单循环链表的结构体

合集下载

C语言中都有哪些常见的数据结构你都知道几个?

C语言中都有哪些常见的数据结构你都知道几个?

C语⾔中都有哪些常见的数据结构你都知道⼏个?上次在⾯试时被⾯试官问到学了哪些数据结构,那时简单答了栈、队列/(ㄒoㄒ)/~~其它就都想不起来了,今天有空整理了⼀下⼏种常见的数据结构,原来我们学过的数据结构有这么多~⾸先,先来回顾下C语⾔中常见的基本数据类型吧O(∩_∩)OC语⾔的基本数据类型有:整型int,浮点型float,字符型char等等添加描述那么,究竟什么是数据结构呢?数据结构是计算机存储、组织数据的⽅式。

数据结构是指相互之间存在⼀种或多种特定关系的数据元素的集合⼤部分数据结构的实现都需要借助C语⾔中的指针和结构体类型下⾯,进⼊今天的重点啦O(∩_∩)O⼏种常见的数据结构(1)线性数据结构:元素之间⼀般存在元素之间存在⼀对⼀关系,是最常⽤的⼀类数据结构,典型的有:数组、栈、队列和线性表(2)树形结构:结点间具有层次关系,每⼀层的⼀个结点能且只能和上⼀层的⼀个结点相关,但同时可以和下⼀层的多个结点相关,称为“⼀对多”关系,常见类型有:树、堆(3)图形结构:在图形结构中,允许多个结点之间相关,称为“多对多”关系下⾯分别对这⼏种数据结构做⼀个简单介绍:1、线性数据结构:典型的有:数组、栈、队列和线性表(1)数组和链表a、数组:存放着⼀组相同类型的数据,需要预先指定数组的长度,有⼀维数组、⼆维数组、多维数组等b、链表:链表是C语⾔中⼀种应⽤⼴泛的结构,它采⽤动态分配内存的形式实现,⽤⼀组任意的存储单元存放数据元素链表的,⼀般为每个元素增设指针域,⽤来指向后继元素c、数组和链表的区别:从逻辑结构来看:数组必须事先定义固定的长度,不能适应数据动态地增减的情况;链表动态地进⾏存储分配,可以适应数据动态地增减的情况,且可以⽅便地插⼊、删除数据项(数组中插⼊、删除数据项时,需要移动其它数据项)从内存存储来看:(静态)数组从栈中分配空间(⽤NEW创建的在堆中), 对于程序员⽅便快速,但是⾃由度⼩;链表从堆中分配空间, ⾃由度⼤但是申请管理⽐较⿇烦从访问⽅式来看:数组在内存中是连续存储的,因此,可以利⽤下标索引进⾏随机访问;链表是链式存储结构,在访问元素的时候只能通过线性的⽅式由前到后顺序访问,所以访问效率⽐数组要低(2)栈、队列和线性表:可采⽤顺序存储和链式存储的⽅法进⾏存储顺序存储:借助数据元素在存储空间中的相对位置来表⽰元素之间的逻辑关系链式存储:借助表⽰数据元素存储地址的指针表⽰元素之间的逻辑关系a、栈:只允许在序列末端进⾏操作,栈的操作只能在栈顶进⾏,⼀般栈⼜被称为后进先出或先进后出的线性结构顺序栈:采⽤顺序存储结构的栈称为顺序栈,即需要⽤⼀⽚地址连续的空间来存储栈的元素,顺序栈的类型定义如下:添加描述链栈:采⽤链式存储结构的栈称为链栈:添加描述b、队列:只允许在序列两端进⾏操作,⼀般队列也被称为先进先出的线性结构循环队列:采⽤顺序存储结构的队列,需要按队列可能的最⼤长度分配存储空空,其类型定义如下:添加描述 链队列:采⽤链式存储结构的队列称为链队列,⼀般需要设置头尾指针只是链表的头尾结点:添加描述c、线性表:允许在序列任意位置进⾏操作,线性表的操作位置不受限制,线性表的操作⼗分灵活,常⽤操作包括在任意位置插⼊和删除,以及查询和修改任意位置的元素顺序表:采⽤顺序存储结构表⽰的线性表称为顺序表,⽤⼀组地址连续的存储单元⼀次存放线性表的数据元素,即以存储位置相邻表⽰位序相继的两个元素之间的前驱和后继关系,为了避免移动元素,⼀般在顺序表的接⼝定义中只考虑在表尾插⼊和删除元素,如此实现的顺序表也可称为栈表:添加描述线性表:⼀般包括单链表、双向链表、循环链表和双向循环链表单链表:添加描述 双向链表:添加描述线性表两种存储结构的⽐较:顺序表: 优点:在顺序表中,逻辑中相邻的两个元素在物理位置上也相邻,查找⽐较⽅便,存取任⼀元素的时间复杂度都为O(1) 缺点:不适合在任意位置插⼊、删除元素,因为需要移动元素,平均时间复杂度为O(n)链表: 优点:在链接的任意位置插⼊或删除元素只需修改相应指针,不需要移动元素;按需动态分配,不需要按最⼤需求预先分配⼀块连续空空 缺点:查找不⽅便,查找某⼀元素需要从头指针出发沿指针域查找,因此平均时间复杂度为O(n)2、树形结构:结点间具有层次关系,每⼀层的⼀个结点能且只能和上⼀层的⼀个结点相关,但同时可以和下⼀层的多个结点相关,称为“⼀对多”关系,常见类型有:树、堆(1)⼆叉树:⼆叉树是⼀种递归数据结构,是含有n(n>=0)个结点的有限集合,⼆叉树具有以下特点:⼆叉树可以是空树;⼆叉树的每个结点都恰好有两棵⼦树,其中⼀个或两个可能为空;⼆叉树中每个结点的左、右⼦树的位置不能颠倒,若改变两者的位置,就成为另⼀棵⼆叉树(2)完全⼆叉树:从根起,⾃上⽽下,⾃左⽽右,给满⼆叉树的每个结点从1到n连续编号,如果每个结点都与深度为k的满⼆叉树中编号从1⾄n的结点⼀⼀对应,则称为完全⼆叉树a、采⽤顺序存储结构:⽤⼀维数组存储完全⼆叉树,结点的编号对于与结点的下标(如根为1,则根的左孩⼦为2*i=2*1=2,右孩⼦为2*i+1=2*1+1=2)添加描述b、采⽤链式存储结构:⼆叉链表:添加描述三叉链表:它的结点⽐⼆叉链表多⼀个指针域parent,⽤于执⾏结点的双亲,便于查找双亲结点添加描述两种存储结构⽐较:对于完全⼆叉树,采⽤顺序存储结构既能节省空间,⼜可利⽤数组元素的下标值确定结点在⼆叉树中的位置及结点之间的关系,但采⽤顺序存储结构存储⼀般⼆叉树容易造成空间浪费,链式结构可以克服这个缺点(3)⼆叉查找树:⼆叉查找树⼜称⼆叉排序树,或者是⼀课空⼆叉树,或者是具有如下特征的⼆叉树:a、若它的左⼦树不空,则左⼦树上所有结点的值均⼩于根结点的值b、若它的右⼦树不空,则右⼦树上所有结点的值均⼤于根结点的值c、它的左、右⼦树也分别是⼆叉查找树(4)平衡⼆叉树:平衡⼆叉查找树简称平衡⼆叉树,平衡⼆叉树或者是棵空树,或者是具有下列性质的⼆叉查找树:它的左⼦树和右⼦树都是平衡⼆叉树,且左⼦树和右⼦树的⾼度之差的绝对值不超过1添加描述平衡⼆叉树的失衡及调整主要可归纳为下列四种情况:LL型、RR型、LR型、RL型(5)树:树是含有n(n>=0)个结点的有限集合,在任意⼀棵⾮空树种: a、有且仅有⼀个特定的称为根的结点b、当n>1时,其余结点可分为m(m>0)个互不相交的有限集T1,T2,...,Tm,其中每⼀个集合本⾝⼜是⼀棵树,并且T1,T2,...,Tm称为根的⼦树(6)堆:堆是具有以下特性的完全⼆叉树,其所有⾮叶⼦结点均不⼤于(或不⼩于)其左右孩⼦结点。

