数学分析 第二章数列极限

数学分析 第二章数列极限
数学分析 第二章数列极限

数列极限的概念(经典课件)

第二章 数列极限 引言: 在第一章中我们已经指出,数学分析课程研究的对象是定义在实数集上的函数,那么数学分析用什么方法研究实数集上的函数呢?从本质上来说,这个方法就是极限。极限思想和方法贯穿于数学分析课程的始终,几乎所有的概念都离不开极限,是我们数学分析课程的基础。 §1 数列极限的概念 教学内容:数列极限的概念,应用定义证明简单数列的极限,无穷小数列。 教学要求:使学生逐步建立起数列极限的N ε-定义的清晰概念。深刻理解数列发散、单调、有界和无穷小 数列等有关概念。会应用数列极限的N ε-定义证明数列的有关命题,并能运用N ε-语言正确表述数列不以某实数为极限等相应陈述。 教学重点:数列极限的概念。 教学难点:数列极限的N ε-定义及其应用。 教学方法:讲授为主。 教学学时:2学时。 一、数列概念: 1.数列的定义: 简单的说,数列就是“一列数”,是有一定的规律,有一定次序性的“一列数”。 若函数f 的定义域为全体正整数集合N +,则称:f N R +→或+∈N n n f ),(为数列。 若记()n f n a =,则数列n n n f ,2,1),(=就可写作为:12,,,, n a a a ,简记为{}n a ,其中n a 称为 该数列的通项。 2.数列的例子: (1)(1)111:1,,,, 234n n ??---???? ; (2)11111:2,1,1,1,435 n ? ?+ +++???? (3){}2 :1,4,9,16,25, n ; (4){}1 1(1) :2,0,2,0,2, n ++- 二、数列极限的概念: 1.引言: 对于这个问题,先看一个例子:古代哲学家庄周所著的《庄子. 天下篇》引用过一句话:“一尺之棰,日取其半,万世不竭”。把每天截下的部分的长度列出如下(单位为尺): 第1天截下 12,第2天截下2111222?=,第3天截下23111222?=,…,第n 天截下1111 222 n n -?=,… 得到一个数列:? ?? ?? ?n 21: 231111 ,,,,,2222n 不难看出,数列12n ?? ? ??? 的通项12n 随着n 的无限增大而无限地接近于零。 一般地说,对于数列{}n a ,若当n 无限增大时,n a 能无限地接近某一个常数a ,则称此数列为收敛数列,常数a 称为它的极限。不具有这种特性的数列就不是收敛的数列,或称为发散数列。

数学分析习作-数列极限与函数极限的异同

云南大学 数学分析习作课(1)读书报告 题目:数列极限与函数极限的异同 (定义,存在条件,性质,运算四方面的对比)学院:物理科学技术学院 专业:数理基础科学 姓名、学号: 任课教师: 时间: 2009-12-26 摘要 极限是数学中极其重要的概念之一,极限的思想是人们认知数学世界解决数学问题的 重要武器,是高等数学这个庞大的数学体系得以建立的基础和基石; 极限在数学中处于基础的地位,它是解决微积分等一系列重要数学问题的前提和基 础; 极限是一种思维,在学习高数时最好理解透彻了,在线代中没什么用.但是概率中用 的比较多,另外物理中许多都用到了极限的思维,它也能帮助更好的理解一些物理知 识;

在高等数学中,极限是一个重要的概念,极限可分为数列极限与函数极限,下面是关于两种极限的简要联系与说明。 关键词:数列极限与函数极限的定义,存在条件,性质,运算 一数列极限与函数极限的定义 1、数列与函数: a、数列的定义:数列是指按自然数编了号的一串数:x1,x2,x3,…,x n,…. 通常记作{x n},也可将其看作定义在自然数集N上的函数x n=N (, ), n n f∈故也称之为整标函数。 b、函数的定义:如果对某个范围X内的每一个实数x,可以按照确定的规律f, 得到Y内唯一一个实数y和这个x对应,我们就称f是X上的函数,它在x的数值(称为函数值)是y,记为) f y=。 (x (x f,即) 称x是自变量,y是因变量,又称X是函数的定义域,当x遍取X内的所有实数时,在f的作用下有意义,并且相应的函数值) f的全体所组成的范围叫作 (x

