小学生奥数二次相遇练习题及答案(最新)

合集下载

小学奥数五年级数学《火车相遇》专项练习题及答案

小学奥数五年级数学《火车相遇》专项练习题及答案

【⾏程问题】
1.难度:★★ 甲⼄两列⽕车同时从东西两城相向开出,甲车每⼩时⾏49千⽶,⼄车每⼩时⾏47千⽶,相遇时甲车⽐⼄车多⾏36千⽶.求两城之间的路程.
2.难度:★★ 甲、⼄两列⽕车同时从A地开往B地,甲车8⼩时可以到达,⼄车每⼩时⽐甲车多⾏20千⽶,⽐甲车提前2⼩时到达。

求A、B两地间的距离。

【答案】
【⾏程问题】
1.难度:★★ 甲⼄两列⽕车同时从东西两城相向开出,甲车每⼩时⾏49千⽶,⼄车每⼩时⾏47千⽶,相遇时甲车⽐⼄车多⾏36千⽶.求两城之间的路程.
【分析】36÷(49-47)×(49+47)=1728(千⽶).
2.难度:★★ 甲、⼄两列⽕车同时从A地开往B地,甲车8⼩时可以到达,⼄车每⼩时⽐甲车多⾏20千⽶,⽐甲车提前2⼩时到达。

求A、B两地间的距离。

【解析】⼄车⾏驶了6⼩时到达B地,此时⼄车⽐甲车多⾏了20×6=120千⽶,即甲车还要在2⼩时内⾏驶120千⽶,故甲的速度为60千⽶/时,A、B间距离为60×8=480千⽶。

四年级奥数相遇问题与追击问题练习题

四年级奥数相遇问题与追击问题练习题

四年级奥数相遇问题与追击问题练习题相遇问题是行程问题的一种常见情况。

一般讲的是两辆车从两地出发,相向而行,经过若干时间,两车相遇的问题。

解答相遇问题的数量关系主要是:相遇时间=路程÷速度和,路程=速度和×相遇时间,速度和=路程÷相遇时间。

例题1:甲乙两列火车同时从相距700千米的两地相向而行,甲列车每小时行85千米,乙列车每小时行90千米,几小时两列火车相遇?例题2:甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,经过3小时相遇。

两地相距多少千米?例题3:甲乙两艘轮船同时从相距126千米的两个码头相对开出,3小时相遇,甲船每小时航行22千米,乙船每小时航行多少千米?练一练:1.甲、乙两地相距450千米,客车10小时行完全程,货车15小时行完全程,客车和货车同时从两地出发,相向而行,几小时后相遇?相遇时两车各行了多少千米?2.两辆汽车从A、B两地相对开出,甲车每小时行55千米,乙车每小时行45千米,经过2小时后,两车还相距50千米。

A、B两地的距离是多少千米?例1:甲、乙二船同时从两个码头出发,方向相同,乙船在前,每小时行24千米,甲船在后每小时行28千米,4小时后甲船追上乙船,求两码头相距多少千米?在追及问题中,需要用到路程=速度×时间,速度=路程÷时间,时间=路程÷速度的公式。

例如,灰太狼跑,红太狼追,灰太狼在红太狼前面120米处,灰太狼每分钟跑60米,红太狼每分钟跑70米,红太狼几分钟后能追上灰太狼?练题:1.甲、乙两人分别从相距18千米的A村和B村同时向东而行。

甲骑车每小时行14千米,乙步行每小时走5千米。

几小时后甲可以追上乙?解:甲的速度是乙的速度的2.8倍,所以甲每小时比乙快9千米。

因此,甲需要走2小时才能追上乙。

所以,答案是2小时。

2.甲、乙两人分别从相距18千米的A村和B村同时向东而行。

甲骑车,乙步行,2小时后甲追上乙。

小学数学小学奥数系列3-1-2相遇与追及问题(二)

小学数学小学奥数系列3-1-2相遇与追及问题(二)

小学数学小学奥数系列3-1-2相遇与追及问题(二)姓名:________ 班级:________ 成绩:________亲爱的小朋友们,这一段时间的学习,你们收获怎么样呢?今天就让我们来检验一下吧!一、 (共41题;共193分)1. (5分) (2019六下·竞赛) 在环形跑道上,两人都按顺时针方向跑时,每12分钟相遇一次,如果两人速度不变,其中一人改成按逆时针方向跑,每隔4分钟相遇一次,问两人跑一圈各需要几分钟?2. (5分)小狗在路边发现一只小兔,立刻去追,同时小兔也发现了小狗,转身逃跑。

小狗每分钟跑400米,小兔每分钟跑320米,5分钟后,小狗追上了小兔。

小狗发现小兔时,它们相距多远?3. (5分) (2019四上·上城期中) 上午7时30分,强强从家出发去上学,每分钟走80米,10分钟后,妈妈发现强强没有带铅笔盒,赶紧骑车去追强强,5分钟后追上了强强。

妈妈骑车的速度是多少?4. (5分) (2019六下·竞赛) 小新和正南在操场上比赛跑步,小新每分钟跑250米,正南每分钟跑210米,一圈跑道长800米,他们同时从起跑点出发,那么小新第三次超过正南需要多少分钟?5. (5分)甲、乙两地相距 240 千米,一列慢车从甲地出发,每小时行 60千米.同时一列快车从乙地出发,每小时行 90千米.两车同向行驶,快车在慢车后面,经过多少小时快车可以追上慢车?(火车长度忽略不计)6. (5分)小明和小军同时在一个长400米的环形跑道上从同一点,同时反向而行,小明每分行45米,小军每分行35米,多少分后两人第一次相遇?若同时同向而行,多少分两人第一次相遇?7. (5分)(2020·鹤岗) 在400米的环形跑道上,A、B两点相距100米.甲、乙两人分别从A、B两点同时出发,按照逆时针方向跑步,甲每秒跑5米,乙每秒跑4米.那么,甲追上乙需要的时间是多少秒?8. (5分) (2019六下·竞赛) 在400米的环形跑道上,甲、乙两人同时同地起跑,如果同向而行3分20秒相遇,如果背向而行40秒相遇,已知甲比乙快,求甲、乙的速度各是多少?9. (5分) (2019六下·竞赛) 猎狗发现前方150米处有一只兔子正在逃跑,拔腿就追。

