带电粒子在匀强磁场中运动的多解和临界问题

带电粒子在匀强磁场中运动的多解和临界问题
带电粒子在匀强磁场中运动的多解和临界问题

带电粒子在匀强磁场中运动的多解和临界问题

一、多解问题

(一)带电粒子电性不确定形成多解

1?如图所示,宽度为d的有界匀强磁场,磁感应强度为B,MM '和NN '是它的两条边界。现有质量为m,电荷量为q的带电粒子沿图示方向垂直磁场射入。要使粒子不能从边界NN ' 射出,则粒子入射速率v的最大值可能是多少。

2.如图1所示,第一象限范围内有垂直于xOy平面的匀强磁场,磁感应强度为B。质量为m,电量大小为q的带电粒子在xOy平面里经原点O射入磁场中,初速度v o与x轴夹角A60°试分析计算:

(1)带电粒子从何处离开磁场?穿越磁场时运动方向发生的偏转角是多大?

⑵带电粒子在磁场中运动时间有多长?

(二)磁场方向不确定形成多解

2. (多选)一质量为m,电荷量为q的负电荷在磁感应强度为B的匀强磁场中绕固定的正

电荷沿固定的光滑轨道做匀速圆周运动,若磁场方向垂直于它的运动平面,且作用在负电荷的电场力恰好是磁场力的三倍,则负电荷做圆周运动的角速度可能是()

(三)带电粒子速度不确定形成多解

3. (多选)如图所示,两方向相反、磁感应强度大小均为B的匀强磁场被边长为L的等边三角形ABC理想分开,三角形内磁场垂直纸面向里,三角形顶点A处有一质子源,能沿/ BAC

的角平分线发射速度不同的质子(质子重力不计),所有质子均能通过C点,质子比荷讣=k, 则质

子的速度可能为

A. 2BkL

1.侈选)如图6所示,直线MN与

水平方向成60°角,MN的右上方存在垂直纸面向外的匀强磁场,左下方存在垂直纸面向里的匀强磁场,两磁场的磁感应强度大小均为B。一粒子源位于MN上的a点,能水平向右发射不同速率、质量为m(重力不计)、电荷量为q(q>0)的同种粒子,所有粒子均能通过MN上的b点,已知ab= L,贝U粒子的速度可能是()

2m

(四)带电粒子运动的往复性形成多解

4. 某装置用磁场控制带电粒子的运动,工作原理如图8212所示。装置的长为L,上下

6m

m

D舉

两个相同的矩形区域内存在匀强磁场,磁感应强度大小均为B、方向与纸面垂直且相反,

两磁场的间距为d。装置右端有一收集板,M、N、P为板上的三点,M位于轴线00 '上, N、P分别位于下方磁场的上、下边界上。在纸面内,质量为m、电荷量为一q的粒子以某

一速度从装置左端的中点射入,方向与轴线成30°角,经过上方的磁场区域一次,恰好到达

P点。改变粒子入射速度的大小,可以控制粒子到达收集板上的位置。不计粒子的重力。

(1) 求磁场区域的宽度h ;

(2) 欲使粒子到达收集板的位置从P点移到N点,求粒子入射速度的最小变化量A v;

(3) 欲使粒子到达M点,求粒子入射速度大小的可能值。

二、临界值问题

(一)半无界磁场

[典例1](多选)(2015四川高考)如图8213所示,S处有一电子源,可向纸面内任意方向发射电子,平板MN垂直于纸面,在纸面内的长度L = 9.1 cm,中点0与S间的距离d

=4.55 cm , MN与SO直线的夹盘角为0,板所在平面有电子源的一侧区域有方向垂直于

B = 2.0X 10-4 T,电子质量m= 9.1 x 10-31 kg,电量e

电子源发射速度v = 1.6x 106 m/s的一个电子,该电子打

A.0= 90 时l = 9.1 cm

B.0= 60。时, l = 9.1 cm

C.0= 45 时l = 4.55 cm

D.0= 30 时l = 4.55 cm

(二)四分之一平面磁场

一个质量为m、电荷量为q的带电粒子从x轴上的P(a,O)

60。角的方向射入第一象限内的匀强磁场中,并恰好垂直于

在板上可能位置的区域的长度为l,

纸面向外的匀强磁场,磁感应强度

=-1.6X 10「19c,不计电子重力,

[典例2]如图8214所示,

点以速度v,沿与x轴正方向成

(三)矩形磁场

[典例3]

如图8215所示,竖直线MN // PQ, MN与PQ间距离为a,其间存在垂直纸面向里的

匀强磁场,磁感应强度为B,O是MN上一点,0处有一粒子源,某时刻放出大量速率均

为v(方向均垂直磁场方向)、比荷一定的带负电粒子(粒子重力及粒子间的相互作用力不计

),

已知沿图中与MN成0= 60°角射出的粒子恰好垂直PQ射出磁场,则粒子在磁场中运动的

最长时间为(

图8215

n

A.3V

C. 4 n

3v

2 n

D P

(四)正方形磁

[典例4](多选)如图8216所示,在正方形abed内充满方向垂直纸面向里、磁感应强度为B的匀强磁场。a处有比荷相等的甲、乙两种粒子,甲粒子以速度v i沿ab方向垂直射入磁场,经时间t i从d点射出磁场,乙粒子沿与ab成30。角的方向以速度V2垂直射入磁场,经时间t2垂直ed射出磁场,不计粒子重力和粒子间的相互作用力,则下列说法中正确的是

A. v i : V2= 1 : 2! K K圳X 1

I d

I ||

x.x x X !

I :!

