六年级数学下册第五单元数学广角

合集下载

(易错题)小学数学六年级下册第五单元数学广角(鸽巢问题)测试(包含答案解析)

(易错题)小学数学六年级下册第五单元数学广角(鸽巢问题)测试(包含答案解析)
2.A
解析: A 【解析】【解答】1 个偶数+4 个奇数=偶数; 3 个偶数+2 个奇数=偶数; 5 个偶数的和还是偶数; 任意 5 个自然数的和是偶数,则其中至少有 1 个偶数。 故答案为:A。 【分析】偶数+偶数=偶数,偶数+奇数=奇数,据此分析。
3.A
解析: A 【解析】【解答】7+1=8(名)。 故答案为:A。 【分析】6、7、8、9、10、11、12,一共 7 个年龄段,在从中挑选 1 名学生,就一定能找 到年龄相同的两名同学。
8.B
解析: B 【解析】【解答】解:保证取到两个颜色相同的球的次数是: 4+1=5(次), 到少取 5 个球,保证取到两个颜色相同的球. 故选:B. 【分析】考虑到最差情况是摸 4 次摸到的是白、黑、红、绿四种颜色的球各一个,只要再 摸一次,就可以保证摸到球是两个颜色相同的球.据此解答.
9.A
解析: A 【解析】【解答】解:6÷3=2(个) 答:至少有 2 个苹果放在同一个盘子里. 故选:A. 【分析】将 6 个苹果放在 3 个盘子里,至少有 6÷3=2 个苹果放在同一个盘子里,据此解答 即可.
7.B
解析: B 【解析】【解答】解:10+10+1=21(个). 答:至少取出 21 枚钮扣,才能保证三种颜色的钮扣都取到. 故选:B. 【分 析】口袋里放有红、黄、白三种颜色的同样的钮扣,最差的情况是头 10 个都是同一 种颜色的比如红的,此时还剩下黄、白两种颜色的,接着拿了 10 个还是同一种 颜色的, 比如黄的,此时口袋内只剩下白色的了,最后再拿一个,三种颜色的钮扣都取到了,即至 少要取出 10+10+1=21 个.
二、填空题
13.【解析】【解答】2×3+1=7(个)故答案为:7【分析】红黄白三种颜色的 球各取 2 个一共取了 6 个在任意取一个球就可以保证取到 3 个颜色相同的球

六下(人教)第五单元数学广角——鸽巢问题(抽屉原理)(附答案)

六下(人教)第五单元数学广角——鸽巢问题(抽屉原理)(附答案)

第五单元数学广角——鸽巢问题(抽屉原理)一、最不利原则:为了保证能完成一件事情,需要考虑在最倒霉(最不利)的情况下,如何能达到目标。

二、抽屉原理:形式1:把n+1个苹果放到n个抽屉中,一定有2个苹果放在一个抽屉里;形式2:把m×n+1个苹果放到n个抽屉中,一定有m+1个苹果放在一个抽屉里。

模块一抽屉原理【例题1】把3个苹果放到两个抽屉中,有()种放法。

【练习1】把4支铅笔放进3个笔筒中,有()种放法。

【例题2】把8个桃子放到7个果盘里,一定有一个果盘里至少放进了()桃子。

【练习2】把7本书放进6个抽屉,不管怎么放,总有一个抽屉里至少放进()本书。

【例题3】五年级一班有28个学生,保证至少有几个同学在同一个月出生?【练习3】在任意25个人中,至少有几个人的星座相同?【例题4】把25个玻璃球最多放进几个盒子里,才能保证至少有一个盒子里有5个玻璃球?【练习4】把17本书最多放到()个空书架上,才能保证至少有一个书架上有5本书。

【例题5】平安路小学组织862名同学去参观甲、乙、丙3处景点。

规定每名同学至少参观一处,最多可以参观两处,至少有多少名同学参观的景点相同?【练习5】中国奥运代表团的173名运动员到超市买饮料,已知超市有可乐、雪碧、芬达、橙汁、味全和矿泉水6种饮料,每人各买两种不同的饮料,那么至少多少人买的饮料完全相同?【例题6】国庆嘉年华共有5项游艺活动,每个学生至多参加2项,至少参加1项。

