2014高考调研理科数学单元测试讲解_第四章_单元测试
2014届高考数学(理)复习课件第4单元-平面向量-数学(理科)-人教A版(共185张PPT)

=tO→A+(1-t)O→B.
返回目录
第25讲 平面向量的概念及其线性运算
双
向
固
基 础
3.平面向量线性运算的应用
(1)△ABC
中,D
是
BC
中
点
,
则
A→D
=
1 2
(
A→C
+
A→B).( )
(2)O 为△ABC 重心的充要条件是O→A+O→B+O→C=
0.( )
(3)四边形 ABCD 为平行四边形的充要条件是A→B+
• 变式题 给出下列命题:
①若|a|=|b|,则 a=b;
②若 A,B,C,D 是不共线的四点,则A→B=D→C是
点 面
四边形 ABCD 为平行四边形的充要条件;
讲
③若 a=b,b=c,则 a=c;
考 向
④a=b 的充要条件是|a|=|b|且 a∥b. 其中正确命题的序号是________.
[答案] ②③
本课件是由精确校对的word书稿制作的“逐字编辑”课 件,如需要修改课件,请双击对应内容,进入可编辑状态。
如果有的公式双击后无法进入可编辑状态,请单击选中 此公式,点击右键、“切换域代码”,即可进入编辑状态。 修改后再点击右键、“切换域代码”,即可退出编辑状态。
第四单元 平面向量
第25讲 平面向量的概念及其线性运算 第26讲 平面向量基本定理及坐标表示 第27讲 平面向量的数量积与平面向量应用举例
_____0___
(1)对向量加法 的分配律:
λ(a+b)= λ_a_+__λ_b___ (2)对实数加法 的分配律:
(λ1+λ2)a= λ_1_a_+__λ_2a__
返回目录
第25讲 平面向量的概念及其线性运算
2014高考调研理科数学课本讲解_3-4 定积分与微积分基本定理

y=x2, 由 y=x
分别解出 O、A、B 三点的横坐标
分别是 0、1、2.
课前自助餐 授人以渔 自助餐
课时作业
高考调研
新课标版 · 数学(理)
x2 x3 因为( )′=x,(x2- )′=2x-x2,故所求的面积 2 3 S= (2x-x)dx+ (2x-x )dx=
0 1
1 2
2
1 =2-0+
8 1 7 (4-3)-(1-3)=6.
课前自助餐
授人以渔
自助餐
课时作业
高考调研
新课标版 · 数学(理)
方法二 如图( 所 ,求 面 可 写 1 示 的积以成 ) 所
S=S△O -S2, B D
其中 S2 是由线段 BD、AD 及抛物线段 AB 所 成 区 的 围的域 x2 x3 x2 面积.由于 D 的横坐标也是 2,又( 2 )′=x,( 3 - 2 )′=x2- x.故 S= (2x-x)dx- (x2-x)dx=
n 2 l ( )
3 9 1 1 π ( ) ( ) ( ) 2+2 3 -4 4 2 5 4
课前自助餐
授人以渔
自助餐
课时作业
高考调研
新课标版 · 数学(理)
探究 1 1 求定积分借助微积分基本定理,关键是求出被 ( ) 积数原数求个数原数求个数导是 函的函,一函的函与一函的数 互运,此注掌一常函的数此,果 逆算因应意握些用数导.外如 被函是对函与段数那可利定分性 积数绝值数分函,么以用积的 质 f(x)dx= f(x)dx+ f(x)dx, 据 数 定 域 将 分 间 根 函 的 义 ,积 区
课前自助餐
授人以渔
自助餐
2014届河北省衡水中学高三上学期四调考试理科数学试卷(带解析)参考答案

2014届河北省衡水中学高三上学期四调考试理科数学试卷(带解析)参考答案一、选择题1.已知命题 p :,cos 1,x R x ∀∈≤则( )A .:,cos 1;p x R x ⌝∃∈≥B .:,cos 1;p x R x ⌝∀∈≥C .:,cos 1;p x R x ⌝∀∈>D .:,cos 1;p x R x ⌝∃∈> 2.数列{}n a 中,若)1(32,111≥-==+n a a a n n ,则该数列的通项=n a ( ) A .32-n B . 12-n C .n 23- D . 12-n3.在ABC ∆中,若sin()12cos()sin()A B B C A C -=+++,则ABC ∆的形状一定是( )A .等边三角形B .直角三角形C .钝角三角形D .不含60︒角的等腰三角形4.已知()|2||4|f x x x =++-的最小值是n ,则二项式1()n x x-展开式中2x 项的系数为( )A .15B . 15-C .30D . 30-5.高三要安排毕业晚会的4个音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求两个舞蹈节目不连排,则不同排法的种数是( )A .1800B .3600C .4320D .50406.右图是一个几何体的三视图,其中正视图和侧视图都是一个两底长分别为2和4,腰长为4的等腰梯形,则该几何体的侧面积是( )A .24πB .6πC .18πD .12π7.6张卡片上分别写有数字1,1,2,3,4,5,从中取4张排成一排,可以组成不同的4位奇数的个数为( )A .180B .126C .93D .608.已知5OA 1,OB AOB 6π==∠= ,点C 在∠AOB 外且OB OC 0.∙= 设实数,m n 满足OC mOA nOB =+ ,则mn等于( )9.能够把圆O :1622=+y x 的周长和面积同时分为相等的两部分的函数称为圆O 的“和谐函数”,下列函数不是..圆O 的“和谐函数”的是( ) A .3()4f x x x =+ B .5()15xf x nx-=+ C .()tan2xf x = D .()x x f x e e -=+ 10.点P 是双曲线22221(0,0)x y a b a b-=>>左支上的一点,其右焦点为(,0)F c ,若M为线段FP 的中点,且M 到坐标原点的距离为8c,则双曲线的离心率e 的取值范围是 ( )A .(]1,8B .41,3⎛⎤⎥⎝⎦C .45(,)33D .(]2,3 11.已知函数32()1()32x mx m n x f x +++=+的两个极值点分别为12,x x ,且1(0,1)x ∈,2(1,)x ∈+∞,点(,)p m n 表示的平面区域为D ,若函数log (4)(1)a y x a =+>的图像上存在区域D 内的点,则实数a 的取值范围是( ) A. 1,3() B. 1,3]( C.3+∞(,) D.[3+∞,) 12.设函数()f x 的定义域为D ,若满足:①()f x 在D 内是单调函数; ②存在[],a b D ⊆()b a >,使得()f x 在[],a b 上的值域为[],a b ,那么就称()y f x =是定义域为D 的“成功函数”.若函数2()log ()(0,1)xa g x a t a a =+>≠是定义域为R 的“成功函数”,则t 的取值范围为 ( )A. 1(,)4-∞B. 1(,1)4C. 1(0,)4D. 1(0,]4二、填空题13.对一个各边不等的凸五边形的各边染色,每条边可以染红、黄、蓝三种颜色中的一种,但是不允许相邻的边有相同的颜色,则不同的染色方法共有________种(用数字作答).14.已知ΔABC 中,∠A,∠B,∠C 的对边分别为a,b,c,若a=1,2cosC+c=2b,则ΔABC 的周长的取值范围是__________.15.已知定义在R 上的偶函数()y f x =满足:(4)()(2)f x f x f +=+,且当[0,2]x ∈时,()y f x =单调递减,给出以下四个命题: ①(2)0f =;②4x =-为函数()y f x =图像的一条对称轴; ③函数()y f x =在[8,10]单调递增;④若关于x 的方程()f x m =在[6,2]--上的两根12,x x ,则128x x +=-. 以上命题中所有正确的命题的序号为_______________.16.如图,已知球O 是棱长为1的正方体1111ABCD A B C D -的内切球,则平面1ACD 截球O 的截面面积为 .三、解答题17.在ABC ∆中,角C B A 、、所对的边为c b a 、、,且满足=-B A 2c o s 2c o s ⎪⎭⎫ ⎝⎛+π⎪⎭⎫⎝⎛-πA A 6co s 6c o s 2 (Ⅰ)求角B 的值; (Ⅱ)若3=b 且a b ≤,求c a 21-的取值范围.18.已知数列{a n }满足:120a =,27a = ,22n n a a +-=-*()n N ∈ (Ⅰ)求3a ,4a ,并求数列{a n}通项公式;(Ⅱ)记数列{a n }前2n 项和为2n S ,当2n S 取最大值时,求n 的值.19.正方形ADEF 与梯形ABCD 所在平面互相垂直,AD CD ⊥,//AB CD ,122AB AD CD ===,点M 在线段EC 上且不与E ,C 重合.(Ⅰ)当点M 是EC 中点时,求证://BM 平面ADEF ;(Ⅱ)当平面BDM 与平面ABF 所成锐二面角的余弦值为6时,求三棱锥M BDE 的体积.20.如图,已知抛物线C :px y 22=和⊙M :1)4(22=+-y x ,过抛物线C 上一点)1)(,(000≥y y x H 作两条直线与⊙M 相切于A 、B 两点,分别交抛物线为E 、F 两点,圆心点M 到抛物线准线的距离为417.(Ⅰ)求抛物线C 的方程;(Ⅱ)当AHB ∠的角平分线垂直x 轴时,求直线EF 的斜率; (Ⅲ)若直线AB 在y 轴上的截距为t ,求t 的最小值.21.设()ln af x x x x=+,32()3g x x x =--. (Ⅰ)当2a =时,求曲线()y f x =在1x =处的切线的方程;(Ⅱ)如果存在12,[0,2]x x ∈,使得12()()g x g x M -≥成立,求满足上述条件的最大整数M ;(Ⅲ)如果对任意的1,[,2]2s t ∈,都有()()f s g t ≥成立,求实数a 的取值范围.22.已知曲线C 的极坐标方程是2=ρ,以极点为原点,极轴为x 轴的正半轴建立平面直角坐标系,直线l 的参数方程为⎩⎨⎧+=+=ty tx 321(t 为参数).(Ⅰ)写出直线l 的普通方程与曲线C 的直角坐标方程;(Ⅱ)设曲线C 经过伸缩变换⎪⎩⎪⎨⎧==yy x x 21''得到曲线C ',设(,)M x y 为曲线C '上任一点,求222xy +的最小值,并求相应点M 的坐标.2014届河北省衡水中学高三上学期四调考试理科数学试卷(带解析)参考答案 1.D 【解析】试题分析:命题:,cos 1P x R x ∀∈≤的否定是:,cos 1P x R x ⌝∃∈>. 考点:命题的否定. 2.C 【解析】试题分析:∵)1(32,111≥-==+n a a a n n ,∴132(3)n n a a +-=-,∴1323n n a a +-=-,∴{3}n a -是以-2为首项,以2为公比的等比数列,∴32nn a -=-,∴23nn a =-+. 考点:1.配凑法求数列的通项公式;2.等比数列的通项公式. 3.B 【解析】 试题分析:∵sin()12cos()sin()A B B C A C -=+++,∴s i n c o s co A B A B AB-=-,∴sin cos cos sin 1A B A B +=,∴sin()1A B +=,∴sin 1C =,∴090C =,∴三角形为直角三角形.考点:1.两角差的正弦公式;2.两角和与差的余弦公式;3.特殊角的三角函数值. 4.A 【解析】试题分析:|2||4||(2)(4)|6x x x x ++-≥+--=,当且仅当(22)(4)0x x --≤时取等号,∴二项式1()nx x-为61()x x-,∴6621661()(1)r rr r r r r T C x C x x--+=-=-,∴令622r -=,∴2r =, ∴226(1)15C -=.考点:1.不等式的性质;2.二项式定理. 5.B 【解析】试题分析:先排除了舞蹈节目以外的5个节目,共55A 种,把2个舞蹈节目插在6个空位中,有26A 种,所以共有52563600A A =种. 考点:排列组合. 6.D 【解析】试题分析:由图可知,1,2r R ==,∴2(12)4122S ππ⨯+⨯==.考点:1.三视图;2.台体侧面积公式. 7.B 【解析】试题分析:如果个位数是1,则有35A 种,如果个位数是3,则有3231133333()2A C A C C ++⨯, 所以共有332311533333()2126A A C A C C +++⨯=种. 考点:排列问题. 8.A 【解析】试题分析:53162OA OB π∙==- ,而()0OB OC OB mOA nOB ∙=∙+= ,即20mOA OB nOB ∙+= ,∴3302m n -+=,∴2mn=.考点:向量的数量积.9.D 【解析】试题分析:只有D 答案是偶函数,这个圆的圆心是(0,0)O ,则奇函数会是该圆的“和谐函数”.考点:1.对称性;2.奇偶性. 10.B 【解析】试题分析:设左焦点为'F ,则'||2||4c PF MO ==,设||PF xc =,则有2424cc xc c c xc ⎧+>⎪⎪⎨⎪-≤⎪⎩,即7944x ≤<, 由定义有:24c xc a -=,∴214c e a x ==-,由7944x ≤<得4(1,]3e ∈. 考点:1.双曲线的定义;2.焦点三角形求离心率的方法. 11.A 【解析】试题分析:'2()02m nf x x mx +=++=的两根为12,x x ,且1(0,1)x ∈,2(1,)x ∈+∞,故有''(0)0(1)0f f ⎧>⎨<⎩ 02102m n m n m +⎧>⎪⎪⇔⎨+⎪++<⎪⎩,即0320m n m n +>⎧⎨++<⎩,作出区域D ,如图阴影部分,可得l o g (14)1a -+>, 所以13a <<.考点:1.函数的极值;2.线性规划.12.C 【解析】试题分析:无论01a <<,还是1a >,都有()g x 是增函数, 故()g a a =,()g b b =,所以方程()g x x =有两个根,即2x x a a t =+有两个根,设xm a =,则直线y t =与函数2(0)y m m m =-+>有两个交点,画出这两个图象可以看出t 的取值范围是1(0,)4,显然此时函数定义域为R . 考点:1.新定义题;2.