函数f 的值域,要注意的是:值域不一定就是Y ,它当然不会比Y 大,但它可能比Y 小。 2、 (一) 数列极限的定义: 对数列}{x n ,若存在常数A ,对N n N >?∈?>?,N ,0ε,有 ε<-A x n ,则称 数列收敛且收敛于A ,并称数列}{x n 的极限为A ,记为x n n lim ∞ →=A. 例1.试用定义验证:01 lim =∞→n n . 证明:分析过程,欲使,1 01ε<=-n n 只需ε 1 >n 即可,故 εεε<->?+?? ? ???=?>?01:,11,0n N n N . 例2.试用定义验证:).11(lim <<-=∞ →q n 证明:分析过程.欲使[]ε <=-n n q q 0, 只需q n lg lg ε > (注意0lg ??? ????????????????=?n q N n q N 对于比较复杂的表达式n n A x α=-,一般地,我们通过运算,适当放大,将n α变形简化到n β,既使得对于0>?ε由不等式εβ时,恒成立不等式εβn n n n n n n n n n n 1 95) 423(310 531423222 222. 故,

2.1数列极限答案(1)

高等数学II 练习题 第二章 极限与连续 ________系_______专业 班级 姓名______ ____学号_______ 习题2.1 数列极限 一.选择题 1.下列数列}{n x 中收敛的是 ( B ) (A )n n x n n 1)1(+-= (B )1n 1(1)n x n +=- (C )(1)2n n x -= (D )1(1)10 n n n x =-+ 2.下列数列}{n x 中收敛的是 ( C ) (A )11n n n x n =-+() (B) 11,11,n n n x n n ?+??=??-??为奇数为偶数 (C )1,1,1n n n x n n ???=???+?为奇数为偶数 (D) 12,212,2n n n n n n x n ?+??=?-???为奇数为偶数 3.数列11111 1 0,,,,,,,234567---的极限为 ( A ) (A )0 (B )不存在 (C )1 (D )难以确定 4.若数列{}n x 有极限a ,则在a 的(0)εε>邻域之外,数列中的点 ( D ) (A )有无穷多个 (B )可以有有限个,也可以有无穷多个 (C )必不存在 (D )至多有有限个 二.填空题 1.数列1111 0,,0,,0,,0,,2 468 L 的通项n a =______________及lim n n a →∞= 。 2.若数列2,1-1,2n n n n a n n n ???-=????为奇数为偶数,则该数列的极限是 。 3.若lim 2n n a →∞=,则21lim 2n n a +→∞= ;若lim n n a A →∞=,则lim ||n n a →∞= 。 4.2 2324lim 261n n n n n →∞+-=-+ 。 三.将给定数列与其相应的特性用线连接起来. (1) 111111:1,1,1,1,1,1,1,223344 n x -+-+-+L (a )有界 1(1)2n n +-0不存在1||A 32

数学分析 数列极限

第二章 数列极限 §1 数列极限概念 教学目的与要求: 使同学们理解数列极限存在的定义,数列发散的定义,某一实数不是数列极限的定义;掌握用数列极限定义证明数列收敛发散的方法。 教学重点,难点: 数列极限存在和数列发散定义的理解;切实掌握数列收敛发散的定义,利用数列收敛或发散的定义证明数列的收敛或发散性。 教学内容: 一、课题引入 1°预备知识:数列的定义、记法、通项、项数等有关概念。 2°实例:战国时代哲学家庄周著《庄子·天下篇》引用一句话“一尺之棰, 日取其半,万古不竭。”将其“数学化”即得,每天截后剩余部分长度为(单位尺) 21,221,32 1,……,n 21 ,…… 或简记作数列:? ?????n 21 分析:1°、? ?? ???n 21随n 增大而减小,且无限接近于常数0; 2 二、数列极限定义 1°将上述实例一般化可得: 对数列{}n a ,若存在某常数a ,当n 无限增大时,n 能无限接近常数a 该数为收敛数列,a 为它的极限。 例如:? ?? ???n 1, a=0; ??? ? ??-+n n )1(3, a=3; {}2 n , a 不存在,数列不收敛;