五年级奥数题:相遇问题(A)

五年级奥数题:相遇问题(A)

十五 相遇问题(A)年级 班 姓名 得分一、填空题1. 两列对开的火车途中相遇,甲车上的乘客从看到乙车到乙车从旁边开过去,共用6秒钟.已知甲车每小时行45千米,乙车每小时行36千米,乙车全长_____米.2. 甲、乙两地间的路程是600千米,上午8点客车以平均每小时60千米的速度从甲地开往乙地.货车以平均每小时50千米的速度从乙地开往甲地.要使两车在全程的中点相遇,货车必须在上午______点出发.3. 甲乙两地相距450千米,快慢两列火车同时从两地相向开出,3小时后两车在距中点12千米处相遇,快车每小时比慢车每小时快______千米.4. 甲乙两站相距360千米.客车和货车同时从甲站出发驶向乙站,客车每小时行60千米,货车每小时行40千米,客车到达乙站后停留0.5小时,又以原速返回甲站,两车对面相遇的地点离乙站______千米.5. 列车通过250米长的隧道用25秒,通过210米长的隧道用23秒,又知列车的前方有一辆与它行驶方向相同的货车,货车车身长320米,速度为每秒17米,列车与货车从相遇到离开需______秒.6. 小冬从甲地向乙地走,小青同时从乙地向甲地走,当各自到达终点后,又立刻返回,行走过程中,各自速度不变,两人第一次相遇在距甲地40米处,第二次相遇在距乙地15米处.甲、乙两地的距离是______米.7. 甲、乙二人分别从B A ,两地同时相向而行,乙的速度是甲的速度的32,二人相遇后继续行进,甲到B 地、乙到A 地后都立即返回.已知二人第二次相遇的地点距第一次相遇的地点是20千米,那么B A ,两地相距______千米.8. B A ,两地间的距离是950米.甲、乙两人同时由A 地出发往返锻炼.甲步行每分走40米,乙跑步每分行150米,40分后停止运动.甲、乙二人第____次迎面相遇时距B 地最近,距离是______米. 9. B A ,两地相距540千米.甲、乙两车往返行驶于B A ,两地之间,都是到达一地之后立即返回,乙车比甲车快.设两辆车同时从A 地出发后第一次和第二次相遇都在途中P 地.那么,到两车第三次相遇为止,乙车共走了______千米.10. 甲、乙两个运动员分别从相距100米的直跑道两端同时相对出发,甲以每秒6.25米,乙以每秒3.75米的速度来回匀速跑步,他们共同跑了8分32秒,在这段时间内两人多次相遇(两人同时到达同一地点叫做相遇).他们最后一次相遇的地点离乙的起点有______米.甲追上乙_____次,甲与乙迎面相遇_____次.二、解答题11. 甲、乙两地相距352千米.甲、乙两汽车从甲、乙两地对开.甲车每小时行36千米,乙车每小时行44千米.乙车因事,在甲车开出32千米后才出发.两车从各自出发起到相遇时,哪辆汽车走的路程多?多多少千米?12. 甲、乙两车从B A ,两城市对开,已知甲车的速度是乙车的65.甲车先从A 城开55千米后,乙车才从B 城出发.两车相遇时,甲车比乙车多行驶30千米.试求B A ,两城市之间的距离.13. 设有甲、乙、丙三人,他们步行的速度相同,骑车的速度也相同.骑车的速度为步行速度的3倍.现甲自A 地去B 地;乙、丙则从B 地去A 地.双方同时出发.出发时,甲、乙为步行,丙骑车.途中,当甲、丙相遇时,丙将车给甲骑,自己改为步行,三人仍按各自原有方向继续前进;当甲、乙相遇时,甲将车给乙骑,自己又步行,三人仍按各自原有方向继续前进.问:三人之中谁最先到达自己的目的地?谁最后到达目的地?14. 一条单线铁路线上有B A ,E D C ,,,五个车站,它们之间的路程如下图所示(单位:千米).两列火车从E A ,相向对开,A 车先开了3分钟,每小时行60千米,E 车每小时行50千米,两车在车站上才能停车,互相让道、错车.两车应该安排在哪一个车站会车(相遇),才能使停车等候的时间最短,先到的火车至少要停车多长时间?———————————————答 案——————————————————————答 案:1. 135根据相向而行问题可知乙车的车长是两车相对交叉6秒钟所行路之和.所以乙车全长(45000+36000)×60601 ×6 =81000×6001 =135(米)2. 7根据中点相遇的条件,可知两车各行600×21=300(千米). 其间客车要行300÷60=5(小时);货车要行300÷50=6(小时).所以,要使两车同时到达全程的中点,货车要提前一小时出发,即必须在上午7点出发.3. 8快车和慢车同时从两地相向开出,3小时后两车距中点12米处相遇,由此可见快车3小时比慢车多行12×2=24(千米).所以,快车每小时比慢车快24÷3=8(千米).4. 60利用图解法,借助线段图(下图)进行直观分析.解法一 客车从甲站行至乙站需要360÷60=6(小时).客车在乙站停留0.5小时后开始返回甲站时,货车行了40×(6+0.5)=260(千米).货车此时距乙站还有360-260=100(千米).货车继续前行,客车返回甲站(化为相遇问题)“相遇时间”为100÷(60+40)=1(小时).所以,相遇点离乙站60×1=60(千米).解法二 假设客车到达乙站后不停,而是继续向前行驶(0.5÷2)=0.25小时后返回,那么两车行驶路程之和为360×2+60×0.5=750(千米)两车相遇时货车行驶的时间为750÷(40+60)=7.5(小时)所以两车相遇时货车的行程为40×7.5=300(千米)故两车相遇的地点离乙站360-300=60(千米).5. 190列车速度为(250-210)÷(25-23)=20(米/秒).列车车身长为20×25-250=250(米).列车与货车从相遇到离开需(250+320)÷(20-17)=190(秒).6. 105根据题意,作线段图如下:根据相向行程问题的特点,小冬与小青第一次相遇时,两人所行路程之和恰是甲、乙之间的路程.由第一次相遇到第二次相遇时,两人所行路程是两个甲、乙间的路程.因各自速度不变,故这时两人行的路程都是从出发到第一次相遇所行路的2倍.根据第一次相遇点离甲地40米,可知小冬行了40米,从第一次到第二次相遇小冬所行路程为40×2=80(米).因此,从出发到第二次相遇,小冬共行了40+80=120(米).由图示可知,甲、乙两地的距离为120-15=105(米).7. 50.因为乙的速度是甲的速度的32,所以第一次相遇时,乙走了B A ,两地距离的52(甲走了53),即相遇点距B 地52个单程.因为第一次相遇两人共走了一个单程,第二次相遇共走了三个单程,所以第二次相遇乙走了52×3=56(个)单程,即相遇点距A 地51个单程(见下图).可以看出,两次相遇地点相距1-51-52=52(个)单程,所以两地相距20÷52=50(千米). 8. 二,150.两个共行一个来回,即1900米迎面相遇一次,1900÷(45+50)=20(分钟).所以,两个每20分钟相遇一次,即甲每走40×20=800(米)相遇一次.第二次相遇时甲走了800米,距B 地950-800=150(米);第三次相遇时甲走了1200米,距B 地1200-950=250(米).所以第二次相遇时距B 地最近,距离150米.9. 2160如上图所示,两车每次相遇都共行一个来回,由甲车两次相遇走的路程相等可知,AP =2PB ,推知PB =31AB .乙车每次相遇走34AB ,第三次相遇时共走 34AB ×3=4AB =4×540=2160(千米). 10. 87.5,6,26.8分32秒=512(秒).当两人共行1个单程时第1次迎面相遇,共行3个单程时第2次迎面相遇,……,共行n 2-1个单程时第n 次迎面相遇.因为共行1个单程需100÷(6.25+3.75)=10(秒),所以第n 次相遇需10×(n 2-1)秒,由10×(n 2-1)=510解得n =26,即510秒时第26次迎面相遇.此时,乙共行3.75×510=1912.5(米),离10个来回还差200×10-1912.5=87.5(米),即最后一次相遇地点距乙的起点87.5米.类似的,当甲比乙多行1个单程时,甲第1次追上乙,多行3个单程时,甲第2次追上乙,……,多行n 2-1个单程时,甲第n 次追上乙.因为多行1个单程需100÷(6.25-3.75)=40(秒),所以第n 次追上乙需40×(n 2-1)秒.当n =6时, 40×(n 2-1)=440<512;当n =7时,40×(n 2-1)=520>512,所以在512秒内甲共追上乙6次.11. 由相遇问题的特点及基本关系知,在甲车开出32千米后两车相遇时间为(352-32)÷(36+44)=4(小时)所以,甲车所行距离为36×4+32=176(千米)乙车所行距离为44×4=176(千米)故甲、乙两车所行距离相等.注: 这里的巧妙之处在于将不是同时出发的问题,通过将甲车从开出32千米后算起,化为同时出发的问题,从而利用相遇问题的基本关系求出“相遇时间”.12. 从乙车出发到两车相遇,甲车比乙车少行55-30=25(千米).这25千米是乙车行的1-6165=,所以乙车行了25÷61=150(千米).B A ,两城市的距离为 150×2+30=330(千米).13. 谁骑车路程最长,谁先到达目的地;谁骑车路程最短谁最后到达目的地.画示意图如下:依题意,甲、丙相遇时,甲、乙各走了全程的41,而丙走了全程的43. 用图中记号, AB AC 41=; AB CD 34=; AB CD 21=; AB CD CE 8343==; AB CD ED 8141==;AB AB AC CE AE 85)4183(=+=+=. 由图即知,丙骑车走AB 43,甲骑车走了AB 83,而乙骑车走了AB 85,可见丙最先到达而甲最后到达.14. A 车先开3分,行3千米.除去这3千米,全程为45+40+10+70=165(千米).若两车都不停车,则将在距E 站 16575506050=+⨯(千米). 处相撞,正好位于C 与D 的中点.所以,A 车在C 站等候,与E 车在D 站等候,等候的时间相等,都是A ,E 车各行5千米的时间和, 6011606605=+(时)=11分.。

20211118小学奥数练习卷(知识点:多次相遇问题)含答案解析

20211118小学奥数练习卷(知识点:多次相遇问题)含答案解析

20211118小学奥数练习卷(知识点:多次相遇问题)含答案解析----3a2b3652-6ea1-11ec-91e4-7cb59b590d7d小学奥数练习卷(知识点:多次相遇问题)问题编号分数的注意事项:一二三总分1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第一卷(选择题)评卷人得分一.选择题(共4小题)1.甲方在乙方以西60公里处,甲乙双方从甲方出发,丙方和丁方同时从乙方出发。