函数图像. 13.30 【解析】试题分析:先给五边形的顶点标上字母,,,,A B C D E ,从AB 边开始染色,有3种染法,BC 边有2种,而CD 边的颜色可以和AB 的一样也可以不一样,分2种情况:如果一样,DE 有2种,EA 必须和AB 不同,所以有1种;如果不一样,DE 和EA 的染色方法只有3种,所以综上得:32(23)30⨯⨯+=种. 考点:排列组合. 14.(2,3]【解析】试题分析:∵2cos 2C c b +=,∴222222a b c c b ab+-+=,∴221b c bc +=+,∵222b c bc +≤,∴222212b c b c ++-≤,∴222b c +≤,又∵12b c +≤≤, ∴2b c +≤,∴周长13l a b c b c =++=++≤,又∵1b c +>,∴周长12l a b c b c =++=++>, ∴综上得:23l <≤.考点:1.基本不等式;2.余弦定理. 15.①②④ 【解析】试题分析:∵(4)()(2)f x f x f +=+,∴当2x =-时,(2)(2)(2)f f f=-+,∴(2)0f -=,又∵函数()f x 是偶函数,∴(2)0f =,∴①正确;∵(4)()(2)f x f x f +=+,(2)0f =, ∴(4)()f x f x +=,∴4T =,又0x =是函数()y f x =图像的对称轴,∴4x =-是函数()y f x =图像的对称轴,∴②正确;∵函数()f x 的周期是4,∴()y f x =在[8,10]上的单调性与[0,2]上的单调性相同,∴()y f x =在[8,10]上为减函数,∴③错误;∵4x =-是函数()y f x =图像的对称轴,∴方程()f x m =的两根关于4x =-对称,∴128x x +=-,∴④正确.考点:1.函数的周期性;2.函数的奇偶性;3.函数的对称性;4.函数的单调性. 16.6π 【解析】试题分析:由题意可知:截面是MNP ∆的外接圆,而MNP ∆是边长为2的等边三角形,所以外接圆022sin 60r ==,则6r =,所以22()66S r πππ==⨯=. 考点:1.平面截圆的性质;2.三角形外接圆半径的求法. 17.(1)323ππ=或B ;(2)122a c -∈⎣.【解析】试题分析:本题考查解三角形中的正弦定理、二倍角公式、二角和与差的正余弦公式及求三角函数最值等基础知识,考查基本运算能力.第一问,先用倍角公式和两角和与差的余弦公式将表达式变形,解方程,在三角形内求角;第二问,利用正弦定理得到边和角的关系代入到所求的式子中,利用两角和与差的正弦公式展开化简表达式,通过b a ≤得到角A 的范围,代入到表达式中求值域.试题解析:(1)由已知⎪⎭⎫⎝⎛+π⎪⎭⎫⎝⎛-π=-A A B A 6cos 6cos 22cos 2cos 得 =-A B 22sin 2sin 2⎪⎭⎫ ⎝⎛-A A 22sin 41cos 432, 4分化简得23sin =B ,故323ππ=或B . 6分(2)由正弦定理2sin sin sin ===Bb Cc A a ,得C c A a sin 2,sin 2==, 故A A A A C A c a cos 23sin 2332sin sin 2sin sin 221-=⎪⎭⎫ ⎝⎛-π-=-=-⎪⎭⎫ ⎝⎛π-=6sin 3A 8分因为a b ≤,所以323π<≤πA ,266π<π-≤πA , 10分 所以⎪⎪⎭⎫⎢⎣⎡∈⎪⎭⎫ ⎝⎛π-=-3,236sin 321A c a . 12分考点:1.倍角公式;2.两角和与差的余弦公式;3.正弦公式;4.求三角函数的值域. 18.(1)3418,5a a ==,21,9,n n n a n n -⎧=⎨-⎩为奇数为偶数;(2)7n =.【解析】试题分析:本题考查等差数列的通项公式和前n 项和公式等基础知识,考查化归与转化的思想方法,考查运算能力,考查分析问题和解决问题的能力.第一问,分n 是奇数,n 是偶数两种情况,按等差数列的通项公式分别求解;第二问,分组求和,分2组按等差数列的前n 项和公式求和,再按二次函数的性质求最大值. 试题解析:(I )∵1220,7a a ==,22n n a a +-=-, ∴3418,5a a ==,由题意可得数列{}n a 奇数项、偶数项分布是以﹣2为公差的等差数列当n 为奇数时,11(1)(2)212n n a a n +=+-⨯-=- 当n 为偶数时,2(1)(2)92n n a a n =+-⨯-=-∴21,9,n n n a n n -⎧=⎨-⎩为奇数为偶数(II )122n n S a a a =+++1321242()()n n a a a a a a -=+++++++12(1)(1)(2)(2)22n n n n na na --=+⨯-++⨯- 2229n n =-+结合二次函数的性质可知,当7n =时最大.考点:1.等差数列的通项公式;2.等差数列的求和公式;3.二次函数的性质. 19.(1)证明过程详见解析;(2)43M BDE V -=. 【解析】试题分析:本题考查用向量法证明线面平行以及求二面角、三棱锥的体积等基础知识,考查学生的空间想象能力、计算能力以及推理论证能力.第一问,建立空间直角坐标系,表示出BM ,面A D E F 的法向量DC ,证明出0BM DC ⋅=,即可证//BM ADEF 面;第二问,用一个变量t 表示M 点坐标,求平面BDM 的法向量12(1,1,)4tn t=-- ,面ABF 的法向量2(1,0,0)n = , 据已知得12|cos ,|6n n <>= ,求得2t =,据点(0,2,1)M ,求得2D E M S ∆=,从而计算1433M BDE DEM V S h -∆=⋅⋅=.试题解析:(Ⅰ)以DA DC DE 、、分别为,,x y z 轴建立空间直角坐标系 则(2,0,0),(2,2,0),(0,4,0),(0,0,2),(0,2,1)A B C E M(2,0,1),BM ADEF ∴=- 面的一个法向量(0,4,0)DC =0BM DC ⋅= ,BM DC ∴⊥.即//BM ADEF 面. 4分(Ⅱ)依题意设(0,,2)(04)2tM t t -<<,设面BDM 的法向量1(,,)n x y z =则220DB n x y ⋅=+= ,(2)02tDM n ty z ⋅=+-=令1y =-,则12(1,1,)4tn t =-- ,面ABF 的法向量2(1,0,0).n =121212|||cos ,|6||||n n n n n n ⋅<>===⋅,解得2t = 10分(0,2,1)M ∴为EC 的中点,122DEM CDE S S ∆∆==,B 到面DEM 的距离2h = 1433M BDE DEM V S h -∆∴=⋅⋅= 12分考点:1.空间向量法证明线面平行;2.空间向量法表示二面角. 20.(1)2y x =;(2)14EF k =-;(3)11min -=t . 【解析】试题分析:本题考查抛物线、圆的标准方程以及直线与抛物线、圆的位置关系,突出解析几何的基本思想和方法的考查:如数形结合思想、坐标化方法等.第一问,据点(4,0)M 到准线:4p l x =-的距离为174,直接列式求得P ,得到抛物线的标准方程;第二问,据条件AHB ∠的角平分线为HM ,即H Mx ⊥轴,得(4,2)H ,而HE ,HF 关于HM 对称,所以HE HF k k =-,利用两点斜率公式代入得1224H y y y +=-=-,所以求得14EF k =-;第三问,先求直线,HA HB 的方程,再求AB 的方程,令0x =,可得到000154(1)t y y y =-≥,利用函数的单调性求函数的最值.试题解析:(1)∵点M 到抛物线的距离为174+=24P , ∴1=2P ,即抛物线C 的方程为2y x =. 2分 (2)法一:∵当AHB ∠的角平分线垂直x 轴时,点(4,2)H ,∴HE HF k k =-, 设1122(,),(,)E x y F x y ,∴1212H H H H y y y y x x x x --=---, ∴12222212H H H H y y y y y y y y --=---, ∴1224H y y y +=-=-,∴212122212121114EF y y y y k x x y y y y --====---+. 6分法二:∵当AHB ∠的角平分线垂直x 轴时,点)2,4(H ,∴ 60=∠AHB ,可得3=HA k ,3-=HB k ,∴直线HA 的方程为2343+-=x y ,联立方程组⎩⎨⎧=+-=xy x y 22343,得023432=+--y y ,∵2E y +=∴363-=E y ,33413-=E x .同理可得363--=F y ,33413+=F x ,∴41-=EF k . 6分(3)法一:设),(),,(2211y x B y x A ,∵411-=x y k MA ,∴114y x k HA -=, 可得,直线HA 的方程为0154)4(111=-+--x y y x x , 同理,直线HB 的方程为0154)4(222=-+--x y y x x ,∴0154)4(101201=-+--x y y y x ,0154)4(202202=-+--x y y y x ,∴直线AB 的方程为02200(4)4150y x y y y --+-=,令0=x ,可得)1(154000≥-=y y y t , ∵t 关于0y 的函数在[1,)+∞单调递增, ∴11min -=t . 12分 法二:设点2(,)(1)H m m m ≥,242716HM m m =-+,242715HA m m =-+. 以H 为圆心,HA 为半径的圆方程为22242()()715x m y m m m -+-=-+, ① ⊙M 方程:1)4(22=+-y x . ②① ②得:直线AB 的方程为2242(24)(4)(2)714x m m y m m m m -----=-+.当0x =时,直线AB 在y 轴上的截距154t m m=-(1)m ≥, ∵t 关于m 的函数在[1,)+∞单调递增, ∴11min -=t . 12分 考点:1.点线距离;2.圆外一点引两条切线的性质. 21.(1)3y x =-+;(2)4M =;(3)1a ≥.【解析】试题分析:本题考查导数的运算,利用导数研究函数的单调性、最值等基础知识,考查函数思想和转化思想,考查综合分析和解决问题的能力.第一问,将2a =代入得到()f x 解析式,求'()f x 将1x =代入得到切线的斜率,再将1x =代入到()f x 中得到切点的纵坐标,利用点斜式求出切线方程;第二问,先将问题转化为12max [()()]M g x g x ≤-,进一步转化为求函数()g x 的最大值和最小值问题,对()g x 求导,通过画表判断函数的单调性和极值,求出最值代入即可;第三问,结合第二问的结论,将问题转化为()1f x ≥恒成立,进一步转化为2ln a x x x ≥-恒成立,设出新函数2()ln h x x x x =-,求()h x 的最大值,所以max()a h x ≥即可. 试题解析:(1)当2a =时,2()ln f x x x x =+,22'()ln 1f x x x=-++,(1)2f =,'(1)1f =-, 所以曲线()y f x =在1x =处的切线方程为3y x =-+; 2分(2)存在12,[0,2]x x ∈,使得12()()g x g x M -≥成立等价于:12max [()()]g x g x M -≥, 考察32()3g x x x =--,22'()323()3g x x x x x =-=-,由上表可知:min max 285()(),()(2)1327g x g g x g ==-==,12max max min 112[()()]()()27g x g x g x g x -=-=, 所以满足条件的最大整数4M =; 7分 (3)当1[,2]2x ∈时,()ln 1af x x x x=+≥恒成立等价于2ln a x x x ≥-恒成立, 记2()ln h x x x x =-,'()12ln h x x x x =--,'(1)0h =, 记()12ln m x x x x =--,'()32ln m x x =--,由于1[,2]2x ∈,'()32ln 0m x x =--<,所以'()()12ln m x h x x x x ==--在1[,2]2上递减,当1[,1)2x ∈时,'()0h x >,(1,2]x ∈时,'()0h x <,即函数2()ln h x x x x =-在区间1[,1)2上递增,在区间(1,2]上递减, 所以max ()(1)1h x h ==,所以1a ≥.考点:1.利用导数求切线方程;2.利用导数求函数最值;3.利用导数判断函数的单调性和极值.22.(1)0233=+--y x ,422=+y x ;(2)当M 为(23,1)或)23,1(--时,2223y xy x +-的最小值为1.【解析】试题分析:本题考查直角坐标系与极坐标系、普通方程与参数方程之间的转化,考查学生的转化能力和计算能力.第一问,利用互化公式将极坐标方程转化为直角坐标方程,将参数方程转化为普通方程;第二问,先通过已知得到C ‘的方程,利用C ‘的方程的特殊性设出M 点的坐标,代入到所求的表达式中,利用三角函数求最值的方法求表达式的最小值. 试题解析:(1)0233=+--y x422=+y x 4分(2)'C :1422=+y x 设M 为:θθsin ,cos 2==y x)32cos(232322πθ++=+-y xy x 7分所以当M 为(23,1)或)23,1(--2223y xy x +-的最小值为1 10分考点:1.极坐标与直角坐标之间的转化;2.参数方程与普通方程之间的转化.。
2014年湖南高考理科数学试题逐题详解 (纯word解析版)