{}n )1(-, a 不存在,数列不收敛; 2°将“n 无限增大时”,数学“符号化”为:“存在N ,当n >N 时” 将“a n 无限接近a ”例如对??? ? ??-+n n )1(()3以3为极限,对ε =10 1 3)1(3--+ =-n a a n n =10 11 n 只需取N=10,即可 3°“抽象化”得“数列极限”的定义 定义:设{}n a 是一个数列,a 是一个确定的常数,若对任给的正数ε,总存在 某一自然数N ,使得当n >N 时,都有 a a n -<ε 则称数列{}n a 收敛于a ,a 为它的极限。记作 a a n n =∞ →lim {(或a n →a,(n →∞)) 说明 (1)若数列{}n a 没有极限,则称该数列为发散数列。 (2)数列极限定义的“符号化”记法:a a n n =∞ →lim ? ε ?>0,?N ,当n (3)上述定义中ε的双重性:ε>0是任意..的,由“任意性”可知,不等式a a n -<ε,可用a n -替 “<”号也可用“≤”号来代替(为什么?)(4)上述定义中N 的双重性:N 是仅依赖..于ε的自然数,有时记作N=N (ε)(这并非说明N 是ε的函数,是即:N 是对应确定....的!但N 又不是唯一.... 的,只要存在一个N ,就会存在无穷多

数学分析(1)第二章 数列极限复习自测题

数学分析(1)第二章 数列极限复习自测题 一、仔细体会并熟练掌握lim n n a A →∞ =的N ε-定义(注意体会并正确理解ε和N 在定义中 的作用和含义,掌握用定义验证数列极限的基本思想【对任意给定的正数ε,寻找在n →∞的过程中,使得n a a ε-<实现的标准N 】和实现基本思想的具体实施方法【对任意给定的正数ε,求解关于n 的不等式“n a a ε-<”,得出“n >某常数”的这种形式的解】),并用此定义证明下列极限: (1)21(1)lim 0n n n n →∞+-=,0n →∞=; (2)2233lim 212 n n n n →∞+=-; (3)1n =; (4)1n =; (5)若0n a ≥,lim n n a a →∞ =,则对于任意给定的正整数k ,lim n = 称为极限 的开方法则)。 二、正确理解并掌握lim n n a A →∞ =和lim n n a A →∞ ≠的几何意义,并用此几何意义解决下面的问题: (1)若221lim lim n n n n a a A +→∞ →∞ ==,则lim n n a A →∞ =; (2)若lim n n a A →∞ =,则lim n k n a A +→∞ =,k 为固定的正整数; (3)数列{}n a 收敛(也称lim n n a →∞ 存在)是指:存在数A ,使得lim n n a A →∞ =;数列{} n a 发散(也称lim n n a →∞ 不存在)是指:对任意的数A ,lim n n a A →∞ ≠。 证明:对任意的数A ,lim(1)n n A →∞ -≠,即{} (1)n -发散。 (4)试写出lim n n a A →∞ =的对偶命题(称为lim n n a A →∞ =的否定形式),即lim n n a A →∞ ≠的精 确的不等式表示。 三、仔细体会并熟练掌握数列极限的常用性质【极限的惟一性,有界性,保号性,保不等式性,运算性(包括四则运算性,迫敛性或夹逼性),子列性】以及常用性质的证明方法(注意体会定义在讨论数列极限问题中的作用),并用这些性质解决下面的问题: 1、用四则运算性计算下列极限(注意体会四则运算法则使用的前提条件):

数学分析-数列极限

第二章 数列极限 §1 数列极限概念 教学目的与要求: 使同学们理解数列极限存在的定义,数列发散的定义,某一实数不是数列极限的定义;掌握用数列极限定义证明数列收敛发散的方法。 教学重点,难点: 数列极限存在和数列发散定义的理解;切实掌握数列收敛发散的定义,利用数列收敛或发散的定义证明数列的收敛或发散性。 教学内容: 一、课题引入 1°预备知识:数列的定义、记法、通项、项数等有关概念。 2°实例:战国时代哲学家庄周著《庄子·天下篇》引用一句话“一尺之棰, 日取其半,万古不竭。”将其“数学化”即得,每天截后剩余部分长度为(单位尺) 21,221,321,……,n 21 ,…… 或简记作数列:? ?????n 21 分析:1°、? ?? ???n 21随n 增大而减小,且无限接近于常数0; 2 二、数列极限定义 1°将上述实例一般化可得:

对数列{}n a ,若存在某常数a ,当n 无限增大时,a n 能无限接近常数a ,则称 该数为收敛数列,a 为它的极限。 例如:? ?? ???n 1, a=0; ??? ? ??-+n n )1(3, a=3; {}2 n , a 不存在,数列不收敛; {}n )1(-, a 不存在,数列不收敛; 2°将“n 无限增大时”,数学“符号化”为:“存在N ,当n >N 时” 将“a n 无限接近a ”例如对? ?? ? ??-+n n )1(()3以3为极限,对ε= 10 1 3)1(3--+ =-n a a n n =10 11π n 只需取N=10,即可 3°“抽象化”得“数列极限”的定义 定义:设{}n a 是一个数列,a 是一个确定的常数,若对任给的正数ε,总存在 某一自然数N ,使得当n >N 时,都有 a a n -<ε 则称数列{}n a 收敛于a ,a 为它的极限。记作 a a n n =∞ →lim {(或a n →a,(n →∞)) 说明 (1)若数列{}n a 没有极限,则称该数列为发散数列。 (2)数列极限定义的“符号化”记法:a a n n =∞ →lim ? ε ?>0,?N ,当n (3)上述定义中ε的双重性:ε>0是任意..

《数学分析》第二章 数列极限word资料14页

第二章 数列极限 (计划课时:1 2 时)P23—41 §1 数列极限的定义 ( 4时 ) 一、数列: 1.数列定义 —— 整标函数.数列给出方法: 通项, 递推公式.数 列的几何意义. 2.特殊数列: 常驻列,有界列,单调列和往后单调列. 二、数列极限: 以 n a n n ) 1 (1-+=为例. 定义 (a a n n =∞ →lim 的 “N -ε”定义) 三、用定义验证数列极限: 思路与方法. 例1 .01 lim =∞→n n 证明格式:0>?ε(不妨设 <<ε0□)(不妨设>n □) 要使-a a n ε, 只须>n □. 于是0>?ε,=?N □,当N n >时,有 ε< □ - □. 根据数列极限的“N -ε”定义知∞ →n lim □ = □. 例2 .1 ,0lim <=∞ →q q n n

例3 .32 142332lim 2 2=+-+-∞→n n n n n 例4 .04 lim 2 =∞→n n n 证 >++?--+?-+ ?+=+=n n n n n n n n n 33! 3)2)(1(3!2)1(31)31(43 2Λ .3 ,3! 3)2)(1(3 ≥?-->n n n n 注意到对任何正整数k n k 2 ,>时有 ,2 n k n >- 就有 )2)(1(276)2)(1(27640422><--=--<?ε 取 }. 1 , 4 max {?? ? ???=εN .ΛΛ 例5 .1 ,1lim >=∞ →a a n n 证法一 令 ,1n n a α=- 有 .0>n α 用Bernoulli 不等式,有 ),1(11)1(1 -+=+≥+=n n n n a n n a αα 或 Λ .1101n a n a a n <-≤-< 证法二 (用均值不等式) { n n n a a 个 11110-?=-<ΛΛ .1111n a n a n n a <-=--+≤- 例6 .1lim =∞ →n n n 证 2≥n 时,.2 2212211 102n n n n n n n n n n n n <-=--+≤-=-<- Ex [1]P34 1; 2.

第二章极限与数列

第二章 极限与连续 一、选择题 1、在数列极限“εN -”定义中ε是( ) (A )很小的正数 (B )任意的数 (C )任意给定的正数 (D )以上都不对 答案:(C ) (半分钟) 2、在数列极限“εN -”定义中N 是( ) (A )实数 (B )整数 (C )正整数 (D )以上都不对 答案:(C ) (半分钟) 3、若数列{x n }有极限a ,则在a 的ε邻域之外,数列中的点( ) (A )必不存在 (B )至多只有有限多个 (C )必定有无穷多个 (D )可以有有限个,也可以有无限多个 答案:B (半分钟) 4、若数列{x n }在(a-ε,a+ε)邻域内有无穷多个数列的点,则( ) (A ) 数列{x n }必有极限,但不一定等于a (B ) 数列{x n }极限存在且一定等于a (C ) 数列{x n }的极限不一定存在 (D ) 数列{x n }一定不存在极限 答案:C (半分钟) 5、数列0,31,)是(, (6) 4 ,53,42 (A)以0为极限 (B )以1为极限 (C)以 n n 2 -为极限 (D)不存在极限 答案:B (半分钟) 6、)().......21(lim 222=++∞ →n n n n n (A )00....00lim ....2lim 1lim 2 22=++=++∞→?→∞→n n n n n n n (B)∞=+++∞→2 ......321lim n n n (C)2 1 2)1(lim 2=+∞→n n n (D)极限不存在 答案:C (1分钟) 7、数列{}n a 和{}n b 的极限分别为a 和b ,且b a ≠,则数列,,...,,...,,,22111n n b a b a b a …的极限是( ) (A )a (B )b (C )b a + (D )一定不存在