那么至少有多少个学生,才能保证至少有4个人参加的活动完成相同?【练习6】桂苑小学六年级每名学生都订阅了《数学小灵通》、《小学生作文》、《英语天地》、《科学画报》这4种报刊中的2种,他们当中至少有34名学生订阅的报刊种类相同。

你知道桂苑小学六年级至少有多少名学生吗?【例题7】从1,2,3,……,21这些自然数中,最多可以取出多少个数,使得其中每两个数的差都不等于4?【练习7】1至70这70个自然数中,最多可以取出多少个数,使得其中每两个数的差都不等于6?【例题8】从1,4,7,10,……37,40这14个自然数,至少任取多少个数才能保证其中至少有2个数的和是41?【练习8】从1到50这50个自然数中,至少选出多少个数,才能保证其中一定有两个数的和是50?【例题9】从1到100这100个自然数中,至少选出多少个数才能保证其中一定有两个数的和是7的倍数?如果要保证是6的倍数呢?【练习9】从1至99这99个自然数中任意取出一些数,要保证其中一定有两个数的和是5的倍数,至少要取多少个?【例题10】某省有4千万人口,每个人的头发根数不超过15万根,那么该省中至少有多少人的头发根数一样多?【练习10】49名同学共同参加体操表演,其中最小的8岁,最大的11岁。

人教版六年级下册数学第五单元《数学广角》鸽巢问题

人教版六年级下册数学第五单元《数学广角》鸽巢问题
有有55个苹果要放入个苹果要放入44个抽屉中那么总有一抽屉中那么总有一个抽屉里面至少会放个抽屉里面至少会放22个苹100991如果把6个苹果放入4个抽屉中至少有几个苹果被放到同一个抽2如果把8个苹果放入5个抽屉中至少有几个苹果被放到同一个抽1如果把9个苹果放入4个抽屉中总有一个抽屉里至少放了个苹果
人教版六年级下册数学第五单元《数学广角 》
2)如果把158个苹果放进 3个抽屉里,不管怎么放, 总有一个抽屉里至少有几 个苹果?
精品课件
抽屉原理(二)
把 a 个 物 体 放 进 n 个 抽 屉,若a÷n=b……c
(c≠0 ,c<n )
则一定有一个抽屉至少 放了______ 个物体。 精品课件
比一比:两个抽屉原理有 何区别?
“原理1”和“原理2”的区别 是:原理1苹果多,抽屉少,数 量比较接近;原理2虽然也是 苹果多,抽屉少,但是数量相 差较大,苹果个数比抽屉个数 的几倍还多几。
2、从任意5双手套中任取6只,其中至少有2只 恰为一双手套 ,对吗?
3、从数1,2,。。。,10中任取6个数,其中 至少有2个数为奇偶性相同。
4、体育用品仓库里有许多足球、排球和篮球, 某班 50名同学来仓库拿球,规定每个人至少拿 1个球,至多拿2个球,问至少有几名同学所 拿的球种类是一致的?
精品课件
例:把一些铅笔放进3个文具盒中,保证其中 一个文具盒至少有4枝铅笔,原来至少有多少
枝铅笔?至少:只有一个文具盒有 4 枝,
其余都是(4-1)枝
3 +1
3
3
3
3×(4-1)+1=10(枝)
求总数=抽屉×(至少-1)+1
要分的份精数品课件 其中一个多1
鸽巢问题 (二)

六年级数学下册第五单元《数学广角—鸽巢问题》测试卷-人教版(含答案)

六年级数学下册第五单元《数学广角—鸽巢问题》测试卷-人教版(含答案)