2014年湖南高考理科数学试题逐题详解 (纯word 解析版)一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 【2014年湖南卷(理01)】满足i ziz =+(i 为虚数单位)的复数=z A. i 2121+ B. i 2121- C. i 2121+- D. i 2121--【答案】B【解析】由题可得i i z zi i z -=-⇒=+)1(,所以i i i z 21211-=--=,故选B【2014年湖南卷(理02)】对一个容量为N 的总体抽取容量为m 的样本,若选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为1p ,2p ,3p ,则A. 321p p p <=B. 132p p p <=C. 231p p p <=D. 321p p p ==【答案】D【解析】根据随机抽样的原理可得三种抽样方式都必须满足每个个体被抽到的概率相等,即 321p p p ==,故选D【2014年湖南卷(理03)】已知分别)(x f ,)(x g 是定义在R 上的偶函数和奇函数,且1)()(23++=-x x x g x f ,则=+)1()1(g fA. 3-B. 1-C. 1D. 3【答案】C【解析】令1-=x 可得1)1()1()1()1(=+=---g f g f ,所以故选C.或者观察求得1)(2+=x x f ,3)(x x g -=,可求得1)1()1(=+g f【2014年湖南卷(理04)】5)221(y x -的展开式中32y x 的系数是A. 20-B. 5-C. 5D. 20【答案】A【解析】第1n +项展开式为()55122nn n C x y -⎛⎫- ⎪⎝⎭, 则2n =时, ()()2532351*********nn n C x y x y x y -⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭,故选A.【2014年湖南卷(理05)】 已知命题:p 若y x >, 则y x -<-;命题:q 若y x >,则22y x > . 在命题① q p ∧; ② q p ∨; ③ )(q p ⌝∧;④ q p ∨⌝)(中,真命题是A. ①③B. ①④C. ②③D. ②④【答案】C【解析】当x y >时,两边乘以1-可得x y -<-,所以命题p 为真命题,当1,2x y ==-时,因为22x y <, 所以命题q 为假命题,所以②③为真命题, 故选C.【2014年湖南卷(理06)】 执行如图1所示的程序框图. 如果输入的]2,2[-∈t ,则输出的S 属于A. ]2,6[--B. ]1,5[--C. ]5,4[-D. ]6,3[-【答案】D【解析】当[)2,0t ∈-时,运行程序如下,(](]2211,9,32,6t t S t =+∈=-∈-,当[]0,2t ∈时 ,则(][][]2,63,13,6S ∈---=-,故选D.【2014年湖南卷(理07)】一块石材表示的几何体的三视图如图2所示. 将该石材切割、打磨,加工成球,则能得到最大球的半径等于A. 1B. 2C. 3D. 4【答案】B【解析】由图可得该几何体为三棱柱,所以最大球的半径为正视图直角三角形内切圆的半径r ,则862r r r -+-=⇒=,故选B【2014年湖南卷(理08)】 某市生产总值连续两年持续增加. 第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为A. 2q p +B. 21)1)(1(-++q p C. pq D. 1)1)(1(-++q p【答案】D【解析】设两年的平均增长率为x ,则有()()()2111x p q +=++1x ⇒=,故选D.【2014年湖南卷(理09)】 已知函数)sin()(ϕ-=x x f ,且⎰=3200)(πdx x f ,则函数)(x f 的图象的一条对称轴是 A. 65π=x B. 127π=x C. 3π=x D. 6π=x【答案】A【解析】函数()f x 的对称轴为2x k πϕπ-=+2x k πϕπ⇒=++,又由⎰=3200)(πdx x f 得ϕ的一个值为3πϕ=,则56x π=是其中一条对称轴,故选A【2014年湖南卷(理10)】已知函数)0(21)(2<-+=x e x x f x与)ln()(2a x x x g ++=的图象上存在关于y 轴对称的点,则a 的取值范围是 A. )1,(e-∞ B. ),(e -∞ C. ),1(e e-D. )1,(ee -【答案】B【解析】由题可得存在()0,0x ∈-∞满足()()0220001ln 2xx e x x a +-=-+-+ ()001ln 2x e x a ⇒--+-0=,当0x 趋近于负无穷小时,()001ln 2x e x a --+-趋近于-∞,因为函数()1ln 2x y e x a =--+-在定义域内是单调递增,所以ln ln a a <⇒<,故选B.二、填空题:本大题共7小题,考生作答5小题,每小题5分,共25分.(一) 选做题 (请考生在11、12、13三题中任选两题作答,如果全做,则按前两题记分) 【2014年湖南卷(理11)】在平面直角坐标系中,倾斜角为4π的直线l 与曲线:C ⎩⎨⎧+=+=ααsin 1,cos 2y x (α为参数) 交于A 、B 两点,且2||=AB . 以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,则直线l的极坐标方程是____________________.【答案】1)sin (cos =-θθρ (或22)4sin(-=-πθρ)【解析】曲线C 的普通方程为1)1()2(22=-+-y x ,直线l 截曲线C 所得弦长2|=AB ,知直线l 过圆 心)1,2(,故直线l 的直角坐标方程为1-=x y 1cos sin -=⇒θρθρ【2014年湖南卷(理12)】如图3,已知AB ,BC 是⊙O 的两条弦,BC AO ⊥,3=AB ,22=BC ,则⊙O 的半径等于_______. 【答案】23 【解析】设AD 交BC 于点D ,延长AO 交圆于另一点E ,则2==CD BD ,在ABD ∆中由勾股定理可得 1=AD ,再由相交弦定理得2=DE ,从而直径3=AE ,半径23=R【2014年湖南卷(理13)】若关于x 的不等式3|2|<-ax 的解集为}3135|{<<-x x , 则=a ________.【答案】3-【解析】依得可得⎪⎪⎩⎪⎪⎨⎧=-=--3|231|3|235|a a ,解得3-=a(二)必做题(14~16题)【2014年湖南卷(理14)】若变量y x ,满足约束条件⎪⎩⎪⎨⎧≥≤+≤,,4,k y y x x y ,且y x z +=2的最小值为6-,则=k ____.【答案】2-【解析】画出不等式(组)表示的平面区域,知当y x z +=2过点)(k k ,时取得最小值,所以62-=+k k ,2-=k【2014年湖南卷(理15)】如图4,正方形ABCD 和正方形DEFG 的边长分别为b a ,)(b a <. 原点O 为AD 的中点,抛物线)0(22>=p px y 经过C 、F 两点,则=ab________.1+ 【解析】由题可得,,,22a a C a F b b ⎛⎫⎛⎫-+⎪ ⎪⎝⎭⎝⎭, 则2222a paa b p b ⎧=⎪⎨⎛⎫=+ ⎪⎪⎝⎭⎩1a b ⇒=,1+.【2014年湖南卷(理16)】在平面直角坐标系中,O 为原点,)0,1(-A ,)3,0(B ,)0,3(C . 动点D 满足1||=,则||++的最大值是_________.【答案】71+【解析】动点D 的轨迹为以C 为圆心的单位圆,则设为()[)()3cos ,sin 0,2θθθπ+∈,则(3OA OB OD ++=)sin(728ϕθ++=,所以OA OB OD ++的最大值为17728+=+,故填71+.或由题求得点D 的轨迹方程为1)3(22=+-y x ,数形结合求出OA OB OD ++的最大值即为点 )3,1(-到轨迹上的点最远距离( 到圆心的距离加半径) .三、解答题:本大题共6小题,共75分. 解答应写出文字说明、证明过程或演算步骤. 【2014年湖南卷(理17)】 (本小题满分12分) 某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别是32和53. 现安排甲组研发新产品A ,乙组研发新产品B. 设甲、乙两组的研发相互独立. (1)求至少有一种新产品研发成功的概率;(2)若新产品A 研发成功,预计企业可获利润120万元;若新产品B 研发成功,预计企业可获得利润100万元. 求该企业可获利润的分布列和数学期望.解: 记E ={甲组研发新产品成功},F ={乙组研发新产品成功},由题可知32)(=E P , 31)(=E P ,53)(=F P ,52)(=F P . 且事件E 与F ,E 与F ,E 与F ,E 与F 都相互独立.(1) 记H ={至少有一种新产品研发成功},则F E H =,于是1525231)()()(=⨯==F P E P H P ,故所求概率为15131521)(1)(=-=-=H P H P .(2)设企业可获利润为X (万元),则X 的可能取值为0,100,120,220. 又因1525231)()0(=⨯===F E P X P ,1535331)()100(=⨯===F E P X P ,1545232)()120(=⨯===F E P X P ,1565332)()220(=⨯===EF P X P .数学期望为 1401521001562201541201531001520)(==⨯+⨯+⨯+⨯=X E .【2014年湖南卷(理18)】 (本小题满分12分)如图5,在平面四边形ABCD 中,1=AD ,2=CD ,7=AC .(1) 求CAD ∠cos 的值; (2) 若147cos -=∠BAD ,621sin =∠CBA ,求BC 的长.解:(1)在ADC ∆中,则余弦定理,得ADAC CD AD AC CAD ⋅-+=∠2cos 222.由题设知,77272417cos =-+=∠CAD .(2)设α=∠BAC ,则CAD BAD ∠-∠=α因为772cos =∠CAD ,147cos -=∠BAD , 所以721)772(1cos 1sin 22=-=∠-=∠CAD CAD ,14213)147(1cos 1sin 22=--=∠-=∠BAD BAD .于是CAD BAD CAD BAD CAD BAD ∠∠-∠∠=∠-∠=sin cos cos sin )sin(sin α23721)147(77214213=⋅--⋅=.在ABC ∆中,由正弦定理,CBA AC BC ∠=sin sin α,故 3621237sin sin =⋅=∠⋅=CBAAC BC α.【2014年湖南卷(理19)】(本小题满分12分)如图6,四棱柱1111D C B A ABCD -的所有棱长都相等,O BD AC = ,11111O D B C A = , 四边形11A ACC 和四边形11B BDD 均为矩形. (1) 证明:⊥O O 1底面ABCD ;(2)若60=∠CBA ,求二面角D OB C --11的余弦值.图6D 1B DC解:(1)如图 (a),因为四边形11A ACC 为矩形,所以AC CC ⊥1,同理BD DD ⊥1.由题知,11//CC OO ,11//DD OO ,所以AC OO ⊥1,BD OO ⊥1,又 O BD AC = ,故 ⊥O O 1底面ABCD .(2)解法1 如图(a),过1O 作11OB H O ⊥于H ,连接1HC .由(1)知,⊥O O 1底面ABCD ,所以⊥O O 1底面1111D C B A ,于是. ⊥O O 111C A ,又因为四棱柱1111D C B A ABCD -的所有棱长都相等,所以四边形1111D C B A 为菱形,因此1111D B C A ⊥,从而⊥11C A 平面11B BDD ,所以O B C A 111⊥,于是⊥O B 1平面11HC O ,进而 ⊥O B 11HC ,故11HO C ∠是二面角D OB C --11的平面角.不妨设2=AB ,因为60=∠CBA ,所以1,311===C O OC OB ,71=OB ,在11B OO Rt ∆中,易知73211111=⋅=OB B O OO H O ,719212111=+=H O C O H C , 故19572719732cos 1111===∠H C H O HO C ,即二面角D OB C --11的余弦值为19572. 解法2因为四棱柱1111D C B A ABCD -的所有棱长都相等,所以四边形ABCD 为菱形,因此BD AC ⊥, 又⊥O O 1底面ABCD ,从而OB ,OC ,1OO 两两垂直.如图(b),以O 为坐标原点,OB ,OC ,1OO 分别为x 轴, y 轴,z 轴建立空间坐标系xyz O -.不妨设2=AB ,因为60=∠CBA ,所以1,3==OC OB ,于是相关各点的坐标为:)0,0,0(O ,)2,0,3(1B ,)2,1,0(1C ,易知)0,1,0(1=n 是平面11B BDD 的一个法向量,设),,(2z y x n =是平面11C OB 的一个法向量,则⎪⎩⎪⎨⎧=⋅=⋅01212OC n OB ,即⎩⎨⎧=+=+02023z y z x ,取3-=z ,则32,2==y x ,于是)3,32,2(2-=n .设二面角D OB C --11的大小为θ,易知θ为锐角,于是|,cos |cos 21><=n n θ||||2121n n ⋅=195721932==.即二面角D OB C --11的余弦值为19572.【2014年湖南卷(理20)】(本小题满分13分)已知数列}{n a 满足11=a ,n n n p a a =-+||1,*N n ∈.(1)若}{n a 是递增数列,且1a ,22a ,33a 成等差数列,求p 的值; (2)若21=p ,且}{12-n a 是递增数列,是}{2n a 递减数列,求数列}{n a 的通项公式.解:(1)因为}{n a 是递增数列,所以n n n n n p a a a a =-=-++||11,而11=a ,因此p a +=12,231p p a ++=,又1a ,22a ,33a 成等差数列,所以31234a a a +=,因而032=-p p ,解得31=p 或0=p ,但当0=p 时,n n a a =+1,与}{n a 是递增数列相矛盾,故31=p .