九年级数学下册测试题:第1章解直角三角形练习题

合集下载

九年级数学-解直角三角形 单元检测试卷(含答案)

九年级数学-解直角三角形 单元检测试卷(含答案)

解直角三角形 单元检测试卷一、单选题(共10题;共30分)1.在△ABC 中,∠C=90°,BC=3,AC=4,则sinA 的值是( ) A. 34 B. 35 C. 45 D. 432.一个三角形的两边长分别是3和7,且第三边长为整数,这样的三角形周长最大的值为( )A. 15B. 16C. 18D. 19 3.为测量某河的宽度,小军在河对岸选定一个目标点A ,再在他所在的这一侧选点B ,C ,D ,使得AB ⊥BC ,CD ⊥BC ,然后找出AD 与BC 的交点E .如图所示,若测得BE=90m ,EC=45m ,CD=60m ,则这条河的宽AB 等于( )A. 120mB. 67.5mC. 40mD. 30m 4.等腰三角形的周长为20cm ,腰长为x cm ,底边长为y cm ,则底边长与腰长之间的函数关系式为( )A. y=20﹣x (0<x <10)B. y=20﹣x (10<x <20)C. y=20﹣2x (10<x <20)D. y=20﹣2x (5<x <10)5.一段拦水坝横断面如图所示,迎水坡AB 的坡度为i=1:√3 , 坝高BC=6m ,则坡面AB 的长度( )A. 12mB. 18mC. 6√3D. 12√3 6.汶川地震后,抢险队派一架直升飞机去A 、B 两个村庄抢险,飞机在距地面450米上空的P 点,测得A 村的俯角为30°,B 村的俯角为60°(如图)则A ,B 两个村庄间的距离是( )米.A. 300B. 900C. 300 √2D. 300 √37.如图,小明晚上由路灯A 下的点B 处走到点C 处时,测得自身影子CD 的长为1米,他继续往前走3米到达点E 处(即CE=3米),测得自己影子EF 的长为2米,已知小明的身高是1.5米,那么路灯A 的高度AB 是( )A. 4.5米B. 6米C. 7.2米D. 8米 8.一个三角形的两边长为2和6,第三边为偶数,则这个三角形的周长为( )A. 10B. 12C. 14D. 16 9.如图,斜面AC 的坡度(CD 与AD 的比)为1:2,AC=3 √5 米,坡顶有旗杆BC ,旗杆顶端B 点与A 点有一条彩带相连.若AB=10米,则旗杆BC 的高度为( )A. 5米B. 6米C. 8米D. (3+ √5 )米 10.如图,在□ABCD 中,AB ∶AD=3∶2,∠ADB=60°,那么cos A的值等于( )A. 3−√66B. √3+3√26C. 3+√66D. √3+2√26二、填空题(共10题;共33分)11.小凡沿着坡角为30°的坡面向下走了2米,那么他下降________米.12.已知一个等腰三角形的两边长分别为3和6,则该等腰三角形的周长是________. 13.如图是一个中心对称图形,A 为对称中心,若∠C=90°, ∠B=30°,AC=1,则BB′的长为________.14.如图,在直角坐标系中,P是第二象限的点,其坐标是(x,8),且OP与x轴的负半轴的夹角α的,则x=________,cosα=________.正切值是4315.在Rt△ABC中,∠C=90°,如果AC=4,sinB=2,那么AB=________316.高4 m的旗杆在水平地面上的影子长6 m,此时测得附近一个建筑物的影长24 m,则该建筑物的高是________m.17.tan________ °=0.7667.18.如图:∠DAE=∠ADE=15°,DE∥AB,DF⊥AB,若AE=8,则DF等于________.19.如图,将两块直角三角形的一条直角边重合叠放,已知AC=BC= √3+1,∠D=60°,则两条斜边的交点E到直角边BC的距离是________.x2+mx对应的函数值分别为y1,y2,y3,20.已知当x1=a,x2=b,x3=c时,二次函数y= 12若正整数a,b,c恰好是一个三角形的三边长,且当a<b<c时,都有y1<y2<y3,则实数m的取值范围是________.三、解答题(共8题;共57分)21.如图,我国的一艘海监船在钓鱼岛A附近沿正东方向航行,船在B点时测得钓鱼岛A在船的北偏东60°方向,船以50海里/时的速度继续航行2小时后到达C点,此时钓鱼岛A在船的北偏东30°方向.请问船继续航行多少海里与钓鱼岛A的距离最近?22.小宇想测量位于池塘两端的A、B两点的距离.他沿着与直线AB平行的道路EF行走,当行走到点C处,测得∠ACF=45°,再向前行走100米到点D处,测得∠BDF=60°.若直线AB 与EF之间的距离为60米,求A、B两点的距离.23.如图,为了测量出楼房AC的高度,从距离楼底C处60 √3米的点D(点D与楼底C在同一水平上)出发,沿斜面坡度为i=l:√3的斜坡DB前进30米到达点B,在点B处测得楼顶A的仰角为53 °,求楼房AC的高度(参考数据:sin53 °= 45, cos53 °= 35, tan53°= 43,√3≈1.732,结果精确到0.1米)24.如图,平台AB高为12m,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD的高度(√3=1.7).25.“蘑菇石”是我国著名的自然保护区梵净山的标志,小明从山脚B点先乘坐缆车到达观景平台DE观景,然后再沿着坡脚为29°的斜坡由E点步行到达“蘑菇石”A点,“蘑菇石”A点到水平面BC的垂直距离为1890m.如图,DE∥BC,BD=1800m,∠DBC=80°,求斜坡AE的长度.(结果精确到0.1m,可参考数据sin29°≈0.4848,sin80°≈0.9848,cos29°≈0.8746,cos80°≈0.1736)26.在一次数学活动课上,老师带领同学们去测量一座古塔CD的高度.他们首先从A处安置测倾器,测得塔顶C的仰角∠CFE=21°,然后往塔的方向前进50米到达B处,此时测得仰角∠CGE=37°,已知测倾器高1.5米,请你根据以上数据计算出古塔CD的高度.(参考数据:sin37°≈ 35,tan37°≈ 34,sin21°≈ 925,tan21°≈ 38)27.在一次课题学习中,老师让同学们合作编题.某学习小组受赵爽弦图的启发,编写了下面这道题,请你来解一解.如图,将矩形ABCD的四边BA、CB、DC、AD分别延长至E、F、G、H,使得AE=CG,BF=DH,连结EF、FG、GH、HE.(1)求证:四边形EFGH为平行四边形;(2)若矩形ABCD是边长为1的正方形,且∠FEB=45°,tan∠AEH=2,求AE的长.28.如图,在一次军事演习中,蓝方在一条东西走向的公路上的A处朝正南方向撤退,红方在公路上的B处沿南偏西60°方向前进实施拦截,红方行驶1000米到达C处后,因前方无法通行,红方决定调整方向,再朝南偏西45°方向前进了相同的距离,刚好在D处成功拦截蓝方,求拦截点D处到公路的距离(结果不取近似值).答案解析部分一、单选题1.【答案】B【考点】锐角三角函数的定义【解析】【解答】解:在△ABC中,∠C=90°,∵AC=4,BC=3,∴AB= √32+42=5.∴sinA= 35,故答案为:B.【分析】先根据勾股定理算出AB,再根据正切定义得出结论。

【期末优化训练】浙教版2022-2023学年九下数学第1章 解直角三角形 测试卷1

【期末优化训练】浙教版2022-2023学年九下数学第1章 解直角三角形 测试卷1

【期末优化训练】浙教版2022-2023学年九下数学第1章解直角三角形测试卷1考试时间:120分钟满分:150分一、选择题(本大题有10小题,每小题4分,共40分)下面每小题给出的四个选项中,只有一个是正确的.1.在Rt△ABC中,△C=90°,若sin△A=23,则cosB=()A.23B.√53C.2√55D.√522.在△ABC中,∠A、∠B均为锐角,且|tanB−√3|+(2sinA−√3)2=0,则△ABC是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形3.某铁路路基的横断面是一个等腰梯形(如图),若腰的坡比为2:3,路基顶宽3米,高4米,则路基的下底宽为()A.7米B.9米C.12米D.15米4.如图,OA=4,线段OA的中点为B,点P在以O为圆心,OB为半径的圆上运动,PA的中点为Q.当点Q也落在△O上时,cos△OQB的值等于()A.12B.13C.14D.23(第3题)(第4题)(第5题)5.如图,两条宽度都为1的纸条,交叉重叠放在一起,且它们的交角为α,则它们重叠部分(图中阻影部分)的面积为()A.1sinαB.1cosαC.sinαD.16.如图,将一个Rt△ABC形状的楔子从木桩的底端点P处沿水平方向打入木桩底下,使木桩向上运动,已知楔子斜面的倾斜角为20°,若楔子沿水平方向前移8cm(如箭头所示),则木桩上升了()A.8tan20°B.8tan20°C.8sin20°D.8cos20°7.我国魏晋时期的数学家刘徽首创割圆术:割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体,而无所失矣",即通过圆内接正多边形割圆,从正六边形开始,每次边数成倍增加,依次可得圆内接正十二边形,内接正二十四边形,…….边数越多割得越细,正多边形的周长就越接近圆的周长.再根据“圆周率等于圆周长与该圆直径的比”来计算圆周率.设圆的半径为R,图1中圆内接正六边形的周长l6=6R,则π≈l62R=3.再利用圆的内接正十二边形来计算圆周率则圆周率约为()A.12sin15°B.12cos15°C.12sin30°D.12cos30°(第7题)(第8题)8.如图,在△ABC中,∠BAC=45°,D为AC上一点,连接BD,将△BDC沿BD翻折,点C恰好落在AB上的点E处,连CE.若AD=7√22,tan∠ABD=13,则CD的长度为()A.5√22B.6√25C.3√22D.7√239.如图,在边长为4的正方形ABCD中,点E是CD边上的一点,点F是点D关于直线AE对称的点,连接AF、BF,若tan△ABF=2,则DE的长是()A.1B.65C.43D.5310.在△ABC中,∠ACB=90°,P为AC上一动点,若BC=4,AC=6,则√2BP+AP的最小值为()A.5B.10C.5√2D.10√2(第9题)(第10题)(第11题)第12题)二、填空题(本大题有6小题,每小题5分,共30分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.北京冬奥会开幕式的巨型雪花状主火炬塔的设计,体现了环保低碳理念.如图所示,它的主体形状呈正六边形.若点A,F,B,D,C,E是正六边形的六个顶点,则tan△ABE=.12.某校数学兴趣小组开展无人机测旗杆的活动:已知无人机的飞行高度为30m,当无人机飞行至A 处时,观测旗杆顶部的俯角为30°,继续飞行20m到达B处,测得旗杆顶部的俯角为60°,则旗杆的高度约为m.(参考数据:√3≈1.732,结果按四舍五八保留一位小数)13.图1是一款折叠式跑步机,其侧面结构示意图如图2(忽略跑步机的厚度).该跑步机由支杆AB (点A固定),底座AD和滑动杆EF组成.支杆AB可绕点A转动,点E在滑槽AC上滑动.已知AB=60cm,AC=125cm.收纳时,滑动端点E向右滑至点C,点F与点A重合;打开时,点E从点C向左滑动,若滑动杆EF与AD夹角的正切值为2,则察看点F处的仪表盘视角为最佳.(1)BE=cm;(2)当滑动端点E与点A的距离EA=cm时,察看仪表盘视角最佳.(第13题)(第14题)14.如图,在矩形ABCD中,E为AD上的点,AE=AB,BE=DE,则tan∠BDE=.15.如图,在四边形ABCD中,∠A=∠ABC=90°,DB平分∠ADC.若AD=1,CD=3,则sin∠ABD=.(第15题)(第16题)16.如图,岸边堤坝和湖中分别伫立着甲、乙两座电线塔,甲塔底CD和堤坝EF段均与水平面MN 平行,B为CD中点,CD=6EF=12米,DE=5米.某时刻甲塔顶A影子恰好落在斜坡底端E处,此时小章测得2米直立杆子的影长为1米.随后小章乘船行驶至湖面点P处,发现点D,F,P三点共线,并在P处测得甲塔底D和乙塔顶T的仰角均为α=26.7°,则塔高AB的长为米;若小章继续向右行驶10米至点Q,且在Q处测得甲、乙两塔顶A,T的仰角均为β=36.8°.若点M,P,Q,N在同一水平线上,TN⊥MN,则甲、乙两塔顶A,T的距离为米.(参考数据:tan26.7°≈0.5,sin26.7°≈0.45,tan36.8°≈0.75,cos36.8°≈0.8)三、解答题(本题有8小题,第17~19题每题8分,第20~22题每题10分,第23题每题12分,第24题14分,共80分)解答应写出文字说明,证明过程或推演步骤.17.计算:(1)tan30°sin60°−cos245°+tan45°;(2)√(tan60∘−1)2+|1−cos60°|−2tan45°·cos30°.18.如图,在△ABC中,△C=150°,AC=4,tanB= 18.(1)求BC的长;(2)利用此图形求tan15°的值(精确到0.1,参考数据:√2=1.4,√3=1.7,√5=2.2)19.如图,在△ABC中,△C=90°,D是BC边上一点,以DB为直径的△O经过AB的中点E,交AD 的延长线于点F,连结EF.(1)求证:△1=△F.,EF=2 √5,求CD的长.(2)若sinB= √5520.某校门前正对一条公路,车流量较大,为便于学生安全通过,特建一座人行天桥.如图,是这座天桥的引桥部分示意图,上桥通道由两段互相平行的楼梯AB、CD和一段平行于地面的平台CB构成.已知△A=37°,天桥高度DH 为5.1米,引桥水平跨度AH 为8.3米. (1)求水平平台BC 的长度;(2)若两段楼梯AB :CD=10:7,求楼梯AB 的水平宽度AE 的长.(参考数据:sin37°≈ 35 ,cos37°≈ 45 ,tan37°≈ 34)21.台风是一种自然灾害,它以台风中心为圆心,在周围数十千米范围内形成气旋风暴,有极强的破坏力.今年首个超强台风“圣帕”第0709号超强台风于8月13日在北纬21.3度,东经123.3度的太平洋上生成,其中心气压925百帕,近中心最大风速55米/秒,生成时还是热带风暴的“圣帕”,在连跳两级后,15日晚8时已“变身”为超强台风.向台湾东部沿海逼近并登陆台湾岛,之后于19日上午将在福建中南部沿海福州一带再次登陆.在这之前,台风中心在我国台湾海峡的B 处,在沿海城市福州A 的正南方向240千米,其中心风力为12级,每远离台风中心25千米,台风就会减弱一级,如图所示,该台风中心正以20千米/时的速度沿北偏东30°方向向C 移动,且台风中心的风力不变,若城市所受风力达到或超过4级,则称受台风影响.试问: (1)该城市是否会受到台风影响?请说明理由.(2)若会受到台风影响,那么台风影响该城市的持续时间有多长? (3)该城市受到台风影响的最大风力为几级?22.如图1,在△ABC 中,△ACB=90°,△CAB=30°,△ABD 是等边三角形,E 是AB 的中点,连接CE 并延长交AD 于F .(1)求证:①△AEF△△BEC ;②四边形BCFD 是平行四边形;(2)如图2,将四边形ACBD 折叠,使D 与C 重合,HK 为折痕,求sin△ACH 的值.23.在△ABC 中,△ABC=90°.(1)如图1,分别过A 、C 两点作经过点B 的直线的垂线,垂足分别为M 、N ,求证:△ABM△△BCN ;(2)如图2,P 是边BC 上一点,△BAP=△C ,tan△PAC= 2√55,求tanC 的值;(3)如图3,D 是边CA 延长线上一点,AE=AB ,△DEB=90°,sin△BAC= 35 , AD AC =25,直接写出tan△CEB 的值. 24.已知:点 C 、D 在 ⊙O 上,弦 AB ⊥CD ,垂足 E ,弦 AF ⊥BC ,垂足为 G ,弦 AF 与 CD 相交于点 H ;(1)如图1,求证: DE=EH;(2)如图2,连接OC,当CD平分∠BCO时,求证:弧AD=弧FD;(3)如图3,在(2)的条件下,半径OC与AF相交于点K,连接BH,若sin∠BHD=23,S△BCH=√5,求线段OK的长.。

