X射线衍射实验样品制备要求
X射线衍射仪实验报告(范文模版)

X射线衍射仪实验报告(范文模版)第一篇:X射线衍射仪实验报告(范文模版)基本构造:(1)高稳定度X射线源提供测量所需的X射线, 改变X射线管阳极靶材质可改变X射线的波长, 调节阳极电压可控制X射线源的强度。
(2)样品及样品位置取向的调整机构系统样品须是单晶、粉末、多晶或微晶的固体块。
(3)射线检测器检测衍射强度或同时检测衍射方向, 通过仪器测量记录系统或计算机处理系统可以得到多晶衍射图谱数据。
(4)衍射图的处理分析系统现代X射线衍射仪都附带安装有专用衍射图处理分析软件的计算机系统, 它们的特点是自动化和智能化。
操作:第一步:检查真空灯是否正常,左“黄”右“绿”为正常状态,如果“绿”灯闪或者灭的状态表明真空不正常;第二步:冷却水系统箱,打开其开关(冷却水的温度低于26℃为正常)。
如果“延时关机”为开的状态要关闭。
“曲轴加热”一般在寒冬才用,打开预热10min 后即可继续以下操作。
(此外,测试实验完成后,打开“延时关机”按钮,而冷却水的“关闭”按钮不关,30min后冷却水会自动关闭)第三步:打开机器后面“右下角”的“测角仪”(上开下关),而“左下角”的开关一般为“开”的状态,除有允许不要动;第四步:电脑操作,桌面“右下角”有“蓝色标示”说明电脑和机器已经连接,否则“左击”该标示选择“初始化”即可;第五步:装样品,载物台一般用“多功能”的,粉体或者块体装上后,使其平面与载物台面相平。
如果是粉体还要在滑道上铺层纸,避免掉料污染滑道;第六步:在机器中放样品前,按“Door”按键,听到“嘀嘀”声时,方可打开机器门;第七步:点击“standard measurement”中的运行按钮即可运行机器进行测试中。
第八步:实验完成后,先降电流后降电压,20mA/5min至10mA,5kV/5min至20kV;关闭各个软件,关闭“测角仪”开关。
冷却水箱上的开关可以直接打开“延时关机”开关,而冷却水“关闭”按钮不关,30min后自动关闭冷却水。
xrd的使用方法

xrd的使用方法X射线衍射(XRD)是一种常用的材料科学分析技术,用于研究晶体结构和结构性质。
本文将介绍XRD的基本使用方法,帮助初学者更好地利用这一技术。
首先,在进行XRD实验之前,我们需要准备样品。
样品可以是晶体粉末或薄片。
对于粉末样品,需要将其细磨成均匀的粉末,而对于薄片样品,则需要制备薄片并确保表面光洁。
准备好样品后,将样品放置在XRD仪器的样品台上。
接下来,调整XRD仪器的参数。
主要的参数包括入射角、散射角、扫描范围和扫描速度。
入射角和散射角是X光束与样品的夹角,可以根据具体实验要求进行调整。
扫描范围决定了XRD仪器可以覆盖的角度范围,一般根据待测样品的预期衍射峰位置来设置。
扫描速度则影响到数据采集的时间,一般可以根据实际情况进行选择。
当调整完参数后,开始进行数据采集。
XRD仪器会扫描样品在不同散射角下的衍射强度。
通过记录衍射强度与散射角的关系,我们可以获得样品的衍射谱。
这个衍射谱中的峰代表了样品的晶格结构和晶体取向信息。
根据衍射峰的位置、强度和宽度,我们可以推断样品的晶体结构参数,例如晶胞常数和晶体取向等。
最后,数据分析是使用XRD进行材料研究的关键一步。
我们可以利用专业软件对衍射数据进行拟合和解析。
通过与数据库中已知材料的衍射数据进行比对,可以确定样品的组成和相对含量。
此外,利用衍射数据还可以计算材料的晶体结构信息,例如晶胞参数和晶格畸变等。
综上所述,XRD是一种强大的材料分析技术,可以用于研究晶体结构和性质。