巧用定积分求极限(数学分析)

定积分在求极限中的应用 1、知识准备 1.1绪论 微积分学在大学的数学学习中占有相当重要的地位.然而,求极限又是微积分学中常常要面临的问题.因此,积累更多求极限的方法应是每位大学生必备的素养. 求极限的方法层出不穷,最常用的方法有极限的定义和性质,重要极限的结论,洛必达法则以及泰勒公式等.应用极限的定义时,往往是在极限的结果已经比较明显,只需要根据极限的定义把相关式子进行放缩便可得到相应的结果.但是,这种方法一方面叙述上比较麻烦,另一方面也只适用于看上去容易放缩的式子.重要极限的结论形式上要求非常严格, 也只能解决两种形式的极限问题.洛必达法则是用于解决“00”型的极限和“∞ ∞ ”型极限的. 泰勒公式适宜于解决求分式极限中分子或分母有加减运算的问题,通过泰勒展式后可以达到某些项抵消效果.但若仔细观察这些方法,其特点不是表达较繁琐就是仅仅应用到微分学知识.事实上,微分学和积分学的关系正如中小学时代学习过的加法与减法,乘法与除法,乘方与开方以及幂运算与取对数运算的关系一样,他们互为逆运算.倘若也能用到积分学知识来解决求极限的问题,那么求极限的方法才算完美.而利用定积分求极限正体现了这一理念. 1.2定积分的概念 下面首先让我们回顾一下定积分以及极限的定义: 定积分:设函数()f x 在闭区间[],a b 上有定义,在闭区间[],a b 内任意插入 n-1个分点将 [],a b 分成 n 个区间[,]x i i x x -,记(1,2,,i i i x x x i n ?=-=),1[,]i i x x ξ-?∈,作乘积()i i f x ξ?(称 为积分元),把这些乘积相加得到和式 1 ()n i i i f x ξ=?∑(称为积分形式)设 {}max :1i x i n λ=?≤≤,若0 1 lim ()n i i i f x λξ→=?∑极限存在唯一且该极限值与区是[],a b 的分法 及分点i ξ的取法无关,则称这个唯一的极限值为函数()f x 在[],a b 上的定积分,记作 b a ()f x dx ?,即0 1 ()lim ()n b a i i i f x dx f x λξ→=?=?∑.否则称()f x 在[],a b 上不可积. 注1:由牛顿莱布尼兹公式知,计算定积分与原函数有关,故这里借助了不定积分的符号. 注2:若()b a f x dx ?存在,区间[],a b 进行特殊分割,分点i ξ进行特殊的取法得到的和式极限存在且与定积分的值相等,但反之不成立,这种思想在考题中经常出现,请读者要真正理

高等数学 第二章 极限与连续

第二章 极限与连续 教学要求 1.理解数列极限和函数极限(包括左、右极限)的概念,理解数列极限与函数极限的区别与联系。 2.熟练掌握极限的四则运算法则,熟练掌握两个重要极限及其应用。 3.理解无穷小与无穷大的概念,掌握无穷小比较方法以及利用无穷小等价求极限的方法。 4.理解函数连续性(包括左、右连续)与函数间断的概念,了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有界性定理、最大值与最小值定理和介值定理),并能灵活运用连续函数的性质。 教学重点 极限概念,极限四则运算法则;函数的连续性。 教学难点 极限定义,两个重要极限;连续与间断的判断。 教学内容 第一节 数列的极限 一、数列 1.数列的概念; 2.有界数列; 3.单调数列; 4.子列。 二、数列的极限 三、数列极限的性质与运算 1.数列极限的性质; 2.数列极限的运算法则。 第二节 函数的极限 一、函数极限的概念 1.自变量趋于有限值时函数的极限; 2.自变量趋于无穷大时函数的极限。 二、函数极限的性质 第三节 函数极限的运算法则 一、函数极限的运算法则 二、复合函数的极限运算法则 三、两个重要极限 1.重要极限1 1sin lim 0=→x x x ; 2.重要极限2 e x x x =+∞→)11(lim 或e x x x =+→1 0)1(lim 。

