长年的裸露在恶劣环境下,会造成风电叶片出现破损,转动缓慢等问题的出现,炎热环境与冬天的寒冷环境都会影响叶片正常运行,导致发电效率的下降。 1.3、风电机组缺乏相应的维修保护制度 在风电机组的运行下,需要相应的技术人员定期的检查复合材料风电叶片的运行状况,然而我国目前的风电机组方面,在组建之后,一般专业的技术人员通常需要到下一个风电机组去进行组建,检查,通常会出现漏查,重复检查的状况的发生,在叶片发生故障之后,缺乏相应的应对措施,例如叶片在雷雨环境下因为雷电而导致叶片的损害,破损,则需要安排相应的工作人员在保证其他风电机组在正常运行的前提下将损坏的叶片其所在的机组关闭,如果存在雷电存留的状况,还需要对其进行引电,避免工作人员在维修时发生危险1.4、缺乏先进的维修技术 我国目前的维修叶片技术还存在着很大的缺陷,例如我们常用的引电技术保护复合材料风电叶片,即通过将雷电的路线改变,引导雷电将其引入大地。常用的做法是,在复合材料叶片的尖部区域设置若干个相关的接闪器,接闪器的作用是能够将雷电通过接闪器所连接的导线将雷电引致叶片的底部接地区域,将雷电传导到大地。但是这种方法会导致复合材料风电叶片的表面出现类型雷电击中的现象出现,使得叶片的表面出现凹痕,不规则的黑点、外表皮的脱落,还会出现不同程度的叶片开裂,在雨水的浸泡下,导致其运转的故障。 二、复合材料风电叶片的检查维修方法 2.1、运输环节的保护 我国目前的复合材料风电叶片的维修检查的方法主要采用观察、使用工具敲试、将涂层打开进行深入内部的观察和维修等,无论其中哪一种检查维修方法,都需要极为专业的检查维护团体与专业的技术人员。在运输与安装环节,为了避免出现损伤的叶片的行为,则使用专业的技术人员在运输途中通过对叶片的外表进行严谨观察,一旦出现明显的叶片外观损伤与叶片涂层的表面材料出现了刮蹭、损伤,都需要通知相关的叶片制造商与专业的的复合材料风电叶片的维修人员对其进行专业的检查与维修、并对相关的叶片进行拍照,保存资料,对怎样发生事故的原因进行研究,保存,便于以后类似的事故发生之后,进行处理。 2.2、采用先进的检查维修技术 我国传统的检查维修技术,一般在复合材料风电风叶进行检查之时,对其进行拆卸,检查内部,之后对其进行组装,工程量繁琐,极为麻烦,而因为复合材料的外表涂层层数较多、每次的拆卸检查都会对叶片造成损害,在考虑到成本和时间的基础上,采用先进的无损检测设备技术,超声波探测检查技术。超声波技术它适用于对复合材料其表面下几厘米厚度的区域进行探查,对其能够准确的找到所出现的问题,代替了我国传统的敲击检测方法,能够减少叶片表面的在因为检查维修之时出现的损伤。还有一种方法称之为错位散斑干涉技术,这种技术主要应用在航空检查与海洋机械之中,它能够在恶劣的环境下对复合材料风电叶片的错位,破损,漏电等情况进行准确定位,代替了传统的人工检查,保障了专业技术人员的人身安全2.3、制定严谨的检查维修制度 在复合材料风电叶片的日常检查维修之中,设立专门的检查制度,对叶片的外边涂层,接口,螺旋仪器,地面引电装置,叶片接电器等等位置进行相关的检查制度设定,;例如对接点器的检查,需要分为三部分:第一部是对其接口处的涂层进行检查,检查复合材料风电叶片与接电器的接口处其表面涂层是否出现脱落。第二部分则是对其接口处的导电性能进行检查,使用仪器对其导电性能进行检测,一旦发生导电的故障,尽快进行处理。第三部分则是对整体外部金属的检查,观察是否出现破损,出现后立即更换,保障叶片的正常运行三、结束语 伴随着我国对电力需求的增加,风力发电在因为其高效环保的特点在发电方面所占比重越来越大,本文就目前复合材料风电叶片的维修出现的隐患进行分析,提出了具体的建议参考文献:

环氧树脂的固化

实验五 环氧树脂的固化 化工系 毕啸天 2010011811 一、实验目的 1.了解高分子化学反应的基本原理及特点 2.了解环氧树脂的制备及固化反应的原理、特点 二、实验原理 热固性树脂是一类重要的树脂材料,环氧树脂(epoxy resins )就是其中的一大品种。含有环氧基团的低聚物,与固化剂反应形成三维网状的固化物,是这类树脂的总称,其中以双酚A 型环氧树脂产量最大,用途最广。它是由环氧氯丙烷与双酚A 在氢氧化钠作用下聚合而成。根据不同的原料配比,不同反应条件,可以制备不同软化点、不同分子量的环氧树脂。其通式如下: CH 2 CH CH 2 O C CH 3 CH 3 OCH 2CHCH 2 OH n C CH 3CH 3 OCH 2 CH CH 2 O 环氧树脂通常用下面几个参数表征: 1.树脂粘度 2.环氧当量或环氧值 3.平均分子量和分子量分布 4.熔点或软化点 环氧值是表征环氧树脂质量的重要指标。它表示每100g 环氧树脂中含环氧基的摩尔数。我国环氧树脂部颁牌号中的两位数字是该牌号树脂的平均环氧值×100,所以部颁牌号可以很简明的表示出该环氧树脂的主要特征。 环氧树脂的结构中末端的活泼的环氧基和侧羟基赋予树脂反应活性,双酚A 骨架提供强韧性和耐热性;亚甲基链赋予树脂柔韧性;羟基和醚键的高度极性,使环氧树脂分子与相邻界面产生了较强的分子间作用力。双酚A 型环氧树脂综合性能好,因而用途广泛,商业上称作“万能胶”。 环氧树脂在未固化前呈热塑性的线性结构,通过与固化剂发生化学反应,形成网状结构的大分子,才具有使用价值。环氧树脂固化物的性能除了取决于自身的结构特性以外,还取决于固化剂的种类。此外固化物性能还受固化反应程度的影响。采用的固化条件不同,交联密度也会不同,所得固化物的性能也各异。环氧树脂的固化剂种类很多,不同的固化剂,其交联反应也不同。 未固化的环氧树脂是粘性液体或脆性固体,没有实用价值,只有与固化剂进行固化生成交联网络结构才能实现最终用途。环氧树脂与固化剂的反应,除了一般的脂肪胺和部分脂环胺类固化剂可以在常温固化外,其它大部分脂环族胺和芳香胺类以及全部的酸酐类固化剂都需要在较高的温度下经过较长的时间才能发生固化交联反应。为了降低固化温度,使用促进剂是必要的,适用于胺类和酸酐类固化环氧树脂的促进剂可分为亲核型、亲电型和金属羧酸(或乙酰丙酮)盐三类。环氧树脂的固化反应是通过环氧基的开环反应完成的,末端基为环氧基的树脂可以和多种含活泼氢的化合物反应。活泼氢对环氧化合物的作用先是在环氧基的 氧原子上引起质子的亲电附加,生成H 3O +离子,此反应非常迅速,在此H 3O + 离子的作用下进行亲核进攻,使环氧基开环。含有活泼氢的化合物有醇、酚、羧酸、硫醇、酰胺、脲类和异氰酸酯等,上述反应并不需要消除小分子就能使链增长或交联,因此环氧树脂比其它类型

风力机叶片翼型的研究现状与趋势

风力机叶片翼型的研究现状与趋势 风能作为一种可再生能源,在煤、石油和天然气等非可再生能源日益耗竭以及全世界对可持续发展要求的情况下,正越来越来受到世界各国的关注。风电技术复杂,风力发电机组的叶片作为捕获风能最直接的部件,其价值占到整机价值的25%左右。叶片的直径、弦长、各截面翼型选择、纵向的扭角分布等都会影响到叶片的气动性能,进而影响风轮的功率输出。而叶片的结构、材料和工艺直接影响风机的强度、疲劳、震动、载荷及成本等。因此,设计良好的叶片,翼型应该具有较佳的空气动力学性能,良好的结构和制造工艺,这样风力发电机组才能稳定运行并具有高的功率输出[1-3]。目前,因为风力发电机组向着更高的额定功率发展,最大的叶轮直径已经达到125m,风电机组对叶片的气动性能、结构和工艺提出了更高的要求。 一、国外发展与研究状况 风机翼型的设计分析理论从根本上决定风机整体的功率特性和载荷特性。因为其重要性,翼型设计分析理论的研究一直是世界各国专家和学者的科研热情所在。风机翼型的发展来源于低速应用的翼型,如滑翔机翼型。早期的低速翼型运用在风机上有WortmannFX-77翼型和NASALS翼型。在20世纪80年代,因为美国国家可再生能源实验室(NREL)的Tangler和Somers发展了许多的NREL翼型,对促进风机翼型的发展做出了很大贡献。同时,他们也提出了翼型的反设计方法。对NREL系列翼型的相关阐述可以在NREL一系列报告中找到。后续的瑞典的Bj·rkA发展了FFA-W系列的翼型,荷兰代尔夫特理工大学的TimmerWA和vanRooij也对风机翼型的发展做出了贡献,发展了DU系列的翼型。20世纪90年代中期,丹麦Risφ风能重点实验室开始研制新的风机翼型,到目前为止已经发展出了Risφ-A1,Risφ-P和Risφ-B1三种翼型系列。 翼型研究包括两方面,翼型分析和翼型优化设计。翼型分析是研究翼型气动性能,是翼型优化设计的基础。翼型设计有两种方法,包括直接数值优化设计方法和反设计方法。直接数值优化设计方法将CFD跟最优化设计理论结合起来,以升力或者升阻比为目标函数,通过不断修正翼型的几何形状,获得目标函数所要求的气动性能最佳的翼型几何形状。反设计方法的目标函数主要是目标压力分布,首先要给定一个基础翼型,通过翼型几何和流体控制方程,不断逼近所需的目标压力分布,从而得到满足给定流场分布的翼型几何。Jacobs的翼型设计方法是最早的翼型反设计方法,用这种方法设计的NACA6系列的翼型至今都在用。德国的学者Mangler(1938)和英国学者Lighthill(1945)首先提出基于保角变换的翼型反设计方法,但是计算冗长。Mangler和Lighthill的方法而且有三个重要缺点:基于保角变化的翼型反设计方法只能指定需要的翼型表面速率分布作为翼型保角变换后圆角坐标的一个函数,而不是翼型表面弧长的一个函数;并且因为指定的速率分布有三个积分限,需要定义三个自由参数,会导致不合理的速率分布和不合理的翼型形状;理论本身是单点反向翼型设计方法(速率分布只能在单个攻角下获得),不满足多点反设计的需要。20世纪60年代后,随着计算机技术的发展,翼型反设计方法更多地强调通过计算机辅助翼型设计。美国NREL的Eppler和Somers编了一个