甲、乙、丁三方向东行驶,丙方向西行驶。

据了解,a、B、C和D的速度依次变为等差序列,甲方的速度最快。

出发n小时后,B和C见面,n小时后,A在C赶上D。

然后B和C之间的距离是()公里。

A.15b.30c、 60d.902.甲、乙双方从甲地出发,前往乙地,甲方步行100米,乙方步行50米。

甲方到达乙方时,乙方距离乙方仍有100米,到达乙方后,甲方立即转身返回。

两人在距离B地点60米的地方相遇,然后a和B之间的距离是()米。

A.150b.200c、 250d.3003.甲、乙双方同时从A点出发,到达B点后立即返回,先返回A点者获胜。

甲方首先到达B点,并在距离B点24米处与乙方会合。

会合后,甲方的速度降低至原速度的一半。

乙方的速度保持不变。

在距离终点48米处,乙方追上甲方。

然后,当乙方到达终点时,距离终点的距离(m)。

A.6b.8c、十二d.164.A和B分别从200米长的直线轨道两端来回跑。

A每秒跑2米,B每秒跑3米,匀速跑20分钟。

在此期间,a和B相遇()次a.20b、 30c.18d.15第ⅱ卷(非选择题)评分员得2分。

填空(共29个问题)5.甲、乙分别从a和b两地同时出发,相向而行,往返运动.两人在中途的c加油站处第一次迎面相遇,相遇后,两人继续行进并在d加油站处第二次迎面相遇.若甲速度提升一倍,那么当甲第一次走到d处时,乙恰好第一次走到了c处,已知cd之间距离为60千米,则从a地到b地的全程为千米.6.甲、乙双方同时从甲、乙双方出发,往返于甲、乙双方之间,甲方第五次到达乙方时,乙方第九次恰好返回乙方。