通过准备样品、调整仪器参数、数据采集和数据分析,我们可以从XRD实验中获得有关样品晶格结构的重要信息。
这些信息有助于深入理解材料的性质以及其在各个领域的应用。
TiO2的X射线衍射分析

通常所说的衍射包括单纯衍射,但更多的图样:条纹等宽等
衍射图样:中间条纹最宽 最亮,两边迅速变窄变暗
晶体
晶体是原子、离子或分子按照一定的周期性
在空间排列形成在结晶过程中形成具有一定 规则的几何外形的固体。
均匀性,即晶体内部各处宏观性质相同; 各向异性,即晶体中不同的方向上性质不同; 能自发形成多面体外形; 有确定的、明显的熔点; 有特定的对称性; 能对X射线和电子束产生衍射效应。
XRD物相分析的依据
任何一种结晶物质都具有特定的晶体结构 在一定波长的X射线照射下,不同的晶体结
构产生完全不同的衍射花样,不可能有两种 晶体结构的衍射花样完全相同 多相试样的衍射图谱不因为存在多相而产生 变化,只是各自衍射花样的机械叠加
物相分析与化学分析
材料或物质的组成包括两部分:一是确定材料的
材料科学、环境科学、生命科学等领域得到深入发展和 广泛应用。
复习干涉和衍射
干涉
两速光相遇,有的地方得到加强,有的地方减 弱,这种现象叫做光的干涉。满足条件:频率 相同;方向相同;相位保持不变。
衍射
所谓光的衍射是指光绕过障碍物,偏离直线传 播而进入几何阴影,并在屏幕上出现光强不均 匀的分布。在障碍物(或孔)线度与波长相比 拟时,才发生衍射现象。
主要仪器结构
实验仪器和试剂
1. 仪器
X射线衍射仪
2. 试剂和器皿
样品片;二氧化钛
实验步骤
1. 样品的制备
块状样品制备:切割,待测面打磨、抛光;将 样品固定在样品架上 粉末样品制备:破碎,研磨至200~325目;视 样品量分别装入通孔或浅槽型样品架 取适量TiO2粉末样品与样品片上压平
xrd国标标准

xrd国标标准
XRD(X射线衍射)是一种用于分析晶体结构的技术,而国标标准通常是指制定和规范某一领域或产品的国家标准。
在XRD领域,有关X射线衍射的国家标准主要包括X射线衍射仪器、样品制备、数据分析等方面。
以下是一些与X射线衍射相关的国标标准的示例,注意这只是一小部分可能与XRD有关的标准,具体标准名称和编号可能会根据时间和领域的不同而有所变化:
1.GB/T 5618-2014《X射线衍射分析方法与技术条件》
•该标准规定了X射线衍射分析方法的基本原理、仪器要求、技术条件和试样制备方法。
2.GB/T 22094-2008《X射线荧光分析方法与技术条件》
•该标准规定了X射线荧光分析方法的基本原理、仪器要求、技术条件和试样制备方法。
3.GB/T 25495-2010《X射线荧光光谱分析方法》
•该标准规定了X射线荧光光谱分析方法的基本原理、仪器要求、技术条件和试样制备方法。
4.GB/T 15397-2010《X射线衍射晶体学试验室建筑工程技术规
范》
•该标准规定了X射线衍射晶体学试验室建筑工程的技术规范。
请注意,以上标准的编号和发布年份基于我截至2022年1月的
知识。
标准的修订和更新是常态,建议在实际应用时查阅最新版本的国家标准。
你可以通过中国国家标准化管理委员会(SAC)的官方网站或相关标准发布机构的渠道获取最新的标准文本。
实验:X射线衍射法进行物相定性分析1

X射线衍射法进行物相定性分析实验目的及要求⏹了解X射线衍射仪的结构和工作原理;⏹掌握无机非金属材料X射线衍射分析的制样方法;⏹掌握X射线衍射物相定性分析的方法和步骤。
物相定性分析的基本原理2dsinθ=λ晶胞中原子种类、数量、排列方式(1) 任何一种物相都有其特征的衍射谱;任何两种物相的衍射谱不可能完全相同;多相样品的衍射峰是各物相衍射峰的机械叠加。