;X X X X ■

” %

L£302.__X.__K」

U ”L b

图8216

B. v1 : V2= ,3 : 4

带电粒子在匀强磁场中的运动知识小结

带电粒子在匀强磁场中的运动(知识小结) 一.带电粒子在磁场中的运动 (1)带电粒子在磁场中运动时,若速度方向与磁感线平行,则粒子不受磁场力,做匀速直线运动;即 ① 为静止状态。 ② 则粒子做匀速直线运动。 (2)若速度方向与磁感线垂直,带电粒子在匀强磁场中做匀速圆周运动,洛伦兹力起向心力作用。 (3)若速度方向与磁感线成任意角度,则带电粒子在与磁感线平行的方向上做匀速直线运动,在与磁感 线垂直的方向上做匀速圆周运动,它们的合运动是螺线运动。 二、带电粒子在匀强磁场中的圆周运动 1.运动分析:洛伦兹力提供向心力,使带电粒子在匀强磁场中做匀速圆周运动. (4)运动时间: (Θ 用弧度作单位 ) 1.只有垂直于磁感应强度方向进入匀强磁场的带电粒子,才能在磁场中做匀速圆周运动. 2.带电粒子做匀速圆周运动的半径与带电粒子进入磁场时速率的大小有关,而周期与速率、半径都无关. 三、带电粒子在有界匀强磁场中的匀速圆周运动(往往有临界和极值问题) (一)边界举例: 1、直线边界(进出磁场有对称性) 规律:如从同一直线边界射入的粒子,再从这一边射出时,速 度与边界的夹角相等。 速度与边界的夹角等于圆弧所对圆心角的一半, 并且如果把两个速度移到共点时,关于直线轴对称。 2、平行边界(往往有临界和极值问题) (在平行有界磁场里运动,轨迹与边界相切时,粒子恰好不射出边界) 3、矩形边界 磁场区域为正方形,从a 点沿ab 方向垂直射入匀强磁场: 若从c 点射出,则圆心在d 处 若从d 点射出,则圆心在ad 连线中点处 4. (从平面几何的角度看,是粒子轨迹圆与磁场边界圆的两圆相交问题。) 特殊情形:在圆形磁场内,沿径向射入时,必沿径向射出 2.其特征方程为:F 洛=F 向. 3.三个基本公式: (1)向心力公式:qvB =m v 2R ; (2)半径公式:R =mv qB ; (3)周期和频率公式:T =2πm qB =1f ; 222m t qB m qB T θππθπθ==?=?v L =t

带电粒子在磁场中运动之多解周期运动问题

考点4.7 周期性与多解问题 1.带电粒子电性不确定形成多解:受洛伦兹力作用的带电粒子,由于电性不同,当速度相同时,正、负粒子在磁场中运动轨迹不同,形成多解. 如图6甲所示,带电粒子以速度v垂直进入匀强磁场,如带正电,其轨迹为a,如带负电,其轨迹为b. 2.磁场方向不确定形成多解:有些题目只已知磁感应强度的大小,而不知其方向,此时必须要考虑磁感应强度方向不确定而形成的多解. 如图乙所示,带正电粒子以速度v垂直进入匀强磁场,如B垂直纸面向里,其轨迹为a,如B 垂直纸面向外,其轨迹为b. 3.临界状态不唯一形成多解:带电粒子在洛伦兹力作 用下飞越有界磁场时,由于粒子运动轨迹是圆弧状, 因此,它可能穿过去,也可能转过180°从入射界面这 边反向飞出,从而形成多解,如图丙所示. 4.运动的周期性形成多解:带电粒子在部分是电场、部分是磁场的空间运动时,运动往往具有往复性,从而形成多解,如图丁所示. 一圆筒的横截面如图所示,其圆心为O.筒有垂直于纸面向里的匀 强磁场,磁感应强度为B.圆筒下面有相距为d的平行金属板M、N,其中 M板带正电荷,N板带等量负电荷.质量为m、电荷量为q的带正电粒子 自M板边缘的P处由静止释放,经N板的小孔S以速度v沿半径SO方 向射入磁场中.粒子与圆筒发生两次碰撞后仍从S孔射出.设粒子与圆筒碰 撞过程中没有动能损失,且电荷量保持不变,在不计重力的情况下,求: (1)M、N间电场强度E的大小; (2)圆筒的半径R.

(3)保持M、N间电场强度E不变,仅将M板向上平移,粒子仍从M板边缘的P处 由静止释放粒子自进入圆筒至从S孔射出期间,与圆筒的碰撞次数n。 1.如图所示,在纸面有磁感应强度大小均为B,方向相反的匀强磁场,虚线等边三角形ABC 为两磁场的理想边界。已知三角形ABC边长为L,虚线三角形为方向垂直纸面向外的匀强磁场,三角形外部的足够大空间为方向垂直纸面向里的匀强磁 场。一电量为+q、质量为m的带正电粒子从AB边中点P垂直AB 边射入三角形外部磁场,不计粒子的重力和一切阻力,试求: (1)要使粒子从P点射出后在最快时间通过B点,则从P点射出 时的速度v0为多大? (2)满足(1)问的粒子通过B后第三次通过磁场边界时到B的 距离是多少? (3)满足(1)问的粒子从P点射入外部磁场到再次返回到P点的最短时间为多少?画出 粒子的轨迹并计算。

带电粒子在有界磁场中运动的临界问题

带电粒子在有界磁场中运动的临界问题 当某种物理现象变化为另一种物理现象或物体从一种状态变化为另一种状态时,发生这种质的飞跃的转折状态通常称为临界状态。粒子进入有边界的磁场,由于边界条件的不同,而出现涉及临界状态的临界问题,如带电粒子恰好不能从某个边界射出磁场,可以根据边界条件确定粒子的轨迹、半径、在磁场中的运动时间等。如何分析这类相关的问题是本文所讨论的内容。 一、带电粒子在有界磁场中运动的分析方法 1.圆心的确定 因为洛伦兹力F指向圆心,根据F⊥v,画出粒子运动轨迹中任意两点(一般是射入和射出磁场两点),先作出切线找出v的方向再确定F的方向,沿两个洛伦兹力F的方向画其延长线,两延长线的交点即为圆心,或利用圆心位置必定在圆中一根弦的中垂线上,作出圆心位置,如图1所示。 2.半径的确定和计算 利用平面几何关系,求出该圆的可能半径(或圆心角),并注意以下两个重要的几何特点: ①粒子速度的偏向角φ等于转过的圆心角α,并等于AB弦与切线的夹角(弦切角)θ的2倍,如图2所示,即φ=α=2θ。 ②相对的弦切角θ相等,与相邻的弦切角θ′互补,即θ+θ′=180°。 3.粒子在磁场中运动时间的确定

若要计算转过任一段圆弧所用的时间,则必须确定粒子转过的圆弧所对的圆心角,利用圆心角α与弦切角的关系,或者利用四边形内角和等于360°计算出 圆心角α的大小,并由表达式,确定通过该段圆弧所用的时间,其中T 即为该粒子做圆周运动的周期,转过的圆心角越大,所用时间t越长,注意t 与运动轨迹的长短无关。 4.带电粒子在两种典型有界磁场中运动情况的分析 ①穿过矩形磁场区:如图3所示,一定要先画好辅助线(半径、速度及延长线)。 a、带电粒子在穿过磁场时的偏向角由sinθ=L/R求出;(θ、L和R见图标) b、带电粒子的侧移由R2=L2-(R-y)2解出;(y见所图标) c、带电粒子在磁场中经历的时间由得出。 ②穿过圆形磁场区:如图4所示,画好辅助线(半径、速度、轨迹圆的圆心、连心线)。