(浙教版)九年级数学同步单元双基双测AB卷:第1章 解直角三角形单元测试(B卷)含解析版答案

(浙教版)九年级数学同步单元双基双测AB卷:第1章 解直角三角形单元测试(B卷)含解析版答案

第1章解直角三角形单元测试(B卷提升篇)【浙教版】学校:___________姓名:___________班级:___________考号:___________满分:120分考试时间:100分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)一.选择题(共10小题,每小题3分,共30分)1.(3分)(2019•海淀区校级模拟)如图,△ABC中,∠C=90°,BC=2,AB=3,则下列结论正确的是()A.sin A=B.cos A=C.sin A=D.tan A=2.(3分)(2018秋•昭平县期末)在Rt△ABC中,∠C=90°,a=1,c=,则∠A的度数为()A.30°B.45°C.50°D.60°3.(3分)(2019春•江岸区校级月考)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,下列各组线段的比不能表示sin∠BCD的()A.B.C.D.4.(3分)(2019•南关区二模)数学活动小组利用测角仪和皮尺测量学校旗杆的高度的示意国科如图所示,在D处没得旗杆顶端A的仰角∠ADE为55°,D蹑旗杆的距离DE为6米,测角仪CD的高度为1米,设旗杆AB的高度为x米,则下列关系式正确的是()A.B.C.D.5.(3分)(2019•新华区校级模拟)一人沿坡比为1:的斜边AB滑下,滑下的距离S米与时间t秒的关系式S=10t+2t2,如果滑到坡底的时间为4秒,则此人水平移动的距离为()A.36 米B.18米C.72 米D.36米6.(3分)(2019•秦淮区一模)已知Rt△ABC,∠C=90°,若∠A>∠B,则下列选项正确的是()A.sin A<sin B B.cos A<cos B C.tan A<tan B D.sin A<cos A7.(3分)(2018秋•苏州期末)如图,在△ABC中,∠ACB=90°,sin A=,CD平分∠ACB,则∠BDC的度数是()A.45°B.60°C.70°D.75°8.(3分)(2019•镇江模拟)如图,△ABC中,AD⊥BC于点D,AD=2,∠B=30°,S△ABC=10,则tan C 的值为()A.B.C.D.9.(3分)(2019•海港区校级自主招生)△ABC的内角A、B、C的对边分别为a、b、c.已知a=,c=2,cos A=,则b=()A.B.C.2 D.310.(3分)(2019•柯桥区模拟)将一副三角板如图摆放在一起,组成四边形ABCD,∠ABC=∠ACD=90°,∠ADC=60°,∠ACB=45°,连接BD,则tan∠CBD的值等于()A.B.C.D.第Ⅱ卷(非选择题)二.填空题(共6小题,每小题4分,共24分)11.(4分)(2019•黔东南州一模)在Rt△ABC中,∠C=90°,若cos B=,则tan B=.12.(4分)(2019•富顺县一模)在△ABC中,若,则△ABC是三角形.13.(4分)(2019•柳州)如图,在△ABC中,sin B=,tan C=,AB=3,则AC的长为.14.(4分)如图,在直角△BAD中,延长斜边BD到点C,使DC=BD,连接AC,若tanB=,则tan∠CAD 的值.15.(4分)(2019春•海淀区校级月考)如图,在△ABC中,AB=AC,BD是AC边上的中线,AE⊥BC,垂足为点E,交BD于F,cos∠ABC=,AB=13.则tan∠DBC的值为.16.(4分)(2019•铜山区二模)在边长为1的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点O,则cos∠AOD=.三.解答题(共7小题,共66分)17.(6分)(2009秋•祁阳县校级期中)(1)已知,求tanα的值.(2)已知α为锐角,且tanα=4,求的值.18.(8分)如图,在△ABC中,CD是边AB上的中线,∠B是锐角,且sinB=,tanA=,AC=3(1)求∠B的度数与AB的值;(2)求tan∠CDB.19.(8分)如图,线段AB、CD分别表示甲、乙两建筑物的高,BA⊥AD,CD⊥DA,垂足分别为A、D.从D 点测到B点的仰角α为60°,从C点测得B点的仰角β为30°,甲建筑物的高AB=30米.(1)求甲、乙两建筑物之间的距离AD.(2)求乙建筑物的高CD.20. (10分)如图,已知Rt△ABC中,∠ACB=90°,CD是斜边上的中线,过点B作BE⊥CD,BE分别与CD、AC相交于点F、E,FB=2CF.(1)求sinA的值;(2)如果CD=5,求AE的值.21.(10分)(2019•锦州)如图,某学校体育场看台的顶端C到地面的垂直距离CD为2m,看台所在斜坡CM 的坡比i=1:3,在点C处测得旗杆顶点A的仰角为30°,在点M处测得旗杆顶点A的仰角为60°,且B,M,D三点在同一水平线上,求旗杆AB的高度.(结果精确到0.1m,参考数据:≈1.41,=1.73)22.(12分)(2019•嘉兴二模)如图1是某品牌订书机,其截面示意图如图2所示.订书钉放置在轨槽CD 内的MD处,由连接弹簧的推动器MN推紧,连杆EP一端固定在压柄CF上的点E处,另一端P在DM上移动.当点P与点M重合后,拉动压柄CF会带动推动器MN向点C移动.使用时,压柄CF的端点F与出钉口D重合,纸张放置在底座AB的合适位置下压完成装订(即点D与点H重合).已知CA⊥AB,CA=2cm,AH=12cm,CE=5cm,EP=6cm,MN=2cm.(1)求轨槽CD的长(结果精确到0.1);(2)装入订书钉需打开压柄FC,拉动推动器MN向点C移动,当∠FCD=53°时,能否在ND处装入一段长为2.5cm的订书钉?(参考数据:≈2.24,≈6.08,sin53°≈0.80,cos53°≈0.60)23.(12分)如图1,正方形ABCD中,点E是边BC延长线上一点,连接DE,过点B作BF⊥DE,垂足为点F,BF与CD相交于点G.(1)求证:△BCG≌△DCE;(2)如图2,连接BD,若BE=4,DG=2,求tan∠DBG的值.第1章解直角三角形单元测试(B卷提升篇)【浙教版】参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)(2019•海淀区校级模拟)如图,△ABC中,∠C=90°,BC=2,AB=3,则下列结论正确的是()A.sin A=B.cos A=C.sin A=D.tan A=【思路点拨】先根据勾股定理求出AC的长,再根据锐角三角函数的定义进行计算即可.【答案】解:∵△ABC中,∠C=90°,BC=2,AB=3,∴AC===.sin A=,cos A=,tan A==,只有选项D正确.故选:D.【点睛】本题可以考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.2.(3分)(2018秋•昭平县期末)在Rt△ABC中,∠C=90°,a=1,c=,则∠A的度数为()A.30°B.45°C.50°D.60°【思路点拨】先判断出A的取值范围,再根据sin45°=解答即可.【答案】解:∵Rt△ABC中,∠C=90°,∴∠A为锐角.∵sin A=,∴A=45°.故选:B.【点睛】此题比较简单,只要熟记特殊角的三角函数值即可.3.(3分)(2019春•江岸区校级月考)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,下列各组线段的比不能表示sin∠BCD的()A.B.C.D.【思路点拨】根据三角形内角和定理求出∠BCD=∠A,再解直角三角形得出即可.【答案】解:∵CD⊥AB,∴∠CDA=∠CDB=90°,∵∠ACB=90°,∴∠BCD+∠ACD=90°,∠A+∠ACD=90°,∴∠BCD=∠A,∴sin∠BCD=sin A===,即只有选项C错误,选项A、B、D都正确,故选:C.【点睛】本题考查了锐角三角函数的定义,能熟记锐角三角函数的定义的内容是解此题的关键,注意:在Rt△ACB中,∠C=90°,则sin A=,cos A=,tan A=,cot A=.4.(3分)(2019•南关区二模)数学活动小组利用测角仪和皮尺测量学校旗杆的高度的示意国科如图所示,在D处没得旗杆顶端A的仰角∠ADE为55°,D蹑旗杆的距离DE为6米,测角仪CD的高度为1米,设旗杆AB的高度为x米,则下列关系式正确的是()A.B.C.D.【思路点拨】根据三角函数和直角三角形的性质解答即可.【答案】解:∵在Rt△ADE中,DE=6,AE=AB﹣BE=AB﹣CD=x﹣1,∠ADE=55°,∴tan55°==,故选:B.【点睛】此题考查了考查仰角的定义,三角函数的定义,注意数形结合思想的应用.5.(3分)(2019•新华区校级模拟)一人沿坡比为1:的斜边AB滑下,滑下的距离S米与时间t秒的关系式S=10t+2t2,如果滑到坡底的时间为4秒,则此人水平移动的距离为()A.36 米B.18米C.72 米D.36米【思路点拨】求滑下的距离;设出下降的高度,表示出水平宽度,利用勾股定理即可求解.【答案】解:如图,当t=4时,s=10t+2t2=72.设此人下降的高度为x米,过斜坡顶点向地面作垂线.在直角三角形中,由勾股定理得:x2+(x)2=722.解得x=36.即此人水平移动的距离为36米,故选:D.【点睛】本题主要考查解直角三角形的应用,解题的关键是理解坡比的意义,使用勾股定理,设未知数,列方程求解.6.(3分)(2019•秦淮区一模)已知Rt△ABC,∠C=90°,若∠A>∠B,则下列选项正确的是()A.sin A<sin B B.cos A<cos B C.tan A<tan B D.sin A<cos A【思路点拨】根据大角对大边定理以及三角函数的定义即可求出答案.【答案】解:设∠A,∠B,∠C对应的边为a,b,c∵∠A>∠B,∴a>b,∵sin A=,sin B=,cos A=,cos B=,∴sin A>sin B,cos A<cos B,故选:B.【点睛】本题考查三角函数,解题的关键是熟练运用大角对大边定理,本题属于基础题型.7.(3分)(2018秋•苏州期末)如图,在△ABC中,∠ACB=90°,sin A=,CD平分∠ACB,则∠BDC的度数是()A.45°B.60°C.70°D.75°【思路点拨】根据在△ABC中,∠ACB=90°,sin A=,CD平分∠ACB,可以得到∠A和∠ACD的度数,从而可以求得∠BDC的度数.【答案】解:∵在△ABC中,∠ACB=90°,sin A=,CD平分∠ACB,∴∠A=30°,∠ACD=45°,∵∠BDC=∠A+∠ACD,∴∠BDC=75°,故选:D.【点睛】本题考查解直角三角形,解答本题的关键是明确题意,利用锐角三角函数和角平分性的性质解答.8.(3分)(2019•镇江模拟)如图,△ABC中,AD⊥BC于点D,AD=2,∠B=30°,S△ABC=10,则tan C 的值为()A.B.C.D.【思路点拨】首先解直角△ABD,求得BD,再根据S△ABC=10,求出BC,那么CD=BC﹣BD,然后在直角△ACD中利用正切函数定义即可求得tan C的值.【答案】解:∵在△ABD中,∠ADB=90°,AD=2,∠B=30°,∴BD===6.∵S△ABC=BC•AD=10,∴BC•2=10,∴BC=10,∴CD=BC﹣BD=10﹣6=4,∴tan C===.故选:D.【点睛】本题考查了解直角三角形,三角形的面积,锐角三角函数定义,解题的关键是求出CD的长. 9.(3分)(2019•海港区校级自主招生)△ABC的内角A、B、C的对边分别为a、b、c.已知a=,c=2,cos A=,则b=()A.B.C.2 D.3【思路点拨】如图,作BH⊥AC于H.解直角三角形分别求出AH,CH即可.【答案】解:如图,作BH⊥AC于H.在Rt△ABH中,∵∠BHA=90°,∴cos A===,∴AH=,BH==,在Rt△CBH中,CH==,∴AC=AH+CH=+=3,故选:D.【点睛】本题考查解直角三角形的应用,解题的关键是学会解题常用辅助线,构造直角三角形解决问题.10.(3分)(2019•柯桥区模拟)将一副三角板如图摆放在一起,组成四边形ABCD,∠ABC=∠ACD=90°,∠ADC=60°,∠ACB=45°,连接BD,则tan∠CBD的值等于()A.B.C.D.【思路点拨】如图所示,连接BD,过点D作DE垂直于BC的延长线于点E,构造直角三角形,将∠CBD 置于直角三角形中,设CE为1,根据特殊直角三角形分别求得线段CD、AC、BC,从而按正切函数的定义可解.【答案】解:如图所示,连接BD,过点D作DE垂直于BC的延长线于点E∵在Rt△ABC中,∠ACB=45°,在Rt△ACD中,∠ACD=90°∴∠DCE=45°,∵DE⊥CE∴∠CED=90°,∠CDE=45°∴设DE=CE=1,则CD=在Rt△ACD中,∵∠CAD=30°,∴tan∠CAD=,则AC=,在Rt△ABC中,∠BAC=∠BCA=45°∴BC=,∴在Rt△BED中,tan∠CBD===故选:D.【点睛】本题考查了用定义求三角函数,同时考查了特殊角的三角函数值,如何作辅助线,是解题的关键.二.填空题(共6小题,每小题4分,共24分)11.(4分)(2019•黔东南州一模)在Rt△ABC中,∠C=90°,若cos B=,则tan B=.【思路点拨】在Rt△ABC中,∠C=90°,若cos B=,设BC=4x,AB=5x,根据勾股定理得到AC==3x,根据正切函数的定义即可得到结论.【答案】解:∵在Rt△ABC中,∠C=90°,若cos B=,∴设BC=4x,AB=5x,勾股定理得AC==3x,由正切等于对边比邻边,得tan B==,故答案为:.【点睛】本题考查了同角三角函数的关系,勾股定理,正切函数的定义.12.(4分)(2019•富顺县一模)在△ABC中,若,则△ABC是等边三角形.【思路点拨】直接绝对值的性质以及偶次方的性质得出sin A=,cos B=,再利用特殊角的三角函数值求出答案.【答案】解:∵|sin A﹣|+(cos B﹣)2=0,∴sin A=,cos B=,∴∠A=60°,∠B=60°,∴△ABC是等边三角形.故答案为:等边.【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.13.(4分)(2019•柳州)如图,在△ABC中,sin B=,tan C=,AB=3,则AC的长为.【思路点拨】过A作AD垂直于BC,在直角三角形ABD中,利用锐角三角函数定义求出AD的长,在直角三角形ACD中,利用锐角三角函数定义求出CD的长,再利用勾股定理求出AC的长即可.【答案】解:过A作AD⊥BC,在Rt△ABD中,sin B=,AB=3,∴AD=AB•sin B=1,在Rt△ACD中,tan C=,∴=,即CD=,根据勾股定理得:AC===,故答案为:【点睛】此题考查了解直角三角形,涉及的知识有:锐角三角函数定义,以及勾股定理,熟练掌握各自的性质是解本题的关键.14.(4分)如图,在直角△BAD中,延长斜边BD到点C,使DC=BD,连接AC,若tanB=,则tan∠CAD的值.【思路点拨】延长AD,过点C作CE⊥AD,垂足为E,由tanB=,即=,设AD=5x,则AB=3x,然后可证明△CDE∽△BDA,然后相似三角形的对应边成比例可得:===,进而可得CE=x,DE=x,从而可求tan∠CAD==.【答案】解:如图,延长AD,过点C作CE⊥AD,垂足为E,∵tanB=,即=,∴设AD=5x,则AB=3x,∵∠CDE=∠BDA,∠CED=∠BAD,∴△CDE∽△BDA,∴===,∴CE=x,DE=x,∴AE=,∴tan∠CAD==,故答案为.【点睛】本题考查了锐角三角函数的定义,相似三角形的判定和性质以及直角三角形的性质,是基础知识要熟练掌握,解题的关键是:正确添加辅助线,将∠CAD放在直角三角形中.15.(4分)(2019春•海淀区校级月考)如图,在△ABC中,AB=AC,BD是AC边上的中线,AE⊥BC,垂足为点E,交BD于F,cos∠ABC=,AB=13.则tan∠DBC的值为.【思路点拨】过点D作DG⊥BC于点G,易求得AB=AC=13,AE=6,BE=CE=5,然后利用中位线的性质即可求出DG=6,最后利用锐角三角函数的定义即可求出答案.【答案】解:过点D作DG⊥BC于点G,∵AB=AC=13,cos∠ABC=,∴BE=5,由勾股定理可知:AE=12,∵AE⊥BC,∴BE=EC=5,∵D是AC的中点,DG∥AE,∴DG是△AEC的中位线,∴DG=AE=6,EG=CE=,∴BG=,在Rt△BDG中,tan∠DBC==,故答案为:【点睛】本题考查解直角三角形,解题的关键是熟练运用勾股定理以及锐角三角函数的定义,本题属于中等题型.16.(4分)(2019•铜山区二模)在边长为1的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点O,则cos∠AOD=.【思路点拨】设右下角顶点为点F,取DF的中点E,连接BE,AE,由点B为CF的中点、点E为DF的中点可得出BE∥CD,进而可得出∠AOD=∠ABE,在△ABE中,由AB2=AE2+BE2可得出∠AEB=90°,再利用余弦的定义即可求出cos∠ABE的值,此题得解.【答案】解:设右下角顶点为点F,取DF的中点E,连接BE,AE,如图所示.∵点B为CF的中点,点E为DF的中点,∴BE∥CD,∴∠AOD=∠ABE.在△ABE中,AB=,AE=2,BE=,∵AB2=AE2+BE2,∴∠AEB=90°,∴cos∠ABE===,∴cos∠AOD=.故答案为:.【点睛】本题考查了解直角三角形、勾股定理逆定理、余弦的定义、中位线以及平行线的性质,构造出含有一个锐角等于∠AOD的直角三角形是解题的关键.三.解答题(共7小题,共66分)17.(6分)(2009秋•祁阳县校级期中)(1)已知,求tanα的值.(2)已知α为锐角,且tanα=4,求的值.【思路点拨】(1)对已知条件分子分母同除以cosα即可求解;(2)根据已知条件可得sinα=4cosα,代入式子求解即可.【答案】解:(1)分子分母同除以cosα,得=2,去分母,得3tanα+3=4tanα+2,解得tanα=1;(2)∵tanα=4,=tanα,∴sinα=4cosα,∴==﹣13.【点睛】本题利用正弦、余弦与正切之间的关系tanα=求解.18.(8分)如图,在△ABC中,CD是边AB上的中线,∠B是锐角,且sinB=,tanA=,AC=3(1)求∠B的度数与AB的值;(2)求tan∠CDB.【思路点拨】(1)作CE⊥AB于E,设CE=x,利用∠A的正切可得到AE=2x,则根据勾股定理得到AC=x,所以x=3,解得x=3,于是得到CE=3,AE=6,接着利用sinB=得到∠B=45°,则BE=CE=3,最后计算AE+BE得到AB的长,(2)利用CD为中线得到BD=AB=4.5,则DE=BD﹣BE=1.5,然后根据正切的定义求解.【答案】解:(1)作CE⊥AB于E,设CE=x,在Rt△ACE中,∵tanA==,∴AE=2x,∴AC==x,∴x=3,解得x=3,∴CE=3,AE=6,在Rt△BCE中,∵sinB=,∴∠B=45°,∴△BCE为等腰直角三角形,∴BE=CE=3,∴AB=AE+BE=9,答:∠B的度数为45°,AB的值为9;(2)∵CD为中线,∴BD=AB=4.5,∴DE=BD﹣BE=4.5﹣3=1.5,∴tan∠CDE===2,即tan∠CDB的值为2.【点睛】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.解决此类题目的关键是熟练应用勾股定理和锐角三角函数的定义.19.(8分)如图,线段AB、CD分别表示甲、乙两建筑物的高,BA⊥AD,CD⊥DA,垂足分别为A、D.从D 点测到B点的仰角α为60°,从C点测得B点的仰角β为30°,甲建筑物的高AB=30米.(1)求甲、乙两建筑物之间的距离AD.(2)求乙建筑物的高CD.【思路点拨】(1)在Rt△ABD中利用三角函数即可求解;(2)作CE⊥AB于点E,在Rt△BCE中利用三角函数求得BE的长,然后根据CD=AE=AB﹣BE求解.【答案】解:(1)作CE⊥AB于点E,在Rt△ABD中,AD===10(米);(2)在Rt△BCE中,CE=AD=10米,BE=CE•tanβ=10×=10(米),则CD=AE=AB﹣BE=30﹣10=20(米)答:乙建筑物的高度DC为20m.【点睛】本题考查了直角三角形中三角函数的应用,考查了特殊角的三角函数值,本题中求的AD的长是解题的关键.20. (10分)如图,已知Rt△ABC中,∠ACB=90°,CD是斜边上的中线,过点B作BE⊥CD,BE分别与CD、AC相交于点F、E,FB=2CF.(1)求sinA的值;(2)如果CD=5,求AE的值.【思路点拨】(1)根据直角三角形的性质得到CD=AD,得到∠A=∠ACD,证明△EFC∽△CFB,根据相似三角形的性质、勾股定理计算即可;(2)根据直角三角形的性质求出AB,根据正弦的定义求出BC,根据勾股定理计算即可.【答案】解:(1)∵∠ACB=90°,CD是斜边上的中线,∴CD=AD,∴∠A=∠ACD,∵∠ACB=90°,BE⊥CD,∴△EFC∽△CFB,∴===,∴CF=2EF,由勾股定理得,CE==EF,∴sin∠ACD==,∴sinA=;(2)∵CD=5,∴AB=10,∵sinA=,∴BC=2,由勾股定理得,AC=4,又EC=BC=,∴AE=3.【点睛】本题考查的是直角三角形的性质、锐角三角函数的概念,掌握直角三角形斜边上的中线是斜边的一半、锐角三角函数的定义是解题的关键.21.(10分)(2019•锦州)如图,某学校体育场看台的顶端C到地面的垂直距离CD为2m,看台所在斜坡CM 的坡比i=1:3,在点C处测得旗杆顶点A的仰角为30°,在点M处测得旗杆顶点A的仰角为60°,且B,M,D三点在同一水平线上,求旗杆AB的高度.(结果精确到0.1m,参考数据:≈1.41,=1.73)【思路点拨】过点C作CE⊥AB于点E,设BM=x,根据矩形的性质以及锐角三角函数的定义即可求出答案.【答案】解:过点C作CE⊥AB于点E,∵CD=2,tan∠CMD=,∴MD=6,设BM=x,∴BD=x+6,∵∠AMB=60°,∴∠BAM=30°,∴AB=x,已知四边形CDBE是矩形,∴BE=CD=2,CE=BD=x+6,∴AE=x﹣2,在Rt△ACE中,∵tan30°=,∴=,解得:x=3+,∴AB=x=3+3≈8.2m【点睛】本题考查解直角三角形,解题的关键是熟练运用锐角三角函数的定义以及矩形的性质,本题属于中等题型.22.(12分)(2019•嘉兴二模)如图1是某品牌订书机,其截面示意图如图2所示.订书钉放置在轨槽CD 内的MD处,由连接弹簧的推动器MN推紧,连杆EP一端固定在压柄CF上的点E处,另一端P在DM上移动.当点P与点M重合后,拉动压柄CF会带动推动器MN向点C移动.使用时,压柄CF的端点F与出钉口D重合,纸张放置在底座AB的合适位置下压完成装订(即点D与点H重合).已知CA⊥AB,CA=2cm,AH=12cm,CE=5cm,EP=6cm,MN=2cm.(1)求轨槽CD的长(结果精确到0.1);(2)装入订书钉需打开压柄FC,拉动推动器MN向点C移动,当∠FCD=53°时,能否在ND处装入一段长为2.5cm的订书钉?(参考数据:≈2.24,≈6.08,sin53°≈0.80,cos53°≈0.60)【思路点拨】(1)由题意CD=CH,利用勾股定理求出CH即可.(2)如图2中,作EK⊥PC于K.解直角三角形求出CK,PK,DN即可判断.【答案】解:(1)由题意CD=CH,在Rt△ACH中,CH==2≈12.2(cm).∴CD=CH=12.6(cm).(2)如图2中,作EK⊥PC于K.在Rt△ECK中,EK=EC•sin53°≈4(cm),CK=EC•cos53°≈3(cm),在Rt△EPK中,PK===2≈4.48(cm),∴DP=CD﹣CK﹣PK﹣MN=12.6﹣3﹣4.48﹣2=3.12>2.5,∴能在ND处装入一段长为2.5cm的订书钉.【点睛】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.23.(12分)如图1,正方形ABCD中,点E是边BC延长线上一点,连接DE,过点B作BF⊥DE,垂足为点F,BF与CD相交于点G.(1)求证:△BCG≌△DCE;(2)如图2,连接BD,若BE=4,DG=2,求tan∠DBG的值.【思路点拨】(1)只要证明∠CBG=∠CDE,即可用ASA证明△BCG≌△DCE.(2)利用勾股定理分别在RT△DHG,RT△BHG中,求出BH,HG即可解决.【答案】(1)证明:∵四边形ABCD是正方形,∴∠BCG=∠DCE=90°,BC=CD,∵BF⊥DE,∴∠DFG=∠BCG=90°,∵∠BGC=∠DGF,∴∠CBG=∠CDE.在△BCG和△DCE中,,∴△BCG≌△DCE,(2)解:∵△BCG≌△DCE,∴CG=CE,∵BE=BC+CE=4,DG=CD﹣CG=2,∴BC=CD=3,CG=CE=,在RT△BDC中,∵∠BCD=90°,∴BD===6,过点G作GH⊥BD垂足为H,∵∠DHG=45°,∠DHG=90°,DG=2,∴=,∴DH=2,∴GH=DH=2,∵BD=BH﹣DH,∴BH=6﹣2=4,在RT△BHG中,∵∠BHG=90°,∴tan∠DBG=,∴tan∠DBG=.【点睛】本题考查正方形的性质、全等三角形的判定和性质、勾股定理等知识,利用线段和差关系求出线段BC,CG是解题的关键.。

人教版九年级数学下册《解直角三角形》同步作业(含答案)

人教版九年级数学下册《解直角三角形》同步作业(含答案)