风电机组叶片防雷检查

关于叶片防雷及接地的避免措施和检查方法整理如下,希望有所帮助。 一、目前叶片雷击基本为:雷电释放巨大能量,使叶片结构温度急剧升高,分解叶片内部气体高温膨胀, 压力上升造成爆裂破坏(更有叶片内存在水分而产生高温气体,爆裂)。叶片防雷系统的主要目标是避免雷电直击叶片本体而导致叶片损害。经过统计:不管叶片是用木头或玻璃纤维制成,或是叶片包导电体,雷电导致损害的范围取决于叶片的形式。叶片全绝缘并不减少被雷击的危险,而且会增加损害的次数。多数情况下被雷击的区域在叶尖背面(或称吸力面)。根据以上叙述,叶片防雷设计一般在叶尖装有接闪器捕捉雷电,再通过敷设在叶片内腔连接到叶片根部的导引线使雷电导入大地,约束雷电,保护叶片。 二、按IEC61400-24标准的推荐值,叶片防雷击铜质电缆导线截面积最小为50平方毫米。如果为高发区, 可适当增加铜质电缆导线截面积。 三、我集团近期刚出的一个检查标准: 1、叶片吊装前,逐片检查叶片疏水孔通畅。 2、叶片吊装前,逐片检查叶片表面是否存在损伤。 3、叶片吊装前,应逐片检查叶片防雷引下线连接是否完好、防雷引下线截面是否损伤,检测叶片接闪器到叶片根部法兰之间的直流电阻,并做好检测记录。若叶片接闪器到叶片根部法兰之间的直流电阻值

高于20 mΩ,应仔细检查防雷引下线各连接点联接是否存在问题。 叶片接闪器到叶片根部法兰之间直流电阻测量采用直流微欧计、双臂电桥或直流电阻测试仪(仪器分辨率不低于 1 mΩ),采用四端子法测量,检查叶片叶尖及叶片上全部接闪点与叶片根部法兰之间直流电阻,每点应测三次取平均值。 4、机组吊装前后,应检查变桨轴承、主轴承、偏航轴承上的泄雷装置(碳刷、滑环、放电间隙 等)的完好性,并确认塔筒跨接线连接可靠。 表1 防雷检查及测试验收清单

