条件收敛与绝对收敛
条件收敛与绝对收敛

第四节条件收敛与绝对收敛对于任意项级数a n ,我们已经给出了其收敛的一些判n 1别方法,本节我们讨论任意项级数的其他性质 一条件收敛 与绝对收敛定义 对于级数 a n ,如果级数 I a n |是收敛的,n 1n 1a n 绝对收敛。
n 1如果|a n |发散,但a n 是收敛的,我们称级数n 1n 1敛。
(1)n 1.n 1 n收敛级数可以看成是有限和的推广,但无限和包含有极 限过程。
并不是有限和的所有性质都为无限和所保持。
大体 说来,绝对收敛的级数保持了有限和的大多数性质,条件收 敛的级数则在某些方面与有限和差异很大。
下面我们讨论条 件收敛与绝对收敛的性质。
定理绝对收敛级数必为收敛级数,反之则不然证明:设级数 a n 收敛,即|a n I 收敛,由Cauchy 收敛准则, n 1n 1对 0,存在N ,当n>N 时,对一切自然数 p,成立着丨 an 1 丨1 an 2 11 an p 1于是:我们称级数a n 条件收n 1条件收敛的级数是存在的,如1 a n 1 a n2 a np丨丨a n 1丨丨a n2丨丨a n p丨再由Cauchy收敛准则知a n收敛。
n 1由级数(1)可看出反之不成立。
n 1 n注:如果正项级数|a n |发散,不能推出级数a n发散。
n 1 n 1但如果使用Cauchy判别法或DAlembert判别法判定出|a n |n 1发散,则级数a n必发散,这是因为利用Cauchy判别法或n 1D'lembert判别法来判定一个正项级数| a n |为发散时,是n 1根据这个级数的一般项| a n|当n 时不趋于0,因此对级数a n而言,它的一般项也不趋于零,所以级数n 1例讨论级数(1)n1^ 1的敛散性,如收敛指明是条件n 1 n 1 s'n p收敛或绝对收敛。
解,当p 0时,由于W需总0,所以级数发散.当p 2时,因为n 2 1n 1 n plim ------- : ---- 1n 1/ .n p而1收敛,所以原级数绝对收敛。
绝对收敛与条件收敛

sinn n 1 n ( 2 ). ( 1 ) (1). ( 3 ). n ! x n 1 2 3 n n 1 n 1 n 1 1 1 sin n 解 (1). | un | 2 因 2 收敛, 故原级数绝对收敛. 2 n n n 1 n n1 n un1 n1 1 3 ( 2). lim lim lim 1 故原级数绝对收敛. n u n n 3n n 3 n n 1 3 (3).当x 0时,级数显然收敛于 0;当x 0时 un1 ( n 1)!| x |n1 lim lim lim( n 1) | x | 原级数发散. n n u n n n!| x | n
例如,
( 1 )
n1
1 条件收敛. n
1 ( 1 ) 3 绝对收敛. n n 1
n
定理7
若级数
u
n 1
n
绝对收敛, 则级数
u
n 1
n
必定收敛.
1 证 设 | un | 收敛, 令 vn (un | un |) (n 1,2,) 2 n 1
un 2vn | un | 由性质知, un 收敛.
三、绝对收敛与条件收敛
1、任意项级数:
u ,
n 1 n
un 为任意实数.
2、绝对收敛、条件收敛.
1).若 2).若
| u u
n 1 n 1 n
n
| 收敛, 则称 un 为绝对收敛.
n 1
n
收敛, 但
n1
| u
n 1
| 发散, 则称 un 为条件收敛.
绝对收敛与条件收敛

散。
存在,则收敛;否则发、定义法:时,不确定时,级数发散时,级数收敛,则设:、比值审敛法:时,不确定时,级数发散时,级数收敛,则设:别法):—根植审敛法(柯西判—、正项级数的审敛法n n n n n n n n n n s u u u s U U u ∞→+∞→∞→+++=⎪⎩⎪⎨⎧=><=⎪⎩⎪⎨⎧=><=lim ;3111lim 2111lim 1211 ρρρρρρρρ。
的绝对值其余项,那么级数收敛且其和如果交错级数满足—莱布尼兹定理:—的审敛法或交错级数1113214321,0lim )0,(+∞→+≤≤⎪⎩⎪⎨⎧=≥>+-+-+-+-n n n n n n n n u r r u s u u u u u u u u u u u 绝对收敛与条件收敛:∑∑∑∑>≤-+++++++++时收敛1时发散p 级数: 收敛; 级数:收敛;发散,而调和级数:为条件收敛级数。
收敛,则称发散,而如果收敛级数;肯定收敛,且称为绝对收敛,则如果为任意实数;,其中111)1(1)1()1()2()1()2()2()1(232121p n p n n n u u u u u u u u p nn n n幂级数:010)3(lim)3(1111111221032=+∞=+∞===≠==><+++++≥-<++++++++∞→R R R a a a a R R x R x R x R x a x a x a a x x x x x x x n n nn n n n n 时,时,时,的系数,则是,,其中求收敛半径的方法:设称为收敛半径。
,其中时不定时发散时收敛,使在数轴上都收敛,则必存收敛,也不是在全,如果它不是仅在原点 对于级数时,发散时,收敛于ρρρρρ函数展开成幂级数:+++''+'+===-+=+-++-''+-=∞→++nn n n n n n n n x n f x f x f f x f x R x f x x n f R x x n x f x x x f x x x f x f !)0(!2)0()0()0()(00lim )(,)()!1()()(!)()(!2)())(()()(2010)1(00)(20000时即为麦克劳林公式:充要条件是:可以展开成泰勒级数的余项:函数展开成泰勒级数:ξ 一些函数展开成幂级数:)()!12()1(!5!3sin )11(!)1()1(!2)1(1)1(121532+∞<<-∞+--+-+-=<<-++--++-++=+--x n xx x x x x x n n m m m x m m mx x n n nm 欧拉公式:⎪⎪⎩⎪⎪⎨⎧-=+=+=--2sin 2cos sin cos ixix ixix ixe e x e e x x i x e 或 三角级数:。
第9章第5节绝对收敛和条件收敛级数的性质