(2) 由于}{12-n a 是递增数列,因而 01212>--+n n a a ,于是0)()(122212>-+--+n n n n a a a a ①且 1222121-<n n ,所以 ||||122212-+-<-n n n n a a a a ②则①②可知,0122>--n n a a ,因此122121222)1(21----==-n nn n n a a , ③因为是}{2n a 递减数列,同理可得0212<-+n n a a ,故nn n n n a a 21222122)1(21++-=-=-, ④由③④即得 nn n n a a 2)1(11++-=-. 于是 )()()(123121--++-+-+=n n n a a a a a a a a 122)1(21211--++-+=n n.2)1(3134211])21(1[(21111---⋅+=+--+=n n n故数列}{n a 的通项公式为*).(2)1(31341N n a n nn ∈-⋅+=-【2014年湖南卷(理21)】 (本小题满分13分)如图7,O 为坐标原点,椭圆:1C )0(12222>>=+b a by a x 的左、右焦点为21,F F ,离心率为1e ;双曲线:2C 12222=-by a x 的左、右焦点为43,F F ,离心率为2e . 已知2321=e e ,且13||42-=F F .(1)求1C 、2C 的方程;(2)过1F 作1C 的不垂直y 轴的弦AB ,M 为AB 的中点. 当直线OM 与2C 交于Q P ,两点时,求四边形APBQ 面积的最小值.解:(1)因为2321=e e ,所以232222=+⋅-a b a a b a ,因此得 44443a b a =-,即222b a =,从而)0,(2b F ,)0,3(4b F ,于是13||342-==-F F b b ,所以1=b ,22=a .故1C 、2C 的方程分别是 122=+y x ,122=-y x.(2) 由于AB 过)0,1(1-F 且不垂直y 轴,故可设直线AB 的方程为 1-=my x 由⎪⎩⎪⎨⎧=+-=12122y x my x 得 012)2(22=--+my y m 易知此方程的判别式大于0,设),(,),(2211y x B y x A ,则21,y y 是上述方程的两个实根,所以22221+=+m m y y ,21221+-=⋅m y y . 因此242)(22121+-=-+=+m y y m x x ,于是AB 中点)2,22(22++-m m m M , 因此直线PQ 的斜率为2m -,其方程为x m y 2-=. 由⎪⎪⎩⎪⎪⎨⎧=--=12222y x x m y 得 4)2(22=-x m ,所以022>-m ,2224m x -=,2222m m y -=, 从而 22222422||m m y x PQ -+=+=. 设点A 到直线PQ 的距离为d ,则点B 到直线PQ 的距离也为d ,所以 4|2||2|222211++++=m y mx y mx d ,因为点A 、B 在直线PQ 的异侧, 所以 0)2)(2(2211<++y mx y mx ,于是|22||2||2|22112211y mx y mx y mx y mx --+=+++从而 4||)2(22212+-+=m y y m d ,又21224)(||222122121++⋅=-+=-m m y y y y y y ,所以 4122222++⋅=m m d ,故四边形APBQ 面积2222312221222||21m mm d PQ S -+-⋅=-+⋅=⋅=,而 2202≤-<m ,故当0=m 时,S 取最小值2.综上所述,四边形APBQ 面积的最小值为2.【2014年湖南卷(理22)】 (本小题满分13分)已知常数0>a ,函数.22)1ln()(+-+=x x ax x f (1) 讨论)(x f 在区间),0(∞+上的单调性;(2)若)(x f 存在两个极值点1x ,2x ,且0)()(21>+x f x f ,求a 的取值范围.解:(1) 222)2)(1()1(4)2(2)2(21)('++-+=+-+-+=x ax a ax x x x ax a x f (*)当1≥a 时,0)('>x f ,此时,)(x f 在区间),0(∞+上单调递增;当10<<a 时,由0)('=x f 得 a a x -=121(aa x --=122舍去),当),0(1x x ∈时,0)('<x f ,当),(1∞+∈x x 时,0)('>x f ,故)(x f 在区间),0(1x 上单调递减,在区间),(1∞+x 上单调递增.综上所述,当1≥a 时, )(x f 在区间),0(∞+上单调递增;当10<<a 时,)(x f 在区间)12,0(a a -上单调递减,在区间),12(∞+-aa 上单调递增.(2)由(*)式知,当1≥a 时, 0)('>x f ,此时)(x f 不存在极值点. 因而要使)(x f 存在两个极值点,必有10<<a ,且)(x f 的极值点只可能是a a x -=121和a a x --=122,且由)(x f 的定义可知,a x 1->且2-≠x ,所以a a a 112->-- 且212-≠--aa ,解得21≠a . 此时,则(*)式知,1x ,2x 分别是)(x f 的极小值点和极大值点. 而 22)1ln(22)1ln()()(22211121+-+++-+=+x x ax x x ax x f x f 4)(2)(44])(1ln[2121212121221+++++-+++=x x x x x x x x x x a x x a 12)1(4)12ln(2----=a a a 2122)12ln(2--+-=a a . 令x a =-12,由10<<a 且21≠a 知,当210<<a 时,01<<-x ;当121<<a 时,10<<x . 并记22ln )(2-+=xx x g ,(i )当01<<-x 时,22)ln(2)(-+-=x x x g ,02222)('22<-=-=xx x x x g , 因此,)(x g 在区间)0,1(-上单调递减,从而04)1()(<-=-<g x g ,故当210<<a 时,0)()(21<+x f x f .(ii) 当10<<x 时,22ln 2)(-+=x x x g ,02222)('22<-=-=xx x x x g , 因此,)(x g 在区间)1,0(上单调递减,从而0)1()(=>g x g ,故当121<<a 时,0)()(21>+x f x f . 综上所述,满足条件的a 的取值范围是)1,21(.。
2014高考数学总复习(人教新课标理科)单元测试:选修系列4含解析

选修系列4综合测试一、选择题(本大题共10小题,每小题5分,共50分.每小题中只有一项符合题目要求)1.已知直线l的参数方程为错误!(t为参数),则其直角坐标方程为()A。
错误!x+y+2-错误!=0 B。
错误!x-y+2-错误!=0C.x-错误!y+2-错误!=0 D.x+错误!y+2-错误!=0答案B解析∵错误!∴y-2=错误!(x-1),即错误!x-y+2-错误!=0.2.如图,梯形ABCD中,AD∥BC,AD=5,BC=10,AC与BD 交于点O,过O点作EF∥AD,交AB于E,交DC于F,则EF=A。
错误!B。
错误!C.10 D.20答案B3.已知实数集R,集合M={x||x-2|≤2},集合N={x|y =错误!},则M∩(∁R N)=( )A.{x|0≤x<1} B.{x|0≤x≤1}C.{x|1〈x≤4}D.{x|1≤x≤4}答案B解析由已知得M={x|0≤x≤4},N={x|x〉1},∴M∩(∁R N)={x|0≤x≤4}∩{x|x≤1}={x|0≤x≤1}.4.在极坐标系中,点(2,错误!)到圆ρ=2cosθ的圆心的距离为()A.2 B.错误!C。
1+π29D。
错误!答案D解析由错误!可知,点(2,错误!)的直角坐标为(1,错误!),圆ρ=2cosθ的方程为x2+y2=2x,即(x-1)2+y2=1,则圆心到点(1,错误!)的距离为错误!.5.曲线错误!(t为参数)与坐标轴的交点是( A.(0,错误!)、(错误!,0) B.(0,错误!)、(错误!,0)C.(0,-4)、(8,0)D.(0,错误!)、(8,0)答案B解析当x=0时,t=错误!,而y=1-2t,即y=错误!,得与y轴的交点为(0,错误!);当y=0时,t=错误!,而x=-2+5t,即x=错误!,得与x轴的交点为(错误!,0).6。
如图,E,C分别是∠A两边上的点,以CE为直径的⊙O交∠A的两边于点D、点B,若∠A=45°,则△AEC与△ADB的面积比为( )A.2∶1 B.1∶2C。
2014高考调研理科数学课本讲解_4-7_1 正、余弦定理应用举例_专题研究

遇,则可先在△ABC 中求出 BC,再在△BD C
课时作业
高考调研
新课标版 · 数学(理)
【析 解】
设私用 缉船
th在D处上私, 追走船
则 CD=10 3t,BD=10t, 有 在△ABC 中 ∵AB= 3-1,AC=2,∠BAC=1 , , 2 0 ° ∴由 弦 理 得 余定, BC2=AB2+AC2-2AB· o ∠BAC ACc s =( 3-1)2+22-2 3-1 ( · c0 o° 2 1 · s 2 ) ∴BC= 6. =6.
课时作业
高考调研
新课标版 · 数学(理)
思考题 3 如 , 了 某 域 底 造 在 平 内 图为 解 海 海 构 ,海 面 一 条直线上的 A,B,C 三 进 测 . 知 点 行 量已 m,于 A 处测得水深 AD=8 m 0 于 C 处测得水深 CF=1 1 m 0 AB=5 m 0 ,BC=120 BE=2 0 m 0 ,
船.此时,走私船正以 1m 0h ne /i l
的速度从 B 处向北偏东 30°
方向逃窜,问缉私船沿什么方向能最快追上走私船?
课时作业
高考调研
新课标版 · 数学(理)
【思路】 本 考 正 、 弦 量 例查弦余定 示注到快上私且船用间等若 ,意最追走船两所时相,在
的模用如所 建应.图 D 处相 中求∠BD . C
由弦理可 正定,得
3s n° 7 i5 BC= n° 6 i0 s
6+ 2 = . 2
在△ABC 中 由 弦 理 可 ,余定,得 AB2=AC2+BC2-2AC· c ∠BA , BC· o s C 6+ 2 2 6+ 2 即 AB =( 3) +( 2 ) -2 3× 2 c° o 7 s 5
吉林省长春市2014届高三第四次调研测试理科数学试卷(带解析)
吉林省长春市2014届高三第四次调研测试理科数学试卷(带解析)1.设全集=U R ,={x|<0}2xA x -,B={x|2<2}x ,则图中阴影部分表示的集合为( )A .{|1}x x ≥B .{|12}x x ≤<C .{|01}x x <≤D .{|1}x x ≤ 【答案】B 【解析】试题分析:}20|{<<=x x A ,}1|{<=x x B ,由韦恩图可知阴影部分表示的是()ðUB A ∴阴影部分表示的集合为}21|{<≤x x ,故选B .考点:集合的运算.2.如图,在复平面内,复数12,z z 对应的向量分别是,OA OB ,则12||z z +=( )A .2B .3C ..【答案】A 【解析】试题分析:由图可知,12i =--z ,2i =z ,则221-=+z z ,∴2||21=+z z ,故选A . 考点:复数的运算.3.已知三条不重合的直线,,m n l 和两个不重合的平面,αβ,下列命题正确的是( ) A .若//m n ,n α⊂,则//m α B .若αβ⊥,m αβ=,且n m ⊥,则n α⊥C .若l n ⊥,m n ⊥,则//l mD .若l α⊥,m β⊥,且l m ⊥,则αβ⊥【答案】D 【解析】试题分析:A 选项,可能α⊂m ,B 选项,若n β⊂,则α⊥n ,无条件n β⊂,直线n 与平面α位置关系不确定,C 选项,在空间中,l 与m 可能平行,可能异面,可能相交,故选D .考点:线面关系.4.设变量,x y 满足||||1x y +≤,则2x y +的最大值和最小值分别为( ) A .1,-1 B .2,-2 C .1,-2 D .2,-1 【答案】B 【解析】试题分析:由约束条件1||||≤+y x ,作出可行域如图,设2=+z x y ,则2=-+y x z ,平移直线2=-y x ,当经过点(1,0)A 时,z 取得最大值2,当经过点)0,1(-B 时,z 取得最小值2-,故选B .考点:线性规划.5.按照下图的程序图计算,若开始输入的值为3,则最后输出的结果是( )A .6B .21C .5050D .231 【答案】D 【解析】 试题分析:由程序框图,输入3=x ,第1次进入循环体,6=x ,第2次进入循环体,21=x ,第3次进入循环体,231=x ,100231>成立,输出结果231=x ,故选D . 考点:程序框图. 6.已知3tan 24α=,(0,)4πα∈,则sin cos sin cos αααα+=-( ) A .1 B .-1 C .2 D .-2【答案】D 【解析】试题分析:432tan =α,即43t a n 1t a n 22=-αα,解得3tan -=α或31tan =α,又)4,0(πα∈,∴31tan =α,又sin cos sin cos αααα+=-21tan 1tan -=-+αα,故选D . 考点:倍角公式、齐次式.7.某中学高三年级从甲、乙两个班级各选出8名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图所示,其中甲班学生成绩的平均分是86,乙班学生成绩的中位数是83,则x y +的值为( )A .9B .10C .11D .13 【答案】D 【解析】试题分析:观察茎叶图,甲班学生成绩的平均分是86,故8=x ,乙班学生成绩的中位数是83,故5=y ,∴x +y 13=,故选D . 考点:茎叶图、中位数.8.曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A .15- B .15- C 1 D .2 【答案】A 【解析】试题分析:12+=x y ,∴x y 2=',2|1='==x y k ,故切线l 方程为:02=-y x , 又03422=+++x y x表示的是以)0,2(-为圆心,以1为半径的圆,圆心)0,2(-到l 的距离55454==d ,∴直线l 上的任意点P 与圆03422=+++x y x 上的任意点Q 之间的最近距离是1554-,故选A . 