六年级数学下册第五单元《数学广角—鸽巢问题》测试卷-人教版(含答案)一、单选题1.王东玩掷骰子游戏,要保证掷出的骰子点数至少有两次相同,他最少应掷()次。

A. 5B. 6C. 7D. 82.把7本书放进2个抽屉,总有一个抽屉至少放()本书。

A. 3B. 4C. 53.把红、黄、蓝三种颜色的球各5个放进一个盒子里,至少取()个球可以保证取到两个颜色相同的球.A. 4B. 5C. 6二、判断题4.有7本书放入2个抽屉,有一个抽屉至少放4本书。

()5.张叔叔参加飞镖比赛,投了4镖,总成绩是33环,且每一镖的成绩都是整数环。

张叔叔至少有一镖不低于9环。

()6.11只鸽子飞进了5个鸽笼,总有一个鸽笼至少飞进了3只鸽子。

()三、填空题7.有红、黄、蓝3种颜色的球各5个,放在同一个盒子里,至少取出________个,可以保证取到2个颜色相同的球。

8.把10颗糖果分给4个小朋友,总有一个小朋友至少分到________颗糖果。

9.盒子里有同样大小的红、蓝、黄、黑四种颜色的球各10个,要想摸出的球一定有4个是相同颜色的,至少要摸出________个球。

四、解答题10.有26位小朋友,他们当中至少有3位小朋友属同一生肖,这个观点对吗?为什么?11.六(1)班有40名同学表演节目,老师为他们准备了一些气球,至少要准备多少个气球,才能保证至少有一个同学能拿到两个或两个以上的气球为什么?12.假设在一个平面上有任意六个点,无三点共线,每两点用红色或蓝色的线段连起来,都连好后,问你能不能找到一个由这些线构成的三角形,使三角形的三边同色?13.某班有16名学生,每个月教师把学生分成两个小组.问最少要经过几个月,才能使该班的任意两个学生总有某个月份是分在不同的小组里?五、应用题14.布袋里有4种不同颜色的球,每种都有10个.最少取出多少个球,才能保证其中一定有4个球的颜色一样?15.一副扑克有4种花色,每种花色13张,从中任意抽牌,至少从中抽出多少张牌,才能保证有花色相同的牌至少4张?为什么?参考答案一、单选题1.【答案】C【解析】【解答】6+1=7(次)。

人教版六年级数学下册《鸽巢问题》数学广角PPT精品课件

人教版六年级数学下册《鸽巢问题》数学广角PPT精品课件

盒子里有同样大小的红球和蓝球各4个,要想摸 出的球一定有2个同色的,至少要摸出几个球?
至少要摸出3个球
只要摸出的球数比它们的颜色种数多1, 就能保证至少有两个球同色。
一天晚上,小红正要从自已放袜子的抽屉里 取袜子,突然灯熄了。她知道自己的抽屉里放有 白色与黄色的袜子各6只。小红至少要摸出多少只 袜子,才能保证拿出一双相同颜色的袜子?
9÷4=2……1 2+1=3
第五单元 数学广角--鸽巢问题 第3课
鸽巢问题
第3课时
人教版六年级下册数学课件

01 新课导入 02 新课讲解

03 课堂小结
CONTENTS
04 拓展延伸
第一部分 PART 01
新课导入
your content is entered here, or by copying your text, select paste in this box and choose to retain only text. your content is typed here, or by copying your text, select paste in this box.
复习导入
5个人坐4把椅子,总有一把椅子上至少坐 2人,为什么?
把5个人分到“4个鸽巢”(代表4把 椅 子 ) 中 , 5÷4 = 1……1 , 所 以 一 定 有 “一个鸽巢”里至少有1+1=2(人),即 总有一把椅子上至少坐2人。
第二部分 PART 02
新课讲解
your content is entered here, or by copying your text, select paste in this box and choose to retain only text. your content is typed here, or by copying your text, select paste in this box.

人教版六年级下册数学广角—鸽巢问题(应用题)

人教版六年级下册数学广角—鸽巢问题(应用题)
人教版六年级下册5 数学广角—鸽巢问题
1. 把十只小兔放进至多几个笼子里,才能保证至少有一个笼里有两只或两只以上的小兔?
2. 六(1)班有学生52人,全班至少有5人在同一个月过生日。这种说法对吗?为什么?
3. 有5种颜色的袜子各10只混装在纸箱内,从纸箱中至少取出多少只,能保证有3双袜子?
4. 一个鱼缸里有4种鱼,每种鱼都有很多条。至少要捞出多少条鱼,才能保证其中有5条相同品种的鱼?
11. 圣诞节时圣诞老人给表现最好的10个小朋友送礼物,其要准备多少件礼物?
12. “六一”儿童节,很多小朋友到公园游玩,在公园里他们各自遇到了许多熟人。试说明:在游园的小朋友中,至少有两个小朋友遇到的熟人数目相等。
13. 纸箱里杂乱地放着黑、白、红、绿、黄五种颜色的袜子各50只,规格都相同。在黑暗中至少要取出多少只袜子,才能保证有15双颜色相同的袜子?
16. 一个盒子里装有黑、白两种颜色的跳棋各10枚。
①从中最少摸出几枚才能保证有2枚颜色相同?
②从中至少摸出几枚,才能保证有3枚颜色相同?
③从中至少摸出几枚,才能保证有7枚颜色相同?
17. 前进小学六年级共有370名学生,其中六(2)班有49名学生。请问下面两人说的对吗?为什么?
生1:“六年级里一定有两人的生日是同一天。”
14. 箱子里有大小形状一样的卡片,其中红卡30张,白卡20张,黄卡15张,蓝卡25张,那么最少要从箱子里摸出多少张卡,才能保证摸出的卡有红卡、白卡、黄卡和蓝卡。
15. 五年级有47名学生参加一次数学竞赛,成绩都是整数,满分是100分,已知3名学生的成绩在60分以下,其余学生的成绩均在75~95分之间,问:至少有几名学生的成绩相同?
生2:“六(2)班中至少有5人是同一个月出生的。”