带电粒子在磁场中运动的多解问题

带电粒子在磁场中运动的多解问题 1.带电粒子电性不确定形成多解:受洛伦兹力作用的带电粒子,由于电性不同,当速度相同时,正、负粒子在磁场中运动轨迹不同,形成多解. 如图1甲所示,带电粒子以速度v垂直进入匀强磁场,如带正电,其轨迹为a,如带负电,其轨迹为b. 图1 2.磁场方向不确定形成多解:有些题目只已知磁感应强度的大小,而不知其方向,此时必须要考虑磁感应强度方向不确定而形成的多解. 如图乙所示,带正电粒子以速度v垂直进入匀强磁场,如B垂直纸面向里,其轨迹为a,如B垂直纸面向外,其轨迹为b. 3.临界状态不唯一形成多解:带电粒子在洛伦兹力作用下飞越有界磁场时,由于粒子运动轨迹是圆弧状,因此,它可能穿过磁场飞出,也可能转过180°从入射界面这边反向飞出,从而形成多解,如图2甲所示. 图2 4.运动的周期性形成多解:带电粒子在部分是电场、部分是磁场的空间运动时,运动往往具有往复性,从而形成多解,如图乙所示. 典例1(多选)如图17所示,垂直于纸面向里的匀强磁场分布在正方形abcd区域内,O点是cd边的中点.一个带正电的粒子仅在磁场力的作用下,从O点沿纸面以垂直于cd边的速度射入正方形内,经过时间t0后刚好从c点射出磁场.现设法使该带电粒子从O点沿纸面以与Od成30°角的方向,以大小不同的速率射入正方形内,那么下列说法中正确的是()

图17 A .若该带电粒子在磁场中经历的时间是53t 0,则它一定从cd 边射出磁场 B .若该带电粒子在磁场中经历的时间是23 t 0,则它一定从ad 边射出磁场 C .若该带电粒子在磁场中经历的时间是54 t 0,则它一定从bc 边射出磁场 D .若该带电粒子在磁场中经历的时间是t 0,则它一定从ab 边射出磁场 答案 AC 解析 如图所示,作出刚好从ab 边射出的轨迹①、刚好从bc 边射出的轨 迹②、从cd 边射出的轨迹③和刚好从ad 边射出的轨迹④.由从O 点沿纸面 以垂直于cd 边的速度射入正方形内,经过时间t 0后刚好从c 点射出磁场可 知,带电粒子在磁场中做圆周运动的周期是2t 0.可知,从ad 边射出磁场经历的时间一定小于13t 0;从ab 边射出磁场经历的时间一定大于等于13t 0,小于56 t 0;从bc 边射出磁场经历的时间一定大于等于56t 0,小于43t 0;从cd 边射出磁场经历的时间一定是53 t 0. 典例2 如图18所示,在坐标系xOy 中,第一象限内充满着两个匀强磁场a 和b ,OP 为分界线,在磁场a 中,磁感应强度为2B ,方向垂直于纸面向里,在磁场b 中,磁感应强度为B ,方向垂直于纸面向外,P 点坐标为(4l,3l ).一质量为m 、电荷量为q 的带正电粒子从P 点沿y 轴负方向射入磁场b ,经过一段时间后,粒子恰能经过原点O ,不计粒子重力.求: 图18 (1)粒子从P 点运动到O 点的最短时间是多少? (2)粒子运动的速度可能是多少? 答案 (1)53πm 60qB (2)25qBl 12nm (n =1,2,3,…)

高中物理带电粒子在磁场中运动的多解问题 人教版

带电粒子在磁场中运动的多解问题 山东省郓城第一中学: 胡忠启 邮编:274700 带电粒子在洛仑兹力作用下做匀速圆周运动的问题一般有多解。形成多解的原因有: 1. 带电粒子电性不确定 受洛仑兹力作用的带电粒子,可能带正电,也可能带负电。当具有相同初速度时,正负粒子在磁场中的运动轨迹不同,导致形成双解。 例1. 如图1所示,第一象限范围内有垂直于xOy 平面的匀强磁场,磁感应强度为B 。质量为m ,电量大小为q 的带电粒子在xOy 平面里经原点O 射入磁场中,初速度v 0与x 轴夹角θ=?60,试分析计算: (1)带电粒子从何处离开磁场?穿越磁场时运动方向发生的偏转角多大? (2)带电粒子在磁场中运动时间多长? 分析:若带电粒子带负电,进入磁场后做匀速圆周运动,圆心为O 1, 粒子向x 轴偏转,并从A 点离开磁场。若带电粒子带正电,进入磁场后做 匀速圆周运动,圆心为O 2,粒子向y 轴偏转,并从B 点离开磁场。不论粒子带何种电荷,其运动轨道半径均为R mv Bq =0。如图2,有 带电粒子沿半径为R 的圆运动一周所用的时间为 (1)若粒子带负电,它将从x 轴上A 点离开磁场,运动方向发生 的偏转角θ1120=?。A 点与O 点相距:x R mv Bq ==330 若粒子带正电,它将从y 轴上B 点离开磁场,运动方向发生的偏转 角θ260=?,B 点与O 点相距: y R mv Bq ==0 (2)若粒子带负电,它从O 到A 所用的时间为 若粒子带正电,它从O 到B 所用的时间为 2. 磁场方向不确定 磁感应强度是矢量。如果题设只给出磁感应强度的大小,而未指出其方向,此时要考虑磁感应强度方向不确定而形成多解。 例2. 一质量为m ,电量为q 的负电荷在磁感应强度为B 的匀强磁场中绕固定的正电荷沿固定的光滑轨道做匀速圆周运动,若磁场方向垂直于它的运动平面,且作用在负电荷的电场力恰好是磁场力的三倍,则负电荷做圆周运动的角速度可能是( ) A. 4qB m B. 3qB m C. 2qB m D. qB m 分析:依题中条件“磁场方向垂直于它的运动平面”,磁场方向有两种可能,且这两种可能方向相反。在方向相反的两个匀强磁场中,由左手定则可知负电荷所受的洛仑兹力的方向也是相反的。 当负电荷所受的洛仑兹力与电场力方向相同时,根据牛顿第二定律可知 42 B q v m v R =,得v BqR m =4 图 1 图2

带电粒子在匀强磁场中的运动

带电粒子在匀强磁场中的运动 四会中学邱又香 知识与能力目标 1.理解洛伦兹力对粒子不做功 2.理解带电粒子的初速度方向与磁感应强度垂直时,粒子在匀强磁场中做匀速圆周运动 3.推导半径,周期公式并解决相关问题 道德目标 培养学生热爱科学,探究科学的价值观 教学重点 带电粒子在匀强磁场中做匀速圆周运动的半径公式和周期公式, 并能用来解决有关问题。 教学难点 带电粒子在匀强磁场中做匀速圆周运动的条件 对周期公式和半径公式的定性的理解。 教学方法 在教师指导下的启发式教学方法 教学用具 电子射线管,环行线圈,电源,投影仪, 教学过程 一引入新课 复习:1 当带电粒子以速度v平行或垂直射入匀强磁场后,粒子的受力情况; 2 回顾带电粒子垂直飞入匀强电场时的运动特点,让学生猜想带电粒子垂直飞入匀强磁场的运动情况。 二.新课 1.运动轨迹 演示实验利用洛伦兹力演示仪,演示电子射线管内的电子在匀强磁场中的运动轨迹,让学生观察存在磁场和不存在磁场时电子的径迹。 现象:圆周运动。 提问:是匀速圆周运动还是非匀速圆周运动呢? 分析:(1)首先回顾匀速圆周运动的特点:速率不变,向心力和速度垂直且始终在同一平面,向心力大小不变始终指向圆心。 (2)带电粒子在匀强磁场中的圆周运动的受力情况是否符合上面3个特点呢? 带电粒子的受力为F洛=qvB ,与速度垂直故洛伦兹力不做功,所以速度v不变,即可得洛伦兹力不变,且F洛与v同在垂直与磁场的平面内,故得到结论:带电粒子在匀强磁场中做匀速圆周运动 结论:1、带电微观粒子的质量很小,在磁场中运动受到洛伦兹力远大于它的重