(2)制备标准单相物质的衍射花样:PDF卡片待分析物质(样品)的衍射花样与之对照,从而确定物质的组成相实验设备与结构D/max-RB型X射线衍射仪D/Max-RB型X射线衍射仪构造示意图主要组成部分有X射线发生器、测角仪、探测器、计算机控制处理系统等。
一、X射线管1、X-ray产生原理凡是高速运动的电子流或其它高能辐射流(如γ射线,X射线,中子流等)被突然减速时均能产生X射线。
热能 + 电磁波2、X射线机X射线管是X射线机的核心部件。
封闭式热阴极X射线管:热阴极、阳极、窗口、聚焦座、管座等滤波片可以获得近似的纯的kα辐射源为避免样品强烈吸收入射X射线产生荧光幅射,对分析结果产生干扰。
必须根据所测样品的化学成分选用不同靶材的X 射线管。
原则是:靶材的Kα谱应位于试样元素K吸收限的右近邻或左面远离试样元素K吸收限的低质量吸收系数处。
二、测角仪测角仪是X射线衍射仪的核心部件梭拉光栏梭拉光栏防散射光栏衍射仪的光路图X射线经线状焦点S发出,经发散狭缝DS后,成为扇形光束照射在平板试样上,产生衍射,衍射线经接收狭缝RS进入探测器(即计数管)后被转换成电信号记录下来。
为了限制X射线的发散,在照射路径中加入S1梭拉光栏限制X射线在高度方向的发散,加入DS发散狭缝光栏限制X射线的照射宽度。
试样产生的衍射线也会发散,同样在试样到探测器的光路中也设置防散射光栏SS、梭拉光栏S2和接收狭缝光栏RS,这样限制后仅让聚焦照向探测器的衍射线进入探测器,其余杂散射线均被光栏遮挡。
◆工作时,试样与探测器同时转动,但转动的角速度为1 : 2的比例关系。
x射线衍射测量残余应力实验指导书

X射线衍射方法测量材料的残余应力一、实验目的与要求1.了解材料的制备过程及残余应力特点。
2.掌握X射线衍射(XRD)方法测量材料残余应力的实验原理和方法。
二、了解表面残余应力的概念、分类及测试方法种类, 掌握XRD仪器设备的操作过程。
三、实验基本原理和装置..1.X射线衍射测量残余应力原理当多晶材料中存在内应力时, 必然还存在内应变与之对应, 导致其内部结构(原子间相对位置)发生变化。
从而在X射线衍射谱线上有所反映, 通过分析这些衍射信息, 就可以实现内应力的测量。
材料中内应力分为三大类。
第I类应力, 应力的平衡范围为宏观尺寸, 一般是引起X射线谱线位移。
由于第I类内应力的作用与平衡范围较大, 属于远程内应力, 应力释放后必然要造成材料宏观尺寸的改变。
第II类内应力, 应力的平衡范围为晶粒尺寸, 一般是造成衍射谱线展宽。
第III类应力, 应力的平衡范围为单位晶胞, 一般导致衍射强度下降。
第II类及第III类内应力的作用与平衡范围较小, 属于短程内应力, 应力释放后不会造成材料宏观尺寸的改变。
在通常情况下, 我们测得是残余应力是指第一类残余应力。
当材料中存在单向拉应力时, 平行于应力方向的(hkl)晶面间距收缩减小(衍射角增大), 同时垂直于应力方向的同族晶面间距拉伸增大(衍射角减小), 其它方向的同族晶面间距及衍射角则处于中间。
当材料中存在压应力时, 其晶面间距及衍射角的变化与拉应力相反。
材料中宏观应力越大, 不同方位同族晶面间距或衍射角之差异就越明显, 这是测量宏观应力的理论基础。
原理见图1。
由于X射线穿透深度很浅, 对于传统材料一般为几十微米, 因此可以认为材料表面薄层处于平面应力状态, 法线方向的应力(σz )为零。
当然更适用于薄膜材料的残余应力测量。
图1 x 射线衍射原理图图2中φ及ψ为空间任意方向OP 的两个方位角, εφψ 为材料沿OP 方向的弹性应变, σx 及σy 分别为x 及y 方向正应力。