第四节无穷大与无穷小 一、无穷小 二、无穷大 第五节函数的连续性与间断点 一、函数的连续性概念 1.函数的增量; 2.函数的连续性 二、函数的间断点 第六节连续函数的性质 一、连续函数的和、差、积、商的连续性 二、反函数与复合函数的连续性 三、初等函数的连续性 四、闭区间商连续函数的性质

数学分析-数列极限

第二章 数列极限 §1 数列极限概念 教学目的与要求: 使同学们理解数列极限存在的定义,数列发散的定义,某一实数不是数列极限的定义;掌握用数列极限定义证明数列收敛发散的方法。 教学重点,难点: 数列极限存在和数列发散定义的理解;切实掌握数列收敛发散的定义,利用数列收敛或发散的定义证明数列的收敛或发散性。 教学内容: - 一、课题引入 1°预备知识:数列的定义、记法、通项、项数等有关概念。 2°实例:战国时代哲学家庄周著《庄子·天下篇》引用一句话“一尺之棰, 日取其半,万古不竭。”将其“数学化”即得,每天截后剩余部分长度为(单位尺) 21,221,321,……,n 2 1 ,…… 或简记作数列:? ?????n 21 分析:1°、? ?? ???n 21随n 增大而减小,且无限接近于常数0; 2 二、数列极限定义 1°将上述实例一般化可得: 对数列{}n a ,若存在某常数a ,当n 无限增大时,n 能无限接近常数a 该数为收敛数列,a 为它的极限。 ¥ 例如:? ?? ???n 1, a=0; ??? ? ??-+n n )1(3, a=3;

{}2 n , a 不存在,数列不收敛; {}n )1(-, a 不存在,数列不收敛; 2°将“n 无限增大时”,数学“符号化”为:“存在N ,当n >N 时” 将“a n 无限接近a ”# 例如对? ?? ? ??-+n n )1(()3以3为极限,对ε= 10 1 ,要使 3 )1(3--+=-n a a n n =10 1 1 n 只需取N=10,即可 3°“抽象化”得“数列极限”的定义 定义:设{}n a 是一个数列,a 是一个确定的常数,若对任给的正数ε,总存在 某一自然数N ,使得当n >N 时,都有 a a n -<ε 则称数列{}n a 收敛于a ,a 为它的极限。记作 … a a n n =∞ →lim {(或a n →a,(n →∞)) 说明 (1)若数列{}n a 没有极限,则称该数列为发散数列。 (2)数列极限定义的“符号化”记法: a a n n =∞ →lim ? ε ?>0,?N ,当n (3)上述定义中ε的双重性:ε>0是任意..的,由“任意性”可知,不等式a a n -<ε,可用a n -替 “<”号也可用“≤”号来代替(为什么) (4)上述定义中N 的双重性:N 是仅依赖..于ε的自然数,有时记作N=N (ε)(这并非说明N 是ε的函数,

数学分析之数列极限

第二章数列极限 教学目的: 1.使学生建立起数列极限的准确概念,熟练收敛数列的性质; 2.使学生正确理解数列收敛性的判别法以及求收敛数列极限的常用方法,会用数 概 列极限的定义证明数列极限等有关命题。要求学生:逐步建立起数列极限的 语言正确表述数列不以某定数为极限等相 定义证明有关命题,并能运用 应陈述;理解并能证明收敛数列、极限唯一性、单调性、保号性及不等式性质;掌握并会证明收敛数列的四则运算定理、迫敛性定理及单调有界定理,会用这些定理求某些收敛数列的极限;初步理解柯西准则在极限理论中的重要意义,并逐步学会应用柯西准则判定某些数列的敛散性; 定义 教学重点、难点:本章重点是数列极限的概念;难点则是数列极限的 及其应用. 教学时数:14学时 § 1 数列极限的定义 教学目的:使学生建立起数列极限的准确概念;会用数列极限的定义证明数列极限等有关命题。 ε-定义及其应用。 教学重点、难点:数列极限的概念,数列极限的N 教学时数:4学时 一、引入新课:以齐诺悖论和有关数列引入—— 二、讲授新课: (一)数列:

1.数列定义——整标函数.数列给出方法: 通项,递推公式.数列的几何意义. 2.特殊数列: 常数列,有界数列,单调数列和往后单调数列. (二)数列极限: 以为例. ”定义 ) 定义( 的“ 定义( 数列 收敛的“”定义 ) 注:1.关于:的正值性, 任意性与确定性,以小为贵; 2.关于:的存在性与非唯一性,对只要求存在,不在乎大小.3.的几何意义. (三)用定义验证数列极限:讲清思路与方法. 例1 例2 例3 例4 证 注意到对任何正整数 时有就有

取 于是,对 例5 证法一令有用Bernoulli不等式,有 或 证法二(用均值不等式) 例6 证时, 证明 例7设 (四)收敛的否定: 定义( 的“ ”定义 ). 发散的“”定义 ). 定义( 数列 例8 验证

第二章数列极限

第二章 第二章 数列极限 单选题 1. 数列{}n a ( ) A. 是单调数列时必收敛. B. 有界时必收敛. C. 无界时必发散. D. 发散时必无界. 2. 当n →∞时, {}n a 以常数A 为极限, 则n a A -是 ( ) A. 预先给定的任意小的正数. B. 任意小的正数. C. 无穷小量. D. 常量. 3. 下列说法可以作为 “数列n a 以l 为极限” 定义的是 ( ) A. 0,N N ε+?∈?> 当 n n N a l ε ≥-< B. 12 n m m N N N n N a l ++?∈?∈≥-< C. 12n n N N n N a l + ?∈≥-< D. 0,ε?> 集合 {}(,)n n a l l εε∈-+为无限集. 4. 2 2 2 12lim ( )n n n n n →∞ +++ = ( ) A. 2 2 1lim lim 0000 n n n n n →∞ →∞ ++=+++= B. 2 12lim n n n →∞ +++=∞ C. 2 (1)1lim 22n n n n →∞+= D. 极限不存在. 5. 已知数列 1 410n a n =- 的极限为4, 对于1 101ε= , 满足n N >时总有4n a ε-<成立的最小N 应是 ( ) A. 9 B. 10 C. 101 D. 1000 6. 数列0, 1, 0, 1, 是 ( ) A. 收敛于0. B. 收敛于1. C. 发散. D. 以上都不对. 7. 数列1 1 1 1(1) 2n n +-- 是 ( ) A. 收敛于1. B 发散. C. 收敛于0 D. 从0左侧收敛于0. 8. 数列0. 2. 0. 4. 1(1) ,2n n +- 是 ( ) A. 收敛于0 B. 收敛但不收敛于0. C. 发散. D. 以上都不对. 9. 以下说法不正确的是 ( ) A. ε是无限接近于0的变量. B. N 是依赖于ε的. C. 有界数列必有无穷多个收敛子列. D. 数列 1111,0, ,0, ,0,,0,2 3 n 以0 为极限.

数列极限

数列极限

第二章数列极限 §1 数列极限概念 Ⅰ. 教学目的与要求 1.理解数列极限概念并利用定义证明数列是否收敛. 2.掌握无穷小数列概念并利用其证明数列是否收敛于指定的常数. Ⅱ. 教学重点与难点: 重点: 数列极限概念. 难点: 数列极限概念、利用数列极限定义证明数列是否收敛于指定的常数. Ⅲ. 讲授内容 若函数f 的定义域为全体正整数集合N+,则称 R N f →+: 或 ), (n f n + ∈N 为数列.因正整数集N+的元素可按由小到大的顺序排列,故数列)(n f 也可写作 ,,,,,2 1 ΛΛn a a a 或简单地记为}{n a ,其中n a ,称为该数列的通项. 关于数列极限,先举一个我国古代有关数列的例子.