六年级下数学广角-鸽巢问题知识点

第五单元:数学广角-鸽巢问题【知识点一】“鸽巢原理”(一)“鸽巢原理”(一):把m个物体任意分放进n个鸽巢中(m和n是非0自然数,且m>n),那么一定有一个鸽巢中至少放进了2个物体。

【知识点二】“鸽巢原理”(二)“鸽巢原理”(二):把多于kn个物体任意分进n个鸽巢中(k和n是非0自然数),那么一定有一个鸽巢中至少放进了(k+1)个物体。

【知识点三】应用“鸽巢原理”解决简单的实际问题应用“鸽巢原理”解题的一般步骤(1)分析题意,把实际问题转化成“鸽巢问题”,即弄清楚“鸽巢”(“鸽巢”是什么,有几个鸽巢)和分放的物体。

(2)设计“鸽巢”的具体形式。

(3)运用原理得出某个“鸽巢”中至少分放的物体个数,最终解决问题。

【误区警示】误区一:判断:因为11÷3=3....2,所以把11本书放进3个抽屉中,总有一个抽屉里至少放5本书。

(√)错解分析此题错在把这个抽屉至少放的书的本数用“3(商)+2(余数)”计算了,应该是“3(商)+1”。

错解改正×误区二:有红、绿、蓝三种颜色的小球各5个,至少取出几个能保证有2个同色的?5×3÷3=5(个)错解分析此题错在把小球的总数作为要分放物体的数量了,求得的结果也是与问题要求不符。

本题属于已知鸽巢数量(3中颜色即3个鸽巢)和分的结果(保证一个鸽巢里至少有2个同色的),求要分放物体的数量,各种颜色小球的数量并与参与运算。

错解改正3+1=4(个)【方法运用】运用逆推法解决鸽巢问题典型例题把25个玻璃球最多放进几个盒子里,才能保证至少有一个盒子里有5个玻璃球?思路分析由“鸽巢原理”(二)可知,用分放的物体总数除以鸽巢数量求出平均每个鸽巢里所放物体的数量和余数,其中至少有一个鸽巢中有(平均每个鸽巢里所放物体的数量+1)个物体。

此题可以把玻璃球的总数看成分放的物体总数,把盒子数看成鸽巢数,要使其中一个鸽巢里至少有5个玻璃球,则玻璃球的个数至少要比鸽巢数的(5-1)倍多1个。

人教版六年级下册课件 5数学广角-抽屉原理(鸽巢原理)

解析:数学小组共有20名同学,因此每个同学最多有19个朋友;又由于他们都有朋友 ,所以每个同学至少有1个朋友.因此,这20名同学中,每个同学的朋友数只有19种可 能:1,2,3,……,19.把这20名同学看作20个“苹果”,又把同学的朋友数目看作 19个“抽屉”,根据抽屉原理,至少有2名同学,他们的朋友人数一样多
3.明小学有367名年出生的学生,请问是否有生日相同的学生?
【解析】1年最多有366天,把366天看作366个“抽屉”,将367名学生看作个“苹果”.这样,把 367个苹果放 进366个抽屉里,至少有一个抽屉里不止放一个苹果.这就说明,至少有名同学的生日相同.
答案
探索新知
例2:如果把5个苹果放在2个抽屉里面,不管怎么放,总有一个抽 屉里至少放3个苹果,为什么?如果一共有7个苹果呢?9个呢?
做一做:42个苹果放在5个抽屉里,至少有多少个苹果放在一个抽 屉里?
42÷5 = 8(个) ...... 2(个) 8+1=9(个)
答:至少有9个苹果放在一个抽屉里
答案
知识总结
抽屉原理
将n件物品放入m个抽屉中,如果n÷m=a,那么一
定有一个抽屉里至少抽有屉a件原物理品。
将n件物品放入m个抽屉中,如果n÷m=a...b,那么 一定有一个抽屉里至少有a+1件物品。
答案
例题解析
例6:17名同学参加一次考试,考试题是3道判断题(答案只有对错之分 ),每名同学都在答题纸上依次写上了3道题目的答案。试说明至少有3 名同学的答案是一样的。
解析:3道题所有可能出现的答案有8种,8种答案可以看作8个抽屉,一共有17名同 学,看作17个苹果
17÷8= 2 ...... 1 2+1=3
答:至少有3名同学的答案是一样的。