高斯小学奥数四年级下册含答案第13讲_多次往返相遇与追及

高斯小学奥数四年级下册含答案第13讲_多次往返相遇与追及

第十三讲多次往返相遇与追及在这一讲中,我们重点学习直线上不断往返的行程问题.在学习新的内容之前,我们先来复习一下原来学过的简单相遇问题与追及问题.简单相遇与追及相遇问题是指两人同时从两个地点出发,向对方所在位置前进,经过一段时间后两人相遇.追及问题是指两人从两个地点出发,朝着同一个方向前进,经过一段时间后一个人追上了另一个人.简单的相遇问题与追及问题的线段图如下所示:相遇时,两人的路程和是A 、B 两地的距离;追及时,两人的路程差是A 、B 两地的距离.其实,一般来说,只要两个人运动方向相反,就是相遇问题(包括相向而行和相背而行);只要两个人运动方向相同,就是追及问题(同向而行包括追上和超过).解决行程问题,最基本的方法就是画线段图,寻找相同时间内的路程关系(包括路程和、路程差以及路程的倍数关系).不同出发点的往返相遇甲、乙两人从A 、B 两地同时出发相向而行,在相遇后两人继续前进,分别到达B 地、A 地后立即折回,这时两人第二次迎面相遇,我们画出线段图如下所示.从线段图中可以发现:当两人第一次迎面相遇时,经过的路程和是A 、B 两地距离(1个全长);当两人第二次迎面相遇时,经过的路程和是3个全长;当两人第三次迎面相遇时,经过的路程和是5个全长;……即相邻两次相遇之间,两人的路程和恰好等于....................2.个全长....地 甲乙甲乙第二次相遇 第一次相遇例题1小高和墨莫分别从相距60千米的A 、B 两地同时出发,在A 、B 之间不断往返骑车.已知小高骑车的速度是每小时21千米,墨莫骑车的速度是每小时9千米.请问:(1)出发后多长时间,两人第一次迎面相遇?再过多长时间两人第二次迎面相遇?(2)出发后多长时间,两人第四次迎面相遇?第四次迎面相遇的地点距离A 地多少千米? 「分析」应用我们上面总结的结论,两人从两地出发,第一次相遇时,两人路程和是多少?在第一次迎面相遇和第二次迎面相遇之间,两人路程和又是多少?练习1阿瓜和阿呆分别从相距90千米的A 、B 两地同时出发,在A 、B 之间不断往返骑车.已知阿呆骑车的速度是每小时21千米,阿瓜骑车的速度是每小时24千米.请问:(1)出发后过多长时间两人第二次迎面相遇?再过多长时间两人第五次迎面相遇?不同出发点的往返追及甲、乙两人从A 、B 两地同时出发相向而行,甲到达B 地后立即折回,直至第一次追上乙,我们画出线段图如右下所示:从线段图中可以发现:甲第一次追上乙时,甲和乙的路程差是1个全长;甲第二次追上乙时,甲和乙的路程差是3个全长;甲第三次追上乙时,甲和乙的路程差是5个全长;……即相邻两次追及之间,两人的路程差恰好等于....................2.个全长.....A 地甲乙 第一次追及 第二次追及例题2小高和墨莫分别从相距60千米的A 、B 两地同时出发,在A 、B 之间不断往返骑车.已知小高骑车的速度是每小时21千米,墨莫骑车的速度是每小时9千米.请问:(1)出发后多长时间,小高第一次追上墨莫?再过多长时间小高第三次追上墨莫?(2)出发后多长时间,小高第五次追上墨莫?第五次追上墨莫的地点距离A 地多少千米? 「分析」应用我们上面总结的结论,两人从两地出发,第一次追上时,两人路程差是多少?在第一次追上和第三次追上之间,两人路程差又是多少?练习2阿瓜和阿呆分别从相距80千米的A 、B 两地同时出发,在A 、B 之间不断往返骑车.已知阿呆骑车的速度是每小时32千米,阿瓜骑车的速度是每小时12千米.请问:(1)出发后多长时间阿呆第一次追上阿瓜?(2)再过多少小时阿呆第三次追上阿瓜?相同出发点的往返相遇甲、乙两人从A 地同时出发同向而行,在A 、B 两地之间不断往返,我们画出两人迎面相遇的线段图.从线段图中可以发现:当两人第一次迎面相遇时,甲和乙的路程和是2个全长;当两人第二次迎面相遇时,甲和乙的路程和是4个全长;当两人第三次迎面相遇时,甲和乙的路程和是6个全长;……即相邻两次相遇之间,两人的路程和恰好等于....................2.个全长....地例题3小高和墨莫同时从A 地出发,在相距60千米的A 、B 两地之间不断往返骑车.已知小高骑车的速度是每小时21千米,墨莫骑车的速度是每小时9千米.请问:(1)出发后多长时间,两人第一次迎面相遇?第一次迎面相遇的地点距离A 地多少千米?(2)出发后多长时间,两人第五次迎面相遇?第五次迎面相遇的地点距离A 地多少千米? 「分析」应用我们上面总结的结论,两人从同地出发,第一次相遇时,两人路程和是多少?第五次相遇时,两人路程和又是多少?练习3阿呆和阿瓜同时从A 地出发,在相距90千米的A 、B 两地之间不断往返骑车.已知阿呆骑车的速度是每小时24千米,阿瓜骑车的速度是每小时21千米.请问:(1)出发后经过多长时间两人第二次迎面相遇?(2)出发后经过多长时间两人第五次迎面相遇?相同出发点的往返追及甲、乙两人从A 地同时出发同向而行,在A 、B 两地之间不断往返,我们画出两人追及的线段图.