单链表数据结点的定义

单链表数据结点的定义

单链表数据结点的定义篇一单链表啊那可是个很有趣的数据结构呢。

单链表就是由一系列的结点组成的。

这些结点就像一个个小单元,它们串在一起就形成了单链表。

单链表的结构特点很明显。

每个结点都包含两个部分,一个是数据域,另一个是指针域。

先来说说数据域吧。

数据域可神奇了,它能存储各种各样的数据类型。

比如说整数,就像我们要记录一些数字相关的信息,像学生的成绩、商品的价格等,都可以把这些整数存到数据域里。

还有字符也可以,要是想存储一个人的名字里的某个字或者一些特殊的字符标识之类的,字符类型就很合适。

甚至结构体也能存呢。

比如说我们有一个关于学生信息的结构体,里面包含了学生的姓名、年龄、性别等信息,这个结构体就可以整体存到数据域里。

再来说说指针域。

指针域的作用可大了。

它就像是一个小箭头,专门用来指向下一个结点。

通过这个指针域,各个结点就能够按顺序连接起来,形成一条链。

要是没有这个指针域,那这些结点就都是散的,根本没法形成单链表这个结构。

那下面咱们就来看一个用C语言定义单链表数据结点的简单代码示例吧。

```c#include <stdio.h>#include <stdlib.h>// 定义单链表数据结点结构体typedef struct ListNode {int data; // 这里假设数据域存储整数,当然也可以改成其他类型struct ListNode *next;} ListNode;int main() {// 创建一个单链表结点ListNode *node = (ListNode *)malloc(sizeof(ListNode));if (node == NULL) {perror("malloc");return -1;}node->data = 10; // 给数据域赋值node->next = NULL; // 初始化指针域return 0;```在这个代码里,我们首先定义了一个叫ListNode的结构体,这个结构体就是我们的单链表数据结点。

CC++数据结构之链表(一步一步拆解单链表)

CC++数据结构之链表(一步一步拆解单链表)

CC++数据结构之链表(⼀步⼀步拆解单链表)困扰了很久的数据结构重新拾起来,参考博客⼤⽜的⽂章,思考出⼀点⾃⼰的理解,希望给在学习数据结构这条路上的兄弟姐妹有所帮助,也为⾃⼰家能够理清思路。

废话不多说,直接上代码。

所需头⽂件如下并且屏蔽安全警告:#define _CRT_SECURE_NO_WARNINGS#include<stdio.h>#include<stdlib.h>#include<malloc.h> ⾸先声明链表的数据类型,习惯⽅法如下:typedef struct ListNode {int data; // 数据域,存放数据struct ListNode* Next; // 指向下⼀个链表节点}Node, *PNode;这⾥有两点需要注意⼀下:1、如果是cpp⽂件,结构体中的struct ListNode * Next可写为ListNode* Next;2、这⾥使⽤了宏typedef关键字,则Node和PNode为新声明的数据类型名称,类似于已有的int,char,double等。

Node是结构体类型,PNode是结构体指针类型,如需了解结构体移步另外⼀篇⽂章。

接下来看链表创建函数定义PNode CreateList(void) {int len; // ⽤于定义链表长度int val; // ⽤于存放节点数值PNode PHead = (PNode)malloc(sizeof(Node)); // 创建分配⼀个头节点内存空间//头节点相当于链表的哨兵,不存放数据,指向⾸节点(第⼀个节点)if (PHead == NULL) // 判断是否分配成功{printf("空间分配失败 \n");exit(-1);}//指向链表尾部的指针,个⼈认为PTail是在栈空间上的,是⼀个辅助指针,⽤于连接新的节点PNode PTail = PHead; // 链表的末尾节点,初始指向头节点PTail->Next = NULL; // 最后⼀个节点指针置为空printf("请输⼊节点个数:");scanf("%d", &len); // 输⼊节点个数for (int i = 0; i < len; i++) {PNode pNew = (PNode)malloc(sizeof(Node)); // 分配⼀个新节点if (pNew == NULL) {printf("分配新节点失败\n");exit(-1);}printf("请输⼊第 %d 个节点的数据:", i + 1);scanf_s("%d", &val); // 输⼊链表节点的数据pNew->Element = val; // 把数据赋值给节点数据域PTail->Next = pNew; // 末尾节点指针指向下⼀个新节点,连接新的节点pNew->Next = NULL; // 新节点指针指向为空PTail = pNew; // 将新节点复制给末尾节点,将PTail指向尾节点}printf("创建链表成功\n");return PHead; // 返回头节点}最后看主函数int main() {PNode List = CreateList(); //创建⼀个指针,使其指向新创建的链表的头指针return0;}。

数据结构课程设计-单链表

数据结构课程设计-单链表

目录1 选题背景 (1)2 方案与论证 (1)2。

1 链表的概念和作用 (1)2。

3 算法的设计思想 (2)2。

4 相关图例 (3)2.4.1 单链表的结点结构 (3)2.4。

2 算法流程图 (3)3 实验结果 (4)3.1 链表的建立 (4)3.2 单链表的插入 (4)3.3 单链表的输出 (5)3.4 查找元素 (5)3。

5 单链表的删除 (5)3。

6 显示链表中的元素个数(计数) (5)4 结果分析 (6)4。

1 单链表的结构 (6)4。

2 单链表的操作特点 (6)4。

2。

1 顺链操作技术 (6)4.2。

2 指针保留技术 (6)4。

3 链表处理中的相关技术 (6)5 设计体会及今后的改进意见 (6)参考文献 (8)附录代码: (8)1 选题背景陈火旺院士把计算机60多年的发展成就概括为五个“一”:开辟一个新时代-—--信息时代,形成一个新产业-—-—信息产业,产生一个新科学—---计算机科学与技术,开创一种新的科研方法-—--计算方法,开辟一种新文化---—计算机文化,这一概括深刻影响了计算机对社会发展所产生的广泛而深远的影响。

数据结构和算法是计算机求解问题过程的两大基石。

著名的计算机科学家P.Wegner指出,“在工业革命中其核心作用的是能量,而在计算机革命中其核心作用的是信息”.计算机科学就是“一种关于信息结构转换的科学”.信息结构(数据结构)是计算机科学研究的基本课题,数据结构又是算法研究的基础。

2 方案与论证2。

1 链表的概念和作用链表是一种链式存储结构,链表属于线性表,采用链式存储结构,也是常用的动态存储方法。