考点:抛物线的标准方程、圆的标准方程、点和圆的位置关系.9.双曲线22221(a 0,b 0)x y a b-=>>的左、右焦点分别是12,F F ,过1F 作倾斜角为030的直线交双曲线右支于点M ,若2MF 垂直于x 轴,则双曲线的离心率为( )A 【答案】A【解析】试题分析:在Rt △21F MF 中,c F F 2||21=,则332||2c MF =,334||1cMF =,由双曲线定义可知:a MF MF 2||||21=-,即a c2332=,化简得3=a c ,故选A .考点:双曲线的标准方程及其几何性质.10.将一张边长为12cm 的纸片按如图1所示阴影部分裁去四个全等的等腰三角形,将余下部分沿虚线折叠并拼成一个有底的正四棱锥(底面是正方形,顶点在底面的射影为正方形的中心)模型,如图2放置. 若正四棱锥的正视图是正三角形(如图3),则正四棱锥的体积是( )A 3B 3C 3D 3 【答案】C 【解析】试题分析:由题可知,图1中的虚线长为图2正四棱锥的底面边长,设为x ,又正四棱锥的正视图是正三角形,所以正四棱锥的斜高也为x ,则262=+xx ,24=x ,即正四棱锥的底面边长为24, 易得四棱锥的体积6364623231=⨯⨯=V ,故选C . 考点:四棱锥的体积.11.已知函数()1f x x =,g()2x x x =+,()ln h x x x =+的零点分别为123,,x x x ,则( )A .123x x x <<B .213x x x <<C .312x x x <<D .231x x x << 【答案】D 【解析】试题分析:令0)(=x f ,0)(=x g , 0)(=x h 分别得1+=x x ,x x 2-=,x x ln -=,则321,,x x x 分别为函数x y =的图象与函数1+=x y ,x y 2-=,x y ln -=的图象交点的横坐标,在同一平面直角坐标系下作出它们的图象,易得11>x ,02<x ,103<<x ,故选D .考点:函数图象、零点的概念.12.设数列2sin1sin 2sin 222n n na =+++,则对任意正整数,(m n)m n >都成立的是( ) A .||2n m mn a a -> B .||2n m m na a -->C .1||2n m n a a -<D .1||2n m n a a ->【答案】C【解析】 试题分析:|2sin ||2)2sin(||2)1sin(||2sin 2)2sin(2)1sin(|||2121mn n m n n m n mn n m n n a a +++++≤+++++=-++++)212121(21212121221nm n m n n -+++++=+++<n n m n n m n 21)211(21211])21(1[2121<-=--⋅=--,故选C .考点:绝对值的基本性质、放缩放.13.商场经营的某种袋装大米质量(单位:kg )服从正态分布2(10,0.1)N ,任取一袋大米,质量不足9.8kg 的概率为 .(精确到0.0001) 【答案】0.0228 【解析】试题分析:设大米质量为x ,则2(10,0.1)x N ,则9544.0)2.108.9(=≤<x P ,∴质量不足kg 8.9的概率即0228.029544.01)8.9(=-=≤x P . 考点:正态分布.14.已知向量(2,1)a =,(1,2)b =-,若a ,b 在非零向量c 上的投影相等,且()()0c a c b --=,则向量c 的坐标为 .【答案】)3,1( 【解析】试题分析:设),(y x =c ,则)1,2(--=-y x a c ,)2,1(-+=-y x b c , ∴0)2)(1()1)(2(=--++-y y x x 化简得: 0322=-+-y y x x ①又a ,b 在非零向量c 上的投影相等,则cbc c a c ⋅=⋅,即x y 3= ② 由①②联立得:∴1=x ,3=y ,∴c )3,1(=. 考点:向量的运算.15.已知*111()1(,4)23f n n N n n =++++∈≥,经计算得(4)2f >,5(8)2f >,(16)3f >,7(32)2f >,观察上述结果,可归纳出的一般结论为 . 【答案】23)2(1+>+n f n )(*∈N n【解析】试题分析:24)2(2>f ,25)2(3>f ,26)2(4>f , 27)2(5>f ,由归纳推理得,一般结论为23)2(1+>+n f n ,)(*∈N n 考点:归纳推理.16.设a ,b 为实数,关于x 的方程22(1)(1)0x ax x bx -+-+=的4个实数根构成以q 为公比的等比数列,若[2q ∈,则ab 的取值范围是 . 【答案】[]4,18 【解析】试题分析:设4个实数根依次为32,,,mq mq mq m ,由等比数列性质,不妨设 3,mq m 为210x ax -+=的两个实数根,则2,mq mq 为方程210x bx -+=的两个根,由韦达定理132=q m ,amq m =+3,bmq mq =+2,故ab )(3mq m +=)(2mq mq +))(1(232q q q m ++=))(1(1233q q q q++=)11)(21(-+++=q q q q ,设t qq =+1,∵2q ⎡⎤∈⎣⎦,∴]4,2[∈t ,故)1)(2()(-+=t t t f 的值域为]18,4[,即ab 的取值范围是[]4,18.考点:等比数列的性质、函数值域.17.将函数()2sin()f x x ωϕ=+(0,0)ωϕπ><<的图形向右平移4π个单位后得到()g x 的图像,已知()g x 的部分图像如图所示,该图像与y 轴相交于点(0,1)F ,与x 轴相交于点P 、Q ,点M 为最高点,且MPQ ∆的面积为2π.(1)求函数()g x 的解析式;(2)在ABC ∆中,,,a b c 分别是角A ,B ,C 的对边,()1g A =,且a =,求ABC ∆面积的最大值.【答案】(1)()2sin(2)6g x x π=+;(2)435. 【解析】试题分析:本题主要考查三角函数图象、三角函数图象的平移变换、余弦定理、三角函数面积、基本不等式等基础知识,考查学生的分析问题解决问题的能力、计算能力.第一问,先将()f x 的图象向右平移4π个单位得到()g x 的解析式,由解析式得最大值M=2,利用三角形面积公式可得到||PQ ,而周期2||T PQ =,利用周期的计算公式得到2ω=,又因为()g x 过(0,1)F ,代入解析式得到ϕ的值,从而得到()g x 的解析式;第二问,先利用()1g A =,利用特殊角的三角函数值得到角A 的大小,再利用余弦定理得到b 和c 的一个关系式,利用基本不等式得到5bc ≤,代入到三角形面积公式中,得到面积的最大值. (1)由题意可知])4(sin[2)(ϕπω+-=x x g由于2||221π=⋅⋅=BC S ABC △,则22||π==T BC ,∴π=T ,即2=ω 2分又由于1)2sin(2)0(=-=πϕg ,且222ππϕπ<-<-,则62ππϕ=-,∴32πϕ=5分 即)62sin(2]32)4(2sin[2)(πππ+=+-=x x x g .6分(2)1)62sin(2)(=+=πA A g ,)613,6(62πππ∈+A 则6562ππ=+A ,∴ 3π=A8分由余弦定理得5cos 2222==-+a A bc c b ,∴bc bc c b ≥-+=22510分∴435sin 21≤=A bc S ABC △,当且仅当5==c b 时,等号成立,故ABC S ∆的最大值为435. 12分 考点:三角函数图象、三角函数图象的平移变换、余弦定理、三角函数面积、基本不等式. 18.由某种设备的使用年限i x (年)与所支出的维修费i y (万元)的数据资料算得如下结果,52190ii x==∑,51112i i i x y ==∑,5120i i x ==∑,5125i i y ==∑.(1)求所支出的维修费y 对使用年限x 的线性回归方程^^^y b x a =+; (2)①判断变量x 与y 之间是正相关还是负相关; ②当使用年限为8年时,试估计支出的维修费是多少.(附:在线性回归方程^^^y b x a =+中,)^1221ni ii nii x y nx yb xnx==-=-∑∑,^^a yb x =-,其中x ,y 为样本平均值.)【答案】(1)2.02.1ˆ+=x y ;(2)变量x 与y 之间是正相关,8.9万元.【解析】试题分析:本题主要考查线性回归方程、变量间的正相关和负相关的判断等基础知识,考查学生的分析问题解决问题的能力、计算能力.第一问,利用已知的数值及公式先计算^b ,再利用^^a y b x =-计算^a ,从而得到线性回归方程;第二问,①在^^^y b x a =+中,当^0b >时,变量x 与y 之间是正相关,当^0b <时,变量x 与y 之间是负相关,本题是正相关;②使用年限即x 的值,而维修费用是y 的值,代入回归方程中求函数值y 即可.(1)∵2051=∑=i i x ,2551=∑=i i y ,∴45151==∑=i i x x ,55151==∑=i i y y∴2.1459054511255ˆ2512251=⨯-⨯⨯-=--=∑∑==i i i ii xx yx yx b3分2.042.15ˆˆ=⨯-=-=x b y a5分 ∴线性回归方程2.02.1ˆ+=x y. 6分(2)①由(1)知02.1ˆ>=b,∴变量x 与y 之间是正相关. 9分 ②由(1)知,当8=x 时,8.9ˆ=y (万元),即使用年限为8年时,支出的维修费约是8.9万元.12分考点:线性回归方程、变量间的正相关和负相关的判断.19.如图,在四棱柱1111ABCD A BC D -中,底面ABCD 和侧面11BCC B 都是矩形,E 是CD 的中点,1D E CD ⊥,22AB BC ==.(1)求证:1BC D E ⊥;(2)若平面11BCC B 与平面1BED 所成的锐二面角的大小为3π,求线段1D E 的长度.【答案】(1)证明过程详见解析;(2)11D E =.【解析】试题分析:本题主要考查线线垂直、线面垂直、面面垂直、二面角等基础知识,考查学生的空间想象能力、逻辑推理能力、计算能力.第一问,由已知得CD BC ⊥,1CC BC ⊥,所以利用线面平行的判定得⊥BC 平面11D DCC ,再利用线面垂直的性质,得1⊥BC D E ;第二问,可以利用传统几何法求二面角的平面角,也可以利用向量法求平面11BCC B 和平面1BED 的法向量,利用夹角公式列出方程,通过解方程,求出线段1D E 的长度..(1)证明:∵底面ABCD 和侧面11B BCC 是矩形, ∴CD BC ⊥,1CC BC ⊥ 又∵C CC CD =1∴⊥BC 平面11D DCC 3分∵⊂E D 1平面11D DCC ∴1⊥BC D E . 6分(2)解法1:延长BE ,AD 交于F ,连结F D 1, 则平面11ADD A 平面1BED F D 1=底面ABCD 是矩形,E 是CD 的中点,22AB BC ==,∴连结AE ,则EB AE ⊥ 又由(1)可知1⊥BC D E 又∵1D E CD ⊥,C CD BC =∴E D 1⊥底面ABCD ,∴1D E AE ⊥∴⊥AE 平面1BED 9过E 作F D EG 1⊥于G ,连结AG ,则AGE ∠是平面11ADD A 与平面1BED 即平面11BCC B 与平面1BED 所成锐二面角的平面角,所以3π=∠AGE又2=AE ,∴363tan =⋅=AE EG π又易得2=EF ,332=FG ,从而由EGED FG EG 1=,求得11D E =.12分解法2:由(1)可知1⊥BC D E 又∵1D E CD⊥,CCD BC = ∴ED 1⊥底面A B C7分设G 为AB 的中点,以E 为原点,以EG ,EC ,1ED 所在直线分别为z y x ,,轴,建立空间直角坐标系如图. 8分设a E D =1,则)0,0,0(E ,)0,1,1(B ,),0,0(1a D ,)0,1,0(C ,),2,1(1a B设平面1BED 的一个法向量),,(z y x = ∵)0,1,1(=EB ,),0,0(1a ED = 由⎪⎩⎪⎨⎧=⋅=⋅001ED EB n ,得⎩⎨⎧==+00z y x 令1=x ,得)0,1,1(-=n 9分设平面11BCC B 法向量为()111,,m x y z =,因为 (1,0,0)CB =,1(1,1,)CB a =, 由100m CB m CB ⎧⋅=⎪⎨⋅=⎪⎩ 得11110,0.x x y az =⎧⎨++=⎩令11z =-,得()0,,1m a =-. 10分 由平面11BCC B 与平面1BED 所成的锐二面角的大小为3π, 得 ||cos ,cos 32m n m n m n π⋅<>===,解得1a =. 即线段1D E 的长度为1. 12分考点:线线垂直、线面垂直、面面垂直、二面角.20.如图12,F F 为椭圆C:22221x y a b+=(0)ab >>的左、右焦点,D ,E 是椭圆的两个顶点,椭圆的离心率e =,2DEF ∆的面积为1.若点00(,)M x y 在椭圆C 上,则点00(,)x y N a b称为点M 的一个“椭圆”,直线l 与椭圆交于A ,B 两点,A ,B 两点的“椭圆”分别为P ,Q.(1)求椭圆C 的标准方程;(2)问是否存在过左焦点1F 的直线l ,使得以PQ 为直径的圆经过坐标原点?若存在,求出该直线的方程;若不存在,请说明理由.【答案】(1)2214x y +=;(2)直线方程为2622+=x y 或2622--=x y . 【解析】试题分析:本题主要考查椭圆的标准方程、直线的标准方程、圆的标准方程、韦达定理、向量垂直的充要条件等基础知识,考查学生的分析问题解决问题的能力、计算能力.第一问,利用椭圆的离心率和三角形面积公式列出表达式,解方程组,得到基本量a 和b 的值,从而得到椭圆的方程;第二问,直线l 过左焦点,所以讨论直线的斜率是否存在,当斜率不存在时,可以直接写出直线方程,令直线与椭圆联立,得到交点坐标,验证以PQ 为直径的圆不过坐标原点,当斜率存在时,直线与椭圆联立,消参,利用韦达定理,证明OQ OP ⊥,解出k 的值.