从线段图中可以发现,甲第一次追上乙时,甲和乙的路程差是2个全长;而从第一次追及到第二次追及,就跟前面所讨论的“不同出发点的往返追及”一样,路程差依然是2个全长.即相邻两次相遇之间,两人的路程和恰好等于....................2.个全长....例题4小高和墨莫同时从A 地出发,在相距60千米的A 、B 两地之间不断往返骑车.已知小高骑车的速度是每小时21千米,墨莫骑车的速度是每小时9千米.请问:(1)出发后多长时间,小高第一次追上墨莫?第一次追上墨莫的地点距离A 地多少千米?(2)出发后多长时间,小高第五次追上墨莫?第五次追上墨莫的地点距离A 地多少千米?「分析」应用我们上面总结的结论,两人从同地出发,第一次追上时,两人路程差是多少?第五次追上时,两人路程差又是多少?地追及练习4阿呆和阿瓜同时从A地出发,在相距90千米的A、B两地之间不断往返骑车.已知阿呆骑车的速度是每小时30千米,阿瓜骑车的速度是每小时25千米.请问:(1)出发后多长时间阿呆第一次追上阿瓜?(2)出发后多长时间阿呆第三次追上阿瓜?例题5机器猫和机器狗从长为150米的跑道一端同时出发,在跑道上不断往返运动.已知机器猫的速度是每分钟20米,机器狗的速度是每分钟30米.那么在机器猫和机器狗出发后100分钟内,(1)它们共有多少次迎面相遇?(2)机器狗有多少次追上机器猫?「分析」想要算出100分钟内相遇多少次,就要知道它们相遇一次所用的时间.要算出追上多少次,就要知道追上一次所用的时间.例题6A、B两辆汽车从甲、乙两站同时出发,相向而行,在距甲站50千米处两车第一次迎面相遇,相遇后两车继续前进(保持原速)各自到达乙、甲两站后,立即沿原路返回,在距乙站30千米处两车第二次迎面相遇.问:甲、乙两站相距多远?若两车继续前进,则在何处第三次迎面相遇?「分析」出发到第一次相遇、第一次相遇到第二次相遇,这两段时间有什么关系呢?好好思考一下,然后再画线段图分析.课堂内外文人的“反复”宋神宗熙宁二年(1069),王安石当宰相后,决心改革,推行新法,遭到大地主、大官僚的坚决反对,没几年就被罢了官.他在京城闭居无聊,决意回南京去看看妻儿.第二年春天,王安石由汴京南下扬州,又乘船西上回金陵(今苏省南京市),路过于京口(今江苏省镇江市)到了隔江相望的瓜洲时,船靠码头,不再走了.他站在船头上,极目西望,但见青山隐隐,江水滔滔,春风绿野,皓月当空,触景生情,更加怀念起金陵钟山(又名紫金山)的亲人来了.他走进船舶,拿出纸笔,略一思索,就写了一首题名《泊船瓜洲》的诗:京口瓜洲一水间,钟山只隔数重山.春风又到江南岸,明月何时照我还?写完后,王安石觉得“春风又到江南岸”的“到”字太死,看不出春风一到江南是什么景象,缺乏诗意,想了一会,就提笔把“到”字圈去,改为“过”字.后来细想一下,又觉得“过”字不妥.“过”字虽比“到”字生动一些,写出了春风的一掠而过的动态,但要用来表达自己想回金陵的急切之情,仍嫌不足.于是又圈去“过”字,改为“入”字、“满”字.这样改了十多次,王安石仍未找到自己最满意的字.他觉得有些头疼,就走出船舱,观赏风景,让脑子休息一下.王安石走到船头上,眺望江南,春风拂过,青草摇舞,麦浪起伏,更显得生机勃勃,景色如画.他觉得精神一爽,忽见春草碧绿,这个“绿”字,不正是我要找的那个字吗?一个“绿”字把整个江南生机勃勃、春意盎然的动人景象表达出来了.想到这里,王安石好不高兴,连忙奔进船舱,另外取出一张纸,把原诗中“春风又到江南岸”一句,改为“春风又绿江南岸”.为了突出他反复推敲来之不易的那个“绿”字,王安石特地把“绿”写得稍大一些,显得十分醒目.一个“绿”字使全诗大为生色,全诗都活了.这个“绿”字就成了后人所说的“诗眼”.后来许多谈炼字的文章,都以他为例.作业1.甲、乙两人分别从相距70千米的A、B两地同时出发,在A、B之间不断往返骑车.已知甲骑车的速度是每小时15千米,乙骑车的速度是每小时20千米.请问:(1)经过多少小时两人第二次迎面相遇?(2)再过多少小时两人第四次迎面相遇?2.甲、乙两人分别从相距9千米的A、B两地同时出发,在A、B之间不断往返骑车.已知甲骑车的速度是每小时25千米,乙骑车的速度是每小时10千米.出发后多少小时,甲第三次追上乙,追及的地点距离A多少千米?3.甲、乙两人同时从A地出发,在相距6千米的A、B两地之间不断往返骑车.已知甲骑车的速度是每小时30千米,乙骑车的速度是每小时24千米.请问:(1)经过多少小时甲第三次追上乙?(2)再过多少小时甲第四次追上乙?4.甲、乙两人同时从A地出发,在相距70千米的A、B两地之间不断往返骑车.已知甲骑车的速度是每小时15千米,乙骑车的速度是每小时20千米.请问:(1)经过多少小时两人第五次迎面相遇?(2)第五次迎面相遇地点距离A地多少千米?5.兔子和乌龟同时从A地出发,在相距500米的A、B两地之间不断往返骑车.已知兔子的速度是每分钟40米,乌龟的速度是每分钟60米.在出发的半小时内,他们一共迎面相遇多少次?第十三讲多次往返相遇与追及1.例题1答案:(1)2小时,4小时;(2)14小时,54千米详解:(1)第一次迎面相遇两人的路程和是1个全长,时间是()÷+=小602192时.