风电叶片质检工序步骤

风电叶片质检工序步骤 质检员:做好工序检验,及时纠正工序差错,保证过程质量,减少返工、返修浪费;负责调查质量检验技术现状;参与质量分析、编制质量控制计划,设计质量控制卡,确定质量控制点;负责确认质量事故现象,参与调查质量事故,分析质量事故原因,编制质量事故报告;负责产品质量状态标识工作,严格控制不良品,确定质量问题、跟踪验证质量问题的解决情况 1、模具清理 叶片脱模后,用刀具清理模具上沾的真空膜以及残留的胶,或用吸胶毡擦拭模具上的粉层,擦拭干净后会用洁膜剂清理模具(通常只是边缘)。 2、脱模剂 模具清理好后,涂一层脱模剂,其固化需要等待一段时间方可铺层。脱模剂的作用在于在模具表面形成一个致密层,使得模具更加容易和叶片分离,达到脱模的效果。 3、部件 整只叶片一般可分为蒙皮、主梁、翻边角、叶跟、粘接角等各个部件,其中主梁、翻边角、叶跟、粘接角等用专用模具进行制作。等将各个部件制好后,在主模具上进行胶接组装在一起,合模后加压固化后制成一整只叶片。 4、主梁 主梁是在单独的模具上成型的,铺放主梁时需要工装对其进行精确定位,并保证经过打磨处理及表面清洁。主梁在切割车间转运到蒙皮车间后需要人工脱模,然后要剥离脱模后残余的一些附着物。最后用布擦拭表面。 5、腹板 PVC泡沫有较高的剪切模量,组成的结构有良好的刚度特性,主要增加截面刚度。上下两层纤维布,中间是泡沫板形成夹芯结构,铺放时需要保证各块PVC板材之间连接紧密。 6、玻璃纤维铺层制作 首先铺脱模布,然后是覆盖整个模具的大布,叶根区域铺设错层,主梁的错层与叶根错层镶嵌。主梁下面需要铺设连续毡,以便导流。主梁通过工装定位后,两旁的轻木和泡沫的位置就有了基准,芯材的位置正确之后,才能保证前缘的单向布铺设正确。此过程需要注意铺放位置正确,搭接尺寸足够。另外还需注意(抽真空时也要留意),叶根增强铺层有几十层,是最容易产生对结构强度影响比较大的褶皱的地方。 7、真空材料 纤维布铺设完成后,需要依次铺设脱模布、带孔隔离膜、导流网、导流管和螺旋管、溢流管、一层真空、吸胶毡、二层真空。脱模布和隔离膜主要起真空灌注工艺结束后更好地去除真空辅料的作用。导流网能更好地排除真空体系中残留的空气,并且能够使树脂均匀地渗透到所生产产品各部位,对灌注的效果和速度都有较大影响。在导流网上方布置有导流管,导流管通过进胶盘连通进胶管;在远离且低于导流管的位置有流管,流管连接抽气管,抽气管连接真空泵和压力表。在以上材料的上方盖至少一层真空袋。打两层真空袋是为了确保抽真空的效果。一层真空上方可放吸胶毡以加快抽真空。真空袋把整个产品密封起来,使得整个系统处于负压状态,以便达到真空灌注的工艺要求。 8、粘接角工装

环氧树脂的固化原理

环氧树脂的固化原理 环氧树脂硬化反应的原理,目前尚不完善,根据所用硬化剂的不同,一般认为它通过四种途径的反应而成为热固性产物. (1)环氧基之间开环连接; (2)环氧基与带有活性氢官能团的硬化剂反应而交联; (3)环氧基与硬化剂中芳香的或脂肪的羟基的反应而交联; (4)环氧基或羟基与硬化剂所带基团发生反应而交联. 不同种类的硬化剂,在硬化过程中其作用也不同.有的硬化剂在硬化过程中,不参加到本分子中去,仅起催化作用,如无机物.具有单反应基团的胺、醇、酚等,这种硬化剂,叫催化剂.多数硬化剂,在硬化过程中参与大分子之间的反应,构成硬化树脂的一部分,如含多反应基团的多元胺、多元醇、多元酸酐等化合物. 1、胺类硬化剂 胺类硬化剂—般使用比较普遍,其硬化速度快,而且黏度也低,使用方便,但产品耐热性不高,介电性能差,并且硬化剂本身的毒性较大,易升华.胺类硬化剂包括;脂肪族胺类、芳香族胺类和胺的衍生物等.胺本身可以看作是氮的烷基取代物,氨分子(NH3)中三个氢可逐步地被烷基取代,生成三种不同的胺.即:伯胺(RNH2)、仲胺(R2NH))和叔胺(R3N). 由于胺的种类不同,其硬化作用也不同: (1)伯胺和仲胺的作用 含有活泼氢原子的伯胺及仲胺与环氧树脂中的环氧基作用.使环氧基开环生成羟基,生成的羟基再与环氧基起醚化反应,最后生成网状或体型聚合物. (2)叔胺的作用与伯胺、仲胺不同,它只进行催化开环,环氧树脂的环氧基被叔胺开环变成阴离子,这个阴离子又能打开一个新的环氧基环,继续反应下去,最后生成网状或体型结构的大分子. 2、酸酐类硬化剂 酸酐是由羧酸(分子结构中含有羧基—COOH)与脱水剂一起加热时,两个羧基除去一个水分子而生成的化合物. 酸酐类硬化剂硬化反应速度较缓慢,硬化过程中放热少,使用寿命长,毒性较小,硬化后树脂的性能(如力学强度、耐磨性、耐热性及电性能等)均较好.但由于硬化后含有酯键,容易受碱的侵蚀并且有吸水性,另外除少数在室温下是液体外.绝大多数是易升华的固体,而且一般要加热固化. 酸酐和环氧树脂的硬化机理,至今尚未完全阐明,比较公认的说法如下: 酸酐先与环氧树脂中的羟基起反应而生成单酯,第二步由单酯中的羟基和环氧树脂的环氧基起开环反应而生成双酯,第三步再由其中的羟基对环氧基起开环作用,生成醚基,所以可得到既含醚键,又含有酯基的不溶不熔的体型结构. 除了上述反应之外,第一步生成的单酸中的羧基也可能与环氧树脂分子上的羟基起酯化反应,生成双酯.但这不是主要的反应. 3、树脂类硬化剂 含有硬化基团的一NH一,一CH2OH,一SH,一COOH,一OH等的线型合成树脂低聚物,也可作为环氧树脂的硬化剂.如低分子聚酰胺.酚醛树脂,苯胺甲醛树脂,三聚氰胺甲醛树脂,糠醛树脂,硫树脂,聚酯等.它们分别能对环氧树脂硬化物的耐热性,耐化学性,抗冲击性,介电性,耐水性起到改善作用.常用的是低分子聚酰胺和酚醛树脂. (1)低分子聚酰胺不同于尼龙型的聚酰胺.它是亚油酸二聚体或是桐油酸二聚体与脂肪族多元胺,如乙二胺、二乙烯三胺反应生成的一种琥珀色粘稠状树脂.由于原材料的性质,反应组分的配比和反应条件不同,低分子聚酰胺的性质差别很大.它们的分子量在500~9000之间,有熔