图28-3练习9 解直角三角形一、自主学习1.如图28-3所示,Rt △ABC 中 (1)它三边之间的关系是_________. (2)它两锐角之间的关系是________. (3)它的边角之间的关系是:___________________,____________________; ___________________,__________________; ___________________,____________________; 二、基础巩固2.等腰三角形的周长为2+3,腰长为1,则它的底角等于________.3.在离地面5 m 处引拉线固定电线杆,拉线和地面成60°角,则拉线的长为_______________.4.一个梯形的两个下底角分别为30°和45°,较大的腰长为10 cm ,则它另一腰长为________.5.△ABC 中,BC=2,AC=3+3,∠C=30°,则sinA=_________.6.在高度为93 m 的建筑物上,观察一楼房的顶端和底部的俯角分别为30°,60°,则这栋楼房的高度为___________m.7.Rt △ABC 中,∠C=90°,sinA=54,AB=10,则BC=________,cosB=________8.△ABC 中,若∠ABC=45°,∠ACB=30°,AB=22,则S △ABC =_________.9.如图28-4所示,△ABC 中,CD ⊥AB 于D 点,且BD=2AD ,若CD=34,tan ∠BCD=33,则高AE=____.10.Rt △ABC 中,CD 是斜边AB 上的高,AB=8 cm ,AC=34cm ,则AD=_____________cm.11.Rt △ABC 中,∠C=90°,∠A 、∠B 、∠c 所对的边分别为a 、b 、c ,若a=25,b=215,则c=________,∠A_______,∠B________.三、能力提高12.Rt △ABC 斜边上的中线CD 长为1,周长是2+6,则它的面积是( ) A.2B.21C.1D.)32(21+13.正方形ABCD 的边长为5,E 、F 分别在边BC 、CD 上,若△AEF 为等边三角形,则BE 的长是( ) A.3255-B.3310C.3510-D.23514.如图28-5所示,一束平行的光线从教室窗射入教室,测得光线与地面所成的∠AMC=30°,窗户的高在教室地面的图28-4影长MN=32m ,窗户的下檐到教室地面的距离BC=1 m ,(点M 、N 、C 在同一直线上),则窗户高AB 为( )图28-5 图28-6 图28-7A.3m B.3 m C.2 m D.1.5 m15.在平面直角坐标系内,坐标原点为O ,点M 在第四象限,且OM=1,∠MOx=30°,则点M 的坐标是( ) A.(21,23-) B.(21,23--) C.(21,23-) D.(23,21-)16.如图28-6所示,在山坡上种树,已知相邻两株树的坡面距离AB 为4 m ,∠B=60°,则这两株树的水平距离和高度差分别为( ) A.32m ,2 m B.2 m ,32m C.3 m ,1 mD.1 m,3m17.大风刮断一根废弃的木电线杆,如图28-7所示,杆的顶端B 落到地面离其底部A 的距离为3m处,若两截电线杆的夹角为30°,则电线杆刮断前的高度为( ) A.6 m B.33m C.3+32 m D.32 m18.Rt △ABC 中,∠C=90°,若AC 的长等于斜边上的中线长的34,则较大锐角的余弦值是( )A.35B.552C.553D.3219.如图28-8所示,将-矩形纸片ABCD 折起一个角,使点C 恰好落在AB 边,若AD=m ,∠CDE=α,则折痕DE=( )A.αα2sin cos •mB.ααcos sin 2•mC.ααcos sin •mD.ααsin cos 2•m图28-8 图28-920.已知平行四边形两邻边长分别是64cm和34cm ,一角为45°,则这个平行四边形的较长对角线长是( ) A.66cm B.68 cm C.38 cm D.154cm21.如图28-9所示,△ABC 中,D 为AB 的中点,∠ACB=135°,AC ⊥CD ,则sinA=( ) A.53B.55C.51 D.52四、模拟链接22.小明家在花园小区某栋楼AD 内,他家附近又新建了一座大厦BC ,已知两栋楼房间的水平距离为90 m ,AD 楼高60 m ,小明爬上自家所在楼房顶测得大厦顶部C 的仰角为30°,求大厦BC 的高.(精确到1 m ,如图28-10所示)图28-1023.小华所在的学校A位于某工地O的正西方向,如图28-11所示,且OA=200 m.一拖拉机从工地O出发,以5m/s的速度沿北偏西53°方向行驶,设拖拉机的噪音影响半径为130 m,问小华所在的学校A是否受拖拉机噪音影响?若受影响,请求出学校受拖拉机噪音影响的时间.(已知sin53°≈0.80、sin37°≈0.60)图28-1124.阅读下列材料,并解决后面的问题:在锐角△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,作AD ⊥BC 于D(如图28-12),则sinB=cAD ,sinC=bAD ,即AD=c·sinB ,AD=b·sinC ,于是c·sinB=b·sinC ,即C cB b sin sin =,同理有A a C c sin sin =,即Cc B b A a sin sin sin == 即:在一个锐角三角形中,各边和它所对角的正弦的比相等.[来源:学+科+网Z+X+X+K](1)在锐角三角形中,若已知三个元素a 、b 、∠A ,运用上述结论和有关定理就可求出其余三个元素c 、∠B 、∠C ,请按照下列步骤填空,完成求解过程.第一步:由条件a 、b 、∠A −−−→−有关系式_________−−→−求出∠B ; 第二步:由条件∠A 、∠B −−−→−有关系式________−−→−求出∠C ; 第三步:由条件_______−−−→−有关系式__________−−→−求出∠c (2)一货轮在C 处测得灯塔A 在其北偏西30°的方向上,随后货轮以284海里/时的速度沿北偏东45°的方向航行,半小时后到达B 处,此时又测得灯塔在货轮的北偏西70°的方向上(如图28-13),求此时货轮距灯塔A 的距离AB(结果精确到0.1,参考数据:sin40°=0.643,sin65°=0.906,sin70°=0.940,sin75°=0.966).图28-12图28-13参考答案一、自主学习1.如图28-3所示,Rt△ABC中(1)它三边之间的关系是_________.(2)它两锐角之间的关系是________.(3)它的边角之间的关系是:__________________________,_______________________ ______;____________________________,__________________________;___________________________,_________________________;图28-3答案:(1)a 2+b 2=c 2 (2)∠A+∠B=90° (3)sinA=ca ,cosA=cb ,tanA=bacotA=ab ,sinB=cb ,cosB=ca ,tanB=ab ,cotB=ba二、基础巩固2.等腰三角形的周长为2+3,腰长为1,则它的底角等于________. 答案:30°3.在离地面5 m 处引拉线固定电线杆,拉线和地面成60°角,则拉线的长为_______________. 答案:3310m4.一个梯形的两个下底角分别为30°和45°,较大的腰长为10 cm ,则它另一腰长为________. 答案:255.△ABC 中,BC=2,AC=3+3,∠C=30°,则sinA=_________.答案:10106.在高度为93 m 的建筑物上,观察一楼房的顶端和底部的俯角分别为30°,60°,则这栋楼房的高度为___________m.答案:627.Rt △ABC 中,∠C=90°,sinA=54,AB=10,则BC=________,cosB=________ 答案:8548.△ABC 中,若∠ABC=45°,∠ACB=30°,AB=22,则S △ABC =_________. 答案:2329.如图28-4所示,△ABC 中,CD ⊥AB 于D 点,且BD=2AD ,若CD=34,tan ∠BCD=33,则高AE=__________.图28-4答案:3310.Rt △ABC 中,CD 是斜边AB 上的高,AB=8 cm ,AC=34cm ,则AD=_____________cm.答案:611.Rt △ABC 中,∠C=90°,∠A 、∠B 、∠c 所对的边分别为a 、b 、c ,若a=25,b=215,则c=________,∠A_______,∠B________. 答案:530° 60°三、能力提高12.Rt △ABC 斜边上的中线CD 长为1,周长是2+6,则它的面积是( ) A.2B.21 C.1D.)32(21+答案:B13.正方形ABCD 的边长为5,E 、F 分别在边BC 、CD 上,若△AEF 为等边三角形,则BE 的长是( ) A.3255-B.3310C.3510-D.235答案:C14.如图28-5所示,一束平行的光线从教室窗射入教室,测得光线与地面所成的∠AMC=30°,窗户的高在教室地面的影长MN=32m ,窗户的下檐到教室地面的距离BC=1 m ,(点M 、N 、C 在同一直线上),则窗户高AB 为( )图28-5A.3m B.3 m C.2 mD.1.5 m 答案:C15.在平面直角坐标系内,坐标原点为O ,点M 在第四象限,且OM=1,∠MOx=30°,则点M 的坐标是( )A.(21,23-) B.(21,23--) C.(21,23-)D.(23,21-)答案:A16.如图28-6所示,在山坡上种树,已知相邻两株树的坡面距离AB 为4 m ,∠B=60°,则这两株树的水平距离和高度差分别为( ) A.32m ,2 m B.2 m ,32 m C.3 m ,1 mD.1 m,3m图28-6答案:A17.大风刮断一根废弃的木电线杆,如图28-7所示,杆的顶端B 落到地面离其底部A 的距离为3m处,若两截电线杆的夹角为30°,则电线杆刮断前的高度为( ) A.6 m B.33 m C.3+32mD.32m图28-7答案:C18.Rt △ABC 中,∠C=90°,若AC 的长等于斜边上的中线长的34,则较大锐角的余弦值是( )A.35B.552 C.553D.32 答案:D19.如图28-8所示,将-矩形纸片ABCD 折起一个角,使点C 恰好落在AB 边,若AD=m ,∠CDE=α,则折痕DE=( )图28-8A.αα2sin cos •mB.ααcos sin 2•mC.ααcos sin •mD.ααsin cos 2•m 答案:A20.已知平行四边形两邻边长分别是64cm和34cm ,一角为45°,则这个平行四边形的较长对角线长是( ) A.66 cm B.68 cm C.38cmD.154cm答案:D21.如图28-9所示,△ABC 中,D 为AB 的中点,∠ACB=135°,AC ⊥CD ,则sinA=( ) A.53 B.55C.51 D.52图28-9答案:B 四、模拟链接22.小明家在花园小区某栋楼AD 内,他家附近又新建了一座大厦BC ,已知两栋楼房间的水平距离为90 m ,AD 楼高60 m ,小明爬上自家所在楼房顶测得大厦顶部C 的仰角为30°,求大厦BC 的高.(精确到1 m ,如图28-10所示)图28-10答案:112 m23.小华所在的学校A 位于某工地O 的正西方向,如图28-11所示,且OA=200 m.一拖拉机从工地O 出发,以5m/s 的速度沿北偏西53°方向行驶,设拖拉机的噪音影响半径为130 m ,问小华所在的学校A 是否受拖拉机噪音影响?若受影响,请求出学校受拖拉机噪音影响的时间.(已知sin53°≈0.80、sin37°≈0.60)图28-11答案:受影响的时间为20 s24.阅读下列材料,并解决后面的问题:在锐角△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,作AD ⊥BC 于D(如图28-12),则sinB=cAD ,sinC=bAD ,即AD=c·sinB ,AD=b·sinC ,于是c·sinB=b·sinC ,即C cB b sin sin =,同理有A a C c sin sin =,即Cc B b A a sin sin sin == 即:在一个锐角三角形中,各边和它所对角的正弦的比相等.[来源:学+科+网Z+X+X+K](1)在锐角三角形中,若已知三个元素a 、b 、∠A ,运用上述结论和有关定理就可求出其余三个元素c 、∠B 、∠C ,请按照下列步骤填空,完成求解过程.第一步:由条件a 、b 、∠A −−−→−有关系式_________−−→−求出∠B ; 第二步:由条件∠A 、∠B −−−→−有关系式________−−→−求出∠C ; 第三步:由条件_______−−−→−有关系式__________−−→−求出∠c (2)一货轮在C 处测得灯塔A 在其北偏西30°的方向上,随后货轮以284海里/时的速度沿北偏东45°的方向航行,半小时后到达B 处,此时又测得灯塔在货轮的北偏西70°的方向上(如图28-13),求此时货轮距灯塔A 的距离AB(结果精确到0.1,参考数据:sin40°=0.643,sin65°=0.906,sin70°=0.940,sin75°=0.966).图28-12 图28-13答案:(1)略(2)约为21.3海里(提示:用题目中的结论)。

2021-2022学年浙教版九年级数学下册《第1章解直角三角形》期末综合复习训练(附答案)

2021-2022学年浙教版九年级数学下册《第1章解直角三角形》期末综合复习训练(附答案)

2021-2022学年浙教版九年级数学下册《第1章解直角三角形》期末综合复习训练(附答案)1.某商场准备改善原有楼梯的安全性能,把坡角由37°减至30°,已知原楼梯长为5米,调整后的楼梯会加长()(参考数据:sin37°≈,cos37°≈,tan37°≈).A.6米B.3米C.2米D.1米2.如图,在一次数学实践活动中,小明同学要测量一座与地面垂直的古塔AB的高度,他从古塔底部点B处前行30m到达斜坡CE的底部点C处,然后沿斜坡CE前行20m到达最佳测量点D处,在点D处测得塔顶A的仰角为30°,已知斜坡的斜面坡度i=1:,且点A,B,C,D,E在同一平面内,小明同学测得古塔AB的高度是()A.(10+20)m B.(10+10)m C.20m D.40m3.如图,在△ABC中,∠ACB=90°,点D在AB的延长线上,连接CD,若AB=2BD,tan∠BCD=,则的值为()A.1B.2C.D.4.如图,△ABC底边BC上的高为h1,△PQR底边QR上的高为h2,则有()A.h1=h2 B.h1<h2 C.h1>h2 D.以上都有可能5.如图,在△ABC中,点O是角平分线AD、BE的交点,若AB=AC=10,BC=12,则tan ∠OBD的值是()A.B.2C.D.6.如图,为了测量某建筑物BC的高度,小颖采用了如下的方法:先从与建筑物底端B在同一水平线上的A点出发,沿斜坡AD行走130米至坡顶D处,再从D处沿水平方向继续前行若干米后至点E处,在E点测得该建筑物顶端C的仰角为60°,建筑物底端B 的俯角为45°,点A、B、C、D、E在同一平面内,斜坡AD的坡度i=1:2.4.根据小颖的测量数据,计算出建筑物BC的高度约为(参考数据:≈1.732)()A.136.6米B.86.7米C.186.7米D.86.6米7.构建几何图形解决代数问题是“数形结合”思想的重要应用,在计算tan15°时,如图.在Rt△ACB中,∠C=90°,∠ABC=30°,延长CB使BD=AB,连接AD,得∠D=15°,所以tan15°====2﹣.类比这种方法,计算tan22.5°的值为()A.+1B.﹣1C.D.8.已知,在△ABC中,∠A=45°,AB=4,BC=5,则△ABC的面积为.9.数学活动小组为测量山顶电视塔的高度,在塔的椭圆平台遥控无人机.当无人机飞到点P处时,与平台中心O点的水平距离为15米,测得塔顶A点的仰角为30°,塔底B点的俯角为60°,则电视塔的高度为米.10.如图,一艘轮船位于灯塔P的南偏东60°方向,距离灯塔50海里的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东45°方向上的B处,此时B处与灯塔P 的距离为海里(结果保留根号).11.如图,某活动小组利用无人机航拍校园,已知无人机的飞行速度为3m/s,从A处沿水平方向飞行至B处需10s.同时在地面C处分别测得A处的仰角为75°,B处的仰角为30°,则这架无人机的飞行高度大约是m(≈1.732,结果保留整数).12.如图1是一台手机支架,图2是其侧面示意图,AB,BC可分别绕点A,B转动,测量知BC=8cm,AB=16cm.当AB,BC转动到∠BAE=60°,∠ABC=50°时,点C到AE的距离为cm.(结果保留小数点后一位,参考数据:sin70°≈0.94,≈1.73)13.如图,我国某海域有A,B两个港口,相距80海里,港口B在港口A的东北方向,点C处有一艘货船,该货船在港口A的北偏西30°方向,在港口B的北偏西75°方向,求货船与港口A之间的距离.(结果保留根号)14.2020年7月23日,我国首次火星探测“天问一号”探测器,由长征五号遥四运载火箭在中国文昌航天发射场发射成功,正式开启了中国的火星探测之旅.运载火箭从地面O 处发射,当火箭到达点A时,地面D处的雷达站测得AD=4000米,仰角为30°.3秒后,火箭直线上升到达点B处,此时地面C处的雷达站测得B处的仰角为45°.O,C,D 在同一直线上,已知C,D两处相距460米,求火箭从A到B处的平均速度.(结果保留整数,参考数据:≈1.732,≈1.414)15.小宸想利用测量知识测算湖中小山的高度.他站在湖边看台上,清晰地看到小山倒映在平静的湖水中,如图所示,他在点O处测得小山顶端的仰角为45°,小山顶端A在水中倒影A′的俯角为60°.已知:点O到湖面的距离OD=3m,OD⊥DB,AB⊥DB,A、B、A′三点共线,A'B=AB,求小山的高度AB.(光线的折射忽略不计;结果保留根号)16.某海域有一小岛P,在以P为圆心,半径r为10(3+)海里的圆形海域内有暗礁.一海监船自西向东航行,它在A处测得小岛P位于北偏东60°的方向上,当海监船行驶20海里后到达B处,此时观测小岛P位于B处北偏东45°方向上.(1)求A,P之间的距离AP;(2)若海监船由B处继续向东航行是否有触礁危险?请说明理由.如果有触礁危险,那么海监船由B处开始沿南偏东至多多少度的方向航行能安全通过这一海域?17.如图,莽山五指峰景区新建了一座垂直观光电梯.某测绘兴趣小组为测算电梯AC的高度,测得斜坡AB=105米,坡度i=1:2,在B处测得电梯顶端C的仰角α=45°,求观光电梯AC的高度.(参考数据:≈1.41,≈1.73,≈2.24.结果精确到0.1米)18.如图,在某小区内拐角处的一段道路上,有一儿童在C处玩耍,一辆汽车从被楼房遮挡的拐角另一侧的A处驶来,已知CM=3m,CO=5m,DO=3m,∠AOD=70°,汽车从A处前行多少米才能发现C处的儿童(结果保留整数)?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75;sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)19.王刚同学在学习了解直角三角形及其应用的知识后,尝试利用所学知识测量河对岸大树AB的高度,他在点C处测得大树顶端A的仰角为45°,再从C点出发沿斜坡走2米到达斜坡上D点,在点D处测得树顶端A的仰角为30°,若斜坡CF的坡比为i=1:3(点E、C、B在同一水平线上).(1)求王刚同学从点C到点D的过程中上升的高度;(2)求大树AB的高度(结果保留根号).20.一架无人机沿水平直线飞行进行测绘工作,在点P处测得正前方水平地面上某建筑物AB的顶端A的俯角为30°,面向AB方向继续飞行5米,测得该建筑物底端B的俯角为45°,已知建筑物AB的高为3米,求无人机飞行的高度(结果精确到1米,参考数据:≈1.414,≈1.732).21.小明和小华约定一同去公园游玩,公园有南北两个门,北门A在南门B的正北方向,小明自公园北门A处出发,沿南偏东30°方向前往游乐场D处;小华自南门B处出发,沿正东方向行走150m到达C处,再沿北偏东22.6°方向前往游乐场D处与小明汇合(如图所示),两人所走的路程相同.求公园北门A与南门B之间的距离.(结果取整数.参考数据:sin22.6°≈,cos22.6°≈,tan22.6°≈,≈1.732)22.小张早起在一条东西走向的笔直马路上晨跑,他在A处时,D处学校和E处图书馆都在他的东北方向,当小张沿正东方向跑了600m到达B处时,E处图书馆在他的北偏东15°方向,然后他由B处继续向正东方向跑600m到达C处,此时D处学校在他的北偏西63.4°方向,求D处学校和E处图书馆之间的距离.(结果保留整数)(参考数据:sin63.4°≈0.9,cos63.4°≈0.4,tan63.4°≈2.0,≈1.4,≈1.7,≈2.4)23.如图,已知△ABD中,AC⊥BD,BC=8,CD=4,cos∠ABC=,BF为AD边上的中线.(1)求AC的长;(2)求tan∠FBD的值.24.在全民健身运动中,骑行运动颇受市民青睐.一市民骑自行车由A地出发,途经B地去往C地,如图.当他由A地出发时,发现他的北偏东45°方向有一信号发射塔P.他由A地沿正东方向骑行4km到达B地,此时发现信号塔P在他的北偏东15°方向,然后他由B地沿北偏东75°方向骑行12km到达C地.(1)求A地与信号发射塔P之间的距离;(2)求C地与信号发射塔P之间的距离.(计算结果保留根号)25.某天,北海舰队在中国南海例行训练,位于A处的济南舰突然发现北偏西30°方向上的C处有一可疑舰艇,济南舰马上通知位于正东方向200海里B处的西安舰,西安舰测得C处位于其北偏西60°方向上,请问此时两舰距C处的距离分别是多少?26.如图,A,B是海面上位于东西方向的两个观测点,有一艘海轮在C点处遇险发出求救信号,此时测得C点位于观测点A的北偏东45°方向上,同时位于观测点B的北偏西60°方向上,且测得C点与观测点A的距离为25海里.(1)求观测点B与C点之间的距离;(2)有一艘救援船位于观测点B的正南方向且与观测点B相距30海里的D点处,在接到海轮的求救信号后立即前往营救,其航行速度为42海里/小时,求救援船到达C点需要的最少时间.参考答案1.解:在Rt△BAD中,AB=5米,∠BAD=37°,则BD=AB•sin∠BAD≈5×=3(米),在Rt△BCD中,∠C=30°,∴BC=2BD=6(米),则调整后的楼梯会加长:6﹣5=1(米),故选:D.2.解:过D作DF⊥BC于F,DH⊥AB于H,∴DH=BF,BH=DF,∵斜坡的斜面坡度i=1:,∴=1:,设DF=xm,CF=xm,∴CD==2x=20m,∴x=10,∴BH=DF=10m,CF=10m,∴DH=BF=(10+30)m,∵∠ADH=30°,∴AH=DH=×(10+30)=(10+10)m,∴AB=AH+BH=(20+10)m,故选:A.3.解:过点D作DM⊥BC,交CB的延长线于点M,∵∠ACB=∠DMB=90°,∠ABC=∠DBM,∴△ABC∽△DBM,∴==,∵AB=2BD,∴===,在Rt△CDM中,由于tan∠MCD==,设DM=2k,则CM=3k,又∵==,∴BC=2k,AC=4k,∴==2,故选:B.4.解:如图,分别作出△ABC底边BC上的高为AD即h1,△PQR底边QR上的高为PE 即h2,在Rt△ADC中,h1=AD=5×sin55°,在Rt△PER中,h2=PE=5×sin55°,∴h1=h2,故选:A.5.解:如图:作OF⊥AB于F,∵AB=AC,AD平分∠BAC.∴∠ODB=90°.BD=CD=6.∴根据勾股定理得:AD==8.∵BE平分∠ABC.∴OF=OD,BF=BD=6,AF=10﹣6=4.设OD=OF=x,则AO=8﹣x,在Rt△AOF中,根据勾股定理得:(8﹣x)2=x2+42.∴x=3.∴OD=3.在Rt△OBD中,tan∠OBD===.故选:A.6.解:如图作DH⊥AB于H,延长DE交BC于F.在Rt△ADH中,AD=130米,DH:AH=1:2.4,∴DH=50(米),∵四边形DHBF是矩形,∴BF=DH=50(米),在Rt△EFB中,∠BEF=45°,∴EF=BF=50(米),在Rt△EFC中,FC=EF•tan60°,∴CF=50×≈86.6(米),∴BC=BF+CF=136.6(米).故选:A.7.解:在Rt△ACB中,∠C=90°,∠ABC=45°,延长CB使BD=AB,连接AD,得∠D=22.5°,设AC=BC=1,则AB=BD=,∴tan22.5°===﹣1,故选:B.8.解:过点B作AC边的高BD,Rt△ABD中,∠A=45°,AB=4,∴BD=AD=4,在Rt△BDC中,BC=4,∴CD==5,①△ABC是钝角三角形时,AC=AD﹣CD=1,∴S△ABC=AC•BD==2;②△ABC是锐角三角形时,AC=AD+CD=7,∴S△ABC=AC•BD=×7×4=14,故答案为:2或14.9.解:在Rt△APO中,OP=15米,∠APO=30°,∴OA=OP•tan30°=(米),在Rt△POB中,OP=15米,∠OPB=60°,∴OB=(米),∴AB=OA+OB=20(米),故答案为:20.10.解:过P作PC⊥AB于C,如图所示:由题意得:∠APC=30°,∠BPC=45°,P A=50海里,在Rt△APC中,cos∠APC=,∴PC=P A•cos∠APC=50×=25(海里),在Rt△PCB中,cos∠BPC=,∴PB===25(海里),故答案为:25.11.解:过A点作AH⊥BC于H,过B点作BD垂直于过C点的水平线,垂足为D,如图,根据题意得∠ACD=75°,∠BCD=30°,AB=3×10=30m,∵AB∥CD,∴∠ABH=∠BCD=30°,在Rt△ABH中,AH=AB=15m,∵tan∠ABH=,∴BH===15,∵∠ACH=∠ACD﹣∠BCD=75°﹣30°=45°,∴CH=AH=15m,∴BC=BH+CH=(15+15)m,在Rt△BCD中,∵∠BCD=30°,∴BD=BC=≈20(m).答:这架无人机的飞行高度大约是20m.故答案为20.12.解:如图,过点B、C分别作AE的垂线,垂足分别为M、N,过点C作CD⊥BM,垂足为D,在Rt△ABM中,∵∠BAE=60°,AB=16,∴BM=sin60°•AB=×16=8(cm),∠ABM=90°﹣60°=30°,在Rt△BCD中,∵∠DBC=∠ABC﹣∠ABM=50°﹣30°=20°,∴∠BCD=90°﹣20°=70°,又∵BC=8,∴BD=sin70°×8≈0.94×8=7.52(cm),∴CN=DM=BM﹣BD=8﹣7.52≈6.3(cm),即点C到AE的距离约为6.3cm,故答案为:6.3.13.解:过点A作AD⊥BC于D,如图所示:由题意得:∠ABC=180°﹣75°﹣45°=60°,∵AD⊥BC,∴∠ADB=∠ADC=90°,在Rt△ABD中,∠DAB=90°﹣60°=30°,AD=AB•sin∠ABD=80×sin60°=80×=40(海里),∵∠CAB=30°+45°=75°,∴∠DAC=∠CAB﹣∠DAB=75°﹣30°=45°,∴△ADC是等腰直角三角形,∴AC=AD=×40=40(海里).答:货船与港口A之间的距离是40海里.14.解:由题意得,AD=4000米,∠ADO=30°,CD=460米,∠BCO=45°,在Rt△AOD中,∵AD=4000米,∠ADO=30°,∴OA=AD=2000(米),OD=AD=2000(米),在Rt△BOC中,∠BCO=45°,∴OB=OC=OD﹣CD=(2000﹣460)米,∴AB=OB﹣OA=2000﹣460﹣2000≈1004(米),∴火箭的速度为1004÷3≈335(米/秒),答:火箭的速度约为335米/秒.15.解:过点O作OE⊥AB于点E,则BE=OD=3m,设AE=xm,则AB=(x+3)m,A′E=(x+6)m,∵∠AOE=45°,∴OE=AE=xm,∵∠A′OE=60°,∴tan60°==,即=,解得x=3+3,∴AB=3+3+3=(6+3)m.16.解:(1)过点P作PC⊥AB,交AB的延长线于点C,由题意得,∠P AC=30°,∠PBC=45°,AB=20,设PC=x,则BC=x,在Rt△P AC中,∵tan30°===,∴x=10+10,∴P A=2x=20+20,答:A,P之间的距离AP为(20+20)海里;(2)因为PC﹣10(3+)=10+10﹣30﹣10=10(+1)(﹣)<0,所以有触礁的危险;设海监船无触礁危险的新航线为射线BD,作PE⊥BD,垂足为E,当P到BD的距离PE=10(3+)海里时,有sin∠PBE===,∴∠PBD=60°,∴∠CBD=60°﹣45°=15°,90°﹣15°=75°即海监船由B处开始沿南偏东至多75°的方向航行能安全通过这一海域.17.解:过B作BM⊥水平地面于M,BN⊥AC于N,如图所示:则四边形AMBN是矩形,∴AN=BM,BN=MA,∵斜坡AB=105米,坡度i=1:2=,∴设BM=x米,则AM=2x米,∴AB===x=105,∴x=21,∴AN=BM=21(米),BN=AM=42(米),在Rt△BCN中,∠CBN=α=45°,∴△BCN是等腰直角三角形,∴CN=BN=42(米),∴AC=AN+CN=21+42=63≈141.1(米),答:观光电梯AC的高度约为141.1米.18.解:∵CM=3m,OC=5m,∴OM==4(m),∵∠CMO=∠BDO=90°,∠COM=∠BOD,∴△COM∽△BOD,∴,即,∴BD==2.25(m),∴tan∠AOD=tan70°=,即≈2.75,解得:AB=6m,∴汽车从A处前行约6米才能发现C处的儿童.19.解:(1)过点D作DH⊥CE于点H,由题意知CD=2米,∵斜坡CF的坡比为i=1:3,∴,设DH=x米,CH=3x米,∵DH2+CH2=DC2,∴,∴x=2,∴DH=2(米),CH=6(米),答:王刚同学从点C到点D的过程中上升的高度为2米;(2)过点D作DG⊥AB于点G,设BC=a米,∵∠DHB=∠DGB=∠ABC=90°,∴四边形DHBG为矩形,∴DH=BG=2米,DG=BH=(a+6)米,∵∠ACB=45°,∴BC=AB=a(米),∴AG=(a﹣2)米,∵∠ADG=30°,∴,∴,∴a=6+4,∴AB=(6+4)(米).答:大树AB的高度是(6+4)米.20.解:过A作AC⊥PQ,交PQ的延长线于C,如图所示:设AC=x米,由题意得:PQ=5米,∠APC=30°,∠BQC=45°,在Rt△APC中,tan∠APC==tan30°=,∴PC=AC=x(米),在Rt△BCQ中,tan∠BQC==tan45°=1,∴QC=BC=AC+AB=(x+3)米,∵PC﹣QC=PQ=5米,∴x﹣(x+3)=5,解得:x=4(+1),∴BC=4(+1)+3=4+7≈14(米),答:无人机飞行的高度约为14米.21.解:作DE⊥AB于E,CF⊥DE于F,∵BC⊥AB,∴四边形BCFE是矩形,∴BE=CF,EF=BC=150 m,设DF=xm,则DE=(x+150)m,在Rt△ADE中,∠BAD=30°,∴AD=2DE=2(x+150)m,在Rt△DCF中,∠FCD=22.6°,∴CD=≈=xm,∵AD=CD+BC,∴2(x+150)=+150,解得x=250(m),∴DF=250 m,∴DE=250+150=400 m,∴AD=2DE=800 m,∴CD=800﹣150=650 m,由勾股定理得AE===400m,BE=CF===600 m,∴AB=AE+BE=400+600≈1293(m),答:公园北门A与南门B之间的距离约为1293 m.22.解:过D作DM⊥AC于M,设MD=x,在Rt△MAD中,∠MAD=45°,∴△ADM是等腰直角三角形,∴AM=MD=x,∴AD=x,在Rt△MCD中,∠MDC=63.4°,∴MC≈2MD=2x,∵AC=600+600=1200,∴x+2x=1200,解得:x=400,∴MD=400m,∴AD=MD=400,过B作BN⊥AE于N,∵∠EAB=45°,∠EBC=75°,∴∠E=30°,在Rt△ABN中,∠NAB=45°,AB=600,∴BN=AN=AB=300,∴DN=AD﹣AN=400﹣300=100,在Rt△NBE中,∠E=30°,∴NE=BN=×300=300,∴DE=NE﹣DN=300﹣100≈580(m),即D处学校和E处图书馆之间的距离约是580m.23.解:(1)∵AC⊥BD,cos∠ABC==,BC=8,∴AB=10,在Rt△ACB中,由勾股定理得,AC===6,即AC的长为6;(2)如图,连接CF,过F点作BD的垂线,垂足E,∵BF为AD边上的中线,即F为AD的中点,∴CF=AD=FD,在Rt△ACD中,由勾股定理得,AD===2,∵三角形CFD为等腰三角形,FE⊥CD,∴CE=CD=2,在Rt△EFC中,EF===3,∴tan∠FBD===.解法二:∵BF为AD边上的中线,∴F是AD中点,∵FE⊥BD,AC⊥BD,∴FE∥AC,∴FE是△ACD的中位线,∴FE=AC=3,CE=CD=2,∴在Rt△BFE中,tan∠FBD===.24.解:(1)依题意知:∠P AB=45°,∠PBG=15°,∠GBC=75°,过点B作BD⊥AP于D点,∵∠DAB=45°,,∴AD=BD=4,∵∠ABD=∠GBD=45°,∠GBP=15°,∴∠PBD=60°,∵BD=4,∴,∴P A=(4+4)(km);(2)∵∠PBD=60°,BD=4,∴PB=8,过点P作PE⊥BC于E,∵∠PBG=15°,∠GBC=75°,∴∠PBE=60°,∵PB=8,∴BE=4,,∵BC=12,∴CE=8,∴PC==4(km).25.解:过点C作CD⊥BA的延长线于点D,如图.由题意可得:∠CAD=60°,∠CBD=30°=∠DCA,∴∠BCA=∠CAD﹣∠CBD=60°﹣30°=30°.即∠BCA=∠CBD,∴AC=AB=200(海里).在Rt△CDA中,CD=sin∠CAD×AC==100(海里).在Rt△CDB中,CB=2CD=200(海里).故位于A处的济南舰距C处的距离200海里,位于B处的西安舰距C处的距离200海里.26.解:(1)如图,过点C作CE⊥AB于点E,根据题意可知:∠ACE=∠CAE=45°,AC=25海里,∴AE=CE=25(海里),∵∠CBE=30°,∴BE=25(海里),∴BC=2CE=50(海里).答:观测点B与C点之间的距离为50海里;(2)如图,作CF⊥DB于点F,∵CF⊥DB,FB⊥EB,CE⊥AB,∴四边形CEBF是矩形,∴FB=CE=25(海里),CF=BE=25(海里),∴DF=BD+BF=30+25=55(海里),在Rt△DCF中,根据勾股定理,得CD===70(海里),∴70÷42=(小时).答:救援船到达C点需要的最少时间是小时.。