(1)由题意,e =23=a c ,2312-=DEF S △,即231)(21-=-b c a 2分 又222c b a =-得: 1,2==b a∴椭圆C 的标准方程:2214x y +=. 5分 (2)①当直线l 的斜率不存在时,直线l 的方程为3-=x 联立⎪⎩⎪⎨⎧=+-=14322y x x ,解得⎪⎩⎪⎨⎧=-=213y x 或⎪⎩⎪⎨⎧-=-=213y x , 不妨令)21,3(-A ,)21,3(--B ,所以对应的“椭点”坐标)21,23(-P ,)21,23(--Q . 而021≠=⋅ 所以此时以PQ 为直径的圆不过坐标原点. 7分②当直线l 的斜率存在时,设直线l 的方程为)3(+=x k y⎪⎩⎪⎨⎧=++=14)3(22y x x k y 消去y 得,041238)14(2222=-+++k x k x k 设),(),,(2211y x B y x A ,则这两点的“椭点”坐标分别为),2(),,2(2211y x Q y x P 由根与系数关系得:14412,143822212221+-=+-=+k k x x k k x x 9分 若使得以PQ 为直径的圆过坐标原点,则OQ OP ⊥ 而),2(),,2(2211y x OQ y x OP ==,∴0=⋅ 即042121=+y y x x ,即0]3)(3[42121221=++++x x x x k x x 代入14412,143822212221+-=+-=+k k x x k k x x ,解得:22±=k 所以直线方程为2622+=x y 或2622--=x y . 12分 考点:椭圆的标准方程、直线的标准方程、圆的标准方程、韦达定理、向量垂直的充要条件.21.已知函数2()()x x ax f x x a R e+=-∈. (1)当1a =时,证明:当0x ≥时,()0f x ≥;(2)当1a =-时,证明:2ln 1(1)()1x f x x e->-. 【答案】(1)证明过程详见解析;(2)证明过程详见解析.【解析】试题分析:本题主要考查导数的运算、利用导数判断函数的单调性、利用导数求函数的最值等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,将当0x ≥时,()0f x ≥转化为()0g x ≥,对函数()g x 求导,利用'()0()g x g x >⇒单调递增,'()0()g x g x <⇒单调递减,来判断函数的单调性来决定函数最值,并求出最值为0,即得证;第二问,先将2ln 1(1)()1x f x x e ->-转化为ln 1x x -≥且21111x x e e--≥-,利用导数分别判断函数的单调性求出函数最值,分别证明即可.(1)1a =时,2()(1)x x x x x x f x x e x e e+=-=--, 令1)(--=x e x g x ,01)(≥-='x e x g ,∴)(x g 在),0[+∞上为增函数 3分0)0()(=≥g x g ,∴当0≥x 时,()()0xx f x g x e =≥,得证. 6分 (2) ln 1(1)()(ln )(1)x x x f x x x x e--=-- 令x x x h ln )(-=,x x x h 1)(-=',10<<x 时,0)(<'x h ,1>x 时,0)(>'x h 即)(x h 在)1,0(上为减函数,在),1(+∞上为增函数 9分∴1)1()(=≥h x h ①令=)(x ϕ11x x e --,xe x x 2)(-='ϕ, ∴20<<x 时,0)(<'x ϕ,2>x 时,0)(>'x ϕ即)(x ϕ在)2,0(上为减函数,在),2(+∞上为增函数 ∴211)2()(e x -=≥ϕϕ ② ∴由①②得ln (1)()()()x f x h x x x ϕ-=211e-> . 12分 考点:导数的运算、利用导数判断函数的单调性、利用导数求函数的最值.22.如图,ABC ∆是的内接三角形,PA 是圆O 的切线,切点为A ,PB 交AC 于点E ,交圆O于点D ,PA=PE ,045ABC ∠=,PD=1,DB=8.(1)求ABP ∆的面积;(2)求弦AC 的长.【答案】(1)272;(2) 【解析】试题分析:本题主要考查圆的切线的性质、切割线定理、勾股定理、三角形面积公式、相交弦定理等基础知识,考查学生的分析问题解决问题的能力、逻辑推理能力、计算能力.第一问,先利用切线的性质得到PAE ∠=45ABC ∠=︒,所以PEA ∠=45︒,APE ∠=90︒,所以由切割线定理有92=⋅=PB PD PA ,所以利用三角形面积求△ABP 的面积为12PA BP ⋅=272;第二问,在Rt △APE 中,利用勾股定理得AE =,2,6ED EB ==,再由相交弦定理得出=AC(1)因为PA 是⊙O 的切线,切点为A ,所以PAE ∠=45ABC ∠=︒, 1分又PE PA =,所以PEA ∠=45︒,APE ∠=90︒2分 因为1=PD ,8=DB ,所以由切割线定理有92=⋅=PB PD PA ,所以3==PA EP ,4分所以△ABP 的面积为12PA BP ⋅=272. 5分(2)在Rt △APE 中,由勾股定理得AE = 6分又2=-=PD EP ED , 6=-=DE DB EB ,所以由相交弦定理得12=⋅=⋅ED EB EA EC 9分所以222312==EC ,故=AC 10分考点:圆的切线的性质、切割线定理、勾股定理、三角形面积公式、相交弦定理.23.长为3的线段两端点A ,B 分别在x 轴正半轴和y 轴的正半轴上滑动,2BA PA =,点P 的轨迹为曲线C.(1)以直线AB 的倾斜角α为参数,求曲线C 的参数方程;(2)求点P 到点D (0,2)-距离的最大值.【答案】(1)曲线C 的参数方程为⎩⎨⎧=-=ααsin cos 2y x (α为参数,παπ<<2);(2)||PD 取得最大值3212. 【解析】试题分析:本题主要考查参数方程、三角函数的定义、倍角公式、配方法求函数最值等基础知识,考查学生的分析问题解决问题的能力、数形结合思想、计算能力.第一问,利用三角函数的定义,结合图象,列出P 点的横纵坐标,写出曲线C 的参数方程;第二问,利用两点间距离公式得到2||PD ,再利用倍角公式、平方关系、配方法、三角函数有界性求函数最值.(1)设),(y x P ,由题设可知, 则ααπcos 2)cos(||32-=-=AB x ,ααπsin )sin(||31=-=AB y , 所以曲线C 的参数方程为⎩⎨⎧=-=ααsin cos 2y x (α为参数,παπ<<2). 5分(2)由(1)得 =2||PD 4sin 4sin cos 4)2(sin )cos 2(2222+++=++-ααααα328)32(sin 38sin 4sin 322+--=++-=ααα. 当32sin =α时,||PD 取得最大值3212. 10分考点:参数方程、三角函数的定义、倍角公式、配方法求函数最值.24.已知实数0,0a b >>,且2292a b +=,若a b m +≤恒成立. (1)求实数m 的最小值;(2)若2|1|||x x a b -+≥+对任意的,a b 恒成立,求实数x 的取值范围.【答案】(1)3;(2)31-≤x 或35≥x . 【解析】试题分析:本题主要考查基本不等式、恒成立问题、绝对值不等式的解法等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,利用基本不等式先求函数a b +的最大值,再利用恒成立问题得到m 的最小值为3;第二问,由3≤+b a ,先将“2|1|||x x a b -+≥+对任意的,a b 恒成立”转化为“2|1|||3x x -+≥”,利用零点分段法求去掉绝对值,解绝对值不等式,得到x 的取值范围.(1)ab b a 222≥+∴222)(22b a b a +≥+,∴9)(2≤+b a∴3≤+b a (当且仅当23==b a 时取等号)又b a m +≥,故3≥m ,即m 的最小值为3. 5分(2)由(1)3≤+b a若b a x x +≥+-|||1|2对任意的b a ,恒成立,故只需3|||1|2≥+-x x⎩⎨⎧≥--<3)1(20x x x 或⎩⎨⎧≥+-≤≤3)1(210x x x 或⎩⎨⎧≥+->3)1(21x x x 解得31-≤x 或35≥x . 10分 考点:基本不等式、恒成立问题、绝对值不等式的解法.。
2014全国统一高考数学真题及逐题详细解析汇报理科海南卷
实用文档文案大全2014年普通高等学校招生全国统一考试理科数学(新课标卷Ⅱ)第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合0,1,2M?{},2{|320}Nxxx????,则MN?( )A.{1} B.{2} C.{0,1} D.{1,2}2.设复数12,zz在复平面内的对应点关于虚轴对称,12zi??,则12zz?()A.5? B.5 C.4i?? D.4i??3.设向量,a b满足||10ab??,||6ab??,则ab??( )A.1 B.2 C.3 D 5 4.钝角三角形ABC的面积是12,1AB?,2BC?,则AC?( ) A. 5 B.5 C.2 D.15.某地区空气质量监测资料表明,一天的空气质量为优良的概率是075.,连续两天优良的概率是06.,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.08. B.075. C.06. D.045.6.如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.1727 B.59 C.1027 D.137.执行右图程序框图,如果输入的,xt均为2,则输出的S?()实用文档文案大全A.4 B.5 C.6 D.78.设曲线ln(1)yaxx???在点(0,0)处的切线方程为2yx?,则a?()A.0 B.1 C.2 D.39.设,xy满足约束条件70,310,350.xyxyxy??????????????则2zxy??的最大值为()A.10 B.8 C.3 D.210.设F为抛物线2:3Cyx?的焦点,过F且倾斜角为30的直线交C于,AB两点,O 为坐标原点,则OAB的面积为()338 C6332 D9411.直三棱柱111ABCABC?中,90BCA???,MN,分别是1111ABAC,的中点,1BCCACC??,则BM与AN所成的角的余弦值为()A.110 B.25 C.3010 D.2212.设函数()3sinxfxm??.若存在()fx的极值点0x满足22200[()]xfxm??,则m的取值范围是()结束输出S 1M?,3S?开始输入x1k?kt?MMxk?SMS??1kk??是否实用文档????,66,????? B.????,44,????? C.????,22,?????文案大全A.D.????,14,?????第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生必须做答.第22题~第24题为选考题,考生根据要求做答.二.填空题13.10()xa?的展开式中,7x的系数为15,则a?________..(用数字填写答案) 14.函数()sin(2)2sincos()fxxx???????的最大值为_________..15.已知偶函数()fx在[0,)??单调递减,(2)0f?.若(1)0fx??,则x的取值范围是______..16.设点0(,1)Mx,若在圆22:1Oxy??上存在点N,使得45OMN???,则0x的取值范围是____..三.解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知数列{}n a满足11a?,131nn aa???.(Ⅰ)证明1{}2n a?是等比数列,并求{}n a的通项公式;(Ⅱ)证明:1211132n aaa????.18.(本小题满分12分)如图,四棱锥P-ABCD中,底面ABCD为矩形,PAABCD?平面,E为PD的中点.(Ⅰ)证明:PBAEC∥平面;(Ⅱ)设二面角DAEC??为60°,1AP?,3AD?,求三棱锥EACD?的体积.实用文档文案大全19.(本小题满分12分)某地区2007年至2013年农村居民家庭纯收入y(单位:(0,3,0) ,2013 年份代号 1 2 3 4 5 6 7 人均纯收入y 2.9 3.33.64.44.85.25.9(Ⅰ)求y关于的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘法估计公式分别为:??????121niiinii ttyybtt?????????,??aybt??20.(本小题满分12分)设12,FF分别是椭圆22221xyab??(0ab??)的左右焦点,M是C上一点且2MF与x轴垂直,直线1MF与C的另一个交点为N.(Ⅰ)若直线MN的斜率为34,求C的离心率;(Ⅱ)若直线MN在y轴上的截距为2,且1||5||MNFN?,求,ab.21.(本小题满分12分)已知函数()2xx fxeex????。
2014年普通高等学校招生全国统一考试(江西卷)数学试题 (理科)解析版
E1E2
……
二.选做题:请考生在下列两题中任选一题作答,若两题都做,则按所做的第一题评阅计分, 本题共 5 分.在每小题给出的四个选项中,只有一项是符合题目要求的.
11(1).(不等式选做题)对任意 x, y R , x 1 x y 1 y 1 的最小值为( )
A.1
B. 2
C. 3
D. 4
致的图形是( )
【答案】C
【解析】A(0,0,0),E(4,3,12),
E1
(8,6,0),
E2
(
28 3
,7,4),
E3
(11,
25 4
,9),
AE
42 32 122 13 ,
EE1
42 32 5 , E1E2
4 2
12
42
13
,
3
3
E2E3
5 2 3
5 2 4
52
65 12
g 1 0
a1 0
a 1
所以选 A。
4.在 ABC 中,内角 A,B,C 所对应的边分别为 a, b, c, ,若 c2 (a b)2 6, C , 则 ABC 的 3
面积( )
93
33
A.3
B.
C.
