13.4《最短路径问题(1)》教案
人教版数学八年级上册13.4新课学习,最短路径的问题优秀教学案例

-以道路施工情境为例,演示如何利用坐标系求解最短路径。
3.分析解题步骤,引导学生掌握求解最短路径的基本方法。
-梳理解题思路,强调关键步骤,提高学生解题能力。
(三)学生小组讨论
1.将学生分成小组,针对给定的问题进行讨论,共同寻找最短路径的解决方案。
本案例以一个具体的实际情境为背景:假设我们所在的城市的某段道路正在施工,需要找到一条从起点到终点的最短路径。通过这个情境,让学生感受到数学知识在解决实际问题时的重要性,激发他们的学习兴趣。在此基础上,我们将引导学生运用坐标系中的距离公式,结合生活实际,寻求最佳解决方案。
在教学过程中,注重培养学生的合作意识和探究精神,鼓励他们积极参与课堂讨论,分享自己的解题思路和心得。通过师生互动、生生互动,共同探索最短路径问题,使学生在轻松愉快的氛围中掌握数学知识,提高解决问题的能力。
-引导学生思考如何在复杂的道路网中找到一条最短路径。
2.通过生活中的实例,让学生认识到最短路径问题的实际意义。
-示例:“假设我们从学校出发,到附近的超市购物,如何选择一条最短路径?”
-让学生初步感知最短路径问题与日常生活的紧密联系。
(二)讲授新知
1.介绍平面直角坐标系中两点间距离的计算方法。
-讲解距离公式的推导过程,让学生理解并掌握其原理。
(三)情感态度与价值观
1.激发学生对数学学科的兴趣,使其认识到数学在解决实际问题中的重要性。
2.培养学生面对问题时,勇于挑战、积极探究的精神风貌,增强自信心。
3.通过解决最短路径问题,使学生体会数学知识在实际生活中的应用,培养学以致用的意识。
4.培养学生具有严谨、细致的学习态度,养成良好的学习习惯。
人教版八年级数学上册13.4课题学习最短路径问题优秀教学案例

4.鼓励学生在课后进行深入研究,不断提高自己的数学素养。
五、案例亮点
1.生活实例引入:通过引入实际生活中的最短路径问题,如旅行路线规划、物流配送等,使学生能够直观地理解最短路径问题的意义和应用,提高学生的学习兴趣。
3.教师引导学生运用坐标系、函数、图论等知识,分析问题、解决问题。
(三)小组合作
1.学生分组进行讨论,培养学生的团队合作意识。
2.教师组织小组间的交流与分享,促进学生间的互帮互助。
3.教师巡回指导,针对不同小组的特点进行针对性指导。
(四)反思与评价
1.教师引导学生对自己的学习过程进行反思,总结最短路径问题的解决方法。
人教版八年级数学上册13.4课题学习最短路径问题优秀教学案例
一、案例背景
本节内容为“人教版八年级数学上册13.4课题学习最短路径问题”,是在学生已经掌握了平面直角坐标系、一次函数和二次函数等基础知识的基础上进行学习的。通过对最短路径问题的探究,旨在培养学生的逻辑思维能力、空间想象能力和解决问题的能力。
3.组织学生探讨、交流最短路径问题的解决方法,培养学生合作学习的能力。
4.引导学生运用图论中的最短路径算法解决实际问题,提高学生运用所学知识解决实际问题的能力。
5.对学生进行评价,了解学生对最短路径问题的理解和运用程度,及时进行教学调整。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发学生学习数学的积极性。
2.设计具有挑战性和吸引力的数学问题,激发学生的求知欲。
3.创设轻松、愉快的学习氛围,使学生在课堂上敢于发表自己的观点,培养学生的创新精神。
(二)问题导向
1.引导学生提出问题,如“如何找到两点之间的最短路径?”、“最短路径问题在实际生活中有哪些应用?”等。
13_4《最短路径问题》教案

13.4:最短路径问题
学习目标:1、利用轴对称解决两点之间最短路径问题
2、通过问题解决培养学生转化问题水平
3、数学来源实际服务生活,培养数学学习兴趣
学习流程: 问题1:
牧马人从A 地出发,到一条笔直的河边l 饮马,然后到B 地.到河边什
么地方饮马可使他所走的路线全程最短?
问题2:如图,A.B 两地在一条河的两岸,现要在河上建一座桥MN ,桥造在何处才能使从A 到B 的路径AMNB 最短。
(假设河的两岸是平行的直线,桥要与河垂直)
课堂小结:
B
A
l
这节课你学到了什么,有什么体会。
巩固练习:
1、某班举行晚会,桌子摆成两直条(如图中的AO,BO),AO桌面上摆满了桔子,OB 桌面上摆满了糖果,坐在C处的学生小明先拿桔子再拿糖果,然后回到座位,请你协助他设计一条行走路线,使其所走的总路程最短?
2、如图:C为马厩,D为帐篷,牧马人某一天要从马厩牵出马,先到草地边某一处牧马,再到河边饮马,然后回到帐篷,请你帮他确定这一天的最短路线。
F。
八年级数学上册 13.4 课题学习 最短路径问题教学设计 (新版)新人教版

八年级数学上册 13.4 课题学习最短路径问题教学设计(新版)新人教版一. 教材分析“课题学习最短路径问题”是人教版八年级数学上册第13.4节的内容。
这部分内容主要让学生了解最短路径问题的实际应用,学会使用图论中的最短路径算法来解决实际问题。
教材通过引入一个实际问题,引导学生探讨并找出解决问题的方法,从而培养学生解决问题的能力和兴趣。
二. 学情分析八年级的学生已经掌握了图论的基本知识,如图的定义、图的表示方法等。
但是,对于图的最短路径问题,学生可能还没有直观的理解和认识。
因此,在教学过程中,教师需要结合学生的已有知识,通过实例讲解、动手操作等方式,帮助学生理解和掌握最短路径问题。
三. 教学目标1.知识与技能目标:让学生了解最短路径问题的实际应用,学会使用图论中的最短路径算法来解决实际问题。
2.过程与方法目标:通过探讨实际问题,培养学生解决问题的能力和兴趣。
3.情感态度与价值观目标:培养学生对数学的热爱,提高学生解决实际问题的能力。
四. 教学重难点1.教学重点:最短路径问题的实际应用,图论中的最短路径算法。
2.教学难点:如何引导学生从实际问题中抽象出最短路径问题,并运用图论知识解决。
五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,引导学生主动探究。
2.实例讲解法:通过具体的实例,讲解最短路径问题的解决方法,帮助学生理解和掌握。
3.动手操作法:让学生亲自动手操作,加深对最短路径问题的理解。
六. 教学准备1.教学素材:准备一些实际问题的案例,以及相关的图论知识介绍。
2.教学工具:多媒体教学设备,如PPT等。
3.学生活动:让学生提前预习相关内容,了解图论的基本知识。
七. 教学过程1.导入(5分钟)通过一个实际问题引入最短路径问题,激发学生的学习兴趣。