2023年北师大版九年级数学下册第一章《直角三角形的边角关系》复习题附答案解析

2023年北师大版九年级数学下册第一章《直角三角形的边角关系》复习题附答案解析

2023年九年级数学下册第一章《直角三角形的边角关系》复习题一、单选题1.如图,在ABC ∆中,AC =3,BC =4,AB =5,则tan B 的值是()A .34B .43C .35D .452.定义:圆心在原点,半径为1的圆称为单位圆.如图,已知点()(),0,0P x y x y >>在单位圆上,则sin POA ∠等于()A .x B .yC .x y D .y x 3()A .3B .1C .2D .124.在Rt △ABC 中,∠C =90°,如果∠A =α,AB =3,那么AC 等于()A .3sinαB .3cosαC .3sin αD .3cos α5.tan60°的值等于()A .1BC .D .26.在Rt △ABC 中,∠C=90°,∠A=α,BC=m ,则AB 的长为()A .m sinαB .C .m cosαD .7.如图,网格中的每个小正方形的顶点称为格点,边长均为1,ABC 的顶点均在格点上,则∠ABC 的正弦值为()A .12B .5C .35D .108.在Rt △ABC 中,∠C=90°,BC=6,sinA=35,则AB=()A .8B .9C .10D .129.如图,冬奥会滑雪场有一坡角为20°的滑雪道,滑雪道的长AC 为100米,则BC 的长为()米.A .100cos 20︒B .100cos 20︒C .100sin 20︒D .100sin 20︒10.在平面直角坐标系xOy 中,已知点P (1,2),点P 与原点O 的连线与x 轴的正半轴的夹角为α(0°<α<90°),那么tanα的值是()A .2B .12C .2D 二、填空题11.计算:012⎛⎫ ⎪⎝⎭–2cos60°=.12.cos30°+sin45°=13.如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB 于点D ,AD=95,BD=165,则sinB=.14.如图,已知斜坡AC 的坡度i =1:2,小明沿斜坡AC 从点A 行进10m 至点B ,在这个过程中小明升高m.三、计算题15.计算:0(3)4sin601π-+--16.计算:0(3)22cos30π---︒.四、解答题17.今年五、六月份,我省各地、市普遭暴雨袭击,水位猛涨.某市抗洪抢险救援队伍在B 处接到报告:有受灾群众被困于一座遭水淹的楼顶A 处,情况危急!救援队伍在B 处测得A 在B 的北偏东60 的方向上(如图所示),队伍决定分成两组:第一组马上下水游向A 处救人,同时第二组从陆地往正东方向奔跑120米到达C 处,再从C 处下水游向A 处救人,已知A 在C 的北偏东30 的方向上,且救援人员在水中游进的速度均为1米/秒.在陆地上奔跑的速度为4米/秒,试问哪组救援队先到A 处?请说明理由.(参1.732=)18.如图,升国旗时,某同学站在离国旗20m 的E 处行注目礼(即BE=20m ),当国旗升至旗杆顶端A 时,该同学视线的仰角∠ADC=42°,已知他的双眼离地面的高度DE=1.60m .求旗杆AB 的高度(结果精确到0.01m ).参考数据:sin42°≈0.6691,cos42°≈0.7431,tan42°≈0.9004.19.如图,小明站在A 处,准备测量教学楼CD 的高度.此时他看向教学楼CD 顶部的点D ,发现仰角为45°.他向前走30m 到达A '处,测得点D 的仰角为67.5°.若小明的身高AB 为1.8m (眼睛与头顶的距离忽略不计),则教学楼CD 的高度为多少?(计算结果精确到0.1m ,参考数据:67.50.924sin ︒≈,67.50.383cos ︒≈,67.5 2.414tan ︒≈,1.414≈)20.先化简,再求代数式262393a a a a -÷+--的值,其中a =tan60°﹣6sin30°.21.先化简,再求代数式23211m m m m m m-+-÷-的值,其中60230m tan sin =︒-︒五、综合题22.五一期间,数学兴趣小组的几位同学到公园游玩,看到公园内宝塔耸立,几人想用所学知识测量宝塔的高度.为此,他们在距离宝塔中心18m 处(AC =18m )的一个斜坡CD 上进行测量.如图,已知斜坡CD 的坡度为i =1斜坡CD 长12m ,在点D 处竖直放置测角仪DE ,测得宝塔顶部B 的仰角为37°,量得测角仪DE 的高为1.5m ,点A 、B 、C 、D 、E 在同一平面内.(1)求点D 距地面的高度;(2)求宝塔AB 的高度.(结果精确到0.1,参考数据;sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,3≈1.73)23.如图1是一种手机平板支架,由托板、支撑板和底座构成,手机放置在托板上,图2是其侧面结构示意图,量得托板长120mm AB =,支撑板长80mm CD =,底座长90mm DE =,托板AB 固定在支撑板顶端点C 处,且40mm CB =,托板AB 可绕点C 转动,支撑板CD 可绕点D 转动.(结果保留小数点后一位)(参考数据:40400.766sin ︒︒≈≈,,400.839tan ︒≈,26.60.448sin ≈ ,26.60.89426.60.500cos tan ︒︒≈≈,3 1.732≈)(1)若80DCB ︒∠=,60CDE ︒∠=,求点A 到直线DE 的距离;(2)为了观看舒适,在(1)的情况下,把AB 绕点C 逆时针旋转10 后,再将CD 绕点D 顺时针旋转,使点B 落在直线DE 上即可,求CD 旋转的角度.答案解析部分1.【答案】A【解析】【解答】解:在△ABC 中,∵AC=3,BC=4,AB=5,又因32+42=52,即AC 2+BC 2=AB 2,∴△ABC 是直角三角形,且∠C=90°,∴tanB=34AC BC =.故答案为:A.【分析】首先根据勾股定理的逆定理判断出△ABC 是直角三角形,再根据正切函数的定义即可得出答案.2.【答案】B【解析】【解答】解:过P 作PE OA ⊥于E ,则PO=1,PE=y,OE=x,∴sin 1PE yPOA y PO ∠===,故答案为:B.【分析】过P 作OA 的垂线构造直角三角形,利用正弦的定义可得答案.3.【答案】C 【解析】【解答】解:∵sin45°=2.故答案为:C.【分析】根据特殊角的三角函数值即可求得答案.4.【答案】B 【解析】【解答】解:如图,∵ACcosαAB=,∴AC=3cosα.故答案为:B.【分析】根据余弦等于邻边比斜边即可求解.5.【答案】C 【解析】【解答】C 。

(好题)初中数学九年级数学下册第一单元《直角三角形的边角关系》检测卷(含答案解析)