风电叶片的改进

风电叶片的改进 传统能源资源的大量使用带来了许多的环境问题和社会问题,并且其存储量大大降低,因而风能作为一种清洁的可循环再生的能源,越来越受到世界各国的广泛关注。风力发电机叶片是接受风能的最主要部件,其良好的设计、可靠的质量和优越的性能是保证发电机组正常稳定运行的决定因素,其成本约为整个机组成本的15%-20%。根据“风机功价比法则”,风力发电机的功率与叶片长度的平方成正比,增加长度可以提高单机容量,但同时会造成发电机的体积和质量的增加,使其造价大幅度增加。并且,随着叶片的增大,刚度也成为主要问题。为了实现风力的大功率发电,既要减轻叶片的重量,又要满足强度与刚度要求,这就对叶片材料提出了很高的要求。 1 碳纤维在风力发电机叶片中的应用 叶片材料的发展经历了木制、铝合金的应用,进入了纤维复合材料时代。纤维材料比重轻,疲劳强度和机械性能好,能够承载恶劣环境条件和随机负荷,目前最普遍采用的是玻璃纤维增强聚酯(环氧)树脂。但随着大功率发电机组的发展,叶片长度不断增加,为了防止叶尖在极端风载下碰到塔架,就要求叶片具有更高的刚度。国外专家认为,玻璃纤维复合材料的性能已经趋于极限,不能满足大型叶片的要求,因此有效的办法是采用性能更佳的碳纤维复合材料。 1)提高叶片刚度,减轻叶片质量 碳纤维的密度比玻璃纤维小约30%,强度大40%,尤其是模量高3~8倍。大型叶片采用碳纤维增强可充分发挥其高弹轻质的优点。荷兰戴尔弗理工大学研究表明,一个旋转直径为120m的风机的叶片,由于梁的质量超过叶片总质量的一半,梁结构采用碳纤维,和采用全玻璃纤维的相比,质量可减轻40%左右;碳纤维复合材料叶片刚度是玻璃纤维复合材料叶片的2倍。据分析,采用碳纤维/玻璃纤维混杂增强方案,叶片可减轻20%~30%。Vesta Wind System 公司的V90型3.0 MW发电机的叶片长44m,采用碳纤维代替玻璃纤维的构件,叶片质量与该公司V80 型2.0MW发电机且为39m长的叶片质量相同。同样是34 m长的叶片,采用玻璃纤维增强聚脂树脂时质量为5800kg,采用玻璃纤维增强环氧树脂时质量为5200kg,而采用碳纤维增强环氧树脂时质量只有3800kg。其他的研究也表明,添加碳纤维所制得的风机叶片质量比采用玻璃纤维的轻约32%,而且成本下降约16%。 2)提高叶片抗疲劳性能 风机总是处在条件恶劣的环境中,并且24h处于工作状态。这就使材料易于受到损害。相关研究表明,碳纤维合成材料具有良好的抗疲劳特性,当与树脂材料混合时,则成为了风力机适应恶劣气候条件的最佳材料之一。 3)使风机的输出功率更平滑更均衡,提高风能利用效率 使用碳纤维后,叶片质量的降低和刚度的增加改善了叶片的空气动力学性能,减少对塔和轮轴的负载,从而使风机的输出功率更平滑更均衡,提高能量效率。同时,碳纤维叶片更薄,外形设计更有效,叶片更细长,也提高了能量的输出效率。 4)可制造低风速叶片 碳纤维的应用可以减少负载和增加叶片长度,从而制造适合于低风速地区的大直径风叶,使风能成本下降。 5)可制造自适应叶片 叶片装在发电机的轮轴上,叶片的角度可调。目前主动型调节风机的设计风速为13~15m/s(29~33英里/h),当风速超过时,则调节风叶斜度来分散超过的风力,防止对风机的损害。斜度控制系统对逐步改变的风速是有效的。但对狂风的反应太慢了,自适应的各向异性叶片可帮助斜度控制系统,在突然的、瞬间的和局部的风速改变时保持电流的稳定。自适