从第一次相遇到第二次迎面相遇,两人的路程和是2个全长,时间应该是224⨯=小时.(2)从出发到第四次迎面相遇,两人的路程和是12227+++=个全长,时间是7214⨯=千米,⨯=小时.其中墨莫从B地出发走了149126-=千米.1266026÷=,所以相遇地点离A地606542.例题2答案:(1)5小时,20小时;(2)45小时,15千米详解:(1)第一次追上,两人的路程差是1个全长,时间是()÷-=小602195时,从第一次追上到第三次追上,两人的路程差是224+=个全长,时间是4520⨯=小时.(2)从出发到第五次追上,两人的路程差是2519⨯-=个全长,时间是⨯=千米,9545⨯=小时.其中墨莫从B地出发走的路程是459205-=千米.÷=,所以追及地点距离A点60451540560653.例题3答案:(1)4小时,36千米;(2)50小时,60千米详解:(1)第一次迎面相遇,两人的路程和是2个全长,相遇时间是()⨯=千米,相遇地点⨯÷+=小时,其中墨莫从A出发走了49366022194距A地36千米.(2)相邻两次相遇的路程和都是2个全长,从出发到第五次相遇两人相遇时间是4520÷=,⨯=千米,180603⨯=小时.墨莫从A出发走了209180所以相遇地点距A地60千米.4.例题4答案:(1)10小时,30千米;(2)50小时,30千米详解:(1)第一次追上,两人的路程差是2个全长,时间是()60221910⨯÷-=小时.此时墨莫从A出发走了91090÷=,追上地点⨯=千米,9060130距离A地603030-=千米.(2)相邻两次追及的路程差是2个全长,追上1次需要10小时,追上5次需要51050⨯=小时,此时墨莫走了509450⨯=千米,45060730÷=,追上地点距离A 地603030-=千米.5. 例题5答案:(1)16次;(2)3次详解:(1)从同一地点出发,相邻两次相遇的路程和为2个全长,需要()150220306⨯÷+=分钟;1006164÷=,所以一共有16次迎面相遇. (2)从同一地点出发,相邻两次追及的路程差为2个全长,需要()1502302030⨯÷-=分钟,10030310÷=,所以一共追上3次. 6. 例题6答案:120千米;距甲地10千米处详解:如图所示,第一次迎面相遇,A 、B 两车合走了1个全长,其中A 走了50千米.从第一次相遇到第二次迎面相遇,两车合走了2个全长,按倍数关系,A 车应该走100千米,图中粗线表示的距离是1003070-=千米.所以甲、乙两站相距5070120+=千米.从第二次到第三次相遇,A 要走100米,所以在距甲10米处第三次相遇.(或者是从出发到第三次相遇,两车合走5个全长,A 车共走550250⨯=千米,250120210÷=,距甲地10千米第三次相遇.)7. 练习1答案:6小时;12小时详解:(1)从出发到第二次迎面相遇,路程和是3个全长,即390270⨯=千米,所以时间为()27021246÷+=小时;(2)从第二次相遇到第五次迎面相遇,路程和是6个全长,即690540⨯=千米,所以时间为()540212412÷+=小时.8. 练习2答案:4小时;16小时甲乙B详解:(1)从出发到第一次追上,路程差是1个全长,即80千米,所以时间为()8032124÷-=小时;(2)从第一次追上到第三次追上,路程差是4个全长,即320千米,所以时间为()320321216÷-=小时.9. 练习3答案:8小时;20小时简答:(1)从出发到第二次迎面相遇,路程和是4个全长,即490360⨯=千米,所以时间为()36021248÷+=小时;(2)从出发到第五次迎面相遇,路程和是10个全长,即1090900⨯=千米,所以时间为()900212420÷+=小时.10. 练习4答案:36小时;108小时简答:(1)从出发到第一次追上,路程差是2个全长,所以时间为()290302536⨯÷-=小时;(2)从出发到第三次追上,路程差是6个全长,所以时间为()6903025108⨯÷-=小时.11. 作业1答案:6;8简答:(1)从出发到两人第二次相遇,两人的路程和是3个全长,所以一共用时()70315206⨯÷+=小时;(2)从第二次相遇到第四次相遇之间,两人的路程和是4个全长,所以用时8小时.12. 作业2答案:3小时;3千米简答:第三次追及时,两人的路程差为9545⨯=千米;追及时间为()4525103÷-=小时;甲一共骑了32575⨯=千米;7598÷=⋅⋅⋅3,距离A 地3千米.13. 作业3答案:6;2简答:从出发到第三次追及,两人的路程差等于6个全长,用时()6630246⨯÷-=小时.从第三次追及到第四次追及期间,两人的路程差等于2个全长,用时2小时.14.作业4答案:20;20简答:从出发到第五次相遇,两人的路程和为10个全长,一共用时()÷=,⨯÷+=小时;此时甲一共骑行了300千米,30070420 7010152020距离A地20千米.15.作业5答案:3简答:从同一地点出发,第一次迎面相遇两人的路程和是2个全长,时间是()5002406010⨯÷+=分钟.相邻两次之间迎面相遇的时间都是10分钟,半小时内会有3次迎面相遇.。