一、选择题1.在Rt ABC ∆中,90C ∠=︒,若5sin 13A =,则cos A 的值为( ) A .512 B .813 C .1312 D .12132.如图,传送带和地面所成斜坡AB 的坡度为1∶2,物体从地面沿着该斜坡前进了10米,那么物体离地面的高度为( )A .5米B .5米C .25米D .45米 3.如图,在矩形ABCD 中,点E 是CD 的中点,点F 是BC 上一点,且FC=2BF ,连接AE ,EF .若AB=2,AD=3,则cos ∠AEF 的值是( )A .12B .1C .22D .324.在Rt ABC 中,∠C =90º,下列关系式中错误的是( )A .BC =AB•sinAB .BC =AC•tanA C .AC =BC•tanBD .AC =AB•cosB 5.如图,在Rt ABC △中,90ABC ∠=︒,4AB =,8BC =,D ,E 分别为边AB ,BC 上一点,且满足:1:3AD DB =.连接DE ,将ADBE 沿DE 翻折,点B 的对应点F 恰好落在边AC 上,则CF 的长度为( )A .1952055B .275C .52055D .3156.Rt ABC 中,90C ∠=︒,2AC =,1BC =,sin A =( )A .55B .2C .32D .127.如图,直线123////l l l ,ABC 的三个顶点分别落在123,,l l l 上,AC 交2l 于点D ,设1l 与2l 的距离为12,h l 与3l 的距离为2h .若12,:1:2AB BC h h ==,则下列说法正确的是( )A .:2:3ABD ABC S S =B .:1:2ABD ABC S S =△△C .sin :sin 2:3ABD DBC ∠∠=D .sin :sin 1:2ABD DBC ∠∠= 8.在ABC 中,90,13,12C AB BC ∠=︒==,则sin B 的值为( )A .1213B .512 C .513 D .1359.在Rt ABC 中,90C ∠=︒,5AB =,4BC =,则tan A 的值为( ) A .35 B .45 C .34 D .4310.如图,在正方形ABCD 中,边长为2的等边三角形AEF 的顶点E 、F 分别在BC 和CD 上,下列结论:①CE CF =;②75AEB ∠=︒;③BE DF EF +=;④正方形对角线:13AC =+,其中正确的序号是( )A .①②④B .①②C .②③④D .①③④ 11.如图,直线y =-33x +2与x 轴、y 轴分别交于A 、B 两点,把△AOB 绕点A 顺时针旋转60°后得到△AO'B',则点B'的坐标是( ) A .(4,23)B .(23,4)C .(3,3)D .(23+2,2) 12.如图,在边长相同的小正方形组成的网格中,点A B C D 、、、都在这些小正方形的顶点上,AB CD 、相交于点P ,则tan APD ∠=( ).A .5B .3C .10D .2二、填空题13.如图,测角仪CD 竖直放在距建筑物AB 底部8m 的位置,在D 处测得建筑物顶端A 的仰角为50°.若测角仪CD 的高度是1.5m ,则建筑物AB 的高度约为_____m .(结果精确到个位,参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)14.如图,在Rt ABC 中,90B ∠=︒,2AB =,1BC =.将ABC 绕点A 按逆时针方向旋转90︒得到''AB C ,连接'B C ,则tan 'ACB ∠=__________.15.如图,在Rt ABC △中,90A ∠=︒,AB AC =,BD 是AC 边上的中线,则tan ADB ∠的值是______.16.如图,点P (m ,1)是反比例函数3y x=图象上的一点,PT ⊥x 轴于点T ,把△PTO 沿直线OP 翻折得到△PT O ',则点T '的坐标为_______________.17.ABC ∆中,67.5A ,8BC =,BE AC ⊥交AC 于E ,CF AB ⊥交AB 于F ,点D 是BC 的中点.以点F 为原点,FD 所在的直线为x 轴构造平面直角坐标系,则点E 的横坐标为________.18.如图,四边形ABCD 中,AB=BC=3,∠A=∠C=90°,∠ABC=120°,点E 是对角线BD 上的一个动点,过点E 分别作AB ,BC ,CD ,AD 的垂线,垂足分别为点F ,H ,I ,G ,连结FG 和HI ,则FG+HI 的最小值为________.19.如图所示,在四边形ABCD 中,90B ∠=︒,2AB =,8CD =.连接AC ,AC CD ⊥,若1sin 3ACB ∠=,则AD 长度是_________.20.在Rt ABC ∆中,90A ∠=︒,3AB =,4BC =则cos B =______.三、解答题21.计算:20210+|﹣3|﹣2sin60°.22.如图,根据道路管理规定,在某笔直的大道AB 上行驶的车辆,限速60千米/时,已知测速站点M 距大道AB 的距离MN 为30米,现有一辆汽车从A 向B 方向匀速行驶,测得此车从A 点行驶到B 点所用时间为6秒,已知60AMN ∠=︒,45BMN ∠=︒.(参考数据:3 1.732≈,2 1.414≈)(1)计算AB 的长度(结果保留整数);(2)试判断此车是否超速,并说明理由.23.图①是一辆登高云梯消防车的实物图,图②是其工作示意图,起重臂AC 是可伸缩的(10m 20m AC ),且起重臂AC 可绕点A 在一定范围内转动,张角为()90150CAE CAE ∠∠︒︒,转动点A 距离地面BD 的高度AE 为3.5m .(1)当起重臂AC 长度为12m ,张角CAE ∠为120︒时,求云梯消防车最高点C 距离地面的高度CF ;(2)某日、一居民家突发险情,该居民家距离地面的高度为18m ,请问该消防车能否实3 1.732≈)24.如图在平面直角坐标系xOy 中,一次函数()0y kx b k =+≠的图象与反比例函数()0m y m x=≠的图象交于第二、四象限内的A 、B 两点,与x 轴交于C 点,点B 的坐标为()6,n .线段5OA =,E 为x 轴上一点,且4sin 5AOE ∠=.(1)求该反比例函数和一次函数的解析式;(2)求AOB的面积;25.(1)解方程:22360x x--=(2)计算:12cos301tan602sin30︒--︒+︒26.为了方便市民出行,县政府决定从“七星广场”河堤到对岸修建一座便民桥.为测量河的宽度,在河的对岸取一点A,在广场河边取两点,O B测得点A在点O的北偏东60︒方向,测得点A在点B北偏东45︒方向,量得OB长为50米,求河的宽度AC(结果保留根号)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】由三角函数的定义可知sinBCAAB=,可设BC=5k,AB=13k由勾股定理可求得12AC k=,再利用余弦的定义代入计算即可.【详解】解:如图:在Rt ABC 中,sin BC A AB =,可设BC=5k ,AB=13k . 由勾股定理可求得()()222213512AC AB BC k k k =-=-=. 所以,1212cos =1313AC k A AB k ==. 故选:D .【点睛】 本题主要考查三角函数的定义,掌握正弦、余弦函数的定义是解题的关键.2.C解析:C【分析】作BC ⊥底面于点C ,根据坡度的概念、勾股定理列式计算即可;【详解】作BC ⊥底面于点C ,设BC x =,∵传送带和底面所成斜坡AB 的坡度为1∶2,∴2AC x =,由勾股定理得:222AC BC AB +=,即()222210x x +=,解得:25x =,即25BC =.故答案选C .【点睛】本题主要考查了解直角三角形的应用-坡度坡角问题,准确计算是解题的关键. 3.C解析:C【分析】连接AF ,根据题意可分别求出BF 、FC 、DE 的长,再利用勾股定理分别求出AF 、AE 、EF 的长,利用勾股定理的逆定理判断出AEF 为等腰直角三角形,再利用三角函数即可求得答案.【详解】如图:连接AF ,四边形ABCD 是矩形∴2,3AB DC AD BC ====∴∠B=∠C=∠D=90°FC=2BF∴BF=1,FC=2E 是CD 的中点∴DE=CE=1∴BF=CE=1在Rt ABF 中22222215AF AB BF =+=+=在Rt EFC 中22222215EF FC CE =+=+=在Rt ADE △中222223110AE AD DE =+=+=∴222AE EF AF =+且AF=EF∴△AEF 为等腰直角三角形∴∠AFE=90°,∠AEF=∠EAF=45°∴cos ∠AEF=cos45°=22故选:C .【点睛】本题考查了矩形的性质,勾股定理及其逆定理的运用,特殊角的三角函数值,解题关键是利用勾股定理逆定理判断出AEF 为等腰直角三角形. 4.D解析:D【分析】根据三角函数的定义即可作出判断.【详解】解:A 、∵sin BC A AB=, ∴sin BC AB A =, 故正确,不符合题意;B 、∵tanA= BC AC, ∴BC=AC•tanA ,故正确,不符合题意;C 、∵tanB=AC BC, ∴AC=BC•tanB , 故正确,不符合题意;D 、∵cos BC B AB=, ∴cos BC AB B =,故错误,符合题意;故选:D .【点睛】本题考查锐角三角函数的定义:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.5.A解析:A【分析】如图,过D 作DM AC ⊥于,M 根据已知条件先求解:,,,AD BD AC 再利用A ∠的三角函数求解,,AM DM 由对折得到:,DF 再利用勾股定理求解MF ,从而由CF AC AM MF =--可得答案.【详解】解:如图,过D 作DM AC ⊥于,M4:1:3,AB AD DB ==,13AD DB ∴==,,90ABC ∠=︒,4AB =,8BC =,22224845,AC AB BC ∴=+=+=1,AD DM AC =⊥,sin ,45DM BC A AD AC ∴=== 255DM ∴=, 同理:5cos ,545AM AB A AD AC ==== 55AM ∴=, 由对折可得:3,DF DB == 22222520535MF DF DM ⎛⎫∴=-=-= ⎪ ⎪⎝⎭,520519520545CF AC AM MF -∴=--== 故选:.A【点睛】 本题考查的是轴对称的性质,勾股定理的应用,锐角三角函数的应用,掌握以上知识是解题的关键.6.A解析:A【分析】求出斜边AB ,再求∠A 的正弦值.【详解】解:∵90C ∠=︒,2AC =,1BC =,∴2222215AB AC BC +=+= 5sin 5BC A AB ===, 故选:A .【点睛】本题考查了勾股定理和锐角的正弦函数值的求法,解题关键是求出斜边长,熟知正弦的意义.7.D解析:D【分析】作2⊥AE l ,2⊥CF l ,如图,则1AE h =,2CF h =,利用三角形面积公式可得到12::1:2ABD BCD S S h h ∆∆==,则可对A 、B 进行判断;利用正弦的定义得到1sin h ABD AB ∠=,2sin h DBC BC∠=,利用AB CB =可对C 、D 进行判断. 【详解】 解:作2⊥AE l ,2⊥CF l ,如图,则1AE h =,2CF h =,11122ABD S BD AE BD h ∆==,21122BCE S BD CF BD h ∆==, 12::1:2ABD BCD S S h h ∆∆∴==,:1:3ABD ABC S S ∆∆∴=,所以A 、B 选项错误;在Rt ABE ∆中,1sin h AE ABD AB AB ∠==, 在Rt BCF ∆中,2sin h CF DBC BC BC∠==, 而AB CB =,12sin :sin :1:2ABD DBC h h ∴∠∠==,所以C 选项错误,D 选项正确. 故选:D .【点睛】本题考查了考查了解直角三角形,也考查了平行线之间的距离和等腰直角三角形的性质,难度一般.8.C解析:C【分析】先根据勾股定理求得AC ,再根据正弦的定义求解即可;【详解】∵在ABC 中,90C ∠=︒,13AB =,12BC =,∴2213125AC =-=,∴5sin 13AC B AB ==; 故答案选C .【点睛】本题主要考查了勾股定理与解直角三角形,准确理解计算是解题的关键.9.D解析:D【分析】由勾股定理算出AC 的值,然后根据正切函数的定义即可得到解答.【详解】 解:由勾股定理可得:2222543AC AB BC =-=-=,∴tanA=43BC AC =, 故选D .【点睛】 本题考查解直角三角形,熟练掌握勾股定理及三角函数的定义是解题关键.10.A解析:A【分析】证明()Rt ABE Rt ADF HL ≅△△即可证明①正确,由①的结论得到三角形CEF 是等腰直角三角形,即可证明②正确,根据AC 垂直平分EF 可以判断③错误,利用锐角三角函数值求出AC 的长度证明④正确.【详解】解:∵四边形ABCD 是正方形,∴AB AD =,90B D ∠=∠=︒,∵AEF 是等边三角形,∴AE AF =, 在Rt ABE △和Rt ADF 中,AE AF AB AD =⎧⎨=⎩, ∴()Rt ABE Rt ADF HL ≅△△,∴BE DF =,∵BC CD =,∴BC BE CD DF -=-,即CE CF =,故①正确;∵CE CF =,90C ∠=︒,∴45CEF ∠=︒,∵60AEF ∠=︒,∴180604575AEB ∠=︒-︒-︒=︒,故②正确;如图,连接AC ,交EF 于点G ,∵AE AF =,CE CF =,∴AC 是EF 的垂直平分线,∵CAF DAF ∠≠∠,∴DF FG ≠,同理BE EG ≠,∴BE DF EF +≠,故③错误;∵AEF 是边长为2的等边三角形,ACB ACD ∠=∠,∵AC EF ⊥,EG FG =, ∴3sin 6023AG AE =⋅︒==112CG EF ==, ∴13AC AG CG =+=+,故④正确.故选:A .【点睛】本题考查四边形综合题,解题的关键是掌握正方形的性质,等边三角形的性质,解直角三角形的方法.11.B解析:B【分析】根据直线解析式求出点A 、B 的坐标,从而得到OA 、OB 的长度,再求出∠OAB =30°,利用勾股定理列式求出AB ,然后根据旋转角是60°判断出AB′⊥x 轴,再写出点B′的坐标即可.【详解】令y =0,则−3x +2=0,解得x =,令x =0,则y =2,所以,点A (0),B (0,2),所以,OA =OB =2,∵tan ∠OAB =OB OA ==, ∴∠OAB =30°,由勾股定理得,AB 4==, ∵旋转角是60°,∴∠OAB′=30°+60°=90°,∴AB′⊥x 轴,∴点B′(4).故选:B .【点睛】本题考查了坐标与图形性质−旋转,一次函数图象上点的坐标特征,勾股定理的应用,三角函数的应用,求出AB′⊥x 轴是解题的关键. 12.B解析:B【分析】设小正方形的边长为1,根据勾股定理可得AD 、AC 的值,进而可得△ADC 是等腰直角三角形,进而可得AD ⊥CD ,根据相似三角形的判定和性质可得PC =2DP ,根据等量代换和线段和差可得AD =CD =3DP ,继而即可求解.【详解】解析 设小正方形的边长为1,由图形可知,2AD DC AC ===,ADC ∴是等腰直角三角形,AD DC ∴⊥.//AC BD ,2AC CP BD DP∴==, 2PC DP ∴=,3AD DC DP ∴==,tan 3AD APD DP∴∠==.故选B.【点睛】本题考查了正方形的性质、等腰直角三角形的判定、勾股定理、相似三角形的判定及其性质以及锐角三角函数.此题难度适中,注意转化思想与数形结合思想的应用.二、填空题13.11【分析】根据题意作辅助线DE⊥AB然后根据锐角三角函数可以得到AE 的长从而可以求得AB的长本题得以解决【详解】解:作DE⊥AB于点E由题意可得DE=CD=8m∵∠ADE=50°∴AE=DE•ta解析:11【分析】根据题意,作辅助线DE⊥AB,然后根据锐角三角函数可以得到AE的长,从而可以求得AB 的长,本题得以解决.【详解】解:作DE⊥AB于点E,由题意可得,DE=CD=8m,∵∠ADE=50°,∴AE=DE•tan50°≈8×1.19=9.52(m),∵BE=CD=1.5m,∴AB=AE+BE=9.52+1.52=11.2≈11(m),故答案为:11.【点睛】本题考查了解直角三角形的应用-仰角俯角问题,解答本题的关键是明确题意,利用数形结合的思想解答.14.【分析】如图延长与的延长线交于点证明四边形为正方形再求解过作于利用等面积法求解再利用勾股定理求解从而可得答案【详解】解:如图由题意得:延长与的延长线交于点则四边形为正方形过作于故答案为:【点睛】本题解析:4 3【分析】如图,延长C B''与BC的延长线交于点,G证明四边形ABGB'为正方形,再求解,B C AC ',过A 作AM B C '⊥于M , 利用等面积法求解,AM 再利用勾股定理求解,MC 从而可得答案.【详解】解:如图,由题意得:9090BAB B AB C '''∠=︒∠=∠=︒,, 2AB AB '==, 1BC =,22215,AC ∴=+=延长C B ''与BC 的延长线交于点,G 则90AB G '∠=︒,∴ 四边形ABGB '为正方形, 2211B G BG CG BG BC '∴===-=-=,,90B GB '∠=︒, 22215,B C '∴=+=过A 作AM B C '⊥于M ,11,22AB C S AB AB B C AM '''∴== 54AM =, 4555AM ∴==, ()224355555MC ⎛⎫∴=-= ⎪⎝⎭, 4545tan '.3355AM ACB MC ∴∠=== 故答案为:4.3【点睛】本题考查的是勾股定理的应用,旋转的性质,正方形的判定与性质,锐角三角函数的应用,掌握以上知识是解题的关键. 15.2【分析】由题意得到则结合角的正切值即可得到答案【详解】解:∵是边上的中线∴∴∵∴∵在中∴;故答案为:2【点睛】本题考查了求角的正切值三角形中线的性质解题的关键是掌握三角形中线的性质正确得到解析:2【分析】由题意,得到12AD AC =,则2AC AD =,结合角的正切值tan AB ADB AD∠=,即可得到答案.【详解】 解:∵BD 是AC 边上的中线,∴12AD AC =, ∴2AC AD=, ∵AB AC =,∴2AB AD=, ∵在Rt ABD 中,90A ∠=︒, ∴tan 2AB ADB AD ∠==; 故答案为:2.【点睛】本题考查了求角的正切值,三角形中线的性质,解题的关键是掌握三角形中线的性质,正确得到2AB AD=. 16.【分析】连接过点作于点C 先根据反比例函数解析式求出点P 坐标根据的正切值得到它的度数再根据折叠的性质证明是等边三角形再解直角三角形得到OC 和的长即可求出的坐标【详解】解:如图连接过点作于点C ∵点P(m解析:33,2⎛⎫ ⎪ ⎪⎝⎭【分析】连接TT ',过点T '作T C OT '⊥于点C ,先根据反比例函数解析式求出点P 坐标,根据POT ∠的正切值得到它的度数,再根据折叠的性质证明TOT '是等边三角形,再解直角三角形得到OC 和CT '的长,即可求出T '的坐标.【详解】解:如图,连接TT ',过点T '作T C OT '⊥于点C ,∵点P (m ,1)是反比例函数y x =图象上的一点,∴1=m ,∴OT =,1PT =,∵tan 3POT ∠=, ∴30POT ∠=︒,由折叠的性质得:30,POT POT OT OT ∠=∠=︒='='∴60TOT '∠=︒,又∵OT OT '=,∴TOT '是等边三角形,∵T C OT '⊥,∴12OC OT ==,3sin 2CT OT TOT '''=⋅∠==,∴322T ⎛⎫' ⎪ ⎪⎝⎭.故答案为:322⎛⎫ ⎪⎪⎝⎭. 【点睛】本题考查反比例函数与几何,解题的关键是掌握反比例函数的性质,利用锐角三角函数值得到特殊角的度数,然后解直角三角形. 17.【分析】连接DE 过E 作EH ⊥OD 于H 求得∠EDO =45°即可得到Rt △DEH 中求得DH 进而得出OH 即可求解【详解】如图所示连接过作于于于是的中点中点的横坐标是【点睛】本题主要考查了直角三角形斜边上中 解析:4-【分析】连接DE ,过E 作EH ⊥OD 于H ,求得∠EDO =45°,即可得到Rt △DEH 中,求得DH ,进而得出OH ,即可求解.【详解】如图所示,连接DE ,过E 作EH OD ⊥于H ,BE CA ⊥于E ,CF AB ⊥于F ,D 是BC 的中点,142DE DC BC DO DB ∴=====, DCE DEC ∴∠=∠,DBO DOB ∠=∠,67.5A ∴∠=︒,112.5ACB ABC ∴∠+∠=︒,18021802()()CDE BDO DCE DBO ∴∠+∠=︒-∠+︒-∠ 3602()DCE DBO =︒-∠+∠3602112.5=︒-⨯︒135=︒,45EDO ∴∠=︒,Rt DEH ∴∆中,cos 4522DH DE =︒⨯=422OH OD DH ∴=-=-点E 的横坐标是422-【点睛】本题主要考查了直角三角形斜边上中线的性质:在直角三角形中,斜边上的中线等于斜边的一半.解决问题的关键是作辅助线构造等腰直角三角形.18.3【分析】先证明得到再证明:四边形四边形为矩形得到所以只要求的最小值即可当时最小再利用锐角三角函数可得答案【详解】解:AB=BC=3∠A=∠C=90°由过点E 分别作ABBCCDAD 的垂线垂足分别为点 解析:3【分析】先证明,Rt ABD Rt CBD ≌得到60,30,ABD CBD GDE IDE ∠=∠=︒∠=∠=︒再证明:,FG HI =四边形,AFEG 四边形CHEI 为矩形,得到AE FG =,所以只要求AE 的最小值即可,当AE BD ⊥时,AE 最小,再利用锐角三角函数可得答案.【详解】 解: AB=BC=3,∠A=∠C=90°,,120,BD BD ABC =∠=︒,Rt ABD Rt CBD ∴≌60,30,ABD CBD GDE IDE ∴∠=∠=︒∠=∠=︒由过点E 分别作AB ,BC ,CD ,AD 的垂线,垂足分别为点F ,H ,I ,G ,,,EF EH EG EI ∴== 四边形,AFEG 四边形CHEI 为矩形,90,FEG HEI ∴∠=∠=︒,FEG HEI ∴≌∴ ,FG HI =当FG 最小,则FG HI +最小,四边形AFEG 为矩形,,AE FG ∴=所以:当AE BD ⊥时,AE 最小,3,60,AB ABE =∠=︒sin 60,AE AB ∴︒= 3333,AE ∴=⨯= 所以:FG 的最小值是:33, 所以:FG HI +的最小值是:3323 3.⨯= 故答案为:3 3.【点睛】本题考查的是点到直线的距离垂线段最短,三角形全等的判定与性质,矩形的判定与性质,锐角三角函数的应用,掌握以上知识是解题的关键.19.10【分析】根据直角三角形的边角间关系先计算再在直角三角形中利用勾股定理即可求出【详解】解:在中∵∴在中故答案为:10【点睛】本题考查了解直角三角形和勾股定理利用直角三角形的边角间关系求出AC 是解决 解析:10【分析】根据直角三角形的边角间关系,先计算AC ,再在直角三角形ACD 中,利用勾股定理即可求出AD .【详解】解:在Rt ABC 中,∵12,sin3ABAB ACBAC=∠==,∴1263AC=÷=.在Rt ADC中,22AD AC CD=+2268=+10=.故答案为:10.【点睛】本题考查了解直角三角形和勾股定理,利用直角三角形的边角间关系,求出AC是解决本题的关键.20.【分析】根据题意画出图形进而得出cosB=求出即可【详解】解:∵∠A=90°AB=3BC=4则cosB==故答案为:【点睛】本题考查了锐角三角函数的定义正确把握锐角三角函数关系是解题的关键解析:3 4【分析】根据题意画出图形,进而得出cosB=ABBC求出即可.【详解】解:∵∠A=90°,AB=3,BC=4,则cosB=ABBC=34.故答案为:34.【点睛】本题考查了锐角三角函数的定义,正确把握锐角三角函数关系是解题的关键.三、解答题21.1【分析】直接利用特殊角的三角函数值以及绝对值的性质、零指数幂的性质分别化简得出答案.【详解】解:原式=12×2=1=1.【点睛】本题主要考查了实数的混合运算,结合特殊角三角函数中、零指数幂计算是解题的关键. 22.(1)82米;(2)不超速,见解析【分析】(1)已知MN=30m ,∠AMN=60°,∠BMN=45°求AB 的长度,可以转化为解直角三角形; (2)求得从A 到B 的速度,然后与60千米/时≈16.66米/秒,比较即可确定答案.【详解】解:(1)由题意可得在Rt AMN △中,30MN =米,60AMN ∠=︒, ∴tan AN MN AMN =⋅∠=在Rt BMN 中,∵45BMN ∠=︒,∴30BN MN ==(米). ∴3082AB AN BN =+=≈(米).(2)此车不超速,理由如下:由题意可得,汽车从A 到B 为匀速行驶,用时为6秒,且82AB =米,则汽车的速度为()306513.66÷=≈(米/秒).∵60千米/时≈16.67米/秒,13.6616.67<,∴此车不会超速.【点睛】本题考查了勾股定理以及解直角三角形的应用,解题的关键是从题目中抽象出直角三角形,难度不大.23.(1)9.5m ;(2)可以有效救援.【分析】(1)过点C 作CF ⊥BD ,垂足为F ,过点A 作AG ⊥CF ,垂足为G ,解直角三角形ACG 即可;(2)当起重臂最长,张角最大时,计算远臂点距离地面的最大高度,比较判断即可.【详解】(1)如图1,过点C作CF⊥BD,垂足为F,过点A作AG⊥CF,垂足为G,∵AE⊥BD,∴四边形AEFG是矩形,∴∠EAG=90°,FG=AE=3.5,∴∠CAG=30°,∵AC=12,∴CG=ACsin30°=12×1=6,2∴CF=CG+FG=6+3.5=9.5(米);(2)如图2,过点C作CF⊥BD,垂足为F,过点A作AG⊥CF,垂足为G,∵AE⊥BD,∴四边形AEFG是矩形,∴∠EAG=90°,FG=AE=3.5,∴∠CAG=60°,∵AC=20,∴CG=ACsin60°3,∴CF=CG+FG=17.32+3.5=20.82>18;∴能有效救援.【点睛】本题考查了生活实际问题中的解直角三角形,熟练把生活问题转化数学解直角三角形模型问题是解题的关键.24.(1)12y x =-,223y x =-+;(2)9 【分析】(1)过点A 作AH ⊥x 轴于H 点,由4sin 5AH ACE AO∠==,OA=5,根据正弦的定义可求出AH ,再根据勾股定理得到OH ,即得到A 点坐标(-3,4),把A (-3,4)代入y= ,确定反比例函数的解析式为y=- ;将B (6,n )代入,确定点B 点坐标,然后把A 点和B 点坐标代入y=kx+b (k≠0),求出k 和b .(2)先令y=0,求出C 点坐标,得到OC 的长,然后根据AOB BOC AOC SS S =+计算△AOB 的面积即可.【详解】解:(1)过A 作AH x ⊥轴交x 轴于H ,∴4sin 5AH ACE AO∠==,5OA =, ∴4AH =,∴223OH OA AH ,∴()3,4A -,将()3,4A -代入m y x=,得12=-m , ∴反比例函数的解析式为12y x =-, 将()6,B n 代入12y x=-,得2n =-, ∴()6,2B -, 将()3,4A -和()6,2B -分别代入()0y kx b k =+≠,得3462k b k b -+=⎧⎨+=-⎩,解得232k b ⎧=-⎪⎨⎪=⎩, ∴直线解析式:223y x =-+; (2)在直线223y x =-+中,令0y =,则有2203x -+=,解得3x =, ∴()3,0C ,即3OC =,∴13462AOC S =⨯⨯=△; 同理3BOC S =△,则9AOB BOC AOC S S S =+=△△△.【点睛】本题考查了反比例函数的综合运用.关键是作x 轴的垂线,解直角三角形求A 点坐标,用待定系数法求直线,双曲线的解析式.25.(1)134x +=,234x =;(2)5【分析】(1)用公式法解方程即可;(2)先求特殊角三角函数值,再进行实数计算.【详解】解:(1)22360x x --=, 2a =,3b =-,6c =-∴224(3)42(6)570b ac -=--⨯⨯-=>∴332224b x a -===⨯∴134x =,234x -=(2)原式)1122=-+⨯311=+5=-【点睛】本题考查了一元二次方程的解法和含有特殊角三角函数值的实数计算,解题关键是选择恰当的方法解一元二次方程和熟记特殊角三角函数值并熟练进行计算.26.河的宽度AC 为(25+米【分析】根据点A 在点B 北偏东45°方向,结合方位角的知识可证AC BC =,利用三角函数解直角三角形,列关出方程,解方程即可.【详解】根据题意,有30,45AOC ABC ∠=︒∠=︒, 又90ACB ∠=︒所以BC AC =, 在Rt AOC ∆中,tan AC AOC OC ∠=,即tan 30AC OC ︒= 设AC x =米,则BC x =米,由题意得503x x =+ 解得x =化简得25x =+∴河的宽度AC 为(25+米.【点睛】本题考查了解直角三角形的实际应用,熟记特殊角的三角函数值,灵活运用方位角的知识,规范解直角三角形是解题关键.。

浙教版 九年级数学下册 第1章 解直角三角形 单元同步练习 习题合集(含答案解析)