例如,讲解从一个城市到另一个城市,如何找到最短的路线。
2.呈现(15分钟)讲解最短路径问题的定义,以及图论中最短路径算法的基本原理。
通过PPT等教学工具,展示相关的知识点,让学生直观地了解最短路径问题。
13.4 课题学习 最短路径问题教案

XX市XXX中学统一备课用纸科目数学年级八年级班级授课时间年月日课题13.4 课题学习最短路径问题课型新授课教学目标1.学会最短路径问题灵活运用.2.利用轴对称平移解决实际问题中路径最短的问题.体会转化类比的数学思想.3.通过独立思考,合作探究,培养学生运用数学知识解决实际问题的基本能力,感受学习成功的快乐.教学重点将实际问题转化成数学问题,运用轴对称平移解决生活中路径最短的问题,确定出最短路径的方法.教学难点探索发现“最短路径”的方案,确定最短路径的作图及原理.教具准备多媒体及课件教学内容及过程教学方法和手段一、引入新课古从军行[唐] 李颀白日登山望烽火,黄昏饮马傍交河.行人刁斗风沙暗,公主琵琶幽怨多.野云万里无城郭,雨雪纷纷连大漠.胡雁哀鸣夜夜飞,胡儿眼泪双双落.闻道玉门犹被遮,应将性命逐轻车.年年战骨埋荒外,空见蒲桃入汉家.唐朝诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题.如图所示,诗中将军在观望烽火之后从山脚下的A点出发,走到河边饮马后再到B点宿营.请问怎样走才能使总的路程最短?这个问题早在古罗马时代就有了,传说亚历山大城有一位精通数学和物理的学者,名叫海伦.一天,一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题.将军每天都要骑马从城堡A出发,到城堡B,途中马要到小河边饮水一次,将军想知道:要到小河的什么位置饮马才能使路径最短?从此,这个被称为"将军饮马"的问题广泛流传.这个问题的解决并不难,据说海伦略加思索就解决了它.二、探究性质将军每天都要骑马从城堡A出发,到城堡B,途中马要到小河边饮水一次,将军想知道:要到小河的什么位置饮马才能使路径最短?作图问题:在直线l上求作一点C,使AC+BC最短问题.动手操作:1.如图,连接A、B两点的所有连线中,哪条最短?为什么?②最短,因为两点之间,线段最短2.如图,点P是直线l外一点,点P与该直线l上各点连接的所有线段中,哪条最短?为什么?PC最短,因为垂线段最短3.在我们前面的学习中,还有哪些涉及比较线段大小的基本事实?三角形三边关系:两边之和大于第三边;斜边大于直角边.三、典例分析例如图,一艘旅游船从大桥AB的P处把游客送往河岸BC处,由于客流量大,需立马赶到Q处接下一批游客,请画出旅游船的最短路径.变式如图,一艘旅游船从大桥AB 的P 处前往山脚下的Q 处接游客,然后将游客送往河岸BC 上,再返回P 处,请画出旅游船的最短路径.四、基础小练1.如图,直线l是一条河,P,Q两地相距8 km,P,Q两地到l的距离分别为2 km,5 km,欲在l上的某点M处修建一个水泵站,向P,Q两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则铺设的管道最短的是( )2.如图,在△ABC中,AB=AC=10,BC=12,AD=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是( )A.4.8 B.9.6 C.10 D.123.如图,正方形ABCD,M是BC的中点,P是对角线BD上一动点,要使PM+PC的值最小,请确定P点的位置.4.如图,已知菱形ABCD,M、N分别是AB、BC的中点,P是对角线AC上一动点,要使PM+PN的值最小,请确定P点的位置.OAMN5.如图,在Rt △ABC 中,∠A=30°,∠C=90°,且BC=1,MN 为AC 的垂直平分线,设P 为直线MN 上任一点,PB+PC 的最小值为____.6.如图,在直角坐标系中,点A ,B 的坐标分别为(1,4)和(3,0),点C 是y 轴上的一个动点,且A ,B ,C 三点不在同一条直线上,当△ABC 的周长最小时点C 的坐标是( )A .(0,3)B .(0,2)C .(0,1)D .(0,0)MADBCNMCDAB五、拓展提升7.已知:如图A 是锐角∠MON 内部任意一点,在∠MON 的两边OM ,ON 上各取一点B ,C ,组成三角形,使三角形周长最小.分别作点A 关于OM ,ON 的对称点A′,A″;连接A′,A″,分别交OM ,ON 于点B 、点C ,则点B 、点C 即为所求.8.如图,A 和B 两地在一条河的两岸,现要在河上造一座桥MN ,桥造在何处可使从A 到B 的路径AMNB 最短)(假定河的两岸是平行的直线,桥要与河垂直.)→造桥选址问题 (问题解决)如图,平移A 到A1,使AA1等于河宽,连接A1B 交河岸于N 作桥MN ,此时路径AM+MN+BN 最短. 理由:另任作桥M1N 1,连接AM 1,BN 1,A 1N 1.由平移性质可知,AM =A 1N ,AA 1=MN =M 1N 1,AM 1=A 1N 1.AM+MN+BN 转化为AA 1+A 1B ,而AM 1+M 1M 1+BN 1转化为AA 1+A 1N 1+BN 1. 在△A 1N 1B 中,由线段公理知A1N1+BN1>A1B . 因此AM 1+M 1N 1+BN 1> AM+MN+BN .六、课堂小结最短路径问题[实际问题→(转化思想)抽象→数学模型] 原理→线段公理+垂线段最短将军饮马→方法→轴对称知识+线段公理(同侧问题→转化思想[轴对称]→异侧问题) 造桥选址→方法→将固定线段“桥”平移,构造平行四边形,将问题转化为平行四形的问题 教 学反 思。
134《最短路径问题》教案

学科:数学授课教师:年级:八总第课时课题13.4:最短路径问题课时利用轴对称解决两点之间最短路径问题知识与技能通过问题解决培养学生转化问题能力教学目标过程与方法情感价值观数学来源实际服务生活,培养数学学习兴趣教学重点利用轴对称解决两点之间最短路径问题教学难点如何把问题转化为“两点之间,线段最短”教学方法创设情境-主体探究-合作交流-应用提高媒体资源多媒体投影教学过程学生设计教学教学活动流程活动意图创设1、在平面内连接两点的所有线中线段最短。