五年级奥数相遇问题1

五年级奥数相遇问题1

相遇问题专题简析:每天都在行走,行走就离不开速度、时间、路程这三个量,这类问题总称为行程问题。

相遇问题是行程问题中的一种,它的对象是两个物体运动,所包含的内容丰富,千变万化。

方法:弄清楚题意,对具体问题作仔细分析,必要时作一条线段图帮助理解。

弄清楚距离、速度、时间的联系,紧扣数量关系。

经典例题例1、甲、乙两辆汽车从东西两地相向而行,甲车每小时行48千米,乙车每小时行42千米,两车离中点21千米处相遇,求东西两地相距多少千米?例2、两个游泳队同时从相距2040米的A、B 两地相向出发,甲队从A 地下水,每分钟游40米,乙队从B地下水,每分钟游45米,一只汽艇负责两队安全,同时从B地出发,每分钟行驶1200米,遇到甲队就立即返回,返回遇到乙队又向甲队开去,这样不断的往返下去,汽艇行多少米两队才能相遇?例3、客货两车同时从甲、乙两地相对开出,客车每小时行44千米,货车每小时行52千米,两车相遇后以原来的速度前进,到达乙、甲两地后立即返回,第二次相遇时货车比客车多行了60千米。

甲、乙两地相距多少千米?试一试:1、甲、乙两同学从相隔17千米的两地出发,相向而行。

一个同学骑自行车以每小时3.5千米的速度在两人之间往返联络(停歇时间不计)。

如果甲学生每小时走4.5千米,乙学生每小时走4千米。

问两个学生相遇时,骑自行车的同学共走了多少千米?2、AB两人同时从相距3000米的家里相向而行,A每分钟行70米,B每分钟行80米,一只大狗与他同时出发,每分钟行100米,狗与B相遇后立即掉头向A跑去,遇到A后又向B跑去,直到AB两人相遇。

这只狗一共跑了多少米?3、甲、乙两辆汽车从东西两个城市相向开出,甲车每小时行60千米,乙车每小时行56千米,两车距中点16千米处相遇,求东西两个城市相距多少千米?4、快车和慢车同时从甲、乙两地相对开出,已知快车每小时行60千米,慢车每小时行52千米,经过几小时后快车经过中点32千米处与慢车相遇。

人教版2022版小学数学小学奥数系列3-1-3多次相遇和追及问题(III)卷

人教版2022版小学数学小学奥数系列3-1-3多次相遇和追及问题(III)卷

人教版2022版小学数学小学奥数系列3-1-3多次相遇和追及问题(III)卷姓名:________ 班级:________ 成绩:________亲爱的小朋友们,这一段时间的学习,你们收获怎么样呢?今天就让我们来检验一下吧!一、 (共36题;共150分)1. (5分) (2019六下·竞赛) 池塘周围有一条道路.、、三人从同一地点同时出发.和往逆时针方向走,往顺时针方向走.以每分钟80米、以每分钟65米的速度行走.在出发后的20分钟遇到,再过2分钟,遇到.请问,池塘的周长是几米?2. (5分) (2019六下·竞赛) 甲、乙、丙三人行路,甲每分钟走50米,乙每分钟走60米,丙每分钟走70米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?3. (5分) (2019六下·竞赛) 如图,A、B是圆的直径的两端,小张在A点,小王在B点同时出发反向行走,他们在C点第一次相遇,C离A点80米;在D点第二次相遇,D点离B点6O米.求这个圆的周长.4. (5分) (2019五下·松江期末) 甲、乙两人赛跑,甲的速度是7米/秒,乙的速度是5.5米/秒,甲在乙后面15米,两人同时同向起跑,问甲经过几秒追上乙?5. (5分) (2019六下·竞赛) 甲从A地出发前往B地,1小时后,乙、丙两人同时从B地出发前往A地,结果甲和丙相遇在C地,甲和乙相遇在D地.已知甲和乙的速度相同,丙的速度是乙的1.5倍,A、B两地之间的距离是220千米,C、D两地之间的距离是20千米.求丙的速度.6. (5分) (2019六下·竞赛) 有一种机器人玩具装置,配备长、短不同的两条跑道,其中长跑道长400厘米,短跑道长300厘米,且有200厘米的公用跑道(如下图)。