1.1~1.2一、选择题(每小题4分,共32分) 1.cos60°的值等于( ) A. 3 B .1 C.22 D.122.在Rt △ABC 中,∠C =90°,sin A =47,BC =8,则AB 的长为( )A .10B .12C .14D .16图G -5-13.如图G -5-1,点A (t ,3)在第一象限,OA 与x 轴所夹的锐角为α,tan α=32,则t 的值是( )A .1B .1.5C .2D .34.在平面直角坐标系中,点P 的坐标为(cos30°,tan45°),则点P 关于x 轴的对称点P 1的坐标为( )A.⎝⎛⎭⎪⎫32,1 B.⎝ ⎛⎭⎪⎫-1,32C.⎝⎛⎭⎪⎫32,-1 D.⎝ ⎛⎭⎪⎫-32,-1 5.如图G -5-2所示,AC 是电线杆AB 的一根拉线,测得BC =6米,∠ACB =52°,则拉线AC 的长为( )A.6sin52°米 B.6tan52°米C .6cos52°米 D.6cos52°米G -5-2G -5-36.如图G -5-3,在Rt △ABC 中,CD 是斜边AB 上的高线,已知∠ACD 的正弦值是23,则AC AB的值是( )A.25B.35C.52D.237.一座楼梯的示意图如图G -5-4所示,BC 是铅垂线,CA 是水平线,BA 与CA 的夹角为θ.现要在楼梯上铺一条地毯,已知CA =4米,楼梯宽1米,则地毯的面积至少需要( )A.4sin θ平方米 B.4cos θ平方米 C .(4+4tan θ)平方米 D .(4+4tan θ)平方米G -5-4G -5-58.如图G -5-5,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,若⊙O 的半径为32,AC =2,则sin B 的值是( )A.23B.32C.34D.43二、填空题(每小题4分,共32分)9.若α=30°,则α的余角等于________度,sin α的值为________. 10.在Rt △ABC 中,∠C =90°,BC =4,AC =2 5,则sin A =________.11.用计算器计算cos10°,cos20°,cos30°,…,cos90°的值,总结规律,利用此规律比较当0°<α<β<90°时,cos α与cos β的大小,即cos α________cos β.图G -5-612.如图G -5-6,以O 为圆心,任意长为半径画弧,与射线OM 交于点A ,再以A 为圆心,AO 长为半径画弧,两弧交于点B ,画射线OB ,则cos ∠AOB 的值等于________.13.已知α是锐角,tan α=2cos30°,那么α=________度.14.将一副三角尺如图G -5-7所示叠放在一起,则BE EC的值是________.G -5-7G -5-815.如图G -5-8,在Rt △ABC 中,∠C =90°,AM 是BC 边上的中线,sin ∠CAM =35,则tan B 的值为________.图G -5-916.如图G -5-9,在△ABC 中,∠ACB =90°,∠ABC =30°,AB =2.将△ABC 绕直角顶点C 逆时针旋转60°得△A ′B ′C ,则点B 转过的路径长为________.三、解答题(共36分)17.(6分)计算:2sin30°+4cos30°•tan60°-cos 245°.18.(8分)王华是一名爱动脑筋的好学生,一天,他到公园锻炼,看到一个三角形的大花坛(如图G -5-10所示),便产生了用新学的数学知识计算一下花坛面积的想法,他测得∠A =30°,AB 边的长度为40 m ,AC 边的长度为30 m .王华同学很快计算出了花坛的面积,请你根据王华测量的结果,也计算一下这个三角形花坛的面积.图G -5-1019.(10分)如图G -5-11所示,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,点P 在⊙O 上,∠1=∠BCD .(1)求证:CB ∥PD ;(2)若BC =3,sin P =35,求⊙O 的直径.图G -5-1120.(12分)如图G -5-12,E 是矩形ABCD 中CD 边上一点,△BCE 沿BE 折叠后得到△BFE ,点F 落在AD 边上.(1)求证:△ABF ∽△DFE ;(2)若sin ∠DFE =13,求tan ∠EBC 的值.图G -5-12详解详析1.D [解析] 根据余弦的定义及特殊角度的三角函数值,可得cos60°=12.故选D.2.C 3.C4.C [解析] 由已知得P (32,1),则P 1( 32,-1). 5.D [解析] 在Rt △ABC 中,∠ABC =90°,则cos ∠ACB =BC AC ,∴AC =BCcos ∠ACB .又BC=6米,∠ACB =52°,∴AC =6cos52°米.6.D [解析] ∵∠ACD +∠BCD =90°,∠B +∠BCD =90°,∴∠ACD =∠B , ∴sin B =sin ∠ACD =23,∴AC AB =23. 7.D8.A [解析] 连结DC .根据直径所对的圆周角是直角,得∠ACD =90°. 根据同弧所对的圆周角相等,得∠B =∠D .∴sin B =sin D =AC AD =23.故选A.9.60 12 10.2311.>12.12 [解析] 连结AB ,∵OA =OB =AB , ∴△ABC 是等边三角形.∴∠AOB =60°. ∴cos ∠AOB =cos60°=12.∴α=60°. 14.33 [解析] ∵Rt △BAC 中,tan B =ACAB=tan45°=1,∴AB =AC . 在Rt △ACD 中,tan D =ACCD =tan30°=33, ∴CD =3AC ,CD =3AB . ∵∠BAC =∠ACD =90°, ∴∠BAC +∠ACD =180°, ∴AB ∥CD ,∴△ABE ∽△DCE , ∴BE EC =AB CD =33. 15.23 [解析] Rt △AMC 中,sin ∠CAM =MC AM =35,设MC =3x ,AM =5x ,则AC =AM 2-MC 2=4x .∵M 是BC 的中点,∴BC =2MC =6x .在Rt △ABC 中,tan B =AC BC =4x 6x =23.16.33π [解析] ∵在△ABC 中,∠ACB =90°,∠ABC =30°,AB =2,∴cos30°=BC AB, ∴BC =AB cos30°=2×32= 3. ∵将△ABC 绕直角顶点C 逆时针旋转60°得△A ′B ′C , ∴∠BCB ′=60°,∴点B 转过的路径长为60π×3180=33π.=1+6-12=132. 18.解:过点C 作CD ⊥AB ,垂足为D ,如图所示.在Rt △ACD 中,sin A =CDAC,∴CD =AC ·sin30°=30×12=15(m),∴S △ABC =12AB ·CD =12×40×15=300(m 2).答:此三角形花坛的面积为300 m 2.19.解:(1)证明:∵∠D =∠1,∠1=∠BCD ,∴∠D =∠BCD , ∴CB ∥PD .(2)连结AC ,如图,∵AB 是⊙O 的直径,弦CD ⊥AB 于点E ,∴BC ︵=BD ︵, ∴∠P =∠A ,∴sin A =sin P =35.又∵AB 为⊙O 的直径,∴∠ACB =90°,∴sin A =BC AB =35,而BC =3,∴AB =5,即⊙O 的直径为5.20.解:(1)证明:∵四边形ABCD 是矩形, ∴∠A =∠D =∠C =90°. ∵△BCE 沿BE 折叠后得到△BFE , ∴∠BFE =∠C =90°,∴∠AFB +∠DFE =180°-∠BFE =90°. 又∵∠AFB +∠ABF =90°, ∴∠ABF =∠DFE ,∴△ABF ∽△DFE .(2)在Rt △DEF 中,sin ∠DFE =DE EF =13,∴设DE =a ,EF =3a ,DF =EF 2-DE 2=2 2a . ∵将△BCE 沿BE 折叠后得到△BFE ,∴CE =EF =3a ,CD =DE +CE =4a ,AB =4a ,∠EBC =∠EBF . 又由(1)知△ABF ∽△DFE ,∴FE BF =DF AB =2 2a 4a =22, ∴tan ∠EBF =FEBF =22, ∴tan ∠EBC =tan ∠EBF =22.第1章 解直角三角形1.1 锐角三角函数第1课时 锐角三角函数的概念知识点1 锐角三角函数的定义1.在Rt △ABC 中,∠C =90°,AC =5,BC =12,AB =13,则sin A =________,cos A =________, tan A =________.2.在△ABC 中,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,如果a 2+b 2=c 2,那么下列结论正确的是( )A .sin A =a cB .cos B =b cC .tan A =b aD .tan B =b c图1-1-13.如图1-1-1,在Rt △ABC 中,∠BAC =90°,AD ⊥BC 于点D ,则下列结论不正确的是( )A .sinB =AD AB B .sin B =AC BCC .sin B =AD ACD .tan B =AD BD知识点2 已知三角形的边长或边长之间的数量关 系,求三角函数值图1-1-24.2017·湖州如图1-1-2,已知在Rt△ABC中,∠C=90°,AB=5,BC=3,则cos B 的值是( )A.35B.45C.34D.435.在Rt△ABC中,∠C=90°,若AC=2BC,则sin A的值是( )A.12B.2 C.55D.526.在△ABC中,若三边BC,CA,AB满足BC∶CA∶AB=5∶12∶13,则cos B的值是( )A.512B.125C.513D.12137.如图1-1-3,在Rt△ABC中,∠C=90°,BC∶AC=1∶2,则sin A=________,cos A =________,tan B=________.1-1-31-1-48.如图1-1-4,将∠AOB 放在边长为1的小正方形组成的网格中,则tan ∠AOB =________.9.分别求出图1-1-5①②所示的直角三角形中两个锐角的正弦值、余弦值、正切值.图1-1-5知识点3 已知三角函数值,求三角形的边长图1-1-610.如图1-1-6,在△ABC 中,∠C =90°,AB =15,sin B =35,则AC 的长为( )A .3B .9C .4D .1211.如图1-1-7,已知在Rt △ABC 中,∠C =90°,AC =4,tan A =12,则AB 的长是( )A .2B .8C .2 5D .4 51-1-71-1-812.如图1-1-8,在Rt △ABC 中,∠C =90°,sin A =45,AB =15,则△ABC 的周长为________.13.如图1-1-9,A 为∠α边上的任意一点,作AC ⊥BC 于点C ,CD ⊥AB 于点D ,下列用线段比表示cos α的值错误的是( )A.BD BC B.BC AB C.AD AC D.CD AC1-1-91-1-1014.如图1-1-10,以点O 为圆心,半径为1的弧交坐标轴于A ,B 两点,P 是AB ︵上一点(不与点A ,B 重合),连结PO ,设∠POB=α,则点P 的坐标是( )A .(sin α,sin α)B .(cos α,cos α)C .(cos α,sin α)D .(sin α,cos α)15.△ABC 在网格中的位置如图1-1-11所示(每个小正方形的边长均为1),AD ⊥BC 于点D ,则下列选项中错误..的是( )图1-1-11A .sin α=cos αB .tanC =2 C .sin β=cos βD .tan α=116.在Rt △ABC 中,∠C =90°,sin A =45,AC =6 cm ,则BC 的长为( )A .6 cmB .7 cmC .8 cmD .9 cm17.课本例3变式如图1-1-12所示,在△ABC 中,AB =AC ,BC =20,S △ABC =1003 3,求cos B 及tan B 的值.图1-1-1218.如图1-1-13,直线y =12x +32与x 轴交于点A ,与直线y =2x 交于点B.(1)求点B 的坐标;(2)求sin ∠BAO 的值.图1-1-1319.如图1-1-14,定义:在Rt △ABC 中,锐角α的邻边与对边的比叫做∠α的余切,记作cot α,即cot α=∠α的邻边∠α的对边=AC BC.根据上述角的余切定义,解答下列问题:(1)cot 30°=________;(2)已知tan A =34,其中∠A 为锐角,试求cot A 的值.图1-1-14第1章解直角三角形1.1 锐角三角函数第2课时特殊锐角的三角函数值知识点1 特殊角的三角函数值的计算1.sin30°的值为( )A.12B.32C.22D.332.sin30°,cos45°,cos30°的大小关系是( )A.cos30°>cos45°>sin30°B.cos45°>cos30°>sin30°C.sin30°>cos30°>cos45°D.sin30°>cos45°>cos30°3.如图1-1-15①是一张直角三角形的纸片,如果用两张相同的这种纸片恰好能拼成一个等边三角形,如图1-1-15②,那么在Rt△ABC中,sin B的值是( )图1-1-15A.1 2B.3 2C .1 D.32 4.计算:(1)sin60°+cos60°=________;(2)sin45°cos45°=________,sin60°cos60°=________. 5.计算:(1)3cos30°=________; (2)12+2sin60°=________. 6.求下列各式的值:(1)sin 260°+cos60°-tan45°;(2)3sin60°-2cos45°+38;(3)cos 245°+tan60°cos30°+cos 260°+sin 260°.知识点2 由特殊角的三角函数值求角度 7.已知∠A 为锐角,sin A =22,则∠A 等于( ) A .30° B .45° C .60° D .75°8.在直角三角形中,2cos α=3,则锐角α的度数是( ) A .60° B .45° C .30° D .以上都不对9.在Rt △ABC 中,∠C =90°,BC =5,AC =15,则∠A 的度数为( ) A .90° B .60° C .45° D .30° 10.在Rt △ABC 中,∠C =90°. (1)若sin A =32,则∠A =________°,tan A =________; (2)若tan A =33,则∠A =________°,cos A =________. 11.在△ABC 中,∠A ,∠B 都是锐角,若sin A =32,cos B =12,则∠C =________°. 12.已知α,β均为锐角,且满足|sin α-12|+(tan β-1)2=0,则α+β=________°.知识点3 特殊角的三角函数值在实际生活中的应用图1-1-1613.图1-1-16是某商场一楼与二楼之间的手扶电梯示意图,其中AB ,CD 分别表示一楼、二楼地面的水平线,∠ABC =150°,BC 的长是8 m ,则乘电梯从点B 到点C 上升的高度h 是( )A.833 m B .4 m C .4 3 m D .8 m图1-1-1714.如图1-1-17,一艘船向正北方向航行,在A 处看到灯塔S 在船的北偏东30°的方向上,航行12海里到达B 点,在B 处看到灯塔S 在船的北偏东60°的方向上,此船继续沿正北方向航行的过程中,距灯塔S 的最短距离是________海里(不作近似计算).15.2017·滨州如图1-1-18,在△ABC 中,AC ⊥BC ,∠ABC =30°,D 是CB 延长线上的一点,且BD =BA ,则tan ∠DAC 的值为( )图1-1-18A .2+ 3B .2 3C .3+ 3D .3 316.在Rt △ABC 中,∠C =90°,AB =2,BC =3,则sin A2=________.17.一般地,当α,β为任意角时,sin (α+β)与sin (α-β)的值可以用下面的公式求得:sin (α+β)=sin αcos β+cos αsin β; sin (α-β)=sin αcos β-cos αsin β.例如:sin 90°=sin (60°+30°)=sin 60°cos 30°+cos 60°sin 30°=32×32+12×12=1. 类似地,可以求得sin 15°的值是________.18.如图1-1-19,丁丁想在矩形AECF 中剪出梯形ABCD(如图中的阴影部分),作为要制作的风筝的一个翅膀.请你根据图中的数据帮丁丁计算出BE ,CD 的长(精确到个位,3≈1.7).图1-1-1919.课本作业题第6题变式阅读下面的材料,先完成填空,再按要求答题:sin 30°=12,cos 30°=32,则sin 230°+cos 230°=________;①sin 60°=32,cos 60°=12,则sin 260°+cos 260°=________;③ …观察上述等式,猜想:对任意锐角∠A ,都有sin 2A +cos 2A =________.④(1)如图1-1-20,在Rt △ABC 中,利用三角函数的定义及勾股定理证明你的猜想; (2)已知∠A 为锐角(cos A>0)且sin A =35,求cos A 的值.图1-1-2020.创新学习数学拓展课程《玩转学具》课堂中,小陆同学发现:一副三角板中,含45°角的三角板的斜边与含30°角的三角板的长直角边相等.于是,小陆同学提出一个问题:如图1-1-21,将一副三角板的直角顶点重合拼放在一起,点B ,C ,E 在同一条直线上,若BC =2,求AF 的长.请你运用所学的数学知识解决这个问题.图1-1-21第1章解直角三角形1.2 锐角三角函数的计算知识点1 利用计算器求锐角的三角函数值1.用计算器求值(精确到0.0001):sin63°52′41″≈________;cos15°22′30″≈________;tan19°15′≈________.2.比较大小:8cos31°________35.(填“>”“=”或“<”)3.在Rt△ABC中,若∠C=90°,AB=8 cm,∠B=37°,则BC≈________(精确到0.01 cm).知识点2 由三角函数值求锐角的度数4.用计算器求tan A=0.5234中的锐角A(精确到1°)时,按键顺序正确的是( )A.tan0·5234=B.0·5234=SHIFT tan-1C.SHIFT tan-10·5234=D.tan-1SHIFT0·5234=5.用计算器求锐角α(精确到1″):(1)sinα=0.2476,α≈________;(2)cosα=0.4174,α≈________;(3)tanα=0.1890,α≈________.6.在Rt△ABC中,∠C=90°.(1)若AC=5,BC=12,则AB=________,tan A=________,∠A≈________(精确到1″);(2)若AC=3,AB=5,则sin A=________,tan B=________,∠A≈________(精确到1″),∠B≈________(精确到1″).图1-2-17.如图1-2-1,有一滑梯AB,其水平宽度AC为5.3米,铅直高度BC为2.8米,则∠A的度数约为________(用科学计算器计算,结果精确到0.1°).知识点3 锐角三角函数在实际生活中的应用图1-2-28.如图1-2-2,A,B两点在河的两岸,要测量这两点之间的距离,测量者在与A同侧的河岸边选定一点C,测出AC=a米,∠A=90°,∠C=40°,则AB等于( )A.a sin40°米 B.a cos40°米C.a tan40°米 D.atan40°米图1-2-39.2017·宁波如图1-2-3,一名滑雪运动员沿着倾斜角为34°的斜坡,从A滑行至B,已知AB=500米,则这名滑雪运动员的高度下降了________米.(参考数据:sin34°≈0.56,cos34°≈0.83,tan34°≈0.67)10.如图1-2-4,在一次数学课外实践活动中,小文在点C处测得树的顶端A的仰角为37°,BC=20 m,求树高AB.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)图1-2-411.如图1-2-5,这是一把可调节座椅的侧面示意图,已知头枕上的点A到调节器点O处的距离为80 cm,AO与地面垂直,现调整靠背,把OA绕点O旋转35°到OA′处,求调整后点A′比调整前点A的高度降低了多少厘米.(结果取整数)(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)图1-2-512.如图1-2-6,在Rt△ABO中,斜边AB=1.若OC∥BA,∠AOC=36°,则( )图1-2-6A.点B到AO的距离为sin54°B.点B到AO的距离为tan36°C.点A到OC的距离为sin36°sin54°D.点A到OC的距离为cos36°sin54°13.若∠A是锐角,且cos A=tan30°,则( )A.0°<∠A<30° B.30°<∠A<45°C.45°<∠A<60° D.60°<∠A<90°14.如图1-2-7,一艘海轮位于灯塔P的北偏东53°方向,距离灯塔100海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处.(1)在图中画出点B,并求出B处与灯塔P的距离;(结果取整数)(2)用方向和距离描述灯塔P相对于B处的位置.(参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33,2≈1.41)图1-2-715.为倡导“低碳生活”,我们常选择以自行车作为代步工具,如图1-2-8①所示是一辆自行车的实物图.车架档AC与CD的长分别为45 cm,60 cm,且它们互相垂直,座杆CE的长为20 cm,点A,C,E在同一条直线上,且∠CAB=75°,其示意图如图1-2-8②.(1)求车架档AD的长;(2)求车座点E到车架档AB的距离.(结果精确到1 cm.参考数据:sin75°≈0.966,cos75°≈0.259,tan75°≈3.732)图1-2-816.(1)通过计算(可用计算器)比较大小,并提出你的猜想:①sin30°________2sin15°cos15°;②sin36°________2sin18°cos18°;③sin45°________2sin22.5°cos22.5°;④sin60°________2sin30°cos30°;⑤sin80°________2sin40°cos40°.猜想:若0°<α<45°,则sin2α________2sin αcos α.(2)已知:如图1-2-9,在△ABC 中,AB =AC =1,∠BAC =2α.请根据图中的提示,利用面积法检验你的结论.图1-2-9第1章 解直角三角形1.3 解直角三角形 第1课时 解直角三角形知识点 已知一边一角或两边解直角三角形1.在Rt △ABC 中,∠C =90°,sin A =35,BC =6,则AB 的长为( )A .4B .6C .8D .102.如图1-3-1,在Rt △ABC 中,∠C =90°,∠B =30°,AB =8,则BC 的长是( ) A.4 33B .4C .8 3D .4 31-3-11-3-23.图1-3-2是教学用的直角三角板,边AC =30 cm ,∠C =90°,tan ∠BAC =33,则边BC 的长为( )A .30 3 cmB .20 3 cmC .10 3 cmD .5 3 cm4.2017·慈溪模拟在Rt △ABC 中,∠C =90°,sin A =34,AB =5,则边AC 的长是( )A .3B .4 C.154 D.5 745.在Rt △ABC 中,∠C =90°,a ,b ,c 分别为∠A ,∠B ,∠C 所对的边,c =10,∠A =45°,则a =________,b =________,∠B =________°.6. 在Rt △ABC 中,∠C =90°,a ,b ,c 分别为∠A ,∠B ,∠C 的对边,a =6,b =2 3,则∠B 的度数为________.图1-3-37.如图1-3-3,在Rt △ABC 中,∠C =90°,∠B =37°,BC =32,则AC =________.(结果保留整数,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)图1-3-48.如图1-3-4,在△ABC 中,已知∠C =90°,BC =4 cm ,tan B =32,则△ABC 的面积是________cm 2.9.如图1-3-5,在Rt △ABC 中,∠C =90°,a ,b ,c 分别为∠A ,∠B ,∠C 的对边,由下列条件解直角三角形.图1-3-5(1)∠A =60°,b =4; (2)a =13,c =23;(3)c =2 2,∠B =30°; (4)a =8,sin B =22.10.如图1-3-6,在△ABC中,∠ABC=90°,∠A=30°,D是边AB上一点,∠BDC =45°,AD=4,求BC的长.(结果保留根号)图1-3-611.等腰三角形的腰长为2 3,底边长为6,则底角等于( )A.30°B.45° C.60°D.120°12.如图1-3-7,已知在Rt△ABC中,∠ABC=90°,点D沿BC边从点B向点C运动(点D与点B,C不重合),作BE⊥AD于点E,CF⊥AD于点F,则BE+CF的值( )A.不变 B.逐渐增大C.逐渐减小 D.先增大后减小1-3-71-3-813.如图1-3-8,在矩形ABCD中,E是CD的中点,F是BC上一点,且FC=2BF,连结AE,EF.若AB=2,AD=3,则cos∠AEF的值是________.图1-3-914.如图1-3-9,折叠矩形ABCD的一边AD,使点D落在BC边上的点F处,已知折痕AE=5 5 cm,且tan∠EFC=34,那么矩形ABCD的周长为________cm.15.如图1-3-10,∠ACB=90°,AB=13,AC=12,∠BCM=∠BAC,求sin∠BAC的值和点B到直线MC的距离.图1-3-1016.已知:等腰三角形ABC 中,AB =AC .(1)若cos B =13,且△ABC 的周长为24,求AB 的长;(2)若tan A =52,且BC =2 3,求AB 的长.17.为了解决停车难问题,交通部门准备沿宽12米、长60米的道路边规划停车位,按每辆车长5米、宽2.4米设计停车后,道路仍有不少于7米的路宽,以保证两车可以双向通过,如图1-3-11设计方案一:车位长边与路边夹角为45°;方案二:车位长边与路边夹角为30°.(1)请计算说明,两种方案是否都能保证通行要求? (2)计算符合通行要求的方案中最多可以停多少辆车.图1-3-11第1章 解直角三角形1.3 解直角三角形 第2课时 坡度与圆弧问题知识点1 坡度问题图1-3-121.2017·温州如图1-3-12,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知cos α=1213,则小车上升的高度是( )A .5米B .6米C .6.5米D .12米2.如图1-3-13是某水库大坝横断面示意图.其中CD ,AB 分别表示水库上、下底面的水平线,∠ABC =120°,BC 的长是50 m ,则水库大坝的高度h 是( )A .25 3 mB .25 mC .25 2 m D.50 33m1-3-131-3-143.如图1-3-14是拦水坝的横断面,斜坡AB 的水平宽度为12米,斜面坡度为1∶2,则斜坡AB 的长为( )A .4 3米B .6 5米C .12 5米D .24米4.如图1-3-15,一山坡的坡度为i =1∶3,小辰从山脚A 出发,沿山坡向上走了200米到达点B ,则小辰上升了________米.1-3-151-3-165.如图1-3-16,小明爬一土坡,他从A 处到B 处所走的直线距离AB =4米,此时,他距离地面的高度h =2米,则这个土坡的坡角∠A =________°.6.2017·萧山区期中如图1-3-17,水库大坝截面的迎水坡坡比(DE 与AE 的长度之比)为1∶0.6,背水坡坡比为1∶2,大坝高DE =30米,坝顶宽CD =10米,求大坝截面的周长和面积.图1-3-17知识点2 解直角三角形在圆(弧)中的应用图1-3-187.如图1-3-18,秋千链子的长度OA =3 m ,静止时秋千踏板处于A 位置,此时踏板距离地面0.3 m ,秋千向两边摆动.当踏板处于A ′位置时,摆角最大,即∠AOA ′=50°,则在A ′位置,踏板与地面的距离约为________.(sin50°≈0.766,cos50°≈0.6428,结果精确到0.01 m)8.如图1-3-19是一个半圆形桥洞截面示意图,圆心为O ,直径AB 是河底线,弦CD 是水位线,CD ∥AB ,且CD =24 m ,OE ⊥CD 于点E ,已测得sin ∠DOE =1213.(1)求半径OD ;(2)根据需要,水面要以每小时0.5 m 的速度下降,则经过多长时间才能将水排干?图1-3-19图1-3-209.如图1-3-20,长4 m的楼梯AB的倾斜角∠ABD为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°,则调整后的楼梯AC的长为( )A.2 3 m B.2 6 mC.(2 3-2)m D.(2 6-2)m10.2017·淮安A,B两地被大山阻隔,若要从A地到B地,只能沿着如图1-3-21所示的公路先从A地到C地,再由C地到B地.现计划开凿隧道A,B两地直线贯通,经测量得∠CAB=30°,∠CBA=45°,AC=20 km,求隧道开通后与隧道开通前相比,从A地到B地的路程将缩短多少.(结果精确到0.1 km,参考数据:2≈1.414,3≈1.732)图1-3-2111.如图1-3-22,一楼房AB后有一假山,其坡度i=1∶3,山坡坡面上E点处有一休息亭,测得假山坡脚C与楼房的水平距离BC=25米,与亭子的距离CE=20米.小丽从楼房顶(点A)测得点E的俯角为45°,求楼房AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比)图1-3-2212.如图1-3-23是一副创意卡通圆规的平面示意图,OA是支撑臂,OB是旋转臂,使用时,以点A为支撑点,铅笔芯端点B可以绕点A旋转作出圆.已知OA=OB=10 cm.(1)当∠AOB=18°时,求所作圆的半径;(结果精确到0.01 cm)(2)保持∠AOB=18°不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,求铅笔芯折断部分的长度.(结果精确到0.01 cm)(参考数据:sin9°≈0.1564,cos9°≈0.9877,sin18°≈0.3090,cos18°≈0.9511,可使用科学计算器)图1-3-23第1章解直角三角形第3课时方位角与仰角、俯角问题知识点1 方向角问题图1-3-241.如图1-3-24,一艘海轮位于灯塔P的北偏东55°方向,距离灯塔为2海里的点A 处.如果海轮沿正南方向航行到灯塔的正东位置,海轮航行的距离AB是( )A.2海里 B.2sin55°海里C.2cos55°海里 D.2tan55°海里2.2017·泸州如图1-3-25,海中一渔船在A处且与小岛C相距70 n mile,若该渔船由西向东航行30 n mile到达B处,此时测得小岛C位于B的北偏东30°方向上.求该渔船此时与小岛C之间的距离.图1-3-253.如图1-3-26,一艘海监船以30海里/时的速度向正北方向航行,海监船在A处时,测得岛C在该船的北偏东30°方向上,航行半小时后,该船到达点B处,发现此时岛C与该船距离最短.(1)请在图中作出该船在点B处的位置;(2)求岛C与B处之间的距离(结果保留根号).图1-3-26知识点2 仰角与俯角问题4.如图1-3-27,某地修建高速公路,要从B 地向C 地修一座隧道(B ,C 在同一水平面上),为了测量B ,C 两地之间的距离,某工程师乘坐热气球从C 地出发,垂直上升100 m 到达A 处,在A 处观察B 地的俯角为30°,则B ,C 两地之间的距离为( )A .100 3 mB .50 2 mC .50 3 m D.100 33m1-3-271-3-285.如图1-3-28,热气球的探测器显示,从热气球A 看一栋高楼顶部B 的仰角为30°,看这栋高楼底部C 的俯角为60°,热气球A 与高楼的水平距离为120 m ,这栋高楼BC 的高度为( )A .40 3 mB .80 3 mC .120 3 mD .160 3 m6.天封塔历史悠久,是宁波著名的文化古迹.如图1-3-29,从位于天封塔的观测点C 测得两建筑物底部A ,B 的俯角分别为45°和60°,若此观测点离地面的高度CD 为51米,A ,B 两点在CD 的两侧,且点A ,D ,B 在同一水平线上,求A ,B 之间的距离.(结果保留根号)图1-3-297.2017·广安如图1-3-30,线段AB,CD分别表示甲、乙两建筑物的高,BA⊥AD,CD⊥AD,垂足分别为A,D.从D点测得B点的仰角α为60°,从C点测得B点的仰角β为30°,甲建筑物的高AB=30米.(1)求甲、乙两建筑物之间的距离AD;(2)求乙建筑物的高CD.图1-3-308.2017·重庆如图1-3-31,小王在长江边某瞭望台D处,测得江面上的渔船A的俯角为40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1∶0.75,坡长BC=10米,则此时AB的长约为(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)( )A.5.1米 B.6.3米 C.7.1米 D.9.2米1-3-311-3-329.高考英语听力测试期间,需要杜绝考点周围的噪声.如图1-3-32,点A是某市一高考考点,在位于A考点南偏西15°方向距离125米的C点处有一消防队.在听力考试期间,消防队突然接到报警电话,告知在位于C点北偏东75°方向的F点处突发火灾,消防队必须立即赶往救火.已知消防车的警报声传播半径为100米,若消防车的警报声对听力测试造成影响,则消防车必须改道行驶.试问:消防车是否需要改道行驶?________(填“需要”或“不需要”).(3取1.732)10.课本作业题第2题变式2017·绍兴如图1-3-33,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C测得教学楼顶部D的仰角为18°,教学楼底部B的俯角为20°,量得实验楼与教学楼之间的距离AB=30 m.(1)求∠BCD的度数;(2)求教学楼的高BD(结果精确到0.1 m,参考数据:tan20°≈0.36,tan18°≈0.32).图1-3-3311.创新学习某市一湖的湖心岛有一颗百年古树,当地人称它为“乡思柳”,不乘船不易到达,每年初春时节,人们喜欢在“聚贤亭”观湖赏柳.小红和小军很想知道“聚贤亭”与“乡思柳”之间的大致距离,于是,有一天,他俩带着测倾器和皮尺来测量这个距离.测量方案如下:如图1-3-34,首先,小军站在“聚贤亭”的A处,用测倾器测得“乡思柳”顶端M的仰角为23°,此时测得小军的眼睛距地面的高度AB为1.7米;然后,小军在A处蹲下,用测倾器测得“乡思柳”顶端M的仰角为24°,这时测得小军的眼睛距地面的高度AC为1米.请你利用以上所测得的数据,计算“聚贤亭”与“乡思柳”之间的距离AN的长(结果精确到1米).(参考数据:sin23°≈0.3907,cos23°≈0.9205,tan23°≈0.4245,sin24°≈0.4067,cos24°≈0.9135,tan24°≈0.4452)图1-3-34。