链表中的数据是以结点来表示的,每个结点的构成:元素(数据元素的映象) + 指针(指示后继元素存储位置),元素就是存储数据的存储单元,指针就是连接每个结点的地址数据。

以“结点的序列”表示线性表称作线性链表(单链表)单链表是链式存取的结构,为找第 i 个数据元素,必须先找到第 i-1 个数据元素。

c语言中链表的定义

c语言中链表的定义

c语言中链表的定义C语言中链表的定义链表是一种常用的数据结构,它是由一系列节点组成的,每个节点包含一个数据元素和一个指向下一个节点的指针。

链表可以用来存储任意类型的数据,而且它的大小可以动态地增加或减少,非常灵活。

在C语言中,链表的定义通常包括两个部分:节点结构体和链表结构体。

节点结构体定义如下:```typedef struct node {int data; // 数据元素struct node *next; // 指向下一个节点的指针} Node;```这里定义了一个名为Node的结构体,它包含两个成员变量:data和next。

其中,data用来存储节点的数据元素,next用来指向下一个节点的指针。

注意,这里的next是一个指向Node类型的指针,这样才能实现链表的连接。

链表结构体定义如下:```typedef struct list {Node *head; // 指向链表头节点的指针Node *tail; // 指向链表尾节点的指针int size; // 链表的大小} List;```这里定义了一个名为List的结构体,它包含三个成员变量:head、tail和size。

其中,head和tail分别指向链表的头节点和尾节点,size表示链表的大小。

通过这两个结构体的定义,我们就可以创建一个链表了。

下面是一个简单的例子:```int main() {List list = {NULL, NULL, 0}; // 初始化链表Node *node1 = (Node*)malloc(sizeof(Node)); // 创建第一个节点node1->data = 1; // 设置节点的数据元素node1->next = NULL; // 设置节点的指针list.head = node1; // 将节点1设置为链表的头节点list.tail = node1; // 将节点1设置为链表的尾节点list.size++; // 链表大小加1// 创建更多的节点...return 0;}```在这个例子中,我们首先初始化了一个空链表,然后创建了第一个节点,并将它设置为链表的头节点和尾节点。

链表及其应用

链表及其应用
a1
头指针是指向链表中第一个结点(或为头结点或为首
元素结点)的指针。 单链表可由一个头指针唯一确定。
头结点是在链表的首元素结点之前附设的一个结点;
数据域内只放空表标志和表长等信息;
首元素结点是指链表中存储线性表第一个数据元素
a1的结点。
33
第3章 链表及其应用
讨论1. 在链表中设置头结点有什么好处?
我们可以用结构体来定义静态链表的节点数据类型: typedef struct{ Datatype data; int next; }node;
一个静态链表可以描述为: #define maxsize 100 node nodepool[maxsize];//存放链表的数组 int head; //放头指针的head 在静态链表中进行插入与删除操作不需要移动元素,
4
第3章 链表及其应用
3.1 链表的基本概念
3.1.1 什么是链表 ☞ 3.1.2 链表的逻辑结构
3.1.3 链表的存储结构 3.1.4 静态链表和动态链表 3.1.5 链表的基本运算
5
第3章 链表及其应用
♣ 链表的逻辑结构
☞ 同一链表中所有数据元素的数据类型必须相同。 ☞ 链表中相邻的元素ai-1、ai间存在序偶关系,即 对于非空的链表,ai-1是ai的唯一直接前驱,ai+1是 ai的唯一直接后继;而a1无前驱,an无后继 ☞ 链表属于线性逻辑结构。
结点3的地址:p->next;
28
第3章 链表及其应用
H
a1
p
p
a2
a3
a4
a5 ∧
再令p = p->next, 数据元素a3值:p ->data
结点4的地址:p->next;

[转载整理]C语言链表实例

[转载整理]C语言链表实例

[转载整理]C语⾔链表实例 C语⾔链表有单链表、双向链表、循环链表。

单链表由数据域和指针域组成,数据域存放数据,指针域存放该数据类型的指针便于找到下⼀个节点。

双链表则含有头指针域、数据域和尾指针域,域单链表不同,双链表可以从后⼀个节点找到前⼀个节点,⼆单链表则不⾏。

循环链表就是在单链表的基础上,将头结点的地址指针存放在最后⼀个节点的指针域⾥以,此形成循环。

此外还有双向循环链表,它同时具有双向链表和循环链表的功能。

单链表如:链表节点的数据结构定义struct node{int num;struct node *p;} ;在此链表节点的定义中,除⼀个整型的成员外,成员p是指向与节点类型完全相同的指针。

※在链表节点的数据结构中,⾮常特殊的⼀点就是结构体内的指针域的数据类型使⽤了未定义成功的数据类型。

这是在C中唯⼀规定可以先使⽤后定义的数据结构。

链表实例代码:1// 原⽂地址 /wireless-dragon/p/5170565.html2 #include<stdio.h>3 #include<stdlib.h>4 #include<string.h>56 typedef int elemType;//定义存⼊的数据的类型可以是int char78 typedef struct NODE{ //定义链表的结构类型9 elemType element;10struct NODE *next;11 }Node;1213/************************************************************************/14/* 以下是关于线性表链接存储(单链表)操作的19种算法 */1516/* 1.初始化线性表,即置单链表的表头指针为空 */17/* 2.创建线性表,此函数输⼊负数终⽌读取数据*/18/* 3.打印链表,链表的遍历*/19/* 4.清除线性表L中的所有元素,即释放单链表L中所有的结点,使之成为⼀个空表 */20/* 5.返回单链表的长度 */21/* 6.检查单链表是否为空,若为空则返回1,否则返回0 */22/* 7.返回单链表中第pos个结点中的元素,若pos超出范围,则停⽌程序运⾏ */23/* 8.从单链表中查找具有给定值x的第⼀个元素,若查找成功则返回该结点data域的存储地址,否则返回NULL */24/* 9.把单链表中第pos个结点的值修改为x的值,若修改成功返回1,否则返回0 */25/* 10.向单链表的表头插⼊⼀个元素 */26/* 11.向单链表的末尾添加⼀个元素 */27/* 12.向单链表中第pos个结点位置插⼊元素为x的结点,若插⼊成功返回1,否则返回0 */28/* 13.向有序单链表中插⼊元素x结点,使得插⼊后仍然有序 */29/* 14.