风电机组的防雷和防雷标准[详]

风电机组的防雷和防雷标准 1 引言 在我国风电发展初期,风电场大部分集中在年平均雷电日较少的新疆和内蒙古等地区,采用的主要是450kW 级以下的风电机组,雷害问题并不突出。随着我国风电场建设速度不断加快、规模不断扩大以及风电机组的日益大型化,风电机组的雷害也日益显露。现阶段,我国风电场开发不断向高海拔和沿海地区拓展,大功率风电机组的塔架最高已经超过120m,是风电场中最高大的构筑物。在风电机组的20年寿命期内,难免会遭遇到雷电的直击。中国可再生能源学会风能专业委员会于2009 年9月在肇庆召开的叶片专业组年会,将叶片的防雷作为一个重要问题进行了研讨,说明风电机组防雷已经引起专家的高度重视。 国际电工委员会(IEC)第88 工作委员会(IEC TC 88)在编制风电机组系列标准IEC 61400 时,编制了一个技术报告(TR),作为IEC 61400 系列标准的第24 部分于2002 年6 月出版,其初衷是想为这个相对年经的工业提供防雷知识。该标准在几年的实践中证明,技术报告对防止和减少风电机组的雷害是有效的。但是随着大型风电机组的发展和风电场向外海的拓展,雷害问题比2002 年以前更加复杂和突出。因此,有必要制订一个风电机组防雷标准以供风电行业人员使用。将IEC 6 1400 由技术报告(TR)升级为技术标准(TS)便提上了议事日程。 2 风电机组的雷害 IEC 61400-24 2002 中,阐明了不同于其他建筑物的风电机组雷害问题,机组的结构特点、工作原理以及所处场地等因素使其容易遭受雷害。人们已经了解建筑物高度对雷击过程的影响。高度超过60m 的建筑物会发生侧击,即部分雷电击中建筑物侧面而不是建筑物顶部。风电机组塔架是高于60m 的构筑物,所以侧击概率比建筑物大很多,并造成严重损害。另外,从雷电机理可知,与

【CN109968689A】一种用于预埋型风电叶片叶根的灌注系统及灌注成型工艺【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910338747.0 (22)申请日 2019.04.25 (71)申请人 株洲时代新材料科技股份有限公司 地址 412000 湖南省株洲市天元区海天路 18号 (72)发明人 郭志强 侯彬彬 蒋华 崔志刚  王运河 黄怀勇 葛凯  (74)专利代理机构 长沙朕扬知识产权代理事务 所(普通合伙) 43213 代理人 钱朝辉 (51)Int.Cl. B29C 70/36(2006.01) B29C 70/54(2006.01) (54)发明名称 一种用于预埋型风电叶片叶根的灌注系统 及灌注成型工艺 (57)摘要 本发明公开了一种用于预埋型风电叶片叶 根的灌注系统,包括铺设于叶根壳体内表面玻纤 布上的一层或多层导流网,所述导流网表面设有 真空袋膜,所述导流网与真空袋膜之间设有相交 且垂直布置的展向注胶欧姆管和弦向注胶欧姆 管,所述展向注胶欧姆管和弦向注胶欧姆管相交 处设有注胶口。本发明还相应提供一种风电叶片 叶根的灌注成型工艺。本发明的灌注系统采用呈 T型布置的展向注胶欧姆管和弦向注胶欧姆管, 仅需2根注胶管和1个注胶口,树脂有展向流动和 弦向的流动配合,保证叶根灌透,灌注过程只需 开管一次易于操作控制,解决了多根注胶管开关 时机不易控制,而出现包流导致浸润不良的问 题, 同时也降低了多个注胶口灌注漏气风险。权利要求书1页 说明书4页 附图2页CN 109968689 A 2019.07.05 C N 109968689 A