2
2
【答案】C 【解析】
Q c2 a b2 b
a2 b2 c2 2ab b Q a2 b2 c2 2ab cosC ab 2ab b ab ab 6
S 1 ab cosC 1 gbg 3 3 3
2
22 2
所以选 C。
D. 3 3
5.一几何体的直观图如右图,下列给出的四个俯视图中正确的是( )
【答案】B 【解析】俯视图为在底面上的投影,易知选:B
2014年高考理科数学试题全国大纲卷逐题详解-(纯word解析版)
2014年高考理科数学试题全国大纲卷逐题详解 (纯word 解析版)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.【2014年全国大纲卷(01)】设103iz i=+,则z 的共轭复数为( )A .13i -+B .13i --C .13i +D .13i -【答案】D 【解析】∵z==,∴.故选:D【2014年全国大纲卷(02)】设集合2{|340}M x x x =--<,{|05}N x x =≤≤,则M N =( )A .(0,4]B .[0,4)C .[1,0)-D .(1,0]-【答案】B【解析】由x 2﹣3x ﹣4<0,得﹣1<x <4.∴M={x|x 2﹣3x ﹣4<0}={x|﹣1<x <4},又N={x|0≤x ≤5},∴M ∩N={x|﹣1<x <4}∩{x|0≤x ≤5}=[0,4).故选:B【2014年全国大纲卷(03)】设0sin 33a =,0cos55b =,0tan 35c =,则( )A .a b c >>B .b c a >>C .c b a >>D .c a b >>【答案】C【解析】由诱导公式可得b=cos55°=cos (90°﹣35°)=sin35°, 由正弦函数的单调性可知b >a ,而c=tan35°=>sin35°=b ,∴c >b >a 故选:C【2014年全国大纲卷(04)】若向量,a b 满足:||1a =,()a b a +⊥,(2)a b b +⊥,则||b =( )A .2B .2C .1D .2【答案】B【解析】由题意可得,(+)•=+=1+=0,∴=﹣1;(2+)•=2+=﹣2+=0,∴b 2=2,则||=,故选:B【2014年全国大纲卷(05)】有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( ) A .60种 B .70种 C .75种 D .150种【答案】C【解析】根据题意,先从6名男医生中选2人,有C 62=15种选法,再从5名女医生中选出1人,有C 51=5种选法, 则不同的选法共有15×5=75种;故选C【2014年全国大纲卷(06)】已知椭圆C :22221x y a b+=(0)a b >>的左、右焦点为1F 、2F ,离心率为3,过2F 的直线l 交C 于A 、B 两点,若1AF B ∆的周长为43,则C 的方程为( )A .22132x y +=B .2213x y += C .221128x y += D .221124x y += 【答案】A【解析】∵△AF 1B 的周长为4,∴4a=4,∴a=,∵离心率为,∴c=1,∴b==,∴椭圆C 的方程为+=1.故选:A【2014年全国大纲卷(07)】曲线1x y xe -=在点(1,1)处切线的斜率等于( )A .2eB .eC .2D .1【答案】C【解析】函数的导数为f ′(x )=e x ﹣1+xe x ﹣1=(1+x )e x ﹣1,当x=1时,f ′(1)=2,即曲线y=xe x ﹣1在点(1,1)处切线的斜率k=f ′(1)=2,故选:C【2014年全国大纲卷(08)】正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( ) A .814πB .16πC .9πD .274π【答案】A【解析】设球的半径为R ,则∵棱锥的高为4,底面边长为2, ∴R 2=(4﹣R )2+()2,∴R=,∴球的表面积为4π•()2=.故选:A【2014年全国大纲卷(09)】已知双曲线C 的离心率为2,焦点为1F 、2F ,点A 在C 上,若12||2||F A F A =,则21cos AF F ∠=( ) A .14 B .13C .2D .2【答案】A【解析】∵双曲线C 的离心率为2,∴e=,即c=2a ,点A 在双曲线上,则|F 1A|﹣|F 2A|=2a ,又|F 1A|=2|F 2A|,∴解得|F 1A|=4a ,|F 2A|=2a ,||F 1F 2|=2c ,则由余弦定理得cos ∠AF 2F 1===,故选:A【2014年全国大纲卷(10)】等比数列{}n a 中,452,5a a ==,则数列{lg }n a 的前8项和等于( )A .6B .5C .4D .3【答案】C【解析】∵等比数列{a n }中a 4=2,a 5=5,∴a 4•a 5=2×5=10,∴数列{lga n }的前8项和S=lga 1+lga 2+…+lga 8=lg (a 1•a 2…a 8)=lg (a 4•a 5)4=4lg (a 4•a 5)=4lg10=4故选:C【2014年全国大纲卷(11)】已知二面角l αβ--为060,AB α⊂,AB l ⊥,A 为垂足,CD β⊂,C l ∈,0135ACD ∠=,则异面直线AB 与CD 所成角的余弦值为( )A .14 B .24 C .3 D .12【答案】B【解析】如图,过A 点做AE ⊥l ,使BE ⊥β,垂足为E ,过点A 做AF ∥CD ,过点E 做EF ⊥AE ,连接BF ,∵AB ⊥l ,∴∠BAE=60°,又∠ACD=135°,∴∠EAF=45°,在Rt △BEA 中,设AE=a ,则AB=2a ,BE=a ,在Rt △AEF 中,则EF=a ,AF=a ,在Rt △BEF 中,则BF=2a , ∴异面直线AB 与CD 所成的角即是∠BAF ,∴cos ∠BAF===.【2014年全国大纲卷(12)】函数()y f x =的图象与函数()y g x =的图象关于直线0x y +=对称,则()y f x =的反函数是( )A .()y g x =B .()y g x =-C .()y g x =-D .()y g x =--【答案】D【解析】设P (x ,y )为y=f (x )的反函数图象上的任意一点,则P 关于y=x 的对称点P ′(y ,x )一点在y=f (x )的图象上,又∵函数y=f (x )的图象与函数y=g (x )的图象关于直线x+y=0对称,∴P ′(y ,x )关于直线x+y=0的对称点P ″(﹣x ,﹣y )在y=g (x )图象上, ∴必有﹣y=g (﹣x ),即y=﹣g (﹣x )∴y=f (x )的反函数为:y=﹣g (﹣x )第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 【2014年全国大纲卷(13)】8()x y y x-的展开式中22x y 的系数为 . 【答案】70 【解析】的展开式的通项公式为 T r+1=•(﹣1)r••=•(﹣1)r••,令 8﹣=﹣4=2,求得 r=4,故展开式中x 2y 2的系数为 =70,故答案为:70【2014年全国大纲卷(14)】设x 、y 满足约束条件02321x y x y x y -≥⎧⎪+≤⎨⎪-≤⎩,则4z x y =+的最大值为 .【答案】5【解析】由约束条件作出可行域如图,联立,解得C (1,1).化目标函数z=x+4y 为直线方程的斜截式,得.由图可知,当直线过C 点时,直线在y 轴上的截距最大,z 最大.此时z max =1+4×1=5.故答案为:5【2014年全国大纲卷(15)】直线1l 和2l 是圆222x y +=的两条切线,若1l 与2l 的交点为(1,3),则1l 与2l 的夹角的正切值等于 .【答案】【解析】设l 1与l 2的夹角为2θ,由于l 1与l 2的交点A (1,3)在圆的外部,且点A 与圆心O 之间的距离为OA==,圆的半径为r=,∴sin θ==,∴cos θ=,tan θ==,∴tan2θ===,故答案为:【2014年全国大纲卷(16)】若函数()cos 2sin f x x a x =+在区间(,)62ππ是减函数,则a 的取值范围是 .【答案】(﹣∞,2]【解析】由f (x )=cos2x+asinx=﹣2sin 2x+asinx+1,令t=sinx ,则原函数化为y=﹣2t 2+at+1.∵x ∈(,)时f (x )为减函数,则y=﹣2t 2+at+1在t ∈(,1)上为减函数,∵y=﹣2t 2+at+1的图象开口向下,且对称轴方程为t=. ∴,解得:a ≤2.∴a 的取值范围是(﹣∞,2].故答案为:(﹣∞,2]三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 【2014年全国大纲卷(17)】(本小题满分10分)ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,已知3cos 2cos a C c A =,1tan 3A =,求B.解:根据正弦定理,由3cos 2cos 3sin cos 2sin cos a C c A A C C A =⇒=sin sin 323tan 2tan cos cos A CA C A C⇒⨯=⨯⇒= 因为1tan 3A =,所以1132tan tan 32C C ⨯=⇒=所以11tan tan 32tan()1111tan tan 132A C A C A C +++===--⨯ 因为0A C π<+<,所以4A C π+=由三角形的内角和可得344B πππ=-=.【2014年全国大纲卷(18)】(本小题满分12分)等差数列{}n a 的前n 项和为n S ,已知110a =,2a 为整数,且4n S S ≤. (1)求{}n a 的通项公式; (2)设11n n n b a a +=,求数列{}n b 的前n 项和n T . 解:(1)设等差数列{}n a 的公差为d ,而110a =,从而有10(1)n a n d =+- 若0d =,10n S n =,此时4n S S ≤不成立若0d >,数列{}n a 是一个单调递增数列,n S 随着n 的增大而增大,也不满足4n S S ≤ 当0d <时,数列{}n a 是一个单调递减数列,要使4n S S ≤,则须满足540a a ≤⎧⎨≥⎩即1040105103032d d d +≤⎧⇒-≤≤-⎨+≥⎩,又因为21a a d =+为整数,所以d Z ∈,所以3d =- 此时103(1)133n a n n =--=-(2)由(1)可得1111111()(133)(103)(313)(310)3133103n n n b a a n n n n n n +====-⨯------ 所以111111111(())(())()31073743133103n T n n =---+---++-⨯--1111111111(()()())()31077431331031031010(310)n n n n n ---+---++-=--=-----.【2014年全国大纲卷(19)】(本小题满分12分)如图,三棱柱111ABC A B C -中,点1A 在平面ABC 内的射影D 在AC 上,090ACB ∠=,11,2BC AC CC ===.(1)证明:11AC A B ⊥;(2)设直线1AA 与平面11BCC B 的距离为3,求二面角1A AB C --的大小.解:法一:(1)因为1A D ⊥平面ABC ,1A D ⊆平面11AAC C ,故平面11AAC C ⊥平面ABC .又BC AC ⊥,所以BC ⊥平面11AAC C .连结1AC .因为侧面11AAC C 为菱形,故11AC AC ⊥.由三垂线定理得11AC A B ⊥.(2)BC ⊥平面11AAC C ,BC ⊆平面11BCC B ,故平面11AAC C ⊥平面11BCC B . 作11A E CC ⊥,E 为垂足,则1A E ⊥平面11BCC B .又直线1A A 平面11BCC B ,因而1A E 为直线1A A 与平面11BCC B 的距离,13A E =.因为1A C 为11A CC ∠的平分线,故113A D A E ==.作DF AB ⊥,F 为垂足,连结1A F .由三垂线定理得1A F AB ⊥,故1A FD ∠为二面角1A ABC --的平面角. 由22111AD AA A D =-=得D 为C A 中点,15=25AC BC DF AB ⨯⨯=,11tan 15A D A FD DF ∠==. 所以二面角1A AB C --的大小为arc tan 15。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章单元测试一、选择题(本大题共10小题,每小题5分,共50分.每小题中只有一项符合题目要求)1. 集合M={x|x=sin nπ3,n∈Z},N={x|x=cosnπ2,n∈N},则M∩N等于()A.{-1,0,1}B.{0,1} C.{0} D.∅答案 C解析∵M={x|x=sin nπ3,n∈Z}={-32,0,32},N={-1,0,1},∴M∩N={0}.应选C.2.已知α∈(π2,π),sinα=35,则tan(α+π4)等于()A.17B.7C.-17D.-7答案 A解析∵α∈(π2,π),∴tanα=-34.∴tan(α+π4)=-34+11+34=17.3. 已知函数f(x)=sin(πx-π2)-1,则下列命题正确的是()A.f(x)是周期为1的奇函数B.f(x)是周期为2的偶函数C.f(x)是周期为1的非奇非偶函数D.f(x)是周期为2的非奇非偶函数答案 B解析 f (x )=-cosπx -1,周期为2,且为偶函数,故选B.4.把函数y =sin(ωx +φ)(ω>0,|φ|<π2)的图像向左平移π3个单位,所得曲线的一部分如图所示,则ω、φ的值分别为( )A .1,π3 B .1,-π3 C .2,π3 D .2,-π3答案 D解析 由题知,14×2πω=7π12-π3,∴ω=2,∵函数的图像过点(π3,0),∴2(π3+π3)+φ=π.∴φ=-π3.故选D.5.函数y =2sin(x -π6)+cos(x +π3)的一条对称轴为 ( )A .x =π3 B .x =π6 C .x =-π3 D .x =-5π6答案 C解析 y =2sin(x -π6)+cos(x +π3) =2sin(x -π6)+sin[π2-(x +π3)] =2sin(x -π6)+sin(π6-x )=sin(x -π6). 方法一 把选项代入验证.方法二 由x -π6=k π+π2,得x =k π+23π(k ∈Z ). 当k =-1时,x =-π3.6.如图,一个大风车的半径为8 m ,每12 min 旋转一周,最低点离地面为2 m .若风车翼片从最低点按逆时针方向开始旋转,则该翼片的端点P 离地面的距离h (m)与时间t (min)之间的函数关系是( )A .h =8cos π6t +10 B .h =-8cos π3t +10 C .h =-8sin π6t +10 D .h =-8cos π6t +10答案 D解析 排除法,由T =12,排除B ,当t =0时,h =2,排除A 、C.故选D. 7.设a >0,对于函数f (x )=sin x +asin x (0<x <π),下列结论正确的是 ( )A .有最大值而无最小值B .有最小值而无最大值C .有最大值且有最小值D .既无最大值也无最小值 答案 B解析 令t =sin x ,则函数f (x )=sin x +a sin x (0<x <π)的值域为函数y =1+at ,t ∈(0,1]的值域,又a >0,所以y =1+at ,t ∈(0,1]是一个减函数.故选B.8.