力,因此可以把重力忽略不计,认为只受洛伦兹力作用。 2、沿着与磁场垂直的方向射入磁场的带电粒子,在匀强磁场中做匀速圆周运动,洛伦兹力提供做向心力,只改变速度的方向,不改变速度的大小。 2.轨道半径和周期 ? 例:一带电粒子的质量为m ,电荷量为q ,速率为v ,它在磁感应强度为B 的匀强磁场中做匀速圆周运动,求轨道半径有多大? 由 得 可知速度越大,r 越大。 周期呢? 由 得 与速度半径无关。 实验:改变速度和磁感强度观测半径r 。 例1:一个质量为m 、电荷量为q 的粒子,从容器下方的小孔S1飘入电势差为U的加速电场,然后经过S3沿着与磁场垂直的方向进入磁感应强度为B的匀强磁场中,最后打到照相底片D上求: (1)求粒子进入磁场时的速率 (2)求粒子在磁场中运动的轨道半径 解:由动能定理得:qU = mv 2 /2, 解得: m qU v 2= 粒子在磁场中做匀速圆周运动得半径为:R =mv/qB=m m qU /2/qB=B q mU 2/2 ? 例2:如图,从粒子源S 处发出不同的粒子其初动量相同,则表示电荷量最小的带正电粒子在匀强磁场中的径迹应是( ) S mv R qB =2m T qB π=2v qvB m R =2R T v π=

带电粒子在磁场中运动的临界问题

带电粒子在磁场中运动的临界问题 一、“矩形”有界磁场中的临界问题 【例1】如图所示,一足够长的矩形区域abcd 内充满方向垂直纸面向里、磁感应强度为B 的匀强磁场,在ad 边中点O ,方向垂直磁场向里射入一速度方向跟ad 边夹角θ=30°、大小为v 0的带正电粒子,已知粒子质量为m ,电量为q ,ad 边长为L ,ab 边足够长,粒子重力不计,求 (1)粒子能从ab 边上射出磁场的v 0大小范围。 (2)若粒子速度不受上述v 0大小的限制,求粒子在磁场中运动的最长时间。 解析: (1)①假设粒子以最小的速度恰好从左边偏转出来时的 速度为v 1,圆心在O 1点,如图 (甲),轨道半径为R 1,对应圆轨迹与ab 边相切于Q 点,由几何知识得:R 1+R 1sin θ=0.5L 由牛顿第二定律得1 211R v m B qv =; 得m qBL v =1 ②假设粒子以最大速度恰好从右边偏转出来,设此时的轨道半径 为R 2,圆心在O 2点,如图 (乙),对应圆轨迹与dc 边相切于P 点。 由几何知识得:R 2=L 由牛顿第二定律得2 222R v m B qv =;得m qBL v =2 粒子能从ab 边上射出磁场的v 0应满足 m qBL v m qBL ≤ ≤3 (2)如图 (丙)所示,粒子由O 点射入磁场,由P 点离开磁场,该圆弧对应运行时间最长。粒子在磁场内运行轨迹对应圆心角为πα35= 。而απ 2T t m = 由R v m qvB 2=,得qB mv R = ,qB m T π2= qB m t m 35π= 【练习1】如图所示,宽度为d 的有界匀强磁场,磁感应强度为B ,MM ′和NN ′是它的两条边界线,现有质量m 、电荷量为q 的带电粒子沿图示方向垂直磁场射入,要使粒子不能从边界NN ′射出,粒子最大的入射速度v 可能是( ) A .小于 m qBd B .小于( ) m qBd 22+ C .小于 m qBd 2 D .小于( ) m qBd 22— 解析:BD

高考物理二轮复习:带电粒子在有界磁场中运动的临界问题

带电粒子在有界磁场中运动的临界问题的解题技巧 带电粒子(质量m、电量q 确定)在有界磁场中运动时,涉及的可能变化的参量有——入射点、入射速 所有这些问题,其通用解法是:①第一步,找准轨迹圆圆心可能的位置,②第二步,按一定顺序.....尽可能多地作不同圆心对应的轨迹圆(一般至少5画个轨迹圆),③第三步,根据所作的图和题设条件,找出临界轨迹圆,从而抓住解题的关键点。 类型一:已知入射点和入射速度方向,但入射速度大小不确定(即轨道半径不确定) 这类问题的特点是:所有轨迹圆圆心均在过入射点、垂直入射速度的同一条直线上。 【例1】如图所示,长为L 的水平极板间有垂直于纸面向内的匀强磁场,磁感应强度为B ,板间距离也为L ,板不带电.现有质量为m 、电荷量为q 的带正电粒子(不计重力),从左边极板间中点处垂直磁感线以速度v 水平射入磁场,欲使粒子不打在极板上,可采用的办法是 A.使粒子的速度v <\f(BqL,4m )? B.使粒子的速度v >\f(5BqL,4m ) C .使粒子的速度v >\f(BqL ,m )? D.使粒子的速度BqL 4m < v <\f(5BqL,4m ) 【分析】粒子初速度方向已知,故不同速度大小的粒子轨迹圆圆心均在垂直初速度的直线上(如图甲),在该直线上取不同点为圆心,半径由小取到大,作出一系列圆(如图乙),其中轨迹圆①和②为临界轨迹圆。轨道半径小于轨迹圆①或大于轨迹圆②的粒子,均可射出磁场而不打在极板上。 类型 已知参量 类型一 ①⑩ 入射点、入射方向;出射点、出射方向 类型二 ②⑧ 入射点、速度大小;出射点、速度大小 类型三 ③ 入射点、出射点 类型四 ⑦ 入射方向、出射方向 类型五 ⑤⑨ 入射方向、速度大小;出射方向、速度大小; 类型六 ④⑥ 入射点、出射方向;出射点,入射方向 图乙 图甲 ① ② 入射点 入射方向 入射速度大 出射点 出射方向 ① ② ③ ④ ⑧ ⑨ ⑤ ⑥ ⑦ ⑩