xrd测试操作的流程和注意事项
xrd测试操作的流程和注意事项该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
会计专业合作社实习报告内容与收获该xrd测试操作的流程和注意事项该文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注。
文档下载说明Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document xrd测试操作的流程和注意事项can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to knowdifferent data formats and writing methods, please pay attention!X射线衍射(XRD)是一种广泛应用于材料表征的技术,通过测量材料对X射线的散射图样,可以得到关于材料结构和晶格参数的信息。
粉末X射线衍射仪的操作流程
粉末X射线衍射仪的操作流程粉末X射线衍射仪是一种重要的实验设备,用于分析材料的晶体结构和物相组成。
本文将详细介绍粉末X射线衍射仪的操作流程,让读者更好地了解如何正确使用该仪器。
1. 设备准备在开始操作粉末X射线衍射仪之前,需要进行设备准备。
首先,确保仪器处于正常工作状态,并检查X射线源和样品台的有关部件是否安装良好。
同时,确保样品台的表面没有杂质或污染,以免影响衍射结果。
2. 样品制备为了进行X射线衍射实验,需要准备粉末样品。
首先,将待测试的材料研磨成细粉末,通常可以使用球磨机或者研钵研磨的方法。
接下来,将粉末样品填入样品台,确保样品均匀平整地覆盖整个样品台。
3. 调节参数在进行操作之前,需要根据具体实验要求调节仪器的参数。
包括X 射线管电压、电流强度、扫描角度等。
通常,较高的电压和电流强度可以提高信噪比,但也会增加辐射风险。
扫描角度的选择决定了实验的范围和精度。
4. 启动仪器参数调节完成后,可以启动粉末X射线衍射仪。
通常,使用仪器控制面板或者计算机软件进行操作。
确保仪器的X射线管和探测器工作正常,并且仪器稳定运行。
5. 开始扫描在仪器启动后,可以开始进行扫描。
选择适当的扫描模式,可以是连续扫描或者步进扫描等。
确保扫描过程中样品台的稳定性,避免出现晶体移动或偏移导致的扫描错误。
6. 数据处理扫描完成后,需要对得到的数据进行处理。
通常,使用X射线衍射软件进行数据分析和处理。
该软件可以绘制衍射图谱、分析峰位和强度等,并进一步得到材料的晶体结构信息和物相组成。
7. 结果解读在对数据进行处理后,根据衍射图谱和相关分析结果,可以解读材料的晶体结构和物相组成。
比对标准数据库或者参考文献,可以判断样品的晶体结构类型、晶胞参数和晶体学相对论。
8. 数据保存和报告最后,将处理得到的数据保存下来,并编写实验报告。
报告应包括实验目的、操作流程、结果分析和结论等内容。
确保报告清晰、准确地描述了实验过程和结果,以便于后续的查阅和复现。
x射线衍射法测残余应力
x射线衍射法测残余应力x射线衍射法是一种常用的测量材料中残余应力的方法。
残余应力是指在材料内部存在的无外力作用下的应力状态。
x射线衍射法通过观察材料晶体的衍射图样,可以间接获得材料中的残余应力信息。
在材料制备和加工过程中,常常会产生各种类型的应力,如热应力、机械应力等。
这些应力可能会导致材料的性能下降甚至失效。
因此,了解材料中的残余应力分布情况对于材料的设计和使用具有重要意义。
x射线衍射法测量残余应力的原理是基于布拉格衍射定律。