人教版小学数学六年级下册第五单元《数学广角—鸽巢问题》大单元集体备课整体设计

单元整体教学设计
年 级
六年级
单元名称
人教版六年级下册第五单元
《数学广角——鸽巢问题》
一、单元教学设计说明
教材分析
教材编排的“抽屉原理”涉及三种基本的形式:第一种,只要物体的数量比抽屉多,那么一定有一个抽屉放进了至少两个物体。第二种,即是“把多于kn(k是正整数)个元素放入n个集合,总有一个集合里至少有(k+1)元素”。若k为1,就是第一种情况,可见第一种情形实际是第二种情形的特例。第三种情况是把无限多个物体(如红球、蓝球各4个)放进有限多个抽屉(两种颜色),那么一定有一个抽屉放进了无限多个物体(至少2个同色的球)。
在小学阶段,虽然不需要学生对涉及到抽屉原理的相关现象给出严格的形式化的证明,但是仍可在学生学习过程中用直观的方式进行就事论事的探讨。在学习中,可以鼓励学生借助学具实物操作或者画草图的方式进行说理。通过这样的方式,有助于提高学生的逻辑思维能力。
(二)有意识地培养学生模型思想
抽屉原理的变式很多,应用更加具有灵活性。但是能否将这个具体问题和抽屉问题联系起来,能否找到问题中的具体情境和抽屉问题的一般化模型之间的内在关系是影响能否解决该问题的范畴。建议在活动思考过程中,引导渗透如何寻找隐藏在背后的抽屉问题的一般模型。
(三)要恰当把握教学要求
抽屉原理的应用广泛并且灵活多变,因此,用抽屉原理来解决实际问题时,有时要找到实际问题与抽屉问题之间的联系并不容易。因此学习时,不必过于追求学生说理的严密性,只能结合具体问题把大致意思说出来就可以了,更允许学生借助实物操作等直观方式进行猜想验证。
三、单元整体教学思路
单元结构图及课时安排
课标要求
《义务教育数学课程标准(2022年版)》在“课程目标”的“第三学段”中提出:“尝试在真实的情境中发现和提出问题,探索运用基本的数量关系,以及几何直观、逻辑推理和其他学科的知识、方法分析和解决问题,形成模型意识和初步的应用意识、创新意识。”“对数学具有好奇心和求知欲,主动参与数学学习活动。在解决问题的过程中,体验成功的乐趣,相信自己能够学好数学,感受数学的价值,体验并欣赏数学美”。

人教版六年级数学下册第五单元《数学广角(鸽巢问题)》测试卷(含答案)