带电粒子在磁场中的运动解题技巧

带电粒子在磁场中的运动 带电粒子在匀强磁场中作圆周运动的问题是近几年高考的热点,这些考题不但涉及到洛伦兹力作用下的动力学问题,而且往往与平面图形的几何关系相联系,成为考查学生综合分析问题、运用数字知识解决物理问题的难度较大的考题。但无论这类问题情景多么新颖、设问多么巧妙,其关键一点在于规范、准确地画出带电粒子的运动轨迹。只要确定了带电粒子的运动轨迹,问题便迎刃而解。下面举几种确定带电粒子运动轨迹的方法。 一、对称法 带电粒子如果从匀强磁场的直线边界射入又从该边界射出,则其轨迹关于入射点和出射点线段的中垂线对称,且入射速度方向与出射速度方向与边界的夹角相等(如图1);带电粒子如果沿半径方向射入具有圆形边界的匀强磁场,则其射出磁场时速度延长线必过圆心(如图2)。利用这两个结论可以轻松画出带电粒子的运动轨迹,找出相应的几何关系。 例1.如图3所示,直线MN上方有磁感应强度为B的匀强磁场。正、负电子同时从同一点O以与MN成30°角的同样速度v射入磁场(电子质量为m,电荷为e),它们从磁场中射出时相距多远?射出的时间差是多少? 解析:正、负电子的半径和周期是相同的。只是偏转方向相反。先确定圆心,画出半径和轨迹(如图4),由对称性知:射入、射出点和圆心恰好组成正三角形。所以两个射出点 相距s=2r=,由图还看出经历时间相差,所以解此题的关键是找圆心、找半径和用对称。

例2.如图5所示,在半径为r的圆形区域内,有一个匀强磁场。一带电粒子以速度v0从M点沿半径方向射入磁场区,并由N点射出,O点为圆心。当∠MON=120°时,求:带电粒子在磁场区的偏转半径R及在磁场区中的运动时间。 解析:分别过M、N点作半径OM、ON的垂线,此两垂线的交点O'即为带电粒子作圆周运动时圆弧轨道的圆心,如图6所示。 由图中的几何关系可知,圆弧MN所对的轨道圆心角为60°,O、O'的边线为该圆心角的角平分线,由此可得带电粒子圆轨道半径为R=r/tan30°= 又带电粒子的轨道半径可表示为:故带电粒子运动周期: 带电粒子在磁场区域中运动的时间 二、旋转圆法 在磁场中向垂直于磁场的各个方向发射速度大小相同的带电粒子时,带电粒子的运动轨迹是围绕发射点旋转的半径相同的动态圆(如图7),用这一规律可快速确定粒子的运动轨迹。

圆形磁场中的几个典型问题

圆形磁场中的几个典型问题 许多同学对带电粒子在圆形有界磁场中的运动问题常常无从下手,一做就错.常见问题分别是“最值问题、汇聚发散问题、边界交点问题、周期性问题”.对于这些问题,针对具体类型,抓住关键要素,问题就能迎刃而解,下面举例说明. 一、最值问题的解题关键——抓弦长 1.求最长时间的问题 例1 真空中半径为R=3×10-2m的圆形区域内,有一磁感应强 度为B=0.2T的匀强磁场,方向如图1所示一带正电的粒子以初速 度v0=106m / s 从磁场边界上直径ab 一端a 点处射入磁场,已知 该粒子比荷为q/m=108C / kg ,不计粒子重力,若要使粒子飞离磁 场时偏转角最大,其入射时粒子初速度的方向应如何?(以v0与 Oa 的夹角 表示)最长运动时间多长? 小结:本题涉及的是一个动态问题,即粒子虽然在磁场中均做同一半径的匀速圆周运动,但因其初速度方向变化,使粒子运动轨迹的长短和位置均发生变化,并且弦长的变化一定对应速度偏转角的变化,同时也一定对应粒子做圆周运动轨迹对应圆心角的变化,因而当弦长为圆形磁场直径时,偏转角最大. 2 .求最小面积的问题 例2 一带电质点的质量为m,电量为q,以平行于Ox 轴 的速度v从y轴上的a点射人如图3 所示第一象限的区域.为 了使该质点能从x轴上的b点以垂直于x轴的速度v 射出,可 在适当的地方加一个垂直于xoy平面、磁感应强度为B的匀强 磁场.若此磁场仅分布在一个圆形区域内,试求此圆形磁场区 域的最小面积,重力忽略不计. 小结:这是一个需要逆向思维的问题,而且同时考查了空间想象能力,即已知粒子运动轨迹求所加圆形磁场的位置.解决此类问题时,要抓住粒子运动的特点即该粒子只在所加磁场中做匀速圆周运动,所以粒子运动的 1 / 4 圆弧必须包含在磁场区域中且圆运动起点、终点必须是磁场边界上的点,然后再考虑磁场的最小半径. 上述两类“最值”问题,解题的关键是要找出带电粒子做圆周运动所对应的弦长. 二、汇聚发散问题的解题关键——抓半径 当圆形磁场的半径与圆轨迹半径相等时,存在两条特殊规律; 规律一:带电粒子从圆形有界磁场边界上某点射入磁场,如果圆形磁场的半径与圆轨迹半径相等,则粒子的出射速度方向与圆形磁场上入 射点的切线方向平行,如甲图所示。 规律二:平行射入圆形有界磁场的相同带电粒 子,如果圆形磁场的半径与圆轨迹半径相等,则所 有粒子都从磁场边界上的同一点射出,并且出射点 的切线与入射速度方向平行,如乙图所示。

高中物理带电粒子在匀强磁场中的运动

第四节带电粒子在匀强磁场中的运动 一、带电粒子在匀强磁场中的运动 1.若v∥B,带电粒子不受洛伦兹力,在匀强磁场中做____________运动. 2.若v⊥B,带电粒子仅受洛伦兹力作用,在垂直于磁感线的平面内以入射速度v做_______运动. (1)向心力由洛伦兹力提供:qvB=__________=__________; (2)轨道半径公式:R=mv qB ; (3)周期:T=2πR v = 2πm qB (周期T与速度v、轨道半径R无关); (4)频率:f=1 T = qB 2πm ; (5)角速度:ω=2π T =__________. 二、带电粒子在有界磁场中的运动 1.分析方法:找圆心、求半径、确定转过的圆心角的大小是解决这类问题的前提,确定轨道半径和给定的几何量之间的关系是解题的基础,有时需要建立运动时间t和转过的圆心角α之间的关系作为辅助. (1)圆心的确定 ①基本思路:与速度方向垂直的直线和图中弦的中垂线一定过圆心. ②两种情形 a.已知入射方向和出射方向时,可通过入射点和出射点分别作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图所示,图中P为入射点,M为出射点).b.已知入射方向和出射点的位置时,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心(如图所示,图中P为入射点,M为出射点). (2)半径的确定 用几何知识(勾股定理、三角函数等)求出半径大小. (3)运动时间的确定 粒子在磁场中运动一周的时间为T,当粒子运动的圆弧所对应的圆心角为α时,其运动时间为: t= α 360° T(或t= α 2π T). 2.规律总结 带电粒子在不同边界磁场中的运动 (1)直线边界(进出磁场具有对称性,如图) (2)平行边界(存在临界条件,如图) (3)圆形边界(沿径向射入必沿径向射出,如图)