根据布拉格衍射定律,当x射线入射到晶体上时,会与晶体中的原子产生相互作用,形成衍射峰。
这些衍射峰的位置和强度与晶体中的晶格常数、晶体结构以及晶体内部的应力状态有关。
x射线衍射实验通常使用x射线衍射仪进行。
首先,将待测材料制备成适当的样品,通常为薄片或者粉末。
然后,将样品放置在x射线衍射仪的样品台上,调整x射线的入射角度和入射波长,使得x 射线与样品发生衍射。
通过观察和分析衍射图样,可以得到一些重要的信息。
首先,衍射峰的位置可以计算出晶格常数,从而了解材料的晶体结构。
其次,衍射峰的宽度可以反映出材料中的残余应力大小。
在材料中存在应力时,晶体中的晶面会发生畸变,从而导致衍射峰的展宽。
根据衍射峰的形状和宽度,可以计算出材料中的残余应力大小和分布情况。
x射线衍射法测量残余应力具有许多优点。
首先,它是一种非破坏性的测量方法,可以对样品进行多次测量,而不会对样品的性能和结构造成损害。
其次,x射线衍射法可以测量材料中的残余应力分布情况,而不仅仅是某一个点的应力值。
这对于了解材料的应力状态以及应力的来源具有重要意义。
然而,x射线衍射法也存在一些限制。
首先,它只能测量具有晶体结构的材料,无法对非晶态材料进行测量。
其次,x射线衍射法对于样品的制备要求较高,需要将样品制备成适当的形状和尺寸,并且表面应该光滑且无缺陷。
此外,x射线衍射法对于测量环境的稳定性要求较高,温度和湿度的变化都会对测量结果产生影响。
粉末样品制备实验报告(3篇)
第1篇一、实验目的1. 掌握粉末样品的制备方法,确保样品的均匀性和代表性。
2. 熟悉粉末样品在X射线衍射(XRD)分析中的应用,提高实验操作技能。
3. 了解粉末样品制备过程中可能遇到的问题及其解决方法。
二、实验原理粉末样品的制备是XRD分析的基础,其目的是获得均匀、具有代表性的粉末样品。
通过研磨、过筛、混合等步骤,使样品颗粒均匀分布,便于后续的XRD测试。
三、实验材料与仪器1. 实验材料:待测样品、研钵、研杵、筛网、称量纸、玻璃板、载玻片、压片机等。
2. 实验仪器:X射线衍射仪、电子天平、扫描电子显微镜等。
四、实验步骤1. 样品研磨:- 将待测样品放入研钵中,用研杵进行研磨。
- 研磨过程中,注意观察样品颗粒的变化,直至达到所需的细度。
- 研磨完成后,将研磨好的样品取出,备用。
2. 过筛:- 将研磨好的样品用筛网进行过筛,筛选出符合要求的颗粒。
- 筛选过程中,注意观察筛网上的样品颗粒分布情况,确保样品均匀。
3. 混合:- 将筛选好的样品放入称量纸中,用玻璃棒进行搅拌混合。
- 混合过程中,注意观察样品的均匀性,确保样品中各成分分布均匀。
4. 压制样品:- 将混合好的样品均匀铺在载玻片上,用压片机进行压制。
- 压制过程中,注意控制压力,避免样品过度压缩或破裂。
5. 样品测试:- 将压制好的样品放入X射线衍射仪中,进行XRD测试。
- 测试过程中,注意观察衍射图谱,分析样品的结构特征。
五、实验结果与分析1. XRD测试结果:- 通过XRD测试,成功获得样品的衍射图谱。
- 根据衍射图谱,可以确定样品的晶体结构、晶粒大小等信息。
2. 样品制备效果分析:- 通过本次实验,成功制备了均匀、具有代表性的粉末样品。
- 样品制备过程中,注意控制研磨、过筛、混合等步骤,确保样品的均匀性。
六、实验讨论1. 样品研磨:- 研磨过程中,注意控制研磨时间,避免样品过细或过粗。
- 选择合适的研磨方法,如球磨、研钵研磨等。
2. 过筛:- 根据实验需求,选择合适的筛网孔径,确保样品颗粒均匀。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