权 利 要 求 书1/1页CN 109968689 A 1.一种用于预埋型风电叶片叶根的灌注系统,其特征在于,包括铺设于叶根壳体内表面玻纤布(1)上的一层或多层导流网(2),所述导流网(2)表面设有真空袋膜,所述导流网(2)与真空袋膜之间设有相交且垂直布置的展向注胶欧姆管(3)和弦向注胶欧姆管(4),所述展向注胶欧姆管(3)和弦向注胶欧姆管(4)相交处设有注胶口(5)。 2.根据权利要求1所述的灌注系统,其特征在于,所述导流网(2)包括慢速导流网(21)和快速导流网(22),所述导流网(2)为两层,由下至上依次为慢速导流网(21)和快速导流网(22)。 3.根据权利要求2所述的灌注系统,其特征在于,所述慢速导流网(21)为160±10g/m2的编织型慢速导流网,所述快速导流网(22)为200±10g/m2的挤压型快速导流网。 4.根据权利要求2所述的灌注系统,其特征在于,所述慢速导流网(21)的展向起点与叶根部法兰盘(10)之间的距离d1为100±20mm,展向终点与叶根部法兰盘(10)之间的距离d2为1100±20mm,弦向与叶根部前后缘分型线之间的距离d3分别为50±20mm。 5.根据权利要求2所述的灌注系统,其特征在于,所述快速导流网(22)的展向起点与叶根部法兰盘(10)之间的距离h1为150±20mm,展向终点与叶根部法兰盘(10)之间的距离h2为1050±20mm,弦向与叶根部前后缘分型线之间的距离h3分别为100±20mm。 6.根据权利要求1-5任一项所述的灌注系统,其特征在于,所述展向注胶欧姆管(3)的展向起点与叶根部法兰盘(10)之间的距离f1为200±20mm,展向终点与叶根部法兰盘(10)之间的距离f2为1050±20mm,弦向与大梁后缘边平齐。 7.根据权利要求1-5任一项所述的灌注系统,其特征在于,所述弦向注胶欧姆管(4)的展向起点与叶根部法兰盘(10)之间的距离k1为200±20mm,弦向与叶根部前后缘分型线之间的距离k3分别为150±20mm。 8.根据权利要求1-5任一项所述的灌注系统,其特征在于,所述内表面玻纤布(1)表面、导流网(2)底部还设有脱模布和带孔隔离膜,所述脱模布设于内表面玻纤布(1)表面,所述带孔隔离膜设于脱模布表面。 9.根据权利要求1-5中任一项所述的灌注系统,其特征在于,所述展向注胶欧姆管(3)和弦向注胶欧姆管(4)下铺放有防压痕板。 10.一种风电叶片叶根的灌注成型工艺,其特征在于,包括以下步骤: (1)在成型模具上依次铺设叶根壳体外表面玻纤布(6)、预埋螺栓套(7)、内表面玻纤布 (1),再在内表面玻纤布(1)表面依次铺设脱模布与带孔隔离膜; (2)在带孔隔离膜表面铺设导流网(2); (3)在导流网(2)上布设展向注胶欧姆管(3)和弦向注胶欧姆管(4),并在展向注胶欧姆管(3)和弦向注胶欧姆管(4)相交处设置注胶口(5); (4)覆盖真空袋膜,制作真空系统; (5)利用真空灌注法从注胶口(5)灌注,固化成型,脱模即得到风电叶片叶根。 2

大型风电叶片结构设计方法研究

大型风电叶片结构设计方法研究 摘要:随着绿色能源的推广与利用,对风电叶片结构设计也提出了更高的要求。作为风电机组的主要部件,叶片的设计方法一直是风电机组研发的关键。本文主要对大型风电叶片结构设计方法进行探析。 关键词:风电叶片;结构设计;方法 前言 近年来,我国的风电设备在技术水平与创新方面已有了突破性的成就,但与国外发达国家相比,仍存在很大差距,尤其在大型风电叶片结构设计方面。因此,如何完善设计方法将是未来提高风电机组核心技术的必然途径。 1.风电叶片设计的基本概述 1.1 风电叶片设计 风电叶片设计的过程实际是对叶片参数的选取与确定的过程,其中的参数对叶片的性能起决定性的作用。一般对风电叶片进行设计主要目标在于:第一,通过较好的空气动力外形获得风能。第二,结构的强度与刚度能够承受各种荷载。第三,其结构动力学特性较好,防止出现共振与颤振。第四,叶片重量的降低使制造成本减少。设计的过程主要分为对气动与结构的设计。其中气动设计过程中,主要对叶片几何外形做出最佳的选择,实现年发电量最大的目标,而结构设计主要对叶片材料的选择、叶片结构形式以及设计参数进行分析,使叶片的强度、刚度及稳定性等目标得以实现。 1.2 叶片外形设计的主要方法 风电叶片设计的主要任务是确定气动外形。叶片外形作为结构设计的基础,对结构设计也有一定的限制。一般对气动外形的设计的方法主要包括基于动量叶素理论的简化设计方法、Glauert方法、以及维尔森方法。基于动量叶素理论的简化设计方法通常用于对风轮轴线截面与叶片产生的气动力,并以此确定叶片参数与翼弦的关系。而Glauert方法主要对风轮后涡流流动进行考虑,初步的设计、分析与修正气动性能,存在一定的局限性,但在设计过程中属于较好的指导方法。维尔森方法则是对Glauert方法的改进,是当前叶片启动外形设计常用方法之一[1]。 1.3 结构设计 结构设计的基本要求在于动力学特性、设计寿命、极限强度设计条件以及刚度设计条件与叶尖变形。在叶片材料方面,通常选择铝合金、玻璃钢、碳纤维增强复合材料等。叶片的内部夹芯结构一般以轻木与PVC为主,而且主体结构中