带电粒子在磁场中的临界极值问题

带电粒子在磁场运动的临界与极值问题考点解读 解决此类问题的关键是:找准临界点. 找临界点的方法是:以题目中的“恰好”“最大”“最高”“至少”等词语为突破口,借助半径R和速度v(或磁场B)之间的约束关系进行动态运动轨迹分析,确定轨迹圆和边界的关系,找出临界点,然后利用数学方法求解极值,常用结论如下: (1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切. (2)当速度v一定时,弧长(或弦长)越长,圆周角越大,则带电粒子在有界磁场中运动的时间越长. (3)当速率v变化时,圆周角越大,运动时间越长. 典例剖析 1.磁感应强度的极值问题 例1 如图所示,一带正电的质子以速度v0从O点垂直射入,两个板间存在垂直纸面向里的匀强磁场.已知两板之间距离为d,板长为d,O点是板的正中间,为使质子能从两板间射出,试求磁感应强度应满足的条件(已知质子的带电荷量为e,质量为m). 2.偏角的极值问题 例2 在真空中,半径r=3×10-2 m的圆形区域内有匀强磁场,方向如图所示,磁感应强度B=0.2 T,一个带正电的粒子以初速度v0=1×106 m/s从磁场边界上直径ab的一端a射入 磁场,已知该粒子的比荷q m=1×10 8 C/kg,不计粒子重力. (1)求粒子在磁场中做匀速圆周运动的半径; (2)若要使粒子飞离磁场时有最大偏转角,求入射时v0与ab的夹角θ及粒子的最大偏转角. 3.时间的极值问题 例3如图所示,M、N为两块带等量异种电荷的平行金属板,两板间电压可取从零到某一最大值之间的各种数值.静止的带电粒子带电荷量为+q,质量为m(不计重力),从点P经

电场加速后,从小孔Q进入N板右侧的匀强磁场区域,磁感应强度大小为B,方向垂直于纸面向外,CD为磁场边界上的一绝缘板,它与N板的夹角为θ=45°,孔Q到板的下端C 的距离为L,当M、N两板间电压取最大值时,粒子恰垂直打在CD板上,求: (1)两板间电压的最大值U m; (2)CD板上可能被粒子打中的区域的长度x; (3)粒子在磁场中运动的最长时间t m. 4.面积的极值问题 例4如图12所示,一带电质点,质量为m,电量为q,以平行于Ox轴的速度v从y轴上的a点射入图中第一象限所示的区域。为了使该质点能从x轴上的b点以垂直于Ox轴的速度v射出,可在适当的地方加一个垂直于xy平面、磁感应强度为B的匀强磁场。若此磁场仅分布在一个圆形区域内,试求这圆形磁场区域的最小半径。重力忽略不计。 《带电粒子在磁场运动的临界与极值》反馈训练 1. 一个质子和一个α粒子沿垂直于磁感线方向从同一点射入一个匀

解决带电粒子在有界磁场中运动的临界问题的两种方法

解决带电粒子在有界磁场中运动的临界问题的两种方法 此类问题的解题关键是寻找临界点,寻找临界点的有效方法是: ①轨迹圆的缩放: 当入射粒子的入射方向不变而速度大小可变时,粒子做圆周运动的圆心一定在入射点所受洛伦兹力所表示的射线上,但位置(半径R)不确定,用圆规作出一系列大小不同的轨迹图,从圆的动态变化中即可发现“临界点”. 例1一个质量为m,带电量为+q的粒子(不计重力), 从O点处沿+y方向以初速度射入一个边界为矩形的匀强 磁场中,磁场方向垂直于xy平面向里,它的边界分别是 y=0,y=a,x=-1.5a,如图所示,那么当B满足条件_________ 时,粒子将从上边界射出:当B满足条件_________时, 粒子将从左边界射出:当B满足条件_________时,粒子 将从下边界射出: 例2 如图9-8所示真空中宽为d的区域内有强度为B的匀强磁场方向如图,质量m带电-q的粒子以与CD成θ角的速度V0垂直射入磁场中。要使粒子必能从EF射出,则初速度V0应满足什么条件?EF上有粒子射出的区域? 【审题】如图9-9所示,当入射速度很小时电子会在磁场中转动一段圆弧后又从同一侧射出,速率越大,轨道半径越大,当轨道与边界相切时,电子恰好不能从另一侧射出,当速率大于这个临界值时便从右边界射出,依此画出临界轨迹,借助几何知识即可求解速度的临界值;对于射出区域,只要找出上下边界即可。 【解析】粒子从A点进入磁场后受洛伦兹力作匀速圆周运动,要使粒子必能从EF射出,则 相应的临界轨迹必为过点A并与EF相切的轨迹如图9-10所示,作出A、P点速度的垂线相交于O/即为该临界轨迹的圆心。 临界半径R0由 d Cosθ R R0 = + 有: θ + = Cos 1 d R0 ; 故粒子必能穿出EF的实际运动轨迹半径R≥R0 即: θ + ≥ = Cos 1 d qB mv R0 有: ) Cos 1( m qBd v0 θ + ≥ 。 图9-8 图9-9 图 9-10