(北师大版)佛山市九年级数学下册第一单元《直角三角形的边角关系》测试(答案解析)

一、选择题1.下列不等式成立的是( ) A .sin60°<sin45°<sin30° B .cos30°<cos45°<cos60° C .tan60°<tan45°<tan30°D .sin30°<cos45°<tan60°2.如图,在ABC ∆中,AC BC ⊥,30ABC ︒∠=,点D 是CB 延长线上的一点,且AB BD =,则tan DAC ∠的值为( )A .33B .23C .23+D .23-3.在RtΔABC 中,若∠C=90°,cosA=35,则sinA 的值为( ) A .35B .45 C .34D .544.三角形在正方形网格纸中的位置如图所示,则sinα的值是( )A .34B .43C .35D .45 5.在Rt △ABC 中,∠C =90°,AB =3BC ,则sin B 的值为( ) A .12B .22C .32D .236.如图,某建筑物AB 在一个坡度为1:0.75i =的山坡CE 上,建筑物底部点B 到山脚点C 的距离20BC =米,在距山脚点C 右侧水平距离为60米的点D 处测得建筑物顶部点A的仰角是24°,建筑物AB 和山坡CE 的剖面的同一平面内,则建筑物AB 的高度约为( )(参考数据:sin 240.41︒≈,cos240.91︒≈,tan 240.45︒≈)A .32.4米B .20.4米C .16.4米D .15.4米7.如图,矩形ABCD 的四个顶点分别在直线3l ,4l ,2l ,1l 上,若直线1234//////l l l l 且间距相等,3AB =,2BC =,则tan α的值为( )A .38B .13C .5 D .15158.△ABC 中,∠C=90°,∠A ,∠B ,∠C 的对边分别是a ,b ,c ,且22440c ac a -+=,则sinA+cosA 的值为( ) A .13+ B .122C .23+ D .29.在ΔABC 中,∠C =90º,AB =5,BC =3,则cos A 的值是( ) A .34B .43C .35D .4510.如图,△ABC 、△FED 区域为驾驶员的盲区,驾驶员视线PB 与地面BE 的央角∠PBE =43°,视线PE 与地面BE 的夹角∠PEB =20°,点A ,F 为视线与车窗底端的交点,AF //BE ,AC ⊥BE ,FD ⊥BE .若A 点到B 点的距离AB =1.6m ,则盲区中DE 的长度是( )(参考数据:sin43°≈0.7,tan43°≈0.9,sin20°≈0.3,tan20°≈0.4)A .2.6mB .2.8mC .3.4mD .4.5m11.如图,河堤横断面迎水坡AB 的坡比是1:34BC m =,则坡面AB 的长度是( )A .433m B .43m C .23m D .8m12.如图,在Rt △ABC 中,∠ACB=90°,若5AC ,BC=2,则sin ∠A 的值为( )A .52B .53C .23D .255二、填空题13.正方形ABCD 、正方形FECG 如图放置,点E 在BC 上,点G 在CD 上,且BC =3EC ,则tan ∠FAG =_____.14.如图,矩形ABCD 中,AE =13AD ,将△ABE 沿BE 折叠后得到△GBE ,延长BG 交CD 于F 点,若CF =FD =3,则BC 的长为_____.15.如图,矩形ABCD 的四个顶点分别在直线3421,,,l l l l 上.若这四条直线相互平行且相邻直线的间距均为1,若α=30°,则矩形ABCD 的面积为_________.16.如图,直角坐标系原点O 为Rt ABC ∆斜边AB 的中点,()90,5,0ACB A ∠=︒-,且1tan 2A =,反比例函数(0)k y k x=≠经过点C ,则k 的值是_______.17.如图,C ,D 是两个村庄,分别位于一个湖的南,北两端A 和B 的正东方向上,且点D 位于点C 的北偏东60°方向上,CD=12km ,则AB=_______km18.在ABC 中,若213sin tan 02A B ⎛⎫-+-= ⎪ ⎪⎝⎭,则C ∠的度数为__________. 19.如图,在Rt ABC △中,90ABC ∠=︒,30ACB ∠=︒,2AB =,点E 为AC 上任意一点(不与点A 、C 重合),连结EB ,分别过点A 、B 作BE 、AE 的平行线交于点F ,则EF 的最小值为__________.20.如图,在菱形ABCD 中,4AB =,45ABC ∠=︒,菱形ABCD 的对角线交于点O ,则ABO 的面积为__________.三、解答题21.计算:()2202012330tan -++︒22.计算:12+(12)-1﹣2cos30°﹣313. 23.如图,根据道路管理规定,在某笔直的大道AB 上行驶的车辆,限速60千米/时,已知测速站点M 距大道AB 的距离MN 为30米,现有一辆汽车从A 向B 方向匀速行驶,测得此车从A 点行驶到B 点所用时间为6秒,已知60AMN ∠=︒,45BMN ∠=︒.(参考数据:3 1.732≈,2 1.414≈)(1)计算AB 的长度(结果保留整数); (2)试判断此车是否超速,并说明理由.24.吴兴区某中学开展研学实践活动,来到了“两山”理论发源地—一安吉余村,看到了“两山”纪念碑.如图,想测量纪念碑AB 的高度,小明在纪念碑前D 处用测角仪测得顶端A 的仰角为60︒,底端B 的俯角为45︒;小明又在同一水平线上的E 处用测角仪测得顶端A 的仰角为30,已知8m DE =,求该纪念碑AB 的高度.(3 1.7≈,结果精确到0.1m )25.(1)解方程:x 2﹣4x =12; (2)计算:sin30°3tan45°.26.(1)计算:()1012sin 45tan 5012-⎛⎫-︒--︒-+ ⎪⎝⎭(2)已知4cos60x =︒,先化简,再求2221111x x x x ++---的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据特殊角三角函数值,可得答案. 【详解】解:A 、sin60°sin45°=2,sin30°=12 ,故A 不成立;B 、cos30°cos45°=2,cos60°=12,故B 不成立;C 、tan60°,tan45°=1,tan30°,故C 不成立;D 、sin30°=12,cos45°,tan60°D 成立; 故选:D . 【点睛】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题的关键.2.C解析:C 【分析】设AC=x ,根据三角函数可得,,AB=2x ,求出DC 即可. 【详解】 解:设AC=x ,∵AC BC ⊥,30ABC ︒∠=, tan ∠ABC=ACBC,3AC BC =,, sin ∠ABC=ACAB, 12AC AB =, AB=2x , BD=2x ,=(2x +,tan ∠DAC=2DC AC ==, 故选:C . 【点睛】本题考查了特殊角的三角函数和求三角函数值,解题关键是根据三角函数的定义,利用特殊角,表示出相关线段长.3.B解析:B 【分析】根据正弦和余弦的平方和等于1求解. 【详解】解:∵()()22sin cos 1A A +=,∴4sin 5A ===,故选B . 【点睛】本题考查锐角三角函数的性质,熟练掌握正弦函数与余弦函数的平方和等于1的性质是解题关键.4.C解析:C 【分析】将α∠转换成β∠去计算正弦值. 【详解】解:如图,βα∠=∠,4AB =,3BC =, ∴5AC =, 则3sin sin 5BC AC αβ===. 故选:C .【点睛】本题考查正弦值的求解,解题的关键是掌握网格图中三角函数值的求解.5.D解析:D 【分析】设BC=a ,则AB=3a ,根据勾股定理求出AC ,再根据正弦的定义求sin B . 【详解】解:设BC=a ,则AB=3a ,2222922AC AB BC a a a -=-=,sin B =222233AC a AB a ==, 故选:D . 【点睛】本题考查了三角函数,勾股定理,解题关键是明确三角函数的意义,通过设参数,求出需要的边长.6.C解析:C 【分析】延长AB 交CD 反向延长线于F .根据题意可知43BF FC =,则设BF=4x ,FC=3x .由正切可求出AF 的长.再在Rt BFC △中,由勾股定理可求出x 的值.最后即可利用=AB AF BF -求出AB 长. 【详解】如图延长AB 交CD 反向延长线于F ,由题意可知BF DF ⊥. ∵建筑物AB 在一个坡度为i =1:0.75的山坡CE 上, ∴10.75BF FC =,即43BF FC =. 设BF=4x 米,则FC=3x 米,DF=(60+3x )米, ∵24D ∠=︒, ∴tan tan 240.45AFD DF∠=︒==,∴0.45(603)(27 1.35)AF x x =+=+米.在Rt BFC △中,222BF FC BC +=,即222(4)(3)20x x +=, ∴1244x x ==-,(舍).∴4416BF =⨯=米,27 1.354=32.4AF =+⨯米. ∴=32.4-16=16.4AB AF BF -=米.故选:C . 【点睛】本题考查解直角三角形的实际应用和勾股定理.作出常用的辅助线是解答本题的关键.7.B解析:B 【分析】根据题意,可以得到BG 的长,再根据∠ABG=90°,AB=3,可以得到∠BAG 的正切值,再根据平行线的性质,可以得到∠BAG=∠α,从而可以得到tanα的值. 【详解】解:作CF ⊥l 4于点F ,交l 3于点E ,设CB 交l 3于点G ,由已知可得,GE ∥BF ,CE=EF , ∴△CEG ∽△CFB , ∴CE CGCF CB =, ∵12CE CF =, ∴12CG CB =, ∵BC=2, ∴GB=1,∵l 3∥l 4, ∴∠α=∠GAB ,∵四边形ABCD 是矩形,AB=3, ∴∠ABG=90°, ∴1tan 3BG BAG AB ∠==, ∴tanα的值为13, 故选:B . 【点睛】本题考查矩形的性质,解直角三角形,解答本题的关键是明确题意,利用数形结合的思想解答.8.A解析:A 【分析】由22440c ac a -+=得2c a =,则1sin 2a A c ==,即可得到30A ∠=︒,利用特殊角的三角函数值就可以求出结果. 【详解】解:∵22440c ac a -+=, ∴()220c a -=,即2c a =,∵90C ∠=︒,∴1sin 2a A c ==, ∴30A ∠=︒,∴cos 2A =,∴1sin cos 2A A +=. 故选:A . 【点睛】本题考查锐角三角函数,解题的关键是掌握特殊角的三角函数值.9.D解析:D 【分析】利用勾股定理可求出AC 的长,根据余弦函数的定义即可得答案. 【详解】∵∠C=90°,AB=5,BC=3,∴=4,∴cosA=ACAB =45.故选:D.【点睛】考查勾股定理及锐角三角函数的定义,在直角三角形中,锐角的余弦是角的邻边与斜边的比;熟练掌握各三角函数的定义是解题的关键.10.B解析:B【分析】首先证明四边形ACDF是矩形,利用∠PBE的正弦值可求出AC的长,即可得DF的长,利用∠PEB的正切值即可得答案.【详解】∵FD⊥AB,AC⊥EB,∴DF∥AC,∵AF∥EB,∴四边形ACDF是平行四边形,∵∠ACD=90°,∴四边形ACDF是矩形,∴DF=AC,在Rt△ACB中,∵∠ACB=90°,∠ABE=43°,∴AC=AB•sin43°≈1.6×0.7=1.12(m),∴DF=AC=1.12(m),在Rt△DEF中,∵∠FDE=90°,∠PEB=20°,∴tan∠PEB=DFDE≈0.4,∴D E≈1.120.4=2.8(m),故选:B.【点睛】本题考查解直角三角形的应用及矩形的判定与性质,熟练掌握各三角函数的定义是解题关键.11.D解析:D【分析】直接利用坡比的定义得出AC的长,进而利用勾股定理得出答案.【详解】∵河堤横断面迎水坡AB的坡比是∴BC AC = ∴4AC =解得:AC =故AB 8(m ),故选:D .【点睛】此题主要考查了解直角三角形的应用,正确掌握坡比的定义是解题关键.12.C解析:C【分析】先利用勾股定理求出AB 的长,然后再求sin ∠A 的大小.【详解】解:∵在Rt △ABC 中,AC =BC=2∴3=∴sin ∠A=23BC AB = 故选:C .【点睛】 本题考查锐角三角形的三角函数和勾股定理,需要注意求三角函数时,一定要是在直角三角形当中.第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.【分析】根据题意可以设EC=a 然后即可得到ADDG 和AG 的长然后作FH ⊥AG 利用锐角三角函数和勾股定理可以得到AH 和FH 的长从而可以得到tan ∠FAG 的值【详解】解:作FH ⊥AG 于点H ∵正方形FEC 解析:15【分析】根据题意,可以设EC=a ,然后即可得到AD 、DG 和AG 的长,然后作FH ⊥AG ,利用锐角三角函数和勾股定理可以得到AH 和FH 的长,从而可以得到tan ∠FAG 的值.【详解】解:作FH ⊥AG 于点H ,∵正方形FECG ,设EC=FG=a,则BC=AD=CD=3a,∵四边形ABCD是正方形,∴∠D=90°,DG=BE=2a,∴AG=22AD DG=13a,∴sin∠DAG=13a =21313,∵AD∥GF,∴∠HGF=∠DAG,∴sin∠HGF=213,∵sin∠HGF=HFGF,∴HFa =21313,解得HF=213a,∴HG=313a,∴AH=AG﹣HG=13a﹣313a=1013a,∴tan∠FAH=FHAH =213131013aa=15,即tan∠FAG=15,故答案为:15.【点睛】本题考查正方形的性质、锐角三角形函数,解答本题的关键是明确题意,利用数形结合的思想解答.14.6【分析】延长BF 交AD 的延长线于点H 证明△BCF ≌△HDF (AAS )由全等三角形的性质得出BC =DH 由折叠的性质得出∠A =∠BGE =90°AE =EG 设AE =EG =x 则AD =BC =DH =3x 得出EH解析:66【分析】延长BF 交AD 的延长线于点H ,证明△BCF ≌△HDF (AAS ),由全等三角形的性质得出BC =DH ,由折叠的性质得出∠A =∠BGE =90°,AE =EG ,设AE =EG =x ,则AD =BC =DH =3x ,得出EH =5x ,由锐角三角函数的定义及勾股定理可得出答案.【详解】解:延长BF 交AD 的延长线于点H ,∵四边形ABCD 是矩形,∴AD =BC ,AD ∥BC ,∠A =∠BCF =90°,∴∠H =∠CBF ,在△BCF 和△HDF 中,CBF H BCF FDH CF DF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BCF ≌△HDF (AAS ),∴BC =DH ,∵将△ABE 沿BE 折叠后得到△GBE ,∴∠A =∠BGE =90°,AE =EG ,∴∠EGH =90°,∵AE =13AD , ∴设AE =EG =x ,则AD =BC =DH =3x ,∴ED =2x ,∴EH =ED +DH =5x ,在Rt △EGH 中,sin ∠H =155EG x EH x ==, ∴sin ∠CBF =15CF BF =, ∴315BF =,∴BF =15,∴BC =222215366BF CF -=-=,故答案为:66.【点睛】本题考查了折叠的性质,矩形的性质,全等三角形的判定及性质,要注意折叠的图形中的相等的角和相等的线段,解题关键是利用倍长中线法正确作出辅助线证△BCF ≌△HDF . 15.【分析】过B 点作直线EF 与平行线垂直与l2交于点E 与l3交于点F 得AB=2进而求得矩形的面积;【详解】解:如图过B 作于E 点交于F 点∵∴∠又∵相邻直线的间距均为1∴BF=EF=1则∴又∵矩形ABCD 中解析:83 【分析】过B 点作直线EF 与平行线垂直,与l 2交于点E ,与l 3交于点F .得AB=2,43BC =.进而求得矩形的面积; 【详解】解:如图,过B 作2BE l ⊥于E 点,交2l 于F 点∵34//l l∴∠=30BAF α∠=︒又∵相邻直线的间距均为1,∴BF=EF=1则1sin 2BF AB α== ∴2212AB BF ==⨯=又∵矩形ABCD 中,∠90ABC =° 而∠+90ABF α∠=︒∴30EBC α∠=∠=︒,且BE=2 ∴3cos 2BE EBC BC ∠== ∴3432233BC BE =÷==则S 矩形ABCD=AB×BC=4832333⨯= 故答案为:83 【点睛】 本题考查了矩形的性质、直角三角形中三角函数的应用,锐角三角函数值的计算等知识,根据平行线之间的距离构造全等的直角三角形是关键.16.【分析】作CD ⊥AB 于点D 由可设BC=xAC=2x 根据勾股定理即可求出BC 和AC 的值利用面积法求出CD 的值再利用勾股定理求出BD 的值得到点C 的坐标然后可求出k 的值【详解】如图作CD ⊥AB 于点D ∵为斜解析:12【分析】作CD ⊥AB 于点D .由1tan 2A =可设BC=x ,AC=2x ,根据勾股定理即可求出BC 和AC 的值,利用面积法求出CD 的值,再利用勾股定理求出BD 的值,得到点C 的坐标,然后可求出k 的值. 【详解】如图,作CD ⊥AB 于点D .∵()5,0A -,O 为Rt ABC ∆斜边AB 的中点,∴()5,0B ,∴OB=5,AB=10.∵1tan 2A ==BC AC , ∴可设BC=x ,AC=2x ,由勾股定理得x 2+(2x)2=102,∴x=25∴BC=25AC=45∵1122AC BC AB CD ⋅=⋅, ∴254510CD =,∴CD=4,∴2==, ∴OD=5-2=3,∴C(3,4).反比例函数(0)k y k x=≠经过点C , ∴k=3×4=12.故答案为:12.【点睛】本题考查了勾股定理,面积法求线段的长,锐角三角函数的定义,以及反比例函数图象上点的坐标特征,求出点C 的坐标是解答本题的关键. 17.【分析】过点C 作CE ⊥BD 于E 构造直角三角形由方位角确定∠ECD=60°在Rt △CED 中利用三角函数AB=CD•cos ∠ECD 即可【详解】过点C 作CE ⊥BD 于E 由湖的南北两端A 和B ∴∠EBA=∠BA解析:【分析】过点C 作CE ⊥BD 于E 构造直角三角形,由方位角确定∠ECD=60°,在Rt △CED 中利用三角函数AB=CD•cos ∠ECD 即可.【详解】过点C 作CE ⊥BD 于E ,由湖的南,北两端A 和B∴∠EBA=∠BAC=90º,又∠BEC=90º则四边形ABCE 为矩形,∴AB=CE∵点D 位于点C 的北偏东60°方向上,∴∠ECD=60°,∵CD=12km ,在Rt △CED 中,∴CE=CD•cos ∠ECD=12×12=6km , ∴AB=CE=6km .故答案为:6.【点睛】本题考查解直角三角形的应用,通过辅助线,将问题转化矩形和三角形中,利用三角函数与矩形性质便可解决是关键.18.120º【分析】根据绝对值和平方的非负数性质可得sinA=tanB=根据特殊角的三角函数值可得出∠A∠B的度数根据三角形内角和定理即可得答案【详解】∵∴sinA-=0-tanB=0∴sinA=tan解析:120º【分析】根据绝对值和平方的非负数性质可得sinA=12,3出∠A、∠B的度数,根据三角形内角和定理即可得答案.【详解】∵213sin tan023A B⎫-+-=⎪⎪⎝⎭,∴sinA-12=03,∴sinA=12,tanB=33,∴∠A=30°,∠B=30°,∠C=180°-30°-30°=120°,故答案为:120°【点睛】本题考查了特殊角的三角函数值、非负数的性质及三角形内角和定理,根据非负数性质得出sinA=12,tanB=33,并熟记特殊角的三角函数值是解题关键.19.【分析】由题意过点B作BH⊥AC于H先解直角三角形求出BH再根据垂线段最短进行分析即可求解【详解】解:如图过点B作BH⊥AC于H在Rt△ABC中∵∠ABC=90°AB=2∠C=30°∴AC=2AB=解析:3【分析】由题意过点B作BH⊥AC于H,先解直角三角形求出BH,再根据垂线段最短进行分析即可求解.【详解】解:如图,过点B作BH⊥AC于H,在Rt△ABC中,∵∠ABC=90°,AB=2,∠C=30°,∴AC=2AB=4,BC=AB•cos30°=23,∵∠BHC=90°,∴BH=1BC=3,2∵BF//AC,∵当EF⊥AC时,EF的值最小,最小值=BH=3.故答案为:3.【点睛】本题考查解直角三角形的应用和平行线的性质以及垂线段最短等知识,解题的关键是理解题意,灵活运用所学知识解决问题.20.【分析】过A作AE⊥BC于点E则由题意可得AE的值进一步可求得△ABO 的面积【详解】解:如图过A作AE⊥BC于点E∵AB=4∠ABC=45°∴AE=AB=∴故答案为【点睛】本题考查菱形性质和解直角三解析:22【分析】过A作AE⊥BC于点E,则由题意可得AE的值,进一步可求得△ABO的面积.【详解】解:如图,过A作AE⊥BC于点E,∵AB=4,∠ABC=45°,∴AE=AB sin 45︒=42⨯=∴1111·42224ABO ABC S S BC AE ==⨯=⨯⨯=故答案为 .【点睛】本题考查菱形性质和解直角三角形的综合应用,熟练掌握菱形的性质是解题关键.三、解答题21.1+【分析】根据算术平方根,任何非零数的零次幂等于1以及特殊角的三角函数值计算即可.【详解】解:)02020330tan +︒=133+⨯=1+=1+【点睛】此题主要考查了实数运算,正确化简各数是解题关键.22.2【分析】分别根据特殊角的三角函数值、负整数指数幂及算术平方根的性质计算出各数,再根据实数混合运算的法则.【详解】+(12)-1﹣2cos30°﹣=23--==2.【点睛】本题考查的是实数的运算,熟记负整数指数幂、算术的性质及特殊角的三角函数值是解答此题的关键.23.(1)82米;(2)不超速,见解析【分析】(1)已知MN=30m ,∠AMN=60°,∠BMN=45°求AB 的长度,可以转化为解直角三角形;(2)求得从A 到B 的速度,然后与60千米/时≈16.66米/秒,比较即可确定答案.【详解】解:(1)由题意可得在Rt AMN △中,30MN =米,60AMN ∠=︒, ∴tan AN MN AMN =⋅∠=在Rt BMN 中,∵45BMN ∠=︒,∴30BN MN ==(米). ∴3082AB AN BN =+=≈(米).(2)此车不超速,理由如下:由题意可得,汽车从A 到B 为匀速行驶,用时为6秒,且82AB =米,则汽车的速度为()306513.66÷=≈(米/秒).∵60千米/时≈16.67米/秒,13.6616.67<,∴此车不会超速.【点睛】本题考查了勾股定理以及解直角三角形的应用,解题的关键是从题目中抽象出直角三角形,难度不大.24.8m【分析】设CD=x m ,解Rt △ACD 与Rt △DCB ,用含x 的代数式表示出AC 、CB ,然后根据△ACE 是含30度角的直角三角形列出方程,解方程即可求x 的值,进而可得AB .【详解】解:设CD=x m ,∵∠ADC=60°,∠CDB=45°,∴,CB=x•tan45°=x (m ),∵∠AED=30°,DE=8m ,∴, ∴,解得x=4(m ),∴(m ).答:该纪念碑AB 的高度约为10.8m .【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,理解仰角俯角的概念、熟记锐角三角函数的概念是解题的关键.25.(1)x 1=6,x 2=﹣2;(2)1【分析】(1)采用分解因式法解方程;(2)将特殊角度的三角函数值代入计算即可.【详解】解:(1)x 2﹣4x ﹣12=0,(x ﹣6)(x +2)=0,x ﹣6=0或x +2=0,所以x 1=6,x 2=﹣2;(2)原式=112, 13=22+, =1.【点睛】本题考查一元二次方程的解法,特殊三角函数值的计算,掌握一元二次方程的解法,特殊三角函数值的计算,熟记特殊角度的三角函数值是关键.26.(1)0;(2)1x x -,2. 【分析】(1)原式先根据绝对值的代数意义,特殊角的三角函数值,负整数指数幂,零次幂以及算术平方根进行化简,再求出答案即可;(2)先求出x 的值,再根据异分母分式的减法进行通分并化简,最后把x 的代入化简结果中求值即可.【详解】解:(1)()1012sin 45tan 5012-⎛⎫︒--︒- ⎪⎝⎭=2213--+=213-+=0;(2)2221111x x x x ++--- =2211(1)(1)x x x x x ++--+- =(1)(1)(1)x x x x ++- =1x x - ∵14cos60=4=22x =︒⨯,∴原式=2221=-. 【点睛】 本题考查了分式的化简求值,绝对值,特殊角的三角函数值,负整数指数幂,零次幂以及算术平方根等知识点,能灵活运用知识点进行计算和化简是解此题的关键.。