例1 古代哲学家庄周所著的《庄子·天下篇》引用过一句话:“一尺之棰,日取其半,万世不竭”,其含义是:一根长为一尺的木棒,每天截下一半,这样的过程可以无限制地进行下去. 把每天截下部分的长度列出如下(单位为尺): 第一天截下21,第二天截下2 2 1,……,第n 天截下n 21,……这样就得到一个数列 ΛΛ,21 ,,21,212n .或? ?? ? ??n 2 1. 不难看出,数列{n 21}的通项n 21随着n 的无限增大而 无限地接近于0.一般地说,对于数列}{n a ,若当 n 无限增大时n a 能无限地接近某一个常数a ,则称 此数列为收敛数列,常数a 称为它的极限.不具有这种特性的数列就不是收敛数列. 收敛数列的特性是“随着n 的无限增大,n a 无 限地接近某一常数a ”.这就是说,当n 充分大时,数列的通项n a 与常数a 之差的绝对值可以任意 小.下面我们给出收敛数列及其极限的精确定义.

第二章数列极限12学时

第二章 数列极限 (12学时) §1 数列极限概念 教学目的与要求 1.理解数列极限概念并利用定义证明数列是否收敛. 2.掌握无穷小数列概念并利用其证明数列是否收敛于指定的常数. 教学重点: 数列极限概念. 教学难点: 数列极限概念、利用数列极限定义证明数列是否收敛于指定的常数. 学时安排: 3学时 教学方法:讲练结合。 教学程序: 若函数f 的定义域为全体正整数集合N+,则称 R N f →+: 或 ),(n f n +∈N 为数列.因正整数集N +的元素可按由小到大的顺序排列,故数列)(n f 也可写作 ,,,,,21ΛΛn a a a 或简单地记为}{n a ,其中n a ,称为该数列的通项. 关于数列极限,先举一个我国古代有关数列的例子. 例1 古代哲学家庄周所著的《庄子·天下篇》引用过一句话:“一尺之棰,日取其半,万世不竭”,其含义是:一根长为一尺的木棒,每天截下一半,这样的过程可以无限制地进行下去. 把每天截下部分的长度列出如下(单位为尺): 第一天截下 21,第二天截下221,……,第n 天截下n 2 1 ,……这样就得到一个数列 ΛΛ,21,,21,212n .或? ?? ???n 21. 不难看出,数列{ n 21}的通项n 21随着n 的无限增大而无限地接近于0.一般地说,对于数列}{n a ,若当n 无限增大时n a 能无限地接近某一个常数a ,则称此数列为收敛数列,常数a 称为它的极限.不具有这种特性的数列就不是收敛数列. 收敛数列的特性是“随着n 的无限增大,n a 无限地接近某一常数a ”.这就是说,当n 充分大时,数列的通项n a 与常数a 之差的绝对值可以任意小.下面我们给出收敛数列及其极限的精确定义. 定义1 设}{n a 为数列,a 为定数.若对任给的正数ε,总存在正整数N ,使得当, n >N 时有ε<-||a a n 则称数列}{n a 收敛于a ,定数a 称为数列}{n a 的极限,并记作a a n n =∞ →lim ,或)(∞→→n a a n .

第二章极限题及答案:极限的四则运算

分类讨论求极限 例 已知数列{}n a 、{}n b 都是由正数组成的等比数列,公比分别为q p ,,其中q p >,且1≠p ,1≠q ,设n n n b a c +=,n S 为数列{}n C 的前n 项和,求1lim -∞→n n n S S . (1997年全国高考试题,理科难度0.33) 解: ()() 1 1 1111--+--=q q b p p a S n n n ()( )()() ()( )()( ) 1 1111 1111111111--+----+--= ---n n n n n n q p b p q a q p b p q a S S . 分两种情况讨论; (1)当1>p 时,∵ 0>>q p ,故10<< p q , ∴1 lim -∞→n n n S S ()()()()????? ? ?????????????????? ??--+???? ??--?????????? ??--+???? ??-------1111111111111111111lim n n n n n n n n n n p p q p b p q a p p p q p b p q a p ()()()()()()010110 10111111?-+--?-+--? =p b q a p b q a p ()() p q a q a p =--? =1111 (2)当1

相关文档
最新文档