人教版六年级数学下册第五单元《数学广角——鸽巢问题》测试卷(全卷共4页,满分100分,50分钟完成)一、认真填一填。

(每空2分,共36分)1.把红、黄两种颜色的球各4个装在同一个盒子里。

至少摸出()个球,一定有2个是同色的;如果任意摸出5个,总有一种颜色的球至少有()个。

2.口袋中有5个白球和3个黑球,那么摸到()球的可能性大,一次至少摸出()个球,才能保证至少有1个黑球。

3.袋子中有1个红球、2个黄球和3个白球,至少摸出()个球,才能保证一定能摸到两种颜色的球。

4.六(1)班有45名同学,这个班中至少有()名同学是同一个月出生的。

从中至少任意选出()名同学才能保证一定有两名同一个月出生的同学。

5.盒子里有同样大小的5个红球,4个白球。

任意摸一个球,摸出()球的可能性大。

如果保证至少要摸出一个白球,至少要摸()个球。

6.把红黄蓝绿四种颜色的球各20个放到一个袋子里,至少取出()个球,才能保证取到两个颜色相同的球。

7.把红黄绿三种颜色的筷子各两双混在一起,如果闭上眼睛,最少拿出()根才能保证一定有一双同色筷子。

8.“六一”儿童节那天,幼儿园买来了许多的苹果、桃子、桔子和香蕉,每个小朋友可以任意选择两种不同水果,那么至少要有()个小朋友才能保证有两人选的水果是相同的;如果每位小朋友拿的两个水果可以是同一种,那么至少要有()个小朋友才能保证两人拿的水果是相同的。