从单链表中删除表头结点,并把该结点的值返回,若删除失败则停⽌程序运⾏ */30/* 15.从单链表中删除表尾结点并返回它的值,若删除失败则停⽌程序运⾏ */31/* 16.从单链表中删除第pos个结点并返回它的值,若删除失败则停⽌程序运⾏ */32/* 17.从单链表中删除值为x的第⼀个结点,若删除成功则返回1,否则返回0 */33/* 18.交换2个元素的位置 */34/* 19.将线性表进⾏冒排序 */35363738/*注意检查分配到的动态内存是否为空*/3940414243/* 1.初始化线性表,即置单链表的表头指针为空 */44void initList(Node **pNode)45 {46 *pNode=NULL;47 printf("initList函数执⾏,初始化成功\n");48 }4950/* 2.创建线性表,此函数输⼊负数终⽌读取数据*/51 Node *creatList(Node *pHead)52 {53 Node *p1,*p2;54 p1=p2=(Node *)malloc(sizeof(Node));55if(p1 == NULL || p2 ==NULL)57 printf("内存分配失败\n");58 exit(0);59 }60 memset(p1,0,sizeof(Node));6162 scanf("%d",&p1->element);63 p1->next=NULL;6465while(p1->element >0) //输⼊的值⼤于0则继续,否则停⽌66 {67if(pHead == NULL)//空表,接⼊表头68 {69 pHead=p1;70 }71else72 {73 p2->next=p1;74 }7576 p2=p1;77 p1=(Node *)malloc(sizeof(Node));7879if(p1==NULL||p2==NULL)80 {81 printf("内存分配失败\n");82 exit(0);83 }84 memset(p1,0,sizeof(Node));85 scanf("%d",&p1->element);86 p1->next=NULL;87 }88 printf("CreatList函数执⾏,链表创建成功\n");89return pHead;90 }9192/* 3.打印链表,链表的遍历*/93void printList(Node *pHead)94 {95if(NULL==pHead)96 {97 printf("PrintList函数执⾏,链表为空\n");98 }99else100 {101while(NULL!=pHead)102 {103 printf("%d\n",pHead->element);104 pHead=pHead->next;105 }106 }107108 }109110111/* 4.清除线性表L中的所有元素,即释放单链表L中所有的结点,使之成为⼀个空表 */ 112void clearList(Node *pHead)113 {114 Node *pNext;115116if(pHead==NULL)117 {118 printf("clearList函数执⾏,链表为空\n");119return;120 }121while(pHead->next!=NULL)122 {123 pNext=pHead->next;124free(pHead);125 pHead=pNext;126 }127 printf("clearList函数执⾏,链表已经清除!\n");128129 }130131/* 5.返回链表的长度*/132int sizeList(Node *pHead)133 {134int size=0;135136while(pHead!=NULL)137 {138 size++;139 pHead=pHead->next;141 printf("sizelist函数执⾏,链表长度为%d\n",size);142return size;143 }144145/* 6.检查单链表是否为空,若为空则返回1,否则返回0 */146int isEmptyList(Node *pHead)147 {148if(pHead==NULL)149 {150 printf("isEmptylist函数执⾏,链表为空!\n");151return1;152 }153154else155 printf("isEmptylist函数执⾏,链表⾮空!\n");156return0;157158 }159160/* 7.返回链表中第post节点的数据,若post超出范围,则停⽌程序运⾏*/161int getElement(Node *pHead,int pos)162 {163int i=0;164if(pos<1)165 {166 printf("getElement函数执⾏,pos值⾮法!");167return0;168 }169if(pHead==NULL)170 {171 printf("getElement函数执⾏,链表为空!");172 }173174while (pHead!=NULL)175 {176 ++i;177if(i==pos)178 {179break;180 }181 pHead=pHead->next;182 }183if(i<pos)184 {185 printf("getElement函数执⾏,pos值超出链表长度\n");186return0;187 }188 printf("getElement函数执⾏,位置%d中的元素为%d\n",pos,pHead->element);189190return1;191 }192193//8.从单⼀链表中查找具有给定值x的第⼀个元素,若查找成功后,返回该节点data域的存储位置,否则返回NULL 194 elemType *getElemAddr(Node *pHead,elemType x)195 {196if(NULL==pHead)197 {198 printf("getEleAddr函数执⾏,链表为空");199return NULL;200 }201if(x<0)202 {203 printf("getEleAddr函数执⾏,给定值x不合法\n");204return NULL;205 }206while((pHead->element!=x)&&(NULL!=pHead->next))//判断链表是否为空,并且是否存在所查找的元素207 {208 pHead=pHead->next;209 }210if(pHead->element!=x)211 {212 printf("getElemAddr函数执⾏,在链表中没有找到x值\n");213return NULL;214 }215else216 {217 printf("getElemAddr函数执⾏,元素%d的地址为0x%x\n",x,&(pHead->element));218 }219return &(pHead->element);220221 }222223224/*9.