un un 即 n 2
{
un,当un 0时 0, 当un 0时
n 1
.
2
2015年8月30日星期日
§9.5 绝对收敛和条件收敛级数的性质
则这样的级数与原来级数的收敛性有如下结论:
(1).若级数 un绝对收敛,
则级数 vn和 n都收敛;
n 1
证毕
19
2015年8月30日星期日
§9.5 绝对收敛和条件收敛级数的性质
梅尔腾斯(Mertens)定理:
若级数 un与 vn中仅有一个绝对收敛, 其和为A,
另一个是条件收敛,其和为B, 则它们的柯西乘积所组成的级数仍收敛,其和为AB.
n 1 n 1
定理2和定理3指出,绝对收敛级数具有和 普通有限项和数相仿的两个运算性质---交换律 和分配律成立.
()先证 1 证明: un为收敛的正项级数(必绝对收敛)情形.
n1
n 1
n 1
n 1
n 1
的部分和Sk , 考虑它的更序级数 un
un1 , u2 un2 ,, uk unk , 由u1
所以取n大于所有下标 n1 , n2 ,nk 后, 应有
由于级数 un和 vn都绝对收敛,所以 U*,V*都有界.
n 1 n 1
* 另外 S n u n1 vm1 u n2 vm2 u nn vmn
(u1 u2 u )(v1 v2 v )
U* V*,
* 即Sn 有界,这证明了级数 n绝对收敛. n 1
n 1
n 1 n 1
(2).若级数 un条件收敛,
第三节任意项级数绝对收敛与条件收敛1

n1
n1
证明
令
pn
1 2
(|
un
|
un )
un 0,
,
un 0 , un 0
qn
1 2
(|
un
|
un
)
un 0,
,
un 0, un 0
则级数 pn和 qn分别是由原级数中正项和负项组成.
n1
n1
6
例如若原级数是交错级数,则
un (1)n1vn v1 v2 v3 v4 v2n1 v2n
非绝对收敛.
16
(1)n1 sin
n1
n2 1 n
设 f ( x) sin
,
x2 1 x
f ( x) cos
•
,
x2 1 x x2 1( x2 1 x)
所以
f ( x) 0, ( x 1).
lim
n
un
lim sin
n
0 n2 1 n
原级数条件收敛.
17
(6)
(
令 f ( x) x ln x ( x 0) , 则 f ( x) 1 1 0 ( x 1) ,
x
f ( x)在 (1,) 上单增,
由莱布尼茨定理, 此交错级数收敛. 原级数条件收敛.
13
(1)n1 n
(4)
,
n1 n 1
(课堂练习)
解 易见级数非绝对收敛.下面用莱布尼茨判别法.
un 0, un 0
则级数 pn和 qn分别是由原级数中正项和负项组成.
n1
n1
pn和 qn都是正项级数, 且满足
n1
n1
pn | un |, qn | un |
级数的条件收敛和绝对收敛