风电叶片在线检测技术研究进展

南?京?工?业?职?业?技?术?学?院?学?报Journal?of?Nanjing?Institute?of?Industry?Technology 第18卷第2期2018年6月Vol.18,No.2Jun.,2018 风电叶片在线检测技术研究进展 吴国中,李?镇?,宋增禄 (南京工业职业技术学院?电气工程学院,江苏?南京?210023)? 摘?要:就风电设备运行过程中风机叶片的在线检测技术进行了讨论。叶片在线检测主要有两大类,分别是以应变、声发射等传感器检测为核心的侵入式检测和以图像检测为代表的非侵入检测,探讨了这两种检测模式中风电叶片损伤检测的实验手段以及损伤特征提取和识别的算法。关键词:风电;叶片;在线检测 中图分类号:TP273 文献标识码:A 文章编号:1671-4644(2018)02-0004-05 风电技术在展现出其独特优势的同时也存在一些问题。由于风力发电场通常位于较偏远的陆地、海岸或者海上,环境恶劣且无人值守,其运行状态的监测面临较大挑战。目前已有的在线监测、控制、调度技术为风电场的正常平稳运行提供了一定的保障,但是由于风电系统的复杂性、可靠性以及环境等各方面因素的影响,现有在线监控系统在风机状态信息检测的实时性、完备性、准确性等方面仍显不足,其中一个突出问题表现在风电叶片状态检测方面。 风电叶片是风力发电机的关键部件,叶片状态的检测以及寿命预测对提高风机工作效率、保障风机正常工作具有重要意义。本文将集中讨论风机叶片部分在线检测技术的研究进展。 1?侵入式检测技术 叶片在线检测主要分为两类,一类是侵入式的检测,即传感器网络需要内嵌在叶片中;另一类是非侵入式的检测,即采用光学或图像等方式实现非接触式的检测。 1.1?基于应变的检测 应变片在风电叶片在线检测中有较多应用。风电叶片在实际运行过程中会承受不同方向的载荷,导致叶片产生应变,应变的累积可能会导致叶片的宏观形变和开裂,因此在叶片的脆弱部位以及容易产生应力集中的部位,可以设置应变传感器以检测叶片的应变,从而可以直接反应叶片状态。 Jargensen?等人在2004年曾采用上百片应变传感器检测长达25米的叶片轴向应变。应变检测是一项比较成熟的技术[1] ,可以用于叶片的离线和在线测试,但是也有一些局限性。应变传感器容易失效,容易受到环境的影响甚至引起雷击,并且有的情况下不能准确反映叶片失效状况。 FBG传感器是针对传统应变传感器的不足,在风电叶片检测中引入的光纤传感器,以检测叶片的应变。较常用的是布拉格光纤光栅,其原理是利用纤芯内空间相位周期性分布的光栅形成一个窄带滤波器或反射镜,滤波器或反射镜中心频率会随外部应变而产生漂移,将频率漂移转换为应变可以准确、稳定、可靠地检测叶片的应变和疲劳状态。2007年郭等人最早利用FBG传感器网络检测叶片状态数据并应用无线技术上传[2] ,这种技术逐步发展并在一些大型风机上得到应用。FBG传感器稳定性对于叶片状态的长期检测是很有优势的,其不足在于成本高而且设备体积大,一定程度上限制了其在叶片在线检测中的应用。 1.2?基于声发射的检测 基于声发射检测叶片失效的研究已经比较广泛。声发射是材料中局域源快速释放能量产生瞬态弹性波的现象,叶片在外部载荷作用下产生形变,使结构内部形成应力,由于叶片应力集中而产生各种失效,如纤维断裂、微裂纹等,从而导致局域快速释放能量。用于声发射检测的传感器由压电传感器、放大器和数模转换器以及信号处理单 收稿日期:2018-04-23 基金项目:?江苏风力发电工程技术中心2016年度开放基金(编号:ZK16-03-05);江苏省品牌专业资助项目(编号:PPZY2015B189)作者简介:吴国中(1974-),男,南京工业职业技术学院副教授,工学硕士,研究方向:自动化控制及检测技术。

相关文档
最新文档