修改链表中第pos个点X的值,如果修改成功,则返回1,否则返回0*/225int modifyElem(Node *pNode,int pos,elemType x)226 {227 Node *pHead;228 pHead=pNode;229int i=0;230if(NULL==pHead)231 {232 printf("modifyElem函数执⾏,链表为空\n");233return0;234 }235236if(pos<1)237 {238 printf("modifyElem函数执⾏,pos值⾮法\n");239return0;240 }241242while(pHead!= NULL)243 {244 ++i;245if(i==pos)246 {247break;248 }249 pHead=pHead->next;250 }251252if(i<pos)253 {254 printf("modifyElem函数执⾏,pos值超出链表长度\n");255return0;256 }257 pNode=pHead;258 pNode->element=x;259 printf("modifyElem函数执⾏,修改第%d点的元素为%d\n",pos,x);260261return1;262263 }264265/* 10.向单链表的表头插⼊⼀个元素 */266int insertHeadList(Node **pNode,elemType insertElem)267 {268 Node *pInsert;269 pInsert=(Node *)malloc(sizeof(Node));270if(pInsert==NULL) exit(1);271 memset(pInsert,0,sizeof(Node));272 pInsert->element=insertElem;273 pInsert->next=*pNode;274 *pNode=pInsert;275 printf("insertHeadList函数执⾏,向表头插⼊元素%d成功\n",insertElem);276return1;277 }278279/* 11.向单链表的末尾添加⼀个元素 */280int insertLastList(Node *pNode,elemType insertElem)281 {282 Node *pInsert;283 Node *pHead;284 Node *pTmp;285286 pHead=pNode;287 pTmp=pHead;288 pInsert=(Node *)malloc(sizeof(Node));289if(pInsert==NULL) exit(1);290 memset(pInsert,0,sizeof(Node));291 pInsert->element=insertElem;292 pInsert->next=NULL;293while(pHead->next!=NULL)294 {295 pHead=pHead->next;296 }297 pHead->next=pInsert;298 printf("insertLastList函数执⾏,向表尾插⼊元素%d成功!\n",insertElem);299return1;300 }301302/* 12.向单链表中第pos个结点位置插⼊元素为x的结点,若插⼊成功返回1,否则返回0*/ 303int isAddPos(Node *pNode,int pos,elemType x)304 {305 Node *pHead;306 pHead=pNode;307 Node *pTmp;308int i=0;309310if(NULL==pHead)311 {312 printf("AddPos函数执⾏,链表为空\n");313return0;314 }315316if(pos<1)317 {318 printf("AddPos函数执⾏,pos值⾮法\n");319return0;320 }321322while(pHead!=NULL)323 {324 ++i;325if(i==pos)326break;327 pHead=pHead->next;328 }329330if(i<pos)331 {332 printf("AddPos函数执⾏,pos值超出链表长度\n");333return0;334 }335336 pTmp=(Node *)malloc(sizeof(Node));337if(pTmp==NULL) exit(1);338 memset(pTmp,0,sizeof(Node));339 pTmp->next=pHead->next;340 pHead->next=pTmp;341 pTmp->element=x;342343 printf("AddPos函数执⾏成功,向节点%d后插⼊数值%d\n",pos,x); 344return1;345 }346347/* 13.向有序单链表中插⼊元素x结点,使得插⼊后仍然有序 */348int OrrderList(Node *pNode,elemType x)349 {350//注意如果此数值要排到⾏尾要修改本代码351 Node *pHead;352 pHead=pNode;353 Node *pTmp;354355if(NULL==pHead)356 {357 printf("OrrderList函数执⾏,链表为空\n");358return0;359 }360361if(x<1)362 {363 printf("OrrderList函数执⾏,x值⾮法\n");364return0;365 }366367while(pHead!=NULL)368 {369if((pHead->element)>=x)370break;371 pHead=pHead->next;372 }373374375if(pHead==NULL)376 {377 printf("OrrderList函数查找完毕,该函数中没有该值\n");378return0;379 }380381382 pTmp=(Node *)malloc(sizeof(Node));383if(pTmp==NULL) exit(1);384 memset(pTmp,0,sizeof(Node));385 pTmp->next=pHead->next;386 pHead->next=pTmp;387 pTmp->element=x;388389 printf("OrrderList函数成功插⼊数值%d\n",x);390return1;391 }392393/*14.从单链表中删除表头结点,并把该结点的值返回,若删除失败则停⽌程序运⾏*/ 394int DelHeadList(Node **pList)395 {396 Node *pHead;397 pHead=*pList;398if(pHead!=NULL)399 printf("DelHeadList函数执⾏,函数⾸元素为%d删除成功\n",pHead->element); 400else401 {402 printf("DelHeadList函数执⾏,链表为空!");403return0;404 }405 *pList=pHead->next;406return1;407 }408409/* 15.