X射线衍射实验样品制备要求
金属样品如块状、板状、圆拄状要求磨成一个平面,面积不小于10X10毫米,如果面积太小可以用几块粘贴一起。
对于片状、圆拄状样品会存在严重的择优取向,衍射强度异常。
因此要求测试时合理选择响应的方向平面。
对于测量金属样品的微观应力(晶格畸变),测量残余奥氏体,要求样品不能简单粗磨,要求制备成金相样品,并进行普通抛光或电解抛光,消除表面应变层。
粉末样品要求磨成320目的粒度,约40微米。
粒度粗大衍射强度底,峰形不好,分辨率低。
要了解样品的物理化学性质,如是否易燃,易潮解,易腐蚀、有毒、易挥发。
粉末样品要求在3克左右,如果太少也需5毫克。
样品可以是金属、非金属、有机、无机材料粉末。
对于研究课题使用的、购买的各种原料一定要进行鉴定,如材料分子式,晶型,结晶度,粒度等。
以免用错原料。
对于不同基体的薄膜样品,要了解检验确定基片的取向,X射线测量的膜厚度约20个纳米。
对于纤维样品的测试应该提出测试纤维的照射方向,是平行照射还是垂直照射,因为取向不同衍射强度也不相同。
对于焊接材料,如断口、焊缝表面的衍射分析,要求断口相对平整,
提供断口所含元素。
如果一个断口照射面积小则可用两个或三个断口拼起来。
为保证对实验样品有一个好的实验结果,对于特殊的样品可以找老师帮助提出衍射实验方案。
要求研究生、博士生、具备材料X射线衍射数据的分析解析能力,能独立的鉴定对照PDF卡标准衍射数据。
实验室为同学们提供PDF数据库的检索。
X射线衍射技术可以分析研究金属固溶体、合金相结构、氧化物相合成、材料结晶状态、金属合金化、金属合金薄膜与取向、焊接金属相、各种纤维结构与取相、结晶度、原料的晶型结构检验、金属的氧化、各种陶瓷与合金的相变、晶格参数测定、非晶态结构、纳米材料粒度、矿物原料结构、建筑材料相分析、水泥的物相分析等。
非金属材料的X射线衍射技术可以分析材料合成结构、氧化物固相相转变、电化学材料结构变化、纳米材料掺杂、催化剂材料掺杂、晶体材料结构、金属非金属氧化膜、高分子材料结晶度、各种沉积物、挥发物、化学产物、氧化膜相分析、化学镀电镀层相分析等。
X射线实验室接受同学们的XRD衍射技术咨询和指导,并提供PDF检索数据库供同学们检索。
如果对样品的成分不了解可以利用X射线荧光光谱仪测定成分为X射线衍射分析提供成分信息。
X射线衍射实验的准确性和实验得到的信息质量好与坏与样品的制备有很大关系,在做XRD衍射实验时合理处理样品和制备样品。
4种xrd分析软件功能的对比
1.pcpdfwin
属于第二代物相检索软件。
它是在衍射图谱标定以后,按照d值检索。
一般可以有限定元素、按照三强线、结合法等方法。
所检索出的卡片多数时候不对。
一张复杂的衍射谱有时候需要花几天的时间。
2.search match
一个专门的物相检索程序,属于第三代检索软件,采用图形界面,根据图谱实体来对谱,直观性好。
可以实现和原始实验数据的直接对接,可以自动或手动标定衍射峰的位置,对于一般的图都能很好的应付。
而且有几个小工具使用很方便。
如放大功能、十字定位线、坐标指示按钮、网格线条等。
最重要的是它有自动检索功能。
可以帮你很方便的检索出你要找的物相。
也可以进行各种限定以缩小检索范围。
如果你对于你的材料较为熟悉的话,对于一张含有4,5相的图谱,检索也就3分钟。
效率很高。
而且它还有自动生成实验报告的功能! 3.high score
几乎search match中所有的功能highscore都具备,而且它比search-match更实用。
(1)它可以调用的数据格式更多。