思考引入情境2、什么是两点之间的距离?回答课题直线思考异侧异侧已知点 A 、B 分别是直线 l 异侧的两点,如何在 l分析两点两点上找到一个点,使得这个点到 A、B 两点的距离和最短?最短最短路径路径直线如图,牧童在 A 处放马,其家在 B 处, A 、 B 到河岸的距离分直线同侧别为 AC 和 BD ,且 AC=BD ,若点 A 到河岸 CD 的中点的距离探究同侧两点为 500 米,则牧童从 A 处把马牵到河边饮水再回家,最短距离合作两点最短是多少米交流最短路径路径变式练习如图,∠ XOY内有一点 P,在射线 OX上找出一点 M,在射探究线 OY上找出一点 N,使 PM+MN+NP最短.合作巩固交流深化如图,正方形ABCD,AB边上有一点 E,AE=3,EB=1,在 AC上有一点 P,使 EP+BP为最短.求:最短距离EP+BP.合作交流应用练习应用提高提高提高如图,村庄 A 、B 位于一条小河的两侧,若河岸 a、b 彼此平行,现在要建设一座与河岸垂直的桥 CD ,问桥址应如何选择,才能使 A 村到 B 村的路程最近?课堂利用轴对称解决两点之间最短路径问题小结作业P93 页:第 15 题布置教学反思。
人教版八年级上册数学13.4 课题学习《最短路径问题》教案设计
13.4课题学习《最短路径问题》教学设计教学目标:知识与技能:通过对最短路径问题的探索,进一步理解和掌握两点之间线段最短和垂线段最短。
过程与方法:让学生经历运用所学知识解决问题的过程,培养学生解决问题的能力,掌握探索最短路径问题的思想好方法。
情感态度与价值观:在数学学习活动中活动成功的体验,树立自信心,激发学习的兴趣,感受到数学与现实生活的密切联系。
教学重点:运用所学知识解决最短路径问题。
教学难点:选择合理的方法解决问题。
教学过程:最短路径问题(1)出示如图所示:从A地到B地有三条路可供选择,你会选择哪条路距离最短?你的理由是什么?两点之间,线段最短(2)求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这两点,与直线的交点即为所求.例1:如图,要在燃气管道L上修建一个泵站,分别向A、B两镇供气,泵站修在管道的什么地方,可使所用的输气管线最短?:解:如图所示,点A,B分别是直线l异侧的两个点,在l上找一个点C,使CA+CB最短,这时点C是直线l与AB的交点.归纳:求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这两点,与直线的交点即为所求.例2:如图,如果A,B在燃气管道L的同旁,泵站应修在管道的什么地方,可使所用的输气管线最短?分析:点A,B分别是直线l同侧的两个点,在l上找一个点C,使CA+CB最短,这时先作点B关于直线l的对称点B′,则点C是直线l与AB′的交点.为了证明点C的位置即为所求,我们不妨在直线上另外任取一点C′,连接AC′,BC′,B′C′,证明AC+CB<AC′+C′B.如下:证明:由作图可知,点B和B′关于直线l对称,所以直线l是线段BB′的垂直平分线.因为点C与C′在直线l上,所以BC=B′C,BC′=B′C′.在△AB′C′中,AB′<AC′+B′C′,所以AC+B′C<AC′+B′C′,所以AC+BC<AC′+C′B.归纳:求直线同侧的两点与直线上一点所连线段的和最小的问题,只要找到其中一个点关于这条直线的对称点,连接对称点与另一个点,则与该直线的交点即为所求.练习:1 在图中直线l上找到一点M,使它到A,B两点的距离和最小.分析:先确定其中一个点关于直线l的对称点,然后连接对称点和另一个点,与直线l的交点M即为所求的点.解:如图所示:(1)作点B关于直线l的对称点B′;(2)连接AB′交直线l于点M.(3)则点M即为所求的点.点拨:运用轴对称变换及性质将不在一条直线上的两条线段转化到一条直线上,然后用“两点之间线段最短”解决问题.2.运用轴对称解决距离最短问题运用轴对称及两点之间线段最短的性质,将所求线段之和转化为一条线段的长,是解决距离之和最小问题的基本思路,不论题目如何变化,运用时要抓住直线同旁有两点,这两点到直线上某点的距离和最小这个核心,所有作法都相同.警误区利用轴对称解决最值问题应注意题目要求根据轴对称的性质、利用三角形的三边关系,通过比较来说明最值问题是常用的一种方法.解决这类最值问题时,要认真审题,不要只注意图形而忽略题意要求,审题不清导致答非所问.3.生活中的距离最短问题由两点之间线段最短(或三角形两边之和大于第三边)可知,求距离之和最小问题,就是运用等量代换的方式,把几条线段的和想办法转化在一条线段上,从而解决这个问题,运用轴对称性质,能将两条线段通过类似于镜面反射的方式转化成一条线段,如图,AO+BO=AC的长.所以作已知点关于某直线的对称点是解决这类问题的基本方法.(实际应用题)某中学八(2)班举行文艺晚会,桌子摆成如图a所示两直排(图中的AO,BO),AO桌面上摆满了橘子,OB桌面上摆满了糖果,站在C处的学生小明先拿橘子再拿糖果,然后到D处座位上,请你帮助他设计一条行走路线,使其所走的总路程最短?图a 图b解:如图b.(1)作C点关于OA的对称点C1,作D点关于OB的对称点D1,(2)连接C1D1,分别交OA,OB于P,Q,那么小明沿C→P→Q→D的路线行走,所走的总路程最短。
人教版初中数学八年级上册 13.4 课题学习 最短路径问题 初中八年级上册数学教案教学设计课后反思
【学生反思】:第 1 种 作法是利用“垂线段最 短”,得到 AC 最短,利 用“两点之间线段最 短”,得到 BC 最短,但 不能确定 AC+BC 是最短 的。
第 2 种作法只能说明在 河 l 上取一点,到 A、B 两地的距离相等,也就 是 AC=BC。不能说明 AC+BC 最短
第 3 种作法应该是正确 的。
先,我们要将实际问题变成一 之后通过证明,验证猜
个数学问题(群答),也就是 想,从而得出结论,最
抽象成一个数学模型,这样可 后再将结论运用到实际
以帮助我们进行实验观察,进 问题里。
课 而运用合情推理得到一个猜
堂 想,然后我们可以通过严谨的
小 逻辑证明,验证猜想,从而得 结 出结论,最后再将结论运用到
课题名称 课时
13.4 最短路径问题教案
13.4 最短路径问题
类型
第一课时
授课教师
新授课 张琪
知识与 技能目 能利用所学轴对称的知识解决简单的最短路径问题 教标
学 过程与 在探索最短路径的过程中,培养学生的探究能力、数学归纳能 方法目 力,分析问题、解决问题的能力
目标
标 情感态 在探索最短路径的过程中,让学生感悟转化的思想,获得成功的 度与价 体验 值观
发 除了作点 B 关于直线 l 的对称 还可以作点 A 关于直线 散 点以外,还有没有别的作法? l 的对称点。 思
维
先将实际问题转化为数
得 【问题】:我们是如何解决将 学问题。然后作其中一
出 军饮马问题的?