9.5只小鸟飞进两个笼子,至少有()只小鸟飞进同一个笼子。

10.如果把6本书放到4个抽屉里,至少有()本书要放到同一个抽屉里。

11.有4只鸽子,要飞进3个鸽巢里,至少有()只鸽子飞进同一个鸽巢里;如果有9只鸽子飞进4个鸽巢,至少有()只鸽子飞进同一个鸽巢里。

12.有16名学生要分到6个班,至少有一个班分进()名学生。

二、仔细判一判。

(对的画“√”,错的画“×”,每题2分,共10分)()1.抽屉原理最早是由德国数学家狄利克雷提出并应用于解决数论中的问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5÷2=2……1
3、把7本书进2个抽屉中,不管怎么放, 总有一个抽屉至少放进多少本书?为什 么?
7÷2=3……1
3、把9本书进2个抽屉中,不管怎么放,总有 一个抽屉至少放进多少本书?为什么?
9÷2=4……1
抽屉原理
在有些问题中,“抽屉”和“苹果”不 是很明显, 需要我们制造出“抽屉”和 “苹果”. 制造出“抽屉”和“苹果” 是比较困难的,这一方面需要同学们去分 析题目中的 条件和问题,另一方面需要多做
每个笼子平均 分后的数量 再加上余数的 1个
1、把一些铅笔放进3个文具盒中,保证 其中一个文具盒至少有4枝铅笔,原来至 少有多少枝铅笔?
2、把我们班至少有10人在同一个月里生 日,请问我们班至少有多少人?
1、某班有37名小学生,他们都订阅了《小朋友》、 《儿童时代》、《少年报》中的一种或几种,那么其中 至少有名学生订的报刊种类完全相同.
初一有47名同学参加一次数学 竞赛,成绩都是整数,满分 100分。已知3名同学的成绩在 60分以下,其余同学的成绩在 75——95分之间,问:至少有 几名同学的成绩相同?
• 学校图书馆有语文,数学,英语 三类图书,每个学生从中借阅两 本。那么至少有几个同学借阅才 能保证其中一定有两个人所借阅 的图书属于同一种类?
看看有几种 放法?通过 观察,你发 现了什么?
如果一共有7本书会怎样呢? 如里,至少 有多少只兔子要关在同一个笼子里?
一盒围棋棋子,黑白子混放,我们任意摸出 3个棋子,至少有2个棋子是同颜色的,为什 么?
六年级四个班的学生去春游, 自由活动时,有6个同学在一起,可 以肯定, 。为什么?
5可以分成(5、0、0、 0)、(4、1、0、 0)、(3、2、0、0)、( 3、1、1、0) (2、2、1、0)、(2、1、1、1)
5÷4=1(个)……1(个)
1、如果把6个苹果放入5个抽屉中,至 少有几个放到同一个抽屉里? (2个) 2、如果把7个苹果放入6个抽屉中,至 少有几个放到同一个抽屉里呢? (2个)
2、从任意5双手套中任取6只,其中至少有2只恰为一 双手套 ,对吗? 3、从数1,2,。。。,10中任取6个数,其中至少有 2个数为奇偶性相同。
4、体育用品仓库里有许多足球、排球和篮球,某班 50名同学来仓库拿球,规定每个人至少拿1个球,至 多拿2个球,问至少有几名同学所拿的球种类是一致 的?
例:把一些铅笔放进3个文具盒中,保证其中 一个文具盒至少有4枝铅笔,原来至少有多少 枝铅笔? 至少:只有一个文具盒有 4 枝, 其余都是 枝 (4-1)
•试说明:在任意的38 人中,至少有四人的 属相相同。
•1)把23只笔放入3 个笔筒中,至少有 一个笔筒的笔不少 于几只?为什么?
•2)小王把11本书放 进3个书包里,至少 有几本书放入同一个 书包里?为什么?
•3)张叔叔参加飞镖 比赛,投了5镖,成 绩是41环,张叔叔至 少有一镖不低于9环, 为什么?
把4枝笔放 进3个盒子中。
不管怎么放, 总有一个盒 子里至少放 进2枝笔.
你能用更直接的方法 , 只摆一种情况,就能得到 这个结论吗?通过这样摆 放 你 有 什 么 发 现 ?
不管怎么放,总有 一个盒子里至少放 进2枝铅笔.
总有
至少
总有一个笔筒里至少放进2枝铅笔
把4枝铅笔放进3个笔筒里
如果每个笔筒里放1枝铅笔, 最多放( 3 )枝铅笔, 剩下的( 1 )枝铅笔 还要放进其中一个笔筒里, 所以,总有一个笔筒里至少放( 2 )枝铅笔。
如果每个鸽舍里飞进一只鸽子,最多飞进5只鸽子, 剩下的2只鸽子飞进其中的一个鸽舍里或分别飞进两 所以,至少有2只鸽子要飞进同一个鸽舍里。 个鸽舍里,
做一做:8只鸽子飞回3个鸽舍,至少有( 3 ) 只鸽子要飞进同一个鸽舍。为什么?
我们先让一个鸽舍里飞进2只鸽子,3个鸽舍最多可飞进6 只鸽子,还剩下2只鸽子,无论怎么飞,所以至少有3只 鸽子要飞进同一个笼子里。
1、如果把9个苹果放入4个抽 屉中,总有一个抽屉里至少 放了( 3 )个苹果。
9÷4=2(个)……1(个) 2、如果把14个苹果放入4个 抽屉中,总有一个抽屉里至 少放了( 4 )个苹果。
14÷4=3(个)……2(个)
你又有什么 新发现?
把m个物体放入n个抽屉里 (m>n),如果m÷ n=k……b,那 么总有一个抽屉里至少放入 (k+1)个的物体。
3、如果把100个苹果放入99个抽屉中, 至少有几个放到同一个抽屉里呢? (2个)
1、如果把6个苹果放入4个抽屉中, 至少有几个苹果被放到同一个抽 屉里呢? (2个)
2、如果把8个苹果放入5个抽屉中, 至少有几个苹果被放到同一个抽 屉里呢? (2个)