从单链表中删除表尾结点并返回它的值,若删除失败则停⽌程序运⾏ */410int DelLastList(Node *pNode)411 {412 Node *pHead;413 Node *pTmp;414415 pHead=pNode;416while(pHead->next!=NULL)417 {418 pTmp=pHead;419 pHead=pHead->next;420 }421 printf("链表尾删除元素%d成功!\n",pHead->element);422free(pHead);423 pTmp->next=NULL;424return1;425 }426427/* 16.从单链表中删除第pos个结点并返回它的值,若删除失败则停⽌程序运⾏ */ 428int DelPos(Node *pNode,int pos)429 {430 Node *pHead;431 pHead=pNode;432 Node *pTmp;433434int i=0;435436if(NULL==pHead)437 {438 printf("DelPos函数执⾏,链表为空\n");439return0;440 }441442if(pos<1)443 {444 printf("DelPos函数执⾏,pos值⾮法\n");445return0;446 }447448while(pHead!=NULL)449 {450 ++i;451if(i==pos)452break;453 pTmp=pHead;454 pHead=pHead->next;455 }456457if(i<pos)458 {459 printf("DelPos函数执⾏,pos值超出链表长度\n");460return0;461 }462 printf("DelPos函数执⾏成功,节点%d删除数值%d\n",pos,pHead->element); 463 pTmp->next=pHead->next;464free(pHead);465return1;466 }467468/* 17.从单链表中删除值为x的第⼀个结点,若删除成功则返回1,否则返回0 */469int Delx(Node **pNode,int x)470 {471 Node *pHead;472 Node *pTmp;473 pHead=*pNode;474int i=0;475476if(NULL==pHead)477 {478 printf("Delx函数执⾏,链表为空");479return0;480 }481if(x<0)482 {483 printf("Delx函数执⾏,给定值x不合法\n");484return0;485 }486while((pHead->element!=x)&&(NULL!=pHead->next))//判断链表是否为空,并且是否存在所查找的元素487 {488 ++i;489 pTmp=pHead;490 pHead=pHead->next;491 }492if(pHead->element!=x)493 {494 printf("Delx函数执⾏,在链表中没有找到x值\n");495return0;496 }497if((i==0)&&(NULL!=pHead->next))498 {499 printf("Delx函数执⾏,在链表⾸部找到此元素,此元素已经被删除\n");500 *pNode=pHead->next;501free(pHead);502return1;503 }504 printf("Delx函数执⾏,⾸个为%d元素被删除\n",x);505 pTmp->next=pHead->next;506free(pHead);507return1;508 }509510/* 18.交换2个元素的位置 */511int exchange2pos(Node *pNode,int pos1,int pos2)512 {513 Node *pHead;514int *pTmp;515int *pInsert;516int a;517int i=0;518519if(pos1<1||pos2<1)520 {521 printf("DelPos函数执⾏,pos值⾮法\n");522return0;523 }524525 pHead=pNode;526while(pHead!=NULL)527 {528 ++i;529if(i==pos1)530break;531 pHead=pHead->next;532 }533534if(i<pos1)535 {536 printf("DelPos函数执⾏,pos1值超出链表长度\n");537return0;538 }539540 pTmp=&(pHead->element);541 i=0;542 pHead=pNode;543while(pHead!=NULL)544 {545 ++i;546if(i==pos2)547break;548 pHead=pHead->next;549 }550551if(i<pos2)552 {553 printf("DelPos函数执⾏,pos2值超出链表长度\n");554return0;555 }556557 pInsert=&(pHead->element);558 a=*pTmp;559 *pTmp=*pInsert;560 *pInsert=a;561562 printf("DelPos函数执⾏,交换第%d个和第%d个pos点的值\n",pos1,pos2); 563return1;564 }565566int swap(int *p1,int *p2)567 {568int a;569if(*p1>*p2)570 {571 a=*p1;572 *p1=*p2;573 *p2=a;574 }575return0;576 }577578/* 19.将线性表进⾏冒泡排序 */579int Arrange(Node *pNode)580 {581 Node *pHead;582 pHead=pNode;583584int a=0,i,j;585586if(NULL==pHead)587 {588 printf("Arrange函数执⾏,链表为空\n");589return0;590 }591592while(pHead!=NULL)593 {594 ++a;595 pHead=pHead->next;596 }597598 pHead=pNode;599for(i=0;i<a-1;i++)600 {601for(j=1;j<a-i;j++)602 {603 swap(&(pHead->element),&(pHead->next->element));604 pHead=pHead->next;605 }606 pHead=pNode;607 }608 printf("Arrange函数执⾏,链表排序完毕!