带电粒子在匀强磁场中的运动-各个方向

高二物理选修3-1第三章磁场第六节带电粒子在匀强磁场中的运动有界磁场向各个方向运动专题专项训练 习题集 【知识点梳理】 在有界的磁场中从同一点向各个方向发射出去的相同的带电粒子在运动中,存在两种情况。当它们的速度大小不同时,在磁场中运动的半径不同,相同的带电粒子,在相同的磁场中运动的半径与速度成正比。当它们的速度大小相同时,在磁场中运动的半径相同,它们运动圆心的轨迹是在同一个圆周上。这个圆是以发射点为圆心,以带电粒子在此磁场中运动的半径为半径的圆。 【典题强化】 1.如图所示,在直角三角形abc区域内存在垂直于纸面向外的匀强磁场,磁感应强度大小为B,∠a=60°,∠b=90°,边长ab=L。一个粒子源在b点将质量为m,电荷量为q的带负电 粒子以大小和方向不同的速度射入磁场,在磁场中运动时间最长的粒子中, 速度的最大值是() A.qBL/3m B.qBL/3m C.qBL/2m D.qBL/m 2.如图所示,在直角三角形abc区域内存在垂直于纸面向外的匀强磁场,磁感应强度大小为B,∠a=600,∠b=900,边长ac=L。一个粒子源在a点将质量为m、电荷量为q的带正电粒 子以大小和方向不同的速度射入磁场,在磁场中运动时间最长的粒子中,速 度的最大值是() A.qBL/2m B.qBL/6m C.qBL/4m D.qBL/6m 3.如图所示,在xOy平面内有一半径为r的圆形磁场区域,其内分布着磁感应强度为B方向垂直纸面向里的匀强磁场,圆形区域边界上放有圆形的感光胶片,粒子打在其上会感光。在 磁场边界与x轴交点A处有一放射源A,发出质量为m,电量为q的粒子沿垂直 磁场方向进入磁场,其方向分布在由AB和AC所夹角度内,B和C为磁区边界 与y轴的两个交点.经过足够长的时间,结果光斑全部落在第Ⅱ象限的感光胶片 上,则这些粒子中速度最大的是() A.qBr/2m B.qBr/2m C.qBr/m D.(2+)qBr/m 4.如图所示,在半径为R的圆形区域内,有匀强磁场,磁感应强度为B,方向垂直于圆平面(未画出)。一群比荷都为α的负离子体以相同速率v0(较大),由P点在纸平面内向不同方向射入磁场中发生偏转后,又飞出磁场,则下列说法正确的是(不计重力)() A.离子飞出磁场时的动能一定相等 B.离子在磁场中运动半径不一定相等 C.沿PQ方向射入的离子飞出时偏转角最大 D.由Q点飞出的离子在磁场中运动的时间最长 5.如图所示,在半径为R的圆形区域内,有匀强磁场,方向垂直于圆平面(未画出).一群相同的带电粒子以相同速率v0,由P点在纸平面内向不同方向射入磁场.当磁感应强度大小为B1时,所有粒子出磁场的区域占整个圆周长的1/3;当磁感应强度大小减小为B2时,这些粒子在磁场中 运动时间最长的是2πR/3v0.则磁感应强度B1、B2的比值(不计重力)是()

有界磁场问题及磁场中的临界问题

有界磁场问题 直线边界磁场 1、如图所示,在y<0的区域内存在匀强磁场,磁场方向垂直于xy平面并指向纸面向里,磁感强度为B.一带负电的粒子(质量为m、电荷量为q)以速度v0从O点射入磁场,入射方 向在xy平面内,与x轴正向的夹角为θ.求: (1)该粒子射出磁场的位置 (2)该粒子在磁场中运动的时间.(粒子所受重力不计) 2、如图所示直线MN上方有磁感应强度为B的匀强磁场。正、负电子同时从同一点O以与MN成30°角的同样速度v 射入磁场(电子质量为m,电荷为e),它们从磁场中射出 时相距多远?射出的时间差是多少? 圆形边界磁场 1、如图所示,带负电的粒子垂直磁场方向进入圆形匀强磁场区域,出磁场时速度偏离原方向60°角,已知带电粒子质量m=3×10-20kg,电量q=10-13C,速度v0=105m/s,磁场区域的半径R=3×10-1m,不计重力,求磁场的磁感应强度。 2、如图所示,虚线所围区域内有方向垂直纸面向里的匀强磁场,磁感应强度为B。一束电子沿圆形区域的直径方向以速度v射入磁场,电子束经过磁场区后,其运动的方向与原入射方向成θ角。设电子质量为m, 电荷量为e,不计电子之间的相互作用力及所受的重力。求: (1)电子在磁场中运动轨迹的半径R; (2)电子在磁场中运动的时间t; (3)圆形磁场区域的半径r。

磁场中的临界问题 放缩法找临界 1、在真空中宽d的区域内有匀强磁场B,质量为m,电量为e,速率为v的电子从边 界CD外侧垂直射入磁场,入射方向与CD夹角θ,为了使电子能从磁场的另一侧边界 EF射出,v应满足的条件是:() A.v>eBd/m(1+sinθ)B.v>eBd/m(1+cosθ) C.v>eBd/msinθD.v<eBd/mcosθ 2、如图所示,一足够长的矩形区域abcd内充满方向垂直纸面向里的、磁感应强度为B的匀强磁场,在ad 边中点O方向垂直磁场射入一速度方向跟ad边夹角θ=300、大小为v0的带电粒子,已知粒子质量为m、电量为q,ab边足够长,ad边长为L,粒子的重力不计。求:⑴.粒子能从ab边上射出磁场的v0大小范围。 ⑵.如果带电粒子不受上述v0大小范围的限制,求粒子在磁场中运动的最长时间。 平移法找临界 1、如图,真空室内存在匀强磁场,磁场方向垂直于纸面向里,磁感应强度的大小B=0.60T,磁场内有一块平面感光板ab,板面与磁场方向平行,在距ab的距离L=16cm处,有一个点状的放射源S,它向各个方向发射α粒子,α粒子的速度都是v=4.8x106 m/s,已知α粒子的电荷与质量之比q/m=5.0x107C/kg现只考虑在图纸平面中运动的α粒子,求ab上被α粒子打中的区域的长度.

带电粒子在有界磁场中运动的临界问题_教案[1]

带电粒子在有界磁场中运动的临界问题 此类问题的解题关键是寻找临界点,寻找临界点的有效方法是: ① 轨迹圆的缩放: 当入射粒子的入射方向不变而速度大小可变时,粒子做圆周运动的圆心一定在入射点所受洛伦兹力所表示的射线上,但位置(半径R )不确定,用圆规作出一系列大小不同的轨迹图,从圆的动态变化中即可发现“临界点”. 例1 一个质量为m ,带电量为+q 的粒子(不计重力),从O 点处沿+y 方向以初速度射入一个边界为矩形的匀强磁场中,磁场方向垂直于xy 平面向里,它的边界分别是y=0,y=a,x=-1.5a,如图所示,那么当B 满足条件_________时,粒子将从上边界射出:当B 满足条件_________时,粒子将从左边界射出:当B 满足条件_________时,粒子将从下边界射出: 例2 如图9-8所示真空中宽为d 的区域内有强度为B 的匀强磁场方向如图,质量m 带电-q 的粒子以与CD 成θ角的速度V0垂直射入磁场中。要使粒子必能从EF 射出,则初速度V0应满足什么条件?EF 上有粒子射出的区域? 【审题】如图9-9所示,当入射速度很小时电子会在磁场中转动一段圆弧后又从同一侧射出,速率越大,轨道半径越大,当轨道与边界相切时,电子恰好不能从另一侧射出,当速率大于这个临界值时便从右边界射出,依此画出临界轨迹,借助几何知识即可求解速度的临界值;对于射出区域,只要找出上下边界即可。 【解析】粒子从A 点进入磁场后受洛伦兹力作匀速圆周运动,要使粒子必能从EF 射出,则 相应的临界轨迹必为过点A 并与EF 相切的轨迹如图9-10所示,作出A 、P 点速度的垂线相 交于O/即为该临界轨迹的圆心。 临界半径R0由d Cos θR R 00=+ 有: θ += Cos 1d R 0; 故粒子必能穿出EF 的实际运动轨迹半径R ≥R0 即: θ+≥ = Cos 1d qB mv R 0 有: )Cos 1(m qBd v 0θ+≥ 。 图9-8 图9-9 图9-10