个点关于直线 l 的对称
结
点,连接对称点和另一
ቤተ መጻሕፍቲ ባይዱ
论
点与直线的交点就是满
足最短距离的点的位
13.4-将军饮马——最短路径问题教学设计
13.4最短路径问题教学设计教学目标能利用轴对称、平移解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用,感悟领会转化的数学思想,培养学生探究问题的兴趣和合作交流的意识,感受数学的实用性,体验自己探究出问题的成就感.教学重点利用轴对称、平移等变换将最短路径问题转化为“两点之间,线段最短”问题.教学难点如何利用轴对称将最短路径问题转化为线段和最小问题.教学过程一、回顾旧知1.从A地到B地有三条路可供选择,你会选走哪条路最近?你的理由是什么?2.要在河边修建一个泵站向张村引水,在何处修建才能使所用引水管道最短?为什么?前面我们研究过一些关于“两点的所有连线中,线段最短”、“连接直线外一点与直线上各点的所有线段中,垂线段最短”等的问题,我们称它们为最短路径问题.现实生活中经常涉及到选择最短路径的问题。
二、探索新知1、建立模型问题1 唐朝诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河”.诗中隐含着一个有趣的数学问题.如图1所示,诗中将军在观望烽火之后从山脚下的指挥部A地出发,到一条笔直的河边饮马,然后到军营B地,到河边什么地方饮马可使他所走的路线全程最短?追问1,这是一个实际问题,你打算首先做什么呢?师生活动:将A、B两地抽象为两个点,将河抽象为一条直线追问2,你能用自己的语言说明这个问题的意思,并把它抽象为数学的问题吗?师生活动:学生交流讨论,回答并相互补充,最后达成共识:(1)行走的路线:从A地出发,到河边饮马,然后到B地;(2)路线全程最短转化为两条线段和最短;(3)现在的问题是怎样找出使两条线段长度之和为最短的直线上的点.设C为直线l上的一个动点,上面的问题转化为:当点C 在的什么位置时,AC与CB的和最小2、解决问题问题2如图点A、B在直线的同侧,点C位直线上的一个动点,当点C在的什么位置时,AC与CB的和最小?师生活动:让学生独立思考、画图分析,并展示如果学生有困难,教师作如下提示:(1)如图,如果军营B地在河对岸,点C在的什么位置时,AC与CB的和最小?由此受到什么启发呢?(2)如图,如何将点B“移”到的另一侧B´处,且满足直线上的任意一点C,都保持CB与CB´的长度相等?学生在老师的启发引导下,完成作图.3、证明“最短”问题3,为什么这种作法是正确的呢?你能用所学的知识证明AC+CB最短吗?师生活动:分组讨论,教师引导点拨,结合多媒体的演示,师生共同完成证明过程.证明:如图,在直线上任取一点Cˊ.连接AC´、BC´、B´C´.由轴对称的性质可知:BC=B´C BC´.=B´C´∴AC+BC=AC+B´C=AB´AC´+BC´=AC´+B´C´当C´与C不重合时当C´与C重合时A B´<AC´+C´B´AC+BC=AC´+C´B∴AC+BC<AC´+C´B总之,AC+B C≤AC´+C´B,即AC+BC最短4、小结新知回顾前面的探究过程,我们是通过怎样的过程,借助什么解决问题的?体现了什么数学思想?师生活动:学生回答,并相互补充.三、运用新知如图,如果将军从指挥部A地出发,先到河边a某一处饮马,再到草地边b某一处牧马,然后来到军营B地,请画出最短路径.师生活动:分组讨论,教师点拨,点学生上台操作演示,画出最短路径.四、拓展新知有一天,将军突发奇想:如果从指挥部A地出发,到一条笔直的河边a某处饮马,然后沿着河边行走一定的路程再来到军营B地,到河边什么地方饮马可使所走的路线全程最短?师生活动:1、老师首先解释行走一定的路程的含义,引导学生将实际问题抽象为数学问题,再提出如下问题:(1)要使所走的路线全程最短,实际上是使几条线段之和最短?(2)怎样将问题转化为“两点之间,线段最短”的问题.2、分组讨论,师生共同分析.3、完成作图,体会作图的步骤与分析问题的思路的联系与区别.五、提炼新知师生一起回顾本节课所学的主要内容,并请学生回答以下问题:1、本节课研究问题的过程是什么?2、解决上述问题运用了什么知识?3、在解决问题的过程运用了什么方法?4、运用上述方法的目的是什么?体现了什么样的数学思想?六、课外思考将军又提出一个问题:如图,如果将军从指挥部A地出发,到一条笔直的河边a某处饮马,然后沿着河边行走一定的路程,再来到草地边b某一处牧马,最后来到军营B地,到河边什么地方饮马、草地边何处牧马可使所走的路线全程最短呢?。
人教版八年级上册数学13.4课题学习最短路径问题优秀教学案例
(三)情感态度与价值观
1.让学生在解决实际问题的过程中,体验数学的乐趣,提高学生学习数学的兴趣。
2.培养学生面对困难时积极思考、勇于挑战的精神,增强学生的自信心。
3.使学生认识到数学在生活中的重要性,培养学生的数学应用意识和社会责任感。
三、教学重难点
2.跨学科教学:结合其他学科的知识,如地理、信息技术等,拓宽学生的知识视野,培养学生的综合能力。
六、教学资源
1.教材:人教版八年级上册数学教材。
2.辅助材料:相关的最短路径问题的案例、练习题和拓展问题。
3.现代教育技术:多媒体课件、网络资源等。
七、教学评价
1.学生评价:通过学生的课堂表现、作业完成情况和练习成绩等方面进行评价。
(二)讲授新知
在导入新课后,我会开始讲解最短路径问题的相关知识。首先,我会向学生们介绍最短路径问题的定义,让学生们明白什么是最短路径。接着,我会讲解解决最短路径问题的基本方法,如坐标系法、函数法等。在讲解的过程中,我会结合具体的例子,让学生们更直观地理解这些方法。
(三)学生小组讨论
在讲授完新知识后,我会让学生们进行小组讨论。我会给每个小组提供一个实际问题,让他们运用所学知识,合作解决这个最短路径问题。这样的讨论,可以培养学生的团队合作精神,也可以让学生们在实践中加深对知识的理解和应用。
3.互动评价:小组之间进行互动评价,相互学习和提高。
(四)反思与评价
1.自我反思:引导学生对自己的学习过程进行反思,发现自身的优点和不足,制定改进措施。
2.同伴评价:学生之间相互评价,给予意见和建议,促进共同进步。