机器人甲按逆时针方向以每秒6厘米的速度在长跑道上跑动,机器人乙按顺时针方向以每秒4厘米的速度在短跑道上跑动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.小学生奥数二次相遇练习题及答案
1、一列货车从甲地开往乙地,平均每小时行45千米,一列客车从乙地开往甲地,平均每小时比货车快15千米,已知客车比货车迟发2小时,客车出发后4小时两车相遇,然后仍继续前进,问:当客车到达甲地时,货车离乙地还有多少千米?
解答:货车每小时行45千米,客车每小时比货车快15千米,所以,客车速度为每小时45+15=60千米;两车相遇时,货车已行了4+2=6小时,货车所行驶的路程是45×6=270千米,客车行驶的。

路程是60×4=240千米,甲、乙两地之间的路程270+240=510千米,客车行完全程所用时间:510÷60=8.5(小时)。

客车到甲地时,货车离乙地的
2、甲车每小时行40千米,乙车每小时行60千米,甲车从A地、乙车从B 地同时出发相向而行,两车相遇后4.5时,甲车到达B地,A、B两地相距多少千米?
【分析】两车相遇后4.5小时,甲车到达B地,注意到甲车4.5小时走的正好是乙相遇时所行的路程,所以相遇时乙行了4.5×40=180(千米),相遇时间为180÷60=3(小时),AB两地的距离是(40+60)×3=300(千米)。

2.小学生奥数二次相遇练习题及答案
一个圆的周长为1.26米,两只蚂蚁从一条直径的两端同时出发沿圆周相向爬行。

这两只蚂蚁每秒分别爬行5.5厘米和3.5厘米。

它们每爬行1秒,3秒,5秒…(连续的奇数),就调头爬行。

那么,它们相遇时已爬行的时间是多少秒?
分析:
道题难在蚂蚁爬行的方向不断地发生变化,那么如果这两只蚂蚁都不调头爬行,相遇时它们已经爬行了多长时间呢?非常简单,由于半圆周长为:1.26÷
2=0.63米=63厘米,所以可列式为:1.26÷2÷(5.5+3.5)=7(秒);我们发现蚂蚁爬行方向的变化是有规律可循的,它们每爬行1秒、3秒、5秒、…(连续的奇数)就调头爬行。

每只蚂蚁先向前爬1秒,然后调头爬3秒,再调头爬5秒,这时相当于在向前爬1秒的基础上又向前爬行了2秒;同理,接着向后爬7秒,再向前爬9秒,再向后爬11秒,再向前爬13秒,这就相当于一共向前爬行了
1+2+2+2=7(秒),正好相遇。

3.小学生奥数二次相遇练习题及答案
1、题目:甲、乙二人分别从相距300千米的两地同时出发相向而行,甲每小时行35千米,经过5小时相遇,问:乙的速度是多少?
解答:甲乙5个小时路程和是300千米,相遇时间是5小时,所以二人的速度和是300÷5=60千米/时,乙的速度是60-35=25千米/时。

2、甲、乙两列火车同时从两地相向开出,甲车每小时行50千米,乙车每小时行60千米。

两车相遇时,甲车正好走了300千米,两地相距多少千米?
答【分析】相遇时甲走了300千米,所以甲走了300÷50=6时,这6时正好是甲、乙两车的相遇时间,两地的距离(50+60)×6=660千米。

3、甲、乙两列火车同时从相距380千米的两地相向开出,甲车每小时行50千米,乙车每小时行60千米。

乙车比甲车晚出发1小时,乙车出发后,甲、乙两车几小时相遇?
解答:乙车晚出发1小时,则乙车出发时甲已经行驶了50×1=50千米,此时甲、乙两车的距离是380-50=330千米,所以乙车出发后,相遇时间为330÷(50+60)=3小时。

4.小学生奥数二次相遇练习题及答案
甲、乙两地公路长74千米,8:15一辆汽车从甲地到乙地,半个小时后,又有一辆同样速度的汽车从甲地开往乙地。

王叔叔8:25从乙地骑摩托车出发去甲地,在差5分不到9点时,他遇到了第一辆汽车,9:16遇到第二辆汽车,王叔叔骑摩托车的速度是多少?
解析:
根据题意,汽车40分和摩托车30分共行74千米,汽车31分和摩托车51
分共行74千米。

可以知道汽车40-31=9分钟相当于摩托车51-30=21分钟行的。

可以得到摩托车行完需要40÷9×21+30=370/3分钟。

所以摩托车小时行74÷370/3×60=36千米。

5.小学生奥数二次相遇练习题及答案
1、甲乙二人分别从A、B两地同时出发,并在两地间往返行走。

第一次二人
在距离B点400米处相遇,第二次二人又在距离B点100米处相遇,问两地相距多少米?
答案:
(1)第一次二人在距离B点400米处相遇。

说明第一次相遇时乙行400米。

(2)甲、乙从出发到第二次相遇共行3个全程。

从第一次相遇后时到第二次相遇他们共行2个全程。

在这2个全程中甲行400+100=500米。

说明甲在每个全程中行500/2=250米。

(3)因此在第一次相遇时(一个全程)
250+400=650米
答:两地相距650米。

2、甲每分钟走50米,乙每分钟走60米,丙每分钟走70米,甲乙两人从A 地,丙一人从B地同时相向出发,丙遇到乙后2分钟又遇到甲,A、B两地相距多少米?
解答:丙遇到乙后此时与甲相距(50+70)×2=240米,也是甲乙的路程差,所以240÷(60-50)=24分,即乙丙相遇用了24分钟,A、B相距(70+60)×24=3120米。

相关文档
最新文档