你发现了什么规律?
只要物体数量是抽屉数 量的1倍多,总有一个抽屉 里 至少放进2个的物体。
(2) 五年一班共有学生53人,他们的
年龄都相同,请你证明至少有两个
小朋友出生在一周。
1年有52周 52个
53个生日
53个
温馨提示
在有些问题中,“抽屉”和“物体”不是很明
显,
需要我们制造出“抽屉”和“物体”。
制造出“抽屉”和“物体”是比较困难的,这一方 面需要同学们去分析题目中的条件和问题,另一方 面需要多做一些题来积累经验。
1、六年级共有140人,至少有 ( 5 )人在同一天生日。
2、有25个玩具,放在4个箱 子里,有一个箱子里至少有 ( 7 )个玩具。
1、一副扑克牌,拿走两个王。 至少抽出多少张,才能保证至少 有两张牌花色相同? 2、一副扑克牌,拿走两个王。 至少抽出多少张,才能保证至少 有两张牌大小相同?
有黑色、白色、黄色的筷子各8根, 混杂在一起,黑暗中想从这些筷子中取 出颜色相同的一双筷子,问至少要取多 少根才能保证达到要求?为什么? 如果要取出颜色相同的两双筷子,问至 少要取多少根才能保证达到要求?
•4)25个玻璃球最多放进 几个盒子,才能保证至 少有一个盒子有5个玻璃 球? •5)把248本书分给六(2) 学生,如果其中至少有1 人分到7本书,那么,这 个班最多有多少人?
课堂小结
1用抽屉原理解题的步骤: (1)分析题意:找好“抽屉”与“苹果”。 (2)设计抽屉原理。(有时需要构造抽屉) (3)运用原理,得出“抽屉”中分 放“苹果”的个数。 2体会由特殊到一般解决问题的数学思想。
(7) 一副扑克牌有四种花色,从中随意抽 牌,问:最少要抽出多少张牌,才能保证有 两张牌是同一花色的?
4种花 抽 牌
4个抽屉
(8) 用三种颜色给正方体的各面涂色(每面只
涂一种颜色),请你证明至少有两个面涂 色相同。
三种色 6个面
(9) 六年级四个班去春游,自由活动时,有 6个同学聚在一起,可以肯定,这6个同 学至少有2个人是同一个班的。
最先发现这些规律的人是谁呢? 他就是德国数学家“狄里克雷”, 后来人们为了纪念他从这么平凡 的事情中发现的规律,就把这个 规律用他的名字命名,叫“狄里 克雷原理”,又把它叫 做“鸽巢原理”,还把它 叫做 “抽屉原理”。
7只鸽子飞回5个鸽舍,至少有2只鸽 子要飞进同一个鸽舍里,为什么?
7只鸽子飞回5个鸽舍,至少有( 2 ) 只鸽子要飞进同一个鸽舍里。
把5枝笔放 进4个盒子中。
把5枝铅笔放在4个文具盒里,还是 不管怎么放,总有一个文具盒里至少放进 了2枝铅笔吗?
为什么会有这样 的结果?
这样分实际上是怎样在分? 怎样列式?
平均分
讨论:
把6枝铅笔放在4个文具 盒里,会有什么结果呢?
把5个苹果放进4个抽屉里,不管怎么 放总有一个抽屉里至少有( )苹果。
2、麻湖小学六年级学生有31人是9月份出生
的,至少有多少人出生在同一天? 3、六年级共有男生55人,至少有2名男生在
同一个星期过生日,为什么?
1、有8只鸽子飞入7个笼子里,总 有一个笼子里至少有多少只鸽子? 2、有一些鸽子飞入7个笼子里,为 了保证有其中一个笼子里至少有4 鸽子,那么这些鸽子至少有多少只? 7×(2-1)+1=8(只)
•把m个物体放进n个空抽 屉中(m>n且 m,n为自 然数),则一定有一个 抽屉中至少放了2个物 体
• 总有一个抽屉里至少 有几本”只要用“商 +1”就可以得到。
想一想 •如果把5个苹果放进3个 抽屉里,不管怎么放, 总有一个抽屉里至少有 几个苹果?
• 1)如果把8个苹果放进3 个抽屉里,不管怎么放, 总有一个抽屉里至少有几 个苹果? • 2)如果把158个苹果放 进3个抽屉里,不管怎么 放,总有一个抽屉里至少 有几个苹果?
任意13人中,总有至少几个人的属 相相同,想一想,为什么?
六(7)班有学生55人,我们可以肯定,在 这55人中,至少有 人的生日在 同一个月?想一想,为什么?
一副扑克牌(除去大小王)52张中有四种花色,从中随意抽5张 牌,无论怎么抽,为什么总有两张牌是同一花色的?
抽屉原理(二)
• 把a个物体放进n个抽 屉,若a÷n=b……c (c≠0 ,c<n ) 则一定有一个抽屉至少 放了______ 个物体。
比一比:两个抽屉原理有 何区别?
• “原理1”和“原理2”的区别是: 原理1苹果多,抽屉少,数量 比较接近;原理2虽然也是苹 果多,抽屉少,但是数量相差 较大,苹果个数比抽屉个数的 几倍还多几。
把5枝笔放 进3个盒子中。
• 把6枝笔放进4个盒子呢? 把5枝笔放进2个盒子呢?
“ 抽屉原理”又称“鸽笼原理”,最先 是由19世纪的德国数学家狄利克雷提出来的, 所以又称“狄里克雷原理”,这一原理在解 决实际问题中有着广泛的应用。“抽屉原理” 的应用是千变万化的,用它可以解决许多有 趣的问题,并且常常能得到一些令人惊异的 结果。下面我们应用这一原理解决问题。
一些题来积累经验.
1、7只鸽子飞回6个鸽舍,至少有2只鸽 子要飞进同一个鸽舍里?为什么? 2、19朵花插入4个花瓶里,至少有一个 花瓶里要插入5朵或5朵以上的鲜花。为 什么? 3、小林参加飞镖比赛,投出8镖,成绩 是67环。小林至少有一镖不低于9环, 为什么?
相关文档
最新文档