3.教师评价:教师对学生的学习情况进行评价,关注学生的个体差异,给予鼓励和指导。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13.4 课题学习最短路径问题(第一课时)13.4.1 将军饮马问题一、教学目标(一) 学习目标1.会利用轴对称解决简单的最短路径问题;2.会利用轴对称解决简单的周长最小问题;3.体会轴对称变换在解决最值问题中的作用,感悟转化思想.(二)教学重点教学重点:利用轴对称知识将最短路径问题的实际问题转化为“两点之间,线段最短”和“垂线段最短”的问题.(三)教学难点教学难点:如何利用轴对称将最短路径问题转化为线段和最小问题.二、教学过程(一)课前设计1.预习任务前面我们研究过一些关于“两点的所有连线中,”,“连接直线外一点与直线上各点的所有线段中,”等的问题,我们称它们为问题.【答案】线段最短,垂线段最短,最短路径2.预习自测⑴如图所示,从A地到B地有三条路可供选择,你会选走路最近.你的理由是.【设计意图】让学生回顾旧知“两点之间,线段最短”,为引入新课作准备. 【知识点】两点之间、线段最短【答案】②,两点之间,线段最短(或者三角形中两边之和大于第三边)⑵已知:如图,A,B在直线l的两侧,在l上求一点P,使得P A+PB最小. 【知识点】两点之间线段最短【思路点拨】依据“两点(直线异侧)一线型”,和“两点之间,线段最短”,则AP+PB的最小值为线段AB的值.【解题过程】连接AB交于直线l于点P,则点P就是所求的点.【答案】如图,则点P就是所求的点.⑶如图,要在燃气管道l上修建一个泵站,分别向A、B两镇供气,泵站修在管道的什么地方,可使所用的输气管线最短?【知识点】两点之间线段最短【思路点拨】将A、B两镇抽象为两个点,将燃气管道l抽象为一条直线.类比预习自测(1),根据“两点之间,线段最短”,连接AB即可.【解题过程】连接AB,线段AB与直线l交于点P,则点P就是所求的点.【答案】泵站修在管道的点P处时,可使所用的输气管线最短.⑷如图,A,B在直线l的同侧,在l上求一点P,使得P A+PB最小,则点P可能的个数为()个A. 3B. 2C. 1D.0【知识点】两点之间线段最短、轴对称的性质【思路点拨】将“A,B在直线l的同侧”利用轴对称转化为“A,B在直线l的异侧”,又根据“两点之间线段最短”可得出只有唯一的点P.【答案】C【设计意图】通过完成预习自测让学生进一步感受“两点之间,线段最短”,为新课中“同侧的两点”转化为“异侧的两点”做铺垫.(二)课堂设计1.知识回顾⑴两点的所有连线中,线段最短;⑵连接直线外一点与直线上各点的所有线段中,垂线段最短;⑶三角形三边的数量关系:三角形中两边之和大于第三边.2.问题探究实际问题转化为数学问题探究一“两点一线”今天我们借助“轴对称的知识”和“两点之间线段最短”一起来解决生活中的“最短路径问题”.●活动①创设情境,引入新知师:相传,古希腊亚历山大里亚城里有一位久负盛名的学者,名叫海伦.有一天,一位将军专程拜访海伦,求教一个百思不得其解的问题:问题1. 如图,A为马厩,B为帐篷.某一天牧马人要从马厩A出发,牵出马到一条笔直的河边l 饮马,然后蹚水过河,回到对岸的帐篷B.牧马人到河边什么地方饮马,可使马所走的路线全程最短?精通数学、物理学的海伦稍加思索,利用几何知识回答了这个问题.你能将这个问题抽象为数学问题吗?【知识点】两点之间线段最短【解题过程】连接AB,线段AB与直线l交于点C,到河边l的C处饮马可使马所走的路线全程最短.【思路点拨】将A,B两地抽象为两个点,将河l 抽象为一条直线,则AC+BC 的最小值为线段AB的值.此情况可简称为“两点(直线异侧)一线型” .【答案】如图,则点C就是所求点,即在河边l的C处饮马可使他所走的路线全程最短点:●活动②整合旧知,探究新知师:问题解决了,可是将军思考了片刻,又提出了一个新的问题:问题2.牧马人觉得蹚水过河很不方便,决定将帐篷B搬到河的另一侧即与马厩A 位于河的同侧.如图,牧马人从图中的A地出发,到一条笔直的河边l 饮马,然后回到B地.到河边什么地方饮马,可使马所走的路线全程最短?学者海伦认真思索,利用轴对称的知识回答了这个问题.这就是著名的“将军饮马问题”.你能将这个问题抽象为数学问题吗?l将问题2抽象为数学问题:如图,点A,B在直线l的同侧,能不能在直线l上找到一点C,使AC与BC的和最小?【知识点】轴对称的知识、两点之间线段最短【思路点拨】将A,B两地抽象为两个点,将河l 抽象为一条直线. 则“所走的路线全程最短”转化为“在直线l上找到一点C,使AC+BC最小”的数学问题. 此情况可简称为“两点(直线同侧)一线型”.【设计意图】学生通过动手操作,在具体感知轴对称图形特征的基础上,抽象出轴对称图形的模型.学生将实际问题抽象为数学问题,即将最短路径问题抽象为“线段和最小问题”.3.尝试解决数学问题●活动③大胆猜想,建立模型【解题过程】(1)作点B关于直线l 的对称点B′;(2)连接AB′,与直线l相交于点C.则点C即为所求.【答案】如图,则点C就是所求的点,即在河边l的C处饮马可使马所走的路线全程最短点.师生活动:学生独立思考,尝试画图,相互交流.学生若有困难,教师可作如下提示:⑴若点B与点A在直线异侧,如何在直线l上找到一点C,使AC 与BC的和最小;⑵现在点B与点A在直线同侧,能否将点B移到l 的另一侧点B′处,且满足直线l上的任意一点C,都能保持CB= CB′ ?⑶你能根据轴对称的知识,找到(2)中符合条件的点B′吗?【设计意图】一步一步引导学生,将同侧的两点转化为异侧的两点,为问题的解决提供思路. 通过搭建台阶,为学生探究问题提供“脚手架”,将“同侧”难于解决的问题转化为“异侧”容易解决的问题,渗透转化思想.4.证明AC +BC“最短”●活动④反思过程,验证新知证明“最短作图”的正确性:追问1 你能用所学的知识证明AC +BC最短吗?师生活动:学生独立思考,相互交流,师生共同完成证明过程.证明:如图,在直线l 上任取一点C′(与点C不重合),连接AC′,BC′,B′C′.由轴对称的性质知,BC=B′C,BC′=B′C′,∴AC+BC=AC+C B′=AB′,AC′+ C′B= AC′+ C′B′.又在△AB′C′中,AB′﹤AC′+B′C′,∴AC+BC﹤AC′+BC′,即AC +BC 最短.●活动⑤集思广益,理解新知追问2:证明AC +BC最短时,为什么要在直线l上任取一点C′(与点C不重合)?师生活动:学生相互交流,教师适时点拨,最后达成共识:若直线l上任意一点(与点C不重合)与A,B两点的距离和都大于AC +BC,就说明AC +BC最小.【设计意图】让学生进一步体会作法的正确性,提高逻辑思维能力.追问3:回顾探究过程,我们是通过怎样的过程、借助什么来解决问题的?师生活动:学生回答,相互补充.【设计意图】让学生在反思的过程中,体会轴对称的“桥梁”作用,感悟转化思想,丰富数学活动经验.●活动⑥反思总结,归纳新知【方法归纳】1、“两点(直线同侧)一线型”在直线上求一点到两点和最短时,利用轴对称的知识作一点关于直线的对称点,连接对称点和另一点与直线的交点就是所求的点.2、求两条线段和最小,关键是运用轴对称的知识将不在同一条直线上的两条线段转化到同一条直线上.练习有两棵树位置如图,树脚分别为A,B.