【新】人教版九年级数学下册: 解直角三角形及其应用 同步练习 (含答案)

解直角三角形及其应用同步练习一.选择题(共12小题)1.如图,在等腰△ABC中,AB=AC,BD是AC边上的高,cosC=,则△BCD与△ABD的面积比是()A.1:3B.2:7C.2:9D.2:112.如图,每个小正方形的边长都为1,点A、B、C都在小正方形的顶点上,则∠ABC的正弦值为()A.1B.C.0.5D.3.如图,在边长为1的正方形网格中,连接格点D、N和E、C,DN和EC相交于点P,tan∠CPN为()A.1B.2C.D.4.如图,在Rt△ABC中,∠C=90°,∠BAC=30°,延长CA到点D,使AD=AB,连接BD.根据此图形可求得tan15°的值是()A.B.C.D.5.如图,在莲花山滑雪场滑雪,需从山脚下乘缆车上山,缆车索道与水平线所成的角为31°,缆车速度为每分钟40米,从山脚下A到达山顶B缆车需要15分钟,则山的高度BC为()A.600•tan31°B.C.600•sin31°D.6.小明同学在数学实践课中测量路灯的高度.如图,已知他的目高AB为1.5米,他先站在A处看路灯顶端O的仰角为30°,向前走3米后站在C处,此时看灯顶端O的仰角为60°,则灯顶端O 到地面的距离约为()A.3.2米B.4.1米C.4.7米D.5.4米7.如图所示,小明所住高楼AB高为100米,楼旁有一座坡比为3:1的山坡CE,小明想知道山坡的高度,于是小明来到楼顶B俯视坡底C,测得俯角为45°,仰视坡项E,测得仰角为27°,请根据小明提供的信息,帮小明求出斜坡CE的高度ED的值.(结果均精确到0.1米.参考数据:sin27°≈0.45,cos37°≈0.89,tan27°≈0.51)()A.151.1米B.168.7米C.171.6米D.181.9米8.如图,要测量小河两岸相对的两点P、A之间的距离,可以在小河边PA的垂线PB上取一点C.测得PC=80米,∠PCA=32°,则PA的长为()A.80sin32°米B.80tan32°米C.D.9.如图,某“拓展训练营”的一个自行车爬坡项目有两条不同路线,路线一:从C到B,路线二:从D到A,AB为垂直升降梯.其中BC的坡度为i=1:2,BC=12米,CD=8米,∠D=36°(其中A,B,C,D均在同一平面内),则垂直升降梯AB的高度约为(精确到0.1米)()(参考数据:tan36°≈0.73,cos36°≈0.81,sin36°≈0.59)A.8.6B.11.4C.13.9D.23.410.如图,在一笔直的海岸线l上有A,B两个测点,AB=4km,从A处测得船C在北偏东45°的方向,从B 处得船C在北偏东22.5°的方向,则船C离海岸线l的距离CD的长为()A.4kmB.(4+2)kmC.(4+)kmD.(4-)km11.某游客乘坐“金碧皇宫号游船”在长江和嘉陵江的交汇处A点,测得来福土最高楼顶点F的仰角为45°,此时他头项正上方146米的点B处有架航拍无人机测得来福士最高楼顶点F的仰角为31°,游船朝码头方向行驶120米到达码头C,沿坡度i=1:2的斜坡CD走到点D,再向前走160米到达来福士楼底E,则来福士最高楼EF的高度约为()(结果精确到0.1,参考数据:sin31°≈0.52,cos31°≈0.87,tan31°≈0.60)A.301.3米B.322.5米C.350.2米D.418.5米12.诗人卞之琳的代表作《断章》:“你站在桥上看风景,看风景的人在楼上看你,明月装饰了你的窗子,你装饰了别人的梦”.2019年国庆,重庆来福士广场开业,吸引了全国各地游客前来,重庆又有了一张新的名片.10月2日,游客小王从南滨路的A处,沿坡度i=1:0.75的斜坡上行20米到达B处,再往正前方水平走8米到达C处,对来福士广场拍照.同时,小王身后的一栋居民楼里面的重庆市民小张在D处测得C处的俯角为42°,若居民楼底端E处与A处的距离是45米,A、B、C、D、E在同一平面内,DE⊥AE于点E.则DE的长约为()米.(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.9)A.74.5B.74.1C.61.2D.58.5二.填空题(共6小题)13.已知一段公路的坡度为1:20,沿着这条公路前进,若上升的高度为2m,则前进了.14.如图,l是一条笔直的公路,道路管理部门在点A设置了一个速度监测点,已知BC为公路的一段,B 在点A的北偏西30°方向,C在点A的东北方向,若AB=50米.则BC的长为米.(结果保留根号)15.如图,在Rt△ABC中,∠ACB=90°,AC=2,tanB=0.75,CD平分∠ACB交AB于点D,DE⊥BC,垂足为点E,则DE=.16.如图,渔船在A处看到灯塔C在北偏东60°方向上,渔船向正东方向航行了12km达B处,在B处看到灯塔C在正北方向上,则A处与灯塔C的距离是.17.在△ABC中,∠A=30°,AB=2,AC=6,则BC的长为18.如图,为了测量塔CD的高度,小明在A处仰望塔顶,测得仰角为30°,再往塔的方向前进60m至B处,测得仰角为60°,那么塔的高度是m.(小明的身高忽略不计,结果保留根号).三.解答题(共5小题)19.如图,正在海岛C西南方向20海里作业的海监船A,收到位于其正东方向渔船B发出的遇险求救信号,已知渔船B位于海岛C的南偏东30°方向,海岛C周围13海里内都有暗礁.(参考数据)(1)如果海监船A沿正东方向前去救援是否有触礁的危险?(2)求海监船A与渔船B的距离.(结果精确到0.1海里)20.某中学为数学实验“先行示范校”,一数学活动小组带上高度为1.5m的测角仪BC,对建筑物AO进行测量高度的综合实践活动,如图,在BC处测得直立于地面的AO顶点A的仰角为30°,然后前进40m至DE处,测得顶点A的仰角为75°.(1)求∠CAE的度数;(2)求AE的长(结果保留根号);(3)求建筑物AO的高度(精确到个位,参考数据:.21.如图是一种简易台灯的结构图,灯座为△ABC,A、C、D在同一直线上.量得∠ACB=90°,∠A=60°,AB=16cm,∠ADE=135°,灯杆CD长为40cm,灯管DE长为15cm.求台灯的高(即台灯最高点E到底盘AB 的距离).(结果取整,参考数据sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,22.某工厂生产某种多功能儿童车,根据需要可变形为图1的滑板车或图2的自行车,已知前后车轮半径相同,AD=BD=DE=30cm,CE=40cm,车杆AB与BC所成的∠ABC=53°,图1中B、E、C三点共线,图2中的座板DE与地面保持平行.问变形前后两轴心BC的长度有没有发生变化?若不变,请写出BC的长度;若变化,请求出变化量?(参考数据:sin53°)23.如图①是某小区入口实景图,图②是该入口抽象成的平面示意图,已知入口BC宽3.9米,门卫室外墙(灯罩长度忽略不计),∠AOM=60°.上的O点处装有一盏灯,点O与地面BC的距离为3.3米,灯臂OM长1.2米,(1)求点M到地面的距离,(2)某搬家公司一辆总宽2.55米,总高3.5米的货车能否从该入口安全通过?如果能安全通过,请直接写出货车离门卫室外墙AB的最小距离(精确到0.01米);如果不能安全通过,请说明理由.(参考数据:参考答案1-5:BDBAC 6-10:BDBBB 11-12:BA13、214、)15、16、17、18、19、20、21、22、在Rt△CEN中,∵CE=40cm,∴由勾股定理可得CN=32cm,则BC=18+30+32=80(cm),答:BC的长度发生了改变,增加了4cm23、(1)过点M作MN⊥OA于点N,∵OM长1.2米,∠AOM=60°.∴ON=0.6米,∴BN=OB+ON=3.3+0.6=3.9米.答:点M到地面的距离为3.9米.(2)一辆总宽2.55米,总高3.5米的货车能从该入口安全通过,理由如下:过点A作AE⊥BA,垂足为A,∵设货车高AB=3.5米,则OA=3.5-3.3=0.2∴AE=OAtan60°=≈0.35答:货车离门卫室外墙AB的最小距离为0.35米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1章 解直角三角形 1.2017·金华在Rt△ABC中,∠C=90°,AB=5,BC=3,则tanA的值是( ) A.34 B.43 C.35 D.45

2.2017·兰州如图1-BZ-1,一个斜坡长为130 m,坡顶到水平地面的距离为50 m,那么这个斜坡与水平地面夹角的正切值等于( )

A.513 B.1213 C.512 D.1312

图1-BZ-1 图1-BZ-2 3.2017·绥化某楼梯的侧面如图1-BZ-2所示,已测得BC的长约为3.5米,∠BCA约为29°,则该楼梯的高度AB可表示为( )

A.3.5sin29°米 B.3.5cos29°米

C.3.5tan29°米 D.3.5cos29°米

4.2017·绍兴如图1-BZ-3,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,若保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为( )

A.0.7米 B.1.5米

C.2.2米 D.2.4米

5.2017·泰州小明沿着坡度i为1∶3的直路向上走了50 m,则小明沿垂直方向升高了________m.

图1-BZ-3 图1-BZ-4 6.2016·上海如图1-BZ-4,在矩形ABCD中,BC=2.将矩形ABCD绕点D顺时针旋转90°,点A,C分别落在点A′,C′处,如果点A′,C′,B在同一条直线上,那么tan∠ABA′的值为________.

7.2017·大连如图1-BZ-5,一艘海轮位于灯塔P的北偏东60°方向,距离灯塔86 n mile的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处.此

时,B处与灯塔P之间的距离为________n mile.(结果取整数,参考数据:3≈1.7,2≈1.4)

图1-BZ-5 图1-BZ-6 8.2017·东营一数学兴趣小组来到某公园,准备测量一座塔的高度.如图1-BZ-6,在A处测得塔顶的仰角为α,在B处测得塔顶的仰角为β,又测量出A,B两点间的距离为s米,则塔高为______米.

9.2017·义乌以Rt△ABC的锐角顶点A为圆心,适当长为半径作弧,与边AB,AC各相交于一点,再分别以这两个交点为圆心,适当长为半径作弧,过两弧的交点与点A作直线,与边BC交于点D, 若∠ADB=60°,点D到AC的距离为2,则AB的长为__________.

10.2017·舟山如图1-BZ-7,把n个边长为1的正方形拼接成一排,求得tan∠BA1C=1,tan∠BA2C=13,tan∠BA3C=17,计算tan∠BA4C=__________……按此规律,写出tan∠BAnC=__________(用含n的代数式表示).

图1-BZ-7 11.2016·台州计算:tan45°-sin30°+()2+20. 12.2017·包头如图1-BZ-8,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE∥BA交AC于点E,DF∥CA交AB于点F,已知CD=3.

(1)求AD的长; (2)求四边形AEDF的周长.(注意:本题中的计算过程和结果均保留根号)

图1-BZ-8

13.2017·丽水如图1-BZ-9是某小区的一个健身器材示意图,已知BC=0.15 m,AB=2.70 m,∠BOD=70°,求端点A到地面CD的距离(精确到0.1 m).(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)

图1-BZ-9 14.2017·台州如图1-BZ-10是一辆小汽车与墙平行停放的平面示意图,汽车靠墙一侧OB与墙MN平行且距离为0.8米.已知小汽车车门宽AO为1.2米,当车门打开角度∠AOB为40°时,车门是否会碰到墙?请说明理由.(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)

图1-BZ-10 15.2017·赤峰王浩同学用木板制作一个带有卡槽的三角形手机架,如图1-BZ-11所示.已知AC=20 cm,BC=18 cm,∠ACB=50°,王浩的手机长度为17 cm,宽为8 cm,王浩同学能否将手机放入卡槽AB内?请说明你的理由.(提示:sin50°≈0.8,cos50°≈0.6,tan50°≈1.2)

图1-BZ-11

16.2017·舟山如图1-BZ-12是小强洗漱时的侧面示意图,洗漱台(矩形ABCD)靠墙 摆放,高AD=80 cm,宽AB=48 cm,小强身高166 cm,下半身FG=100 cm,洗漱时下半身与地面成80°(∠FGK=80°),身体前倾成125°(∠EFG=125°),脚与洗漱台的距离GC=15 cm(点D,C,G,K在同一直线上).

(1)此时小强头部E点与地面DK相距多少? (2)小强希望他的头部E点恰好在洗漱盆AB的中点O的正上方,他应向前或后退多少? (参考数据:sin80°≈0.98,cos80°≈0.17,2≈1.41,结果精确到0.1 cm)

图1-BZ-12 1.A [解析] 在Rt△ABC中,根据勾股定理,得AC=AB2-BC2=52-32=4,再根据正切的定义,得tanA=BCAC=34.

2.C [解析] 在直角三角形中,根据勾股定理可知水平的直角边长为120 m,正切值为对边与邻边的比值,故斜坡与水平地面夹角的正切值等于50120=512,故选C.

3.A [解析] 在直角三角形ABC中,已知斜边BC和锐角,求锐角的对边,故用正弦,ABBC=sin29°,所以AB=3.5sin29°米,故选A.

4.C [解析] 在Rt△ACB中,根据勾股定理求出AB=2.5米,则A′B=AB=2.5米,在Rt△A′BD中,根据勾股定理求出BD=1.5米,则CD=BC+BD=0.7+1.5=2.2(米),故选C.

5.25 [解析] 如图,过点B作BE⊥AC于点E,∵坡度i=1∶3,

∴tanA=1∶3=33, ∴∠A=30°. ∵AB=50 m,

∴BE=12AB=25 m. ∴小明沿垂直方向升高了25 m. 6.5-12 [解析] 设AB=x,则CD=x,A′C=x+2. ∵AD∥BC,∴C′DBC=A′DA′C,即x2=2x+2, 解得x1=5-1,x2=-5-1(舍去). ∵AB∥CD,∴∠ABA′=∠BA′C.

∵tan∠BA′C=BCA′C=25-1+2=5-12, ∴tan∠ABA′=5-12.

7.102 [解析] 过点P作AB的垂线,垂足为C,在Rt△APC中,∠APC=90°-60°=30°,∴PC=PA·cos∠APC=86×cos30°=86×32=43 3(n mile).在Rt△BPC中,

∠B=45°,∴PB=PC÷sin45°=433÷22=433×2≈102(n mile),故答案为:102.

8.tanα·tanβtanβ-tanα·s [解析] 在Rt△CBD中,BD=CDtanβ,∴AD=CDtanβ+s.在Rt△CAD中,CD=ADtanα=(CDtanβ+s)tanα,化简,得CD=tanα·tanβtanβ-tanα·s(米).

9.2 3 [解析] 如图,由题意可知AD是∠BAC的平分线.过点D作DE⊥AC,垂足为E,则DE=2,所以DB=DE=2,在Rt△ABD中,tan∠ADB=ABBD,所以AB=2×3=2 3.

10.113 1n2-n+1 [解析] 根据所给的三角函数值进行分析可以得到如下规律:tan∠BA1C=11=112-(1-1),tan∠BA2C=13=122-(2-1),tan∠BA3C=17=132-(3-1),tan

∠BA4C=142-(4-1)=113……按此规律,tan∠BAnC=1n2-(n-1)=1n2-n+1. 11.解:原式=1-12+1=32. 12.解:(1)在△ABC中, ∵∠C=90°,∠B=30°, ∴∠BAC=60°. ∵AD是△ABC的角平分线,

∴∠CAD=∠BAD=12∠BAC=30°. 在Rt△ACD中,∵∠CAD=30°,CD=3, ∴AD=2CD=6. (2)∵DE∥BA, DF∥CA, ∴四边形AEDF为平行四边形,∠BAD=∠EDA. ∵∠CAD=∠BAD, ∴∠CAD=∠EDA, ∴AE=DE, ∴四边形AEDF为菱形. ∵DE∥BA, ∴∠CDE=∠B=30°. 在Rt△CDE中,∠C=90°,

∴cos∠CDE=CDDE, ∴DE=3cos30°=2 3. ∴四边形AEDF的周长为4DE=4×23=8 3. 13.解:如图,过点A作AE⊥CD于点E,过点B作BF⊥AE于点F,∵OD⊥CD,∴AE∥OD,∴∠A=∠BOD=70°.在Rt△ABF中,AB=2.7 m,∴AF=2.7×cos70°≈2.7×0.34=

0.918(m),∴AE=AF+BC≈0.918+0.15=1.068≈1.1(m).

答:端点A到地面CD的距离约是1.1 m. 14.解:如图,过点A作AC⊥OB于点C. 在Rt△AOC中,∠AOC=40°, ∴sin40°=ACAO. 又∵AO=1.2米, ∴AC=1.2×sin40°≈1.2×0.64=0.768(米). ∵0.768<0.8, ∴车门不会碰到墙. 15.解:王浩同学能将手机放入卡槽AB内. 理由:过点A作AD⊥BC于点D,

∵∠C=50°,AC=20 cm, ∴AD=AC·sin50°≈20×0.8=16(cm), CD=AC·cos50°≈20×0.6=12(cm).

∵BC=18 cm, ∴BD=BC-CD=18-12=6(cm), ∴AB=AD2+BD2=162+62=292(cm). ∵17=289<292,

相关文档
最新文档