级数的条件收敛和绝对收敛级数是数学中一种重要的数列求和形式,它在许多数学分支中都扮演着重要的角色。
在研究级数的性质时,我们常常关注两个重要的概念:条件收敛和绝对收敛。
我们来讨论条件收敛。
一个级数在条件收敛时,指的是当级数的各项按照某种次序相加时,其和存在但可能不收敛。
换句话说,条件收敛是指级数的各项次序的排列方式对级数的和有影响。
为了更好地理解条件收敛,我们来看一个例子:调和级数。
调和级数是指级数1 + 1/2 + 1/3 + 1/4 + ...,它的和是发散的。
然而,当我们改变级数的次序时,例如将正项和负项交替相加,即1 - 1/2 + 1/3 - 1/4 + ...,这个级数的和却是收敛的,而且和为ln2。
这就是条件收敛的一个例子。
接下来,我们来讨论绝对收敛。
一个级数在绝对收敛时,指的是当级数的各项按照任意次序相加时,其和都是收敛的。
换句话说,绝对收敛是指级数的各项次序的排列方式对级数的和没有影响。
为了更好地理解绝对收敛,我们再来看一个例子:幂级数。
幂级数是指形如Σan*x^n的级数,其中an是系数,x是变量。
对于幂级数,当其收敛半径大于0时,它是绝对收敛的。
也就是说,无论我们如何排列幂级数的各项次序,只要收敛半径大于0,级数的和都是收敛的。
这就是绝对收敛的一个例子。
条件收敛和绝对收敛的区别在于级数项次序的影响。
条件收敛的级数的和在不同的项次序下可能会收敛到不同的值,而绝对收敛的级数的和在任意项次序下都是收敛到同一个值。
那么,为什么条件收敛和绝对收敛如此重要呢?这是因为在实际应用中,我们常常需要对级数进行求和。
如果一个级数是绝对收敛的,我们可以放心地任意改变级数的项次序,而不用担心和的变化。
然而,如果一个级数只是条件收敛的,我们在改变项次序时就需要小心,因为和可能会发生变化。
绝对收敛还有一个重要的性质:绝对收敛的级数的部分和序列是一个柯西序列。
柯西序列是指序列的任意两个元素之间的差可以任意小。
绝对收敛与条件收敛

∞
x 例3-1 判定 ∑ ( 1 ) sin ( x > 0 ) 的敛散性 . n n =1 x x x n 解 因 un = ( 1 ) sin = sin ~ (n → ∞ ) n n n ∞ x ∞ 而 ∑ 发散,由比较法知 ∑ un 发散, n =1 n n =1
∑
∞
1
p
( p > 1) 收敛 ,
故
n =1
∑
∞
cos nx n
p
收敛, 从而
n =1
∑
∞
cos nx
n
p
绝对收敛 .
例2-2 证明 ∑
∞
sin nα n
4
n=1
绝对收敛 .
1 ∑ n 4 收敛 , n=1
∞
证 (1) 因 sin n α ≤ 1 , 而 n4 n4
故
n=1
∑
∞
sin n α n
∞
( 1 )n 1
问题:
n =1
∑ un与 ∑ un 敛散性的关系?
n =1
∞
∞
二,绝对收敛与条件收敛
1. 定义
()∑ un 绝对收敛: ∑ un 收 1 若 n =1 n =1 敛; (2 ∑ un 条件收敛: 若 ∑ un 收敛,但 ∑ un 发散. )
n =1 n =1 n =1 ∞ ∞ ∞ ∞ ∞
n→ ∞
lim S2 n = S ≤ u 1
2 再证 lim S2n1 = S
n→∞
又 lim S2 n + 1 = lim ( S2 n + u2 n + 1 ) = lim S2 n = S
条件收敛与绝对收敛

第四节条件收敛与绝对收敛对于任意项级数J■ an ,我们已经给出了其收敛的一些判n =1别方法,本节我们讨论任意项级数的其他性质一条件收敛与绝对收敛。
定义10.5对于级数a n,如果级数'Ta n l是收敛的,我们称n =1n =1级数v a n绝对收敛。
n d如果-|a n |发散,但7 a n是收敛的,我们称级数7 a n条件收n =1 n =1n =1敛。
n 1条件收敛的级数是存在的,如、口n=1 n收敛级数可以看成是有限和的推广,但无限和包含有极限过程。
并不是有限和的所有性质都为无限和所保持。
大体说来,绝对收敛的级数保持了有限和的大多数性质,条件收敛的级数则在某些方面与有限和差异很大。
下面我们讨论条件收敛与绝对收敛的性质。
定理10.17绝对收敛级数必为收敛级数,反之则不然Q Q Q Q证明:设级数v a n收敛,即v |a n |收敛,由Cauchy收敛准n =1 n=1则,对_ ;0,存在N,当n>N时,对一切自然数p,成立着|a n 1 | |a n 2 I |a n p I —于是:|a ni a n.2 a n p 卩la nd L |a n 2 I Wn p 卜;Q Q再由Cauchy 收敛准则知a n 收敛。
n 丄n 1由级数-可看出反之不成立。
n=i n注:如果正项级数|a n |发散,不能推出级数】a n 发散。
n =1n=1但如果使用 Cauchy 判别法或 D 'Alembert 判别法判定出OQQ Q;'|a n |发散,则级数「a n 必发散,这是因为利用Cauchy 判 n =1n =1Q Q别法或D 'Alembert 判别法来判定一个正项级数、ja n |为发散 心时,是根据这个级数的一般项|a n |当n 》=时不趋于0,因此 Q QQ Q对级数J an 而言,它的一般项也不趋于零, 所以级数J an 发n =1n =1散。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。