地上有一只昆虫沿A→B的路径在地面上爬行.小树顶D处一只小鸟想飞下来抓住小虫后,再飞到大树的树顶C 处,问小鸟飞至AB之间何处时,飞行距离最短,在图中画出该点的位置.(保留作图痕迹,不写作法)【知识点】轴对称知识、两点之间线段最短【解题过程】(1)将树顶C,D抽象为两个点,将路径A→B抽象为一条直线;(2)如图,作D关于AB的对称点D′,连接CD′交AB于点E,则点E就是所求的点.【思路点拨】本题为“同侧两点一线型”,通过“作D关于AB的对称点D′”转化为“异侧两点一线型”,再根据“两点之间,线段最短”解决.【答案】如图,则点E就是所求的点.师:海伦善于观察与思考,一天他在旅游途中遇到了一个不同情景的“将军饮马问题”:探究二“一点两线型”的最短周长问题问题3. 如图,有一条河流和一块草地,马厩A建在河流和草地所成的∠MON内部.牧马人某一天要从A牵出马,先到笔直的草地边牧马,再到笔直的河边饮马,然后回到马厩A. 请你帮他确定马这一天行走的最短路线.【知识点】轴对称知识、两点之间线段最短【数学思想】转化、类比【解题过程】分别作点A关于OM、ON的对称点A′、A′′,连接A′A′′分别交OM、ON于E、F,此时△AEF周长有最小值;【思路点拨】(1)将OM,ON抽象为两条相交的直线,将马厩A 抽象为一个点;(2)抽象为数学问题:如图,点A在∠MON内部,试在OM、ON上分别找出两点E、F,使△AEF周长最短;(3)当AE、EF和AF三条边的长度恰好能够体现在一条直线上时,三角形的周长最小,类比“探究一”作图.求三角形周长最短,即求AE+EF+AF的最小值为A′A′′的值,根据轴对称的性质得AE=A′E,AF=A′′F,再由“两点之间,线段最短”解决.此情况简称为“一点两线型”.【答案】作图如图1,则此时点E、F使△AEF周长有最小值.师:能不能类比探究一,证明一下“周长最短作图”的正确性:【理由简要分析】如图2,在OM上任取一个异于E的点E′,在ON上任取一个异于F的点F′,连接A E′,A′E′,E′F′,A″F′,A F′,则A E′=A′E′,A F′=A″F′,且A′E′+E′F′+F′A″>A′A″=A′E+EF+FA″= AE+EF+FA,所以△AEF的周长最小,故E,F就是我们所求使△AEF周长最短的点.练习如图所示,点P为∠AOB内一点,P1、P2分别是点P关于OA、OB的对称点,P1P2交OA于点E,交OB于点F.若P1P2=9,则△PEF的周长是()A.7 B.8 C.9 D.10【知识点】轴对称知识【解题过程】因为P1、P2分别是点P关于OA、OB的对称点,根据轴对称的性质得PE= P1E,PF=FP2,所以PE+EF+PF= P1E+EF+ P2F=P1 P2=9 .【思路点拨】根据轴对称知识,PE+EF+PF= P1E+EF+ P2F= P1 P2,故答案选C. 【答案】C师:回到家的海伦继续思考:如果在草地和河流所成的区域里有马厩和帐篷,又怎样设计行走的最短路线呢?探究三“两点两线型”的最短路径问题问题4 如图,A为马厩,B为帐篷,牧马人某一天要从马厩A牵出马,先到草地边MN的某一处牧马,再到河边l饮马,然后回到帐篷B.请你帮他确定马这一天行走的最短路线.【知识点】轴对称知识、两点之间线段最短【解题过程】(1) 作点A关于MN的对称点A′,作B点关于l的对称点B′;(2)连接A′B′,分别交MN于点C、交l于点D,则沿A→C→D→B的路线行走,马一天行走的路程最短.【思路点拨】马一天行走的路程最短即求AC+CD+DB的最小值,AC+CD+DB的最小值为A′B′的值,根据轴对称的性质得CA=CA′,DB=DB′,再由“两点之间,线段最短”即可解决.此情况简称为“两点两线型”.【答案】如图所示,牧马人沿A→C→D→B的路线行走,所行走的路线最短.练习某中学八(2)班举行文艺晚会,桌子摆成如图1所示两直排(图中的AO,BO),AO桌面上摆满了橘子,OB桌面上摆满了糖果,站在C处的学生小明先拿橘子再去拿糖果,然后到D处座位上,请你帮他设计一条行走路线,使其所走的总路程最短.(保留作图痕迹,不写作法)图1图2【知识点】轴对称知识、两点之间线段最短【解题过程】作法:(1)作点C关于OA的对称点C1,作D点关于OB的对称点D1,(2)连接C1D1,分别交OA于P、交OB于Q,那么当小明沿C→P→Q→D 的路线行走时,所走的总路程最短.【思路点拨】“两点两线型”求路径最短,所求CP+PQ+QD的最小值为线段C1D1的值.【答案】作图如图2,小明沿C→P→Q→D的路线行走,所走的总路程最短. 【设计意图】考查学生解决“最短路径问题”的综合能力.【方法归纳】“一点两线型”求三角形周长最短问题,先作点分别关于两直线的对称点,再连接两个对称点与两直线分别有两个交点,顺次连接所给的点与两交点即可得三角形. “两点两线型”,也可以为求四边形CPQD的周长最短问题,类比“一点两线型”即可解决.3. 课堂总结师:让我们共同回顾一下古希腊著名的学者海伦所遇到的“将军饮马问题”,总结一下他所解决“最短路径问题”的所用的原理与方法.知识梳理1、利用轴对称知识解决最短路径问题,主要依据“两点之间线段最短”和“垂线段最短”;2、运用轴对称的知识将“不在同一条直线上的两条线段”转化到“同一条直线上”,然后用“两点之间线段最短”解决问题.重难点归纳:最短路径问题的主要类型▲(三)课后作业基础型自主突破1.如图,若将河看作直线l,河的同侧有两个村庄P、Q.现要在l上的某处修建一个水泵站,分别向P、Q两个村庄供水,图中实线表示铺设的管道,下面的四种修建方案中,所需管道最短的是()【知识点】轴对称知识、两点之间线段最短【解题过程】(1)作点P关于直线l 的对称点P′;(2)连接QP′,与直线l相交于点M;则在l上的点M修建一个水泵站所需管道最短.【思路点拨】根据“两点一线型”的最短路径模型,故选D.【答案】D2.如图,在平面直角坐标系中,点A(-2,4),B(4,2),在x轴上取一点P,使得点P到点A、点B的距离之和最小,则点P的坐标是()A. (-2 ,0)B.(4 ,0)C. (2 ,0)D.(0 ,0)【知识点】轴对称知识、两点之间线段最短【解题过程】如图,作点B 关于x轴的对称点B′(4,-2),过点A作AC⊥x轴,B′C⊥y轴于E,AC和B′C相交于点C,连接A B′ 交x轴于点P,交y轴于点D ∵A(-2,4),B′(4,-2)∴C(-2,-2),E(0,-2),AC=B′C=6. 又∵AC⊥B′C,∴∠CA B′=∠A B′C=45°. ∵DE∥AC,∠DE B′=90°,∴∠ED B′ =∠DB′E=45°,∴DE =EB′=4,D(0,2).