\n");609return0;610 }611612int main()613 {614 Node *pList=NULL;615int length=0;616617 elemType posElem;618619 initList(&pList);620 printList(pList);621622 pList=creatList(pList);623 printList(pList);624625 sizeList(pList);626 printList(pList);627628 isEmptyList(pList);629630631 posElem=getElement(pList,3);632 printList(pList);633634 getElemAddr(pList,5);635636 modifyElem(pList,4,1);637 printList(pList);638639 insertHeadList(&pList,5);640 printList(pList);641642 insertLastList(pList,10);643 printList(pList);644645 isAddPos(pList,4,5); 646 printList(pList);647648 OrrderList(pList,6);649 printList(pList);650651 DelHeadList(&pList); 652 printList(pList);653654 DelLastList(pList);655 printList(pList);656657 DelPos(pList,5);658 printList(pList);659660 Delx(&pList,5);661 printList(pList);662663 exchange2pos(pList,2,5); 664 printList(pList);665666 Arrange(pList);667 printList(pList);668669 clearList(pList);670return0;671 }。

数据结构-单链表实验报告

数据结构-单链表实验报告

单链表实验报告一、实验目的1、帮助读者复习C++语言程序设计中的知识。

2、熟悉线性表的逻辑结构。

3、熟悉线性表的基本运算在两种存储结构上的实现,其中以熟悉链表的操作为侧重点。

二、实验内容[问题描述]实现带头结点的单链表的建立、求长度,取元素、修改元素、插入、删除等单链表的基本操作。

[基本要求](1)依次从键盘读入数据,建立带头结点的单链表;(2)输出单链表中的数据元素(3)求单链表的长度;(4)根据指定条件能够取元素和修改元素;(5)实现在指定位置插入和删除元素的功能。

三、算法设计(1)建立带表头结点的单链表;首先输入结束标志,然后建立循环逐个输入数据,直到输入结束标志。

(2)输出单链表中所有结点的数据域值;首先获得表头结点地址,然后建立循环逐个输出数据,直到地址为空。

(3)输入x,y在第一个数据域值为x的结点之后插入结点y,若无结点x,则在表尾插入结点y;建立两个结构体指针,一个指向当前结点,另一个指向当前结点的上一结点,建立循环扫描链表。

当当前结点指针域不为空且数据域等于x的时候,申请结点并给此结点数据域赋值为y,然后插入当前结点后面,退出函数;当当前结点指针域为空的时候,申请结点并给此结点数据域赋值为y,插入当前结点后面,退出函数。

(4)输入k,删除单链表中所有的结点k,并输出被删除结点的个数。

建立三个结构体指针,一个指向当前结点,另一个指向当前结点的上一结点,最后一个备用;建立整形变量l=0;建立循环扫描链表。

当当前结点指针域为空的时候,如果当前结点数据域等于k,删除此结点,l++,跳出循环,结束操作;如果当前结点数据域不等于k,跳出循环,结束操作。

当当前结点指针域不为空的时候,如果当前结点数据域等于k,删除此结点,l++,继续循环操作;如果当前结点数据域不等于k,指针向后继续扫描。

循环结束后函数返回变量l的值,l便是删除的结点的个数。

四、实验结果1、新建一个链表:2、输出链表的数据:(4)插入数据:在数据为3后面插入一个数据100:(5)删除数据:删除刚刚插入的数据100:五、总结实验之前由于准备不够充分,所以堂上实验时只完成了建立单链表和数据的输出,而后面两个实验要求也是用来很多时间长完成的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单循环链表的结构体在计算机科学中,链表是一种常见的数据结构,用于存储和操作数据。

链表由一系列的节点组成,每个节点包含一个数据元素和一个指向下一个节点的指针。

链表中的节点可以按任意顺序存储,并且可以轻松插入和删除节点,而无需移动其他节点。

而在链表的基础上,还有一种特殊的链表结构,即单循环链表。

单循环链表与普通链表相似,唯一的区别在于最后一个节点的指针不为NULL,而是指向链表的起始节点,形成一个循环。

这意味着可以从任意一个节点开始遍历整个链表。

结构体定义为了在编程中表示和操作单循环链表,我们可以使用结构体来定义链表的节点。

结构体是一种用户自定义的数据类型,它可以包含不同类型的数据,并可以按需定义各种操作。

下面是一个使用C语言定义单循环链表结构体的示例:typedef struct ListNode {int data;struct ListNode* next;} ListNode;typedef struct CircularLinkedList {ListNode* head;} CircularLinkedList;在上面的示例中,我们定义了两个结构体,分别是ListNode和CircularLinkedList。

ListNode结构体表示链表的一个节点,其中data字段用于存储节点的数据,next字段是指向下一个节点的指针。

CircularLinkedList结构体表示整个单循环链表,其中head字段指向链表的起始节点。

操作函数为了操作单循环链表,我们需要定义一些函数来实现常见的操作,如插入、删除和遍历节点。

下面是一些常用的操作函数的示例:创建链表CircularLinkedList* createCircularLinkedList() {CircularLinkedList* list = (CircularLinkedList*)malloc(sizeof(CircularLink edList));list->head = NULL;return list;}上述代码创建了一个空的单循环链表,并返回指向链表的指针。

插入节点void insertNode(CircularLinkedList* list, int data) {ListNode* newNode = (ListNode*)malloc(sizeof(ListNode));newNode->data = data;if (list->head == NULL) {list->head = newNode;newNode->next = newNode;} else {ListNode* curr = list->head;while (curr->next != list->head) {curr = curr->next;}curr->next = newNode;newNode->next = list->head;}}上述代码插入一个新节点到单循环链表中。