带电粒子在匀强磁场中的运动

带电粒子在匀强磁场中的运动 毛卫娟 一、教学目标 1.知识与技能 (1)理解洛伦兹力对粒子不做功。 (2)理解带电粒子的初速度方向与磁感应强度的方向垂直时,粒子在匀强磁场中做匀速 圆周运动。 (3)会推导带电粒子在匀强磁场中做匀速圆周运动的半径、周期公式,知道它们与哪些 因素有关,并会用它们解答有关问题。 (4)知道质谱仪的工作原理。知道回旋加速器的基本构造、工作原理及用途。 2.过程与方法 通过综合运用力学知识、电磁学知识解决带电粒子在复合场(电场、磁场)中的问题,培养学生的分析推理能力。 3.情感、态度与价值观 通过本节知识的学习,充分了解科技的巨大威力,体会科技的创新与应用历程。 二、教学重点难点 重点:带电粒子在匀强磁场中做匀速圆周运动的半径和周期公式,并能用来分析有关问题。 难点:带电粒子在匀强磁场中的受力分析及运动径迹。 三、教学方法 实验观察法、讲述法、分析推理法。 四、教学用具 洛伦兹力演示仪、电源、投影仪、投影片、多媒体辅助教学设备。 五、教学过程 (一)导入新课 问题1:什么是洛伦兹力? 磁场对运动电荷的作用力 问题2:带电粒子在磁场中是否一定受洛伦兹力? 不一定,洛伦兹力的计算公式为F=qvBsinθ,θ为电荷运动方向与磁场方向的夹角,当θ=90°时,F=qvB;当θ=0°时,F=0。 问题3:带电粒子垂直磁场方向进入匀强磁场时会做什么运动呢?今天我们来学习——带电粒子在匀强磁场中的运动、质谱仪。 (二)推进新课 [演示]先介绍洛伦兹力演示仪的工作原理,由电子枪发出的电子射线可以使管内的低压水银蒸气发出辉光,显示出电子的径迹。后进行实验。 教师进行演示实验。 [实验现象] 在暗室中可以清楚地看到,在没有磁场作用时,电子的径迹是直线;在管外加上匀强磁场(这个磁场是由两个平行的通电环形线圈产生的),电子的径迹变弯曲成圆形。 [教师引导学生分析得出结论] (1)当带电粒子的初速度方向与磁场方向垂直时,粒子在匀强磁场中做匀速圆周运动。 (2)带电粒子垂直进入匀强磁场中的受力及运动情况分析(动态课件)。 一是要明确所研究的物理现象的条件——在匀强磁场中垂直于磁场方向运动的带电粒

【技巧】磁场 带电粒子在磁场中的多解问题

带电粒子在磁场中的多解问题 山东省东营市仙河镇胜利第62中学(257237)高级教师 万洪禄 带电粒子在磁场中的运动并不都是唯一解问题。导致多解的因素比较多。由于篇幅所限,本文只剖析由于带电粒子的电性、速度和磁场方向不确定引起的多解的问题。 一、带电粒子电性引起的多解 带电粒子可能带正电,也可能带负电。在没指明粒子电性时,就要分别从带正电和负电两种情况分析问题,这样就导致问题两解。 例1 如图1所示,匀强磁场的磁感应强度为B ,方向垂直纸面向里,MN 是它的下边界。现有质量为m ,电荷量大小为q 的带电粒子与MN 成30°角垂直射入磁场,求粒子在磁场中运动的时间。 解析 由于不知道粒子带的电性,故有带正电和负电 两种情况.如果带正电,则粒子向左做圆周运动,图2中 左上部分;如果带负电, 则粒子也做圆周运动,图2中 右下部分。 根据2v qvB m R =和2R T v π=,解得2m T qB π= 带正电时,根据几何知识,粒子在磁场中运动的轨 迹对应的圆心角是1106 θπ=,故运动时间 1155263m t T T qB θππ=== 带负电时,根据几何知识,粒子在磁场中运动的轨迹对应的圆心角是213θπ= ,故运动时间221263m t T T qB θππ===。 答案 533m m qB qB ππ或 点拨 带电粒子在匀强磁场中做圆周运动时,要先根据初始条件和洛伦兹力方向并结合是否具有对称性,画出粒子向哪个方向偏转的圆周运动轨迹。计算粒子在磁场中运动时间时,要先 图1

找到轨迹对应的圆心角θ,然后在根据2=)22m t T qB θθπππ= (计算时间。 二、带电粒子速度引起的多解 粒子速度大小不确定,或粒子速度大小与其他物理量的关系不确定,或者粒子的速度方向不确定,这三个方面都可能引起多解。 (1) 粒子速度方向引起多解 例2 如图3所示,在半径为R 的圆形区域内,有匀强磁场,磁感应强度为B ,方向垂直于圆平面(未画出)。一群比荷为m q 的负离子体以相同速率v 0(较大),由P 点在纸平面内向不同方向射入磁场中发生偏转后,又飞出磁场,则下列说法正确的是(不计重力) ( ) A .离子飞出磁场时的动能一定相等 B .离子在磁场中运动半径一定相等 C .由Q 点飞出的离子在磁场中运动的时间最长 D .沿PQ 方向射入的离子飞出时偏转角最大 解析 本题是离子在圆形有界磁场中的运动问题,离子轨迹半径0mv r qB =,据题知B 对;因为速度较大,故半径较大,要大于圆形磁场半径,这样在轨迹半径一定时,轨迹的弧长越长,在磁场中运动时间越长,轨迹最大弧长对应的弦只能等于有界磁场的直径,所以由Q 点飞出的离子在磁场中运动的时间最长,射出时偏转角最大,故C 对D 错;因为洛伦兹力不做功,故每个离子的动能不变,而粒子速度相同,但离子质量不一样,所以飞出磁场时的动能不一定相等,A 错。 答案 BC 点拨 洛伦兹力不做功,洛伦兹力不改变粒子的速率,只改变运动方向。(2)确定运动半径根据2v qvB m r =确定,即最终根据mv r qB =确定。周期一定时,偏转角大对应的运动时间长。 (2)速率引起的多解 例3 如图4所示,一质量为m ,电荷量为q 的带正电绝缘体物块位于高度略大于物块高的水平宽敞绝缘隧道中,物块上、下表面与隧道上、下表面的动摩擦因数均为μ,整个空间中存在垂直纸面向里,磁感应强度为B 的水平匀强磁场。现给物块水平向右的初速度v 0,空气阻力忽略不计,物块电荷量不变,隧道足够长,则整个运动过程中,物块克服阻力做功可能是( ) P Q 图3

相关文档
最新文档