同理可得∠OD P =∠OP D =45°,OP=OD=2 ,∴P(2,0)【思路点拨】在直角坐标系中抽出“两点一线型”的最短路径模型:在直线x轴的同侧有点A和点B点,在直线x轴上找一点P,使PA+PB最小.作图如图,再由图可构造得等腰直角△AC B′,求出坐标.【答案】C3.如图,等边△ABC的边长为6,AD是边BC上的中线,E是AD边上的动点,F是AC边上的一点.若AF=3,当EF+EC取得最小值时,∠ECF的度数是()A.15°B.22.5°C.30°D.45°【知识点】等腰三角形的“三线合一”、轴对称知识、两点之间线段最短【解题过程】(1)因为等边△ABC的边长为6,又AF=3,所以点F为AC中点.取AB中点F′,则点F与点F′关于直线AD对称;(2)连接CF′,与直线AD相交于点E,此时EF+EC取得最小值.因为CF′是等边△ABC的边AB上的中线,所以CF′平分∠ACB,则∠ECF的度数是30°.(做题前应先忽略原图中的点E,如图1,再根据“两点一线型”的最短距离的模型作图,如图2:)【思路点拨】分离出点F、点C和直线AD,找出“两点一线型”的基本模型是解决本题的关键.连接CF′(或者连接BF)与直线AD交于点E,此时EF+EC取得最小值为CF′(或者BF),但题目要求∠ECF的度数,则只能连接CF′,根据等腰三角形“三线合一”的性质求解.【答案】C4.如图,在四边形ABCD中,∠A=90°,AD=3,连接BD,且BD⊥CD,∠ADB=∠C. 若P是BC边上的动点,则DP长的最小值为. 【知识点】等角的余角相等、角平分线的性质、垂线段最短【解题过程】过点D作DP⊥BC于P,∵∠A=90°,BD⊥CD,∴△BAD和△BDC都是直角三角形. 又∵∠ADB=∠C,∴∠ABD=∠DBC. ∴BD是∠ABC的平分线,∴垂线段DP=DA=3.【思路点拨】由题意可得△BAD和△BDC都是直角三角形,又因为∠ADB=∠C,所以∠ABD=∠DBC,则BD是∠ABC的平分线,根据“垂线段最短”和“角平分线的性质”求出DP长的最小值为3.【答案】35.如图,要在河道l边上建立一个水泵站,分别向A、B两个村庄引水,水泵站建在河道的什么地方,才能使输水管道最短?(保留作图痕迹,不写作法)【知识点】轴对称知识、两点之间线段最短【解题过程】(1)将村庄A、B两地抽象为两个点,将河道l抽象为一条直线;(2)作点B关于直线l 的对称点B′,连接AB′,与直线l相交于点C.【思路点拨】“两点(直线同侧)一线型”,在直线l上找一点C,使AC+CB′最小,AC+CB′的最小值为线段AB′的值,再根据“两点之间,线段最短”解决.【答案】如图,点C即为水泵站建所在的位置:6.已知,如图所示,甲、乙、丙三个人做传球游戏,游戏规则如下:甲将球传给乙,乙将球立刻传给丙,然后丙又立刻将球传给甲.若甲站在∠AOB内的P点,乙站在OA上,丙站在OB上,并且甲、乙、丙三人的传球速度相同.问乙和丙必须站在何处,才能使球从甲到乙、乙到丙、最后丙到甲这一轮所用的时间最少?(保留作图痕迹,不写作法)【知识点】轴对称知识、两点之间线段最短【解题过程】分别作点P关于OA、OB的对称点P′、P′′,连接P′P′′交OA于E、交OB于F,此时△PEF周长有最小值,即乙站在E处、丙站在F处使球从甲到乙、乙到丙、最后丙到甲这一轮路程和最短,所用的时间也最少.【思路点拨】甲、乙、丙三人的传球速度相同,则当路程和最短时所用的时间最少,这样就转化为“一点两线型”求三角形周长最短问题.在OA、OB上分别找点E、点F,PE+EF+PF的最小值为P′P′′的值,根据轴对称的性质得PE=P′E,PF=FP′′,再由“两点之间,线段最短”解决.【答案】如图所示,因为乙站在OA上,丙站在OB上,所以当乙站在OA上的E处,丙站在OB上的F处时,才能使传球所用时间最少.能力型师生共研7.八年级(6)班同学做游戏,在活动区域边放了一些球(如图),则小明按怎样的线路跑,去捡哪个位置的球,才能最快拿到球跑到目的地A?(保留作图痕迹,不写作法)【知识点】轴对称知识、两点之间线段最短【解题过程】作“小明”关于小明关于活动区域边线OP的对称点A′,连接AA′交直线OP于点B,则按“小明”→B→A的线路跑,去捡B处的球,才能最快拿到球跑到目的地A.【思路点拨】“两点(直线同侧)一线型”,在直线l上找一点B,使AB+BA′最小,AB+BA′的最小值为线段AA′的值,再根据“两点之间,线段最短”解决.【答案】如图,小明行走的路线是:“小明”→B→A,即在B处捡球,才能最快拿到球跑到目的地A.8.如图,∠AOB=30°,点P为∠AOB内一点,OP=6cm,点M、N分别在OA、OB上,求△PMN周长的最小值.【知识点】轴对称知识、两点之间线段最短、等边三角形的判定【解题过程】分别作点P关于OA、OB的对称点P1、P2,连接P1P2交OA于点M,交OB于点N,此时△PMN周长有最小值= P1P2,∵根据轴对称的性质得∠1=∠2,∠3=∠4,OP1 = OP =O P2,∴∠P1OP2=∠1+∠2+∠3+∠4=2∠AOB= 2×30°=60°,∴△P1OP2为等边三角形,∴P1P2= OP1 =O P2 =6cm,即△PMN周长的最小值为6cm.【思路点拨】该题属于“一点两线型”求三角形周长最短问题,所求△PMN周长PM+MN+PN的最小值为P1P2的值;根据轴对称的性质可求得∠P1OP2=60°,OP1 = OP =O P2,△P1OP2为等边三角形,P1P2=6cm.【答案】6cm探究型多维突破9、如图,牧童在A处放牛,其家在B处,A,B到河岸CD的距离分别为AC,BD,且AC=BD,若A到河岸CD的中点的距离为500 m. (1)牧童从A处把牛牵到河边饮水后再回家,试问在何处饮水,所走路程最短?在图中作出该处;(保留作图痕迹,不写作法)(2)求出最短路程.【知识点】轴对称知识、两点之间线段最短、全等三角形的判定【解题过程】(1)作法:①如图作点A关于CD的对称点A′;②连接A′B交CD于点M. (2)由(1)可得直线CD是点A与点A′的对称轴,M在CD上,∴AM=A′M,A′C=AC,又∵AC=BD,∠A′CM=∠BDM=90°,∠A′MC=∠BMD,∴△A′CM≌△BDM,∴CM=DM,A′M=BM,∴M为CD的中点,且A′B=2AM,∵AM=500 m,所以A′B=AM+BM=2AM=1 000 m.即最短路程1000 m.【思路点拨】⑴该题为“两点(直线同侧)一线型”求最短路径问题,在直线l上找一点M,使A′M+MB最小,A′M+MB的最小值为线段A′B的值,再根据“两点之间,线段最短”解决;⑵由条件“AC=BD”可推出△A′CM ≌△BDM,从而得到最短距离A′B=2AM=1000m【答案】(1)如图,点M即为所求的点; (2) 最短路程为1000 m.10.