如果链表为空,直接将该节点作为头节点,并使其指向自己形成循环。

否则,找到最后一个节点,将其next指针指向新节点,并使新节点的next指向头节点。

删除节点void deleteNode(CircularLinkedList* list, int data) {if (list->head == NULL) {return;}if (list->head->data == data) {ListNode* curr = list->head;while (curr->next != list->head) {curr = curr->next;}curr->next = list->head->next;free(list->head);list->head = curr->next;return;}ListNode* curr = list->head;ListNode* prev = NULL;while (curr->next != list->head) {if (curr->data == data) {prev->next = curr->next;free(curr);return;}prev = curr;curr = curr->next;}if (curr->data == data) {prev->next = curr->next;free(curr);}}上述代码从单循环链表中删除指定数据的节点。

首先检查链表是否为空,如果是则直接返回。

然后,检查头节点是否包含指定数据,如果是,则找到最后一个节点,将其next指针指向头节点的下一个节点,并删除头节点。

否则,则遍历链表,找到包含指定数据的节点,将其前一个节点的next指针指向当前节点的下一个节点,并删除当前节点。

遍历节点void traverse(CircularLinkedList* list) {if (list->head == NULL) {return;}ListNode* curr = list->head;do {printf("%d ", curr->data);curr = curr->next;} while (curr != list->head);printf("\n");}上述代码遍历并打印单循环链表中的所有节点的数据。

首先检查链表是否为空,如果是则直接返回。

然后,从头节点开始,逐个打印节点的数据,直到回到头节点。

示例下面是一个使用单循环链表结构体实现的示例:#include <stdio.h>#include <stdlib.h>typedef struct ListNode {int data;struct ListNode* next;} ListNode;typedef struct CircularLinkedList {ListNode* head;} CircularLinkedList;CircularLinkedList* createCircularLinkedList() {CircularLinkedList* list = (CircularLinkedList*)malloc(sizeof(CircularLink edList));list->head = NULL;return list;}void insertNode(CircularLinkedList* list, int data) {ListNode* newNode = (ListNode*)malloc(sizeof(ListNode));newNode->data = data;if (list->head == NULL) {list->head = newNode;newNode->next = newNode;} else {ListNode* curr = list->head;while (curr->next != list->head) {curr = curr->next;}curr->next = newNode;newNode->next = list->head;}}void deleteNode(CircularLinkedList* list, int data) { if (list->head == NULL) {return;}if (list->head->data == data) {ListNode* curr = list->head;while (curr->next != list->head) {curr = curr->next;}curr->next = list->head->next;free(list->head);list->head = curr->next;return;}ListNode* curr = list->head;ListNode* prev = NULL;while (curr->next != list->head) {if (curr->data == data) {prev->next = curr->next;free(curr);return;}prev = curr;curr = curr->next;}if (curr->data == data) {prev->next = curr->next;free(curr);}}void traverse(CircularLinkedList* list) {if (list->head == NULL) {return;}ListNode* curr = list->head;do {printf("%d ", curr->data);curr = curr->next;} while (curr != list->head);printf("\n");}int main() {CircularLinkedList* list = createCircularLinkedList();insertNode(list, 1);insertNode(list, 2);insertNode(list, 3);insertNode(list, 4);printf("Initial List: ");traverse(list);deleteNode(list, 2);printf("After Deleting 2: ");traverse(list);deleteNode(list, 1);printf("After Deleting 1: ");traverse(list);return 0;}上述示例演示了如何使用单循环链表结构体实现插入和删除节点,并打印出链表的内容。

总结通过使用结构体和相关操作函数,我们可以非常方便地实现单循环链表的创建、插入、删除和遍历操作。

相关文档
最新文档