甲船在岛A 的正南B 处,以4 km/h 的速度向正北航行,AB =10 km ,同时乙船自岛A 出发以6 km/h 的速度向北偏东60°的方向驶去,当甲、乙两船相距最近时,它们所航行的时间为( ) A.1507 min B.157 h C .21.5 min D .2.15 h答案 A解析 如右图:设t 小时甲行驶到D 处AD =10-4t , 乙行驶到C 处AC =6t ,∵∠BAC =120°, DC 2=AD 2+AC 2-2AD ·AC ·cos120°=(10-4t )2+(6t )2-2×(10-4t )×6t ×cos120°=28t 2-20t +100. 当t =514 h 时DC 2最小,DC 最小,此时t =514×60=1507 min.9.在△ABC 中,已知sin C =2sin(B +C )cos B ,那么△ABC 一定是( ) A .等腰直角三角形 B .等腰三角形 C .直角三角形 D .等边三角形答案 B解析 C =π-(A +B ),B +C =π-A .有sin(A +B )=2sin A cos B ,sin A cos B +cos A sin B =2sin A cos B . 即sin A cos B -cos A sin B =0,sin(A -B )=0,则A =B . ∴△ABC 为等腰三角形.故选B.10.已知函数f (x )=sin(2x +φ),其中φ为实数,若f (x )≤|f (π6)|对x ∈R 恒成立,且f (π2)>f (π),则f (x )的单调递增区间是( )A .[k π-π3,k π+π6](k ∈Z ) B .[k π,k π+π2](k ∈Z ) C .[k π+π6,k π+2π3](k ∈Z ) D .[k π-π2,k π](k ∈Z ) 答案 C解析 因为当x ∈R 时,f (x )≤|f (π6)|恒成立,所以f (π6)=sin(π3+φ)=±1,可得φ=2k π+π6或φ=2k π-5π6.因为f (π2)=sin(π+φ)=-sin φ>f (π)=sin(2π+φ)=sin φ,故sin φ<0,所以φ=2k π-5π6,所以f (x )=sin(2x -5π6),函数的单调递增区间为-π2+2k π≤2x -5π6≤π2+2k π,所以x ∈[k π+π6,k π+2π3](k ∈Z ),故选C.二、填空题(本大题共6小题,每小题5分,共30分,把答案填在题中横线上)11.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos 2θ=________.答案 -35解析 由角θ的终边在直线y =2x 上可得tan θ=2,cos 2θ=cos 2θ-sin 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ=-35. 12.函数f (x )=sin 4x +cos 2x 的最小正周期为________. 答案 π2解析 法一:f (x )=(1-cos 2x )2+cos 2x =1+cos 4x -cos 2x =1+cos 2x (cos 2x -1)=1-cos 2x ·sin 2x =1-14sin 22x =1-14(1-cos4x 2)=78+18cos4x .法二:f (x )=(sin 2x )2+cos 2x =(1-cos2x 2)2+1+cos2x 2=34+14cos 22x =78+18cos4x .13.已知等腰△ABC 的三个内角A ,B ,C 所对边的长分别为a ,b ,c ,设向量p =(a +c ,b ),q =(b +a ,c -a ),若p ∥q ,则角A 的大小为________.答案 30°解析 由p ∥q ,得(a +c )(c -a )=b (b +a ),即-ab =a 2+b 2-c 2,由余弦定理,得cos C =a 2+b 2-c 22ab =-ab 2ab =-12.因为0°<C <180°,所以C =120°.又由△ABC 为等腰三角形得A =12(180°-120°)=30°.14.若1+tan α1-tan α=2 012,则1cos2α+tan2α=________.答案 2 012解析 1cos2α+tan2α=1cos2α+sin2αcos2α=(sin α+cos α)2cos 2α-sin 2α=sin α+cos αcos α-sin α=tan α+11-tan α=2 012.15.在△ABC 中,D 为BC 边上一点,BC =3BD ,AD =2,∠ADB =135°.若AC =2AB ,则BD =________.答案 2+ 5解析 如图,设AB =c ,AC =b ,BC =a ,则由题可知BD =13a ,CD =23a ,所以根据余弦定理可得b 2=(2)2+(23a )2-2×2×23a cos45°,c 2=(2)2+(13a )2-2×2×13a cos135°,由题意知b =2c ,可解得a =6+35,所以BD =13a =2+ 5.16.下面有五个命题:①函数y =sin 4x -cos 4x 的最小正周期是π. ②终边在y 轴上的角的集合是{α|α=k π2,k ∈Z }.③在同一坐标系中,函数y =sin x 的图像和函数y =x 的图像有三个公共点. ④把函数y =3sin(2x +π3)的图像向右平移π6得到y =3sin2x 的图像. ⑤函数y =sin(x -π2)在[0,π]上是减函数.其中,真命题的编号是________.(写出所有真命题的编号) 答案 ①④解析 考查①y =sin 2x -cos 2x =-cos2x ,所以最小正周期为π. ②k =0时,α=0,则角α终边在x 轴上.③由y =sin x 在(0,0)处切线为y =x ,所以y =sin x 与y =x 图像只有一个交点. ④y =3sin(2x +π3)图像向右平移π6个单位得 y =3sin[2(x -π6)+π3]=3sin2x .⑤y =sin(x -π2)=-cos x 在[0,π]上为增函数,综上知①④为真命题. 三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知函数f (x )=6cos 4x +5sin 2x -4cos2x ,求f (x )的定义域,判断它的奇偶性,并求其值域.解析 由cos2x ≠0,得2x ≠k π+π2,解得x ≠k π2+π4,k ∈Z . 所以f (x )的定义域为{x |x ∈R 且x ≠k π2+π4,k ∈Z }.因为f (x )的定义域关于原点对称, 且f (-x )=6cos 4(-x )+5sin 2(-x )-4cos (-2x )=6cos 4x +5sin 2x -4cos2x =f (x ),所以f (x )是偶函数. 当x ≠k π2+π4,k ∈Z 时, f (x )=6cos 4x +5sin 2x -4cos2x=(2cos 2x -1)(3cos 2x -1)cos2x =3cos 2x -1,所以f (x )的值域为{y |-1≤y <12或12<y ≤2}.18.(本小题满分12分)已知函数f (x )=2sin x cos x +sin(π2-2x ).求: (1)f (π4)的值;(2)f (x )的最小正周期和最小值; (3)f (x )的单调递增区间.答案 (1)1 (2)π,-2 (3)⎣⎢⎡⎦⎥⎤-3π8+k π,π8+k π(k ∈Z )解析 (1)f (π4)=2sin π4cos π4+sin(π2-2×π4) =2×22×22+0=1.(2)f (x )=sin2x +cos2x =2(22sin2x +22cos2x ) =2(sin2x cos π4+cos2x sin π4)=2sin(2x +π4). 所以最小正周期为π,最小值为- 2. (3)由-π2+2k π≤2x +π4≤π2+2k π(k ∈Z ), 可得-3π8+k π≤x ≤π8+k π(k ∈Z ).所以函数的单调递增区间为⎣⎢⎡⎦⎥⎤-3π8+k π,π8+k π(k ∈Z ).19.(本小题满分12分)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知B =C,2b =3a .(1)求cos A 的值; (2)求cos(2A +π4)的值. 答案 (1)13 (2)-8+7218解析 (1)由B =C,2b =3a ,可得c =b =32a . 所以cos A =b 2+c 2-a 22bc =34a 2+34a 2-a 22×32a ×32a=13.(2)因为cos A =13,A ∈(0,π),所以sin A =1-cos 2A =223,cos 2A =2cos 2A -1=-79.故sin2A =2sin A cos A =429.所以cos(2A +π4)=cos 2A cos π4-sin 2A sin π4 =(-79)×22-429×22=-8+7218.20.(本小题满分12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足ac =a 2+c 2-b 2.(1)求角B 的大小;(2)若|BA→-BC →|=2,求△ABC 面积的最大值. 答案 (1)π3 (2) 3解 (1)∵在△ABC 中,ac =a 2+c 2-b 2, ∴cos B =a 2+c 2-b 22ac =12. ∵B ∈(0,π),∴B =π3.(2)∵|BA →-BC →|=2,∴|CA →|=2,即b =2. ∴a 2+c 2-ac =4.∵a 2+c 2≥2ac ,当且仅当a =c =2时等号成立. ∴4=a 2+c 2-ac ≥2ac -ac =ac ,即ac ≤4. ∴△ABC 的面积S =12ac sin B =34ac ≤ 3.∴当a =b =c =2时,△ABC 的面积取得最大值为 3.21.(本小题满分12分)在△ABC 中,内角A ,B ,C 所对边长分别为a ,b ,c ,AB →·AC→=8,∠BAC =θ,a =4. (1)求bc 的最大值及θ的取值范围.(2)求函数f (θ)=23sin 2(π4+θ)+2cos 2θ-3的最值. 解析 (1)∵AB →·AC →=8,∠BAC =θ,∴bc ·cos θ=8. 又∵a =4,∴b 2+c 2-2bc cos θ=42,即b 2+c 2=32. 又b 2+c 2≥2bc ,∴bc ≤16,即bc 的最大值为16. 而bc =8cos θ,∴8cos θ≤16. ∴cos θ≥12.又0<θ<π,∴0<θ≤π3. (2)f (θ)=23sin 2(π4+θ)+2cos 2θ- 3=3·[1-cos(π2+2θ)]+1+cos2θ- 3 =3sin2θ+cos2θ+1=2sin(2θ+π6)+1. ∵0<θ≤π3,∴π6<2θ+π6≤5π6. ∴12≤sin(2θ+π6)≤1.当2θ+π6=5π6,即θ=π3时,f (θ)min =2×12+1=2; 当2θ+π6=π2,即θ=π6时,f (θ)max =2×1+1=3.22.(本小题满分12分)已知函数f (x )=(1+1tan x )sin 2x +m sin(x +π4)sin(x -π4). (1)当m =0时,求f (x )在区间[π8,3π4]上的取值范围; (2)当tan α=2时,f (α)=35,求m 的值. 解析 (1)当m =0时,f (x )=sin 2x +sin x cos x =12(sin2x -cos2x )+12=22sin(2x -π4)+12.又由x ∈[π8,3π4],得2x -π4∈[0,5π4],所以sin(2x -π4)∈[-22,1],从而f (x )=22sin(2x -π4)+12∈[0,1+22].(2)f (x )=sin 2x +sin x cos x -m 2cos2x =1-cos2x 2+12sin2x -m 2cos2x =12[sin2x -(1+m )cos2x ]+12,由tan α=2,得sin2α=2sin αcos αsin 2α+cos 2α=2tan α1+tan 2α=45,cos2α=cos 2α-sin 2αsin 2α+cos 2α=1-tan 2α1+tan 2α=-35. 所以35=12[45+(1+m )35]+12,得m =-2.1.(2011·上海)若三角方程sin x =0与sin 2x =0的解集分别为E ,F ,则( ) A .E ∩F =E B .E ∪F =E C .E =F D .E ∩F =∅答案 A2.下列函数中,其中最小正周期为π,且图像关于直线x =π3对称的是( ) A .y =sin(2x -π3) B .y =sin(2x -π6) C .y =sin(2x +π6) D .y =sin(x 2+π6) 答案 B解析 ∵T =π,∴ω=2,排除D ,把x =π3代入A 、B 、C 只有B 中y 取得最值,故选B.3.函数y =tan(π4x -π2)的部分图像如图所示,则(OA →+OB →)·AB→=( )A .6B .4C .-4D .-6 答案 A解析 由tan(π4x -π2)=0,得π4x -π2=k π(k ∈Z ),x =4k +2(k ∈Z ),结合图形可知A (2,0),由tan(π4x -π2)=1,得π4x -π2=π4+k π(k ∈Z ),∴x =3+4k (k ∈Z ),结合图形可知B (3,1),∴(OA →+OB →)·AB →=(5,1)·(1,1)=6.4.(本小题满分12分)如图(a ),一辆汽车在一条水平的公路上向正西方向行驶.在A 处分别测得山顶上铁塔的塔顶E 的仰角为θ和山脚点O (点O 是点E 在公路所在平面上的射影)的方位角是西偏北φ,再行驶a km 到达B 处,测得山脚点O 的方位角是西偏北β.(1)设计一个方案,用测量的数据和有关公式写出计算OE 的步骤;(2)函数f (x )=a sin(βx +φ)的部分图像如图(b )所示,θ=π6,求塔顶E 到公路的距离.解析 (1)第一步:求OA ,在△AOB 中,∠ABO =π-β,∠AOB =β-φ,AB =a ,由正弦定理,得OA =a sin (π-β)sin (β-φ)=a sin βsin (β-φ);第二步:求OE ,在Rt △EOA 中,∠EAO =θ,∠EOA =90°,则OE =OA tan θ=a sin βtan θsin (β-φ). (2)由图像易得a =3,β=π3,φ=π6,又θ=π6,则OE =3sin π3tan π6sin (π3-π6)= 3.过点E 作EF ⊥直线AB 于点F ,连接OF ,因为AB ⊥OE ,又OE ∩EF =E ,所以AB ⊥平面EOF ,所以AB ⊥OF .在△AOB 中,∠OAB =∠AOB =π6,则OB =AB =a =3,在Rt △BFO 中,∠OBF =π3,则OF =OB sin π3=3×32=32,又在Rt △EOF 中,OE =3,所以EF =OE 2+OF 2=(3)2+(32)2=212.5.(本小题满分12分)(2010·福建文)设函数f (θ)=3sin θ+cos θ,其中,角θ的顶点与坐标原点重合,始边与x 轴非负半轴重合,终边过点P (x ,y ),且0≤θ≤π.(1)若点P 的坐标为(12,32),求f (θ)的值;(2)若点P (x ,y )为平面区域Ω:⎩⎨⎧ x +y ≥1,x ≤1,y ≤1上的一个动点,试确定角θ的取值范围,并求函数f (θ)的最小值和最大值. 答案 (1)2 (2)0≤θ≤π2,f (θ)最大值2,最小值1解析 (1)由点P 的坐标和三角函数的定义可得⎩⎪⎨⎪⎧ sin θ=32,cos θ=12.于是f (θ)=3sin θ+cos θ=3×32+12=2.(2)作出平面区域Ω(即三角区域ABC )如图所示,其中A (1,0),B (1,1),C (0,1).于是0≤θ≤π2.又f (θ)=3sin θ+cos θ=2sin(θ+π6),且π6≤θ+π6≤2π3,故当θ+π6=π2,即θ=π3时,f (θ)取得最大值,且最大值等于2;当θ+π6=π6,即θ=0时,f (θ)取得最小值,且最小值等于1.。