(2)窗口设置更人性化,用户可以自己选择。
(3)谱线位置的显示方式,可以让你更直接地看到检索的情况。
(4)手动加峰或减峰更加方便。
(5)可以对衍射图进行平滑等操作,是图更漂亮。
(6)可以更改原始数据的步长、起始角度等参数。
(7)可以进行0点的校正。
(8)可以对峰的外形进行校正。
(9)可以进行半定量分析。
(10)物相检索更加方便,检索方式更多。
(11)可以编写批处理命令,对于同一系列的衍射图,一键搞定。
4.jade
具有highscore相似的自动检索功能少些,但它有比之更多的功能。
(1)它可以进行衍射峰的指标化。
(2)进行晶格参数的计算。
(3)根据标样对晶格参数进行校正。
(4)轻松计算峰的面积、质心。
(5)出图更加方便,你可以在图上进行更加随意的编辑。
扫描方式及其用法
多晶体X射线衍射方法一般都是θ-2θ扫描。
即样品转过θ角时,测角仪同时转过2θ角。
这个转动的过程称为扫描。
例如,我们要对样品进行物相鉴定时,需要测量2θ=5°-80°范围内的衍射谱,这个测量过程就称为“扫描”。
扫描的方式一般分为两种:连续扫描和步进扫描。
连续扫描
是指测角仪的连续转动方式,测角仪从起始的2θ到终止的2θ进行匀速扫描。
其参数主要有两个,一个是数据点间隔,另一个是扫描速度。
扫描速度是指单位时间内测角仪转过的角度,通常取2°/min,4°/min或8°/min或16°/min等。
数据点间隔是指每隔多少度取一个数据点。
一般来说,两个参数需要组合。
若数据点间隔取0.02°,则步长可取4-8°/min。
不当的组合会引起衍射峰强度的降低、衍射峰型不对称、或峰位向扫描方向一侧移动。
连续扫描一般用于做较大2θ范围内的全谱的扫描,适合于定性分析。
例如:用连续扫描方式,从20°扫描到80°,数据点间隔为0.02°,扫描速度为4°/min。
所需要的时间为:(80-20)/4=15min。
从这个计算过程来看,实验时间与数据点间隔无关,连续扫描一般用时较少。
一般来说,如果X光管的功率较低或实际使用功率较低或光管使用时间较长,为了获得更加清晰的图谱和较高的强度,需要使用较慢的扫
描速度,如2°/min。
反之,使用高功率的光管,如18KW的转靶光管,当使用功率达到10KW时,扫描速度可以使用8°/min。
有人做过实验,发现18KW的转靶衍射仪上,用扫描速度4,8和16°/min 来扫描同一个样品,图谱基本没有变化。
对于硅酸盐之类的无机物、金属材料中的微量相或结晶状态不好的化合物相分析,建议使用较慢的扫描速度来获得较高的强度和清晰的图谱。
扫描速度极慢时可以使用数据点间隔0.01°,但当扫描速度为4°/min或以上的速度时,建议使用0.02°或0.03°。
否则,图谱的噪声很大,图谱上下波动很大,把一些可能的弱峰掩盖。
步进扫描
步进扫描方式是将扫描范围按一定的步进宽度(0.01°或0.02°)分成若干步,在每一步停留若干秒(步进时间),并且将这若干秒内记录到的总光强度作为该数据点处的强度。
例如,从20°扫描到80°,步进宽度为0.02°,步进时间为1sec。
那么,扫描完成所需的时间为:{[(80-20)/0.02]*1}/60=50min。
从结果来看,实验所需时间与两个参数都有关。
不合适的参数组合,会让一个实验做上一天。
由于步进扫描可以增加每个数据点的强度(不是某一时间的真实强度而是一段时间内的累积强度),因而可以降低记数时的统计误差,提高信噪比。
步进扫描一般用于较窄2θ范围内的精细扫描,可用于定量分析、线形分析以及精确测定点阵常数、Retiveld全谱拟合等。
XRD摘引论坛发言并修改。