如图,在五边形ABCDE中,①在BC,DE上分别找一点M,N,使得△AMN周长最小;(保留作图痕迹,不写作法)②若∠BAE=125°,∠B=∠E=90°,AB=BC,AE=DE,∠AMN+∠ANM的度数为________.【知识点】轴对称知识,两点之间线段最短,三角形的内角(外角)知识【解题过程】①取点A关于BC的对称点P、关于DE的对称点Q,连接PQ与BC相交于点M,与DE相交于点N,如图1,PQ的长度即为△AMN的周长最小值,如图2;②如图3,∵∠BAE=125°,∴在△APQ中,∠P+∠Q=180°-125°=55°,∵∠AMN=∠P+∠P AM=2∠P,∠ANM=∠Q+∠QAN=2∠Q,∴∠AMN+∠ANM=2(∠P+∠Q)=2×55°=110°【思路点拨】①转化为“一点两线型”求三角形周长最短问题,所求△AMN周长AM+MN+AN的最小值为线段PQ的值. ②根据三角形的内角和等于180°求出∠P +∠Q,再根据三角形的外角以及三角形内角和知识运用整体思想解决.【答案】①作图如图2,此时△AMN周长最小;②∠AMN+∠ANM=110°.自助餐1. 如图,在直角坐标系中,点A、B的坐标分别为(2,8)和(6,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是()A.(0,0)B.(0,2)C.(0,4)D.(0,6)【知识点】轴对称知识、两点之间线段最短、等腰直角三角形的知识【解题过程】作B点关于y轴对称点B′点,连接AB′交y轴于点C′,当点C在C′处时△ABC的周长最小. 过点A作AE⊥x轴于点E,∵点A、B的坐标分别为(2,8)和(6,0),∴B′点坐标为(﹣6,0),E(2,0),AE=8,OE=2.∴B′E=8,∴B′E =AE ,O B′=B′E-OE=6.又∵AE⊥B′B,∴∠A B′E=∠B′AE=45°,∵C′O∥AE,∠C′O B′=90°,∴∠C′B′O =∠B′C′O =45°,∴C′O = B′O =6,∴点C′的坐标是(0,6),当点C在C′处时△ABC的周长最小,故选D.【思路点拨】分离出“两点一线型”的最短路径模型:在y轴的同侧有点A和点B,点,在y轴上找一点C,使AC+CB最小.作图时应忽略图中的点C,再由图可构造等腰直角△AC B′,求出坐标.【答案】D2. 如图所示,点P 为∠AOB 内一点,OP =9,P 1、P 2分别是点P 关于OA 、OB 的对称点,P 1P 2交OA 于点E ,交OB 于点F .当△PEF 的周长是9时,∠AOB 的度数为( )A .15°B .30°C .45°D .60°【知识点】轴对称知识、两点之间线段最短、等边三角形的知识【解题过程】连接O P 1, O P 2. ∵OP =9 ,P 1、P 2分别是点P 关于OA 、OB 的对称点 ,∴根据轴对称知识O P 1=O P 2=OP =9,PE = P 1E ,PF =FP 2 . ∴PE +EF +PF = P 1E +EF + P 2F =P 1 P 2=9,∴O P 1=O P 2= P 1 P 2,∴△OP 1 P 2是等边三角形. 又∵由轴对称知识得∠P 1 OP 2=∠P 1 OP +∠POP 2=2(∠AOP +∠POB )=2∠AOB , ∴2∠AOB=60°,∴∠AOB=30°【思路点拨】根据轴对称知识,PE +EF +PF = P 1E +EF + P 2F = P 1 P 2,如图连接O P 1, O P 2易得证△OP 1 P 2是等边三角形,故答案选B【答案】B3.如图,小河边有两个村庄A 、B ,要在河边建一自来水厂向A 村与B 村供水.(1)若要使厂部到A ,B 村的距离相等,则应选择在哪建厂?(2)若要使厂部到A ,B 两村的水管最短,应建在什么地方?(保留作图痕迹,不写作法)【知识点】垂直平分线的知识,轴对称知识,两点之间线段最短【解题过程】(1)作线段AB 的垂直平分线,与EF 交于点P ,交点P 即为符合条件的点.如图1,取线段AB 的中点G ,过中点G 作AB 的垂线,交EF 于P ,则P 到A ,B 的距离相等.也可分别以A 、B 为圆心,以大于21AB 为半径画弧,两弧交于两点,过这两点作直线,与EF 的交点P 即为所求.(2)如图2,画出点A 关于河岸EF 的对称点A ′,连接A ′B 交EF 于P ,则P 到A ,B 的距离和最短.【思路点拨】 ⑴到A ,B 两点距离相等,可联想到“线段垂直平分线上的点到线段两端点的距离相等”,又在河边EF 上,所以作AB 的垂直平分线与EF 的交点即为符合条件的点.⑵要使厂部到A 村、B 村的距离之和最短,可联想到“两点之间线段最短”,结合“两点一线型”的最短路径模型,作A(或B)点关于EF的对称点,连接对称点与B点(或A),与EF的交点即为所求.【答案】(1)如图1,自来水厂部建在点P处,到A,B村的距离相等.(2)如图2,自来水厂部建在点P处,到A、B的距离和最短.4.公园内两条小河MO,NO在O处汇合,两河形成的半岛上有一处景点P(如图所示).现计划在两条小河上各建一座小桥Q和R,并在半岛上修三段小路,连通两座小桥与景点,这两座小桥应建在何处才能使修路费用最少?请说明理由.【知识点】轴对称知识、两点之间线段最短【解题过程】分别作点P关于OA、OB的对称点P′、P′′,连接P′P′′分别交OM、ON于Q、R,此时△PQR周长有最小值,即此时使在半岛上修建的三段小路路程和最小,才能使修路费用最少.【思路点拨】要使修路费用最少,则应使三段路程和最小,这样就转化为“一点两线型”求三角形周长最小的问题.【答案】如图,作P关于OM的对称点P′,作P关于ON的对称点P″,连接P′P″,分别交MO,NO于Q,R,连接PQ,PR,则P′Q=PQ,PR=P″R,则Q,R就是小桥所在的位置,修路费用最少.理由:在OM上任取一个异于Q的点Q′,在ON上任取一个异于R的点R′,连接PQ′,P′Q′,Q′R′,P″R′,PR′,则PQ′=P′Q′,PR′=P″R′,P′Q′+Q′R′+R′P″>P′Q+QR+RP″,所以△PQR的周长最小,Q,R就是我们所求的小桥的位置.5.如图所示,P,Q为△ABC边上的两个定点,在BC上求作一点R,使△PQR 的周长最小.【知识点】轴对称知识、两点之间线段最短【解题过程】(1)作点P关于直线BC的对称点P′;(2)连接P′Q,交BC于点R,则点R就是所求作的点,如图所示.【思路点拨】P,Q为△ABC边上的两个定点,所以PQ长为定值,使△PQR的周长最小,只需要PR+QR最小.故分离出“一点两线型”的模型:在直线BC的同侧有点P和点Q,在直线BC上找一点R,使PR+QR最小.【答案】如图所示,点R就是所求作的点.。