第五章生活中的轴对称单元测试
(典型题)初中数学七年级数学下册第五单元《生活中的轴对称》测试题(含答案解析)

一、选择题1.如图,ABC ,点D ,E 在BC 边上,点F 在AC 边上.将ABC 沿AD 折叠,恰好与AED 重合,将CEF △沿EF 折叠,恰好与AEF ∆重合.下列结论:①60B ︒∠=②AB EC =③AD AF =④DE EF =⑤2B C ∠=∠正确的个数有( )A .2个B .3个C .4个D .5个2.下列图形中,既是轴对称又是中心对称图形的是( )A .B .C .D . 3.下列图案中,是轴对称图形的有( )A .1个B .2个C .3个D .4个4.有下列说法:①轴对称的两个三角形形状相同;②面积相等的两个三角形是轴对称图形;③轴对称的两个三角形的周长相等;④经过平移、翻折或旋转得到的三角形与原三角形是形状相同的.其中正确的有( )A .4个B .3个C .2个D .1个5.如图,点D 在△ABC 的边BC 上,BD CD >.将△ABD 沿AD 翻折,使B 落在点E 处.且DE 与AC 交于点F .设△AEF 的面积为1S ,△CDF 的面积为2S ,则1S 与2S 的大小关系为( )A .12S S >B .12S SC .12S S <D .不确定 6.下列世界博览会会徽图案中是轴对称图形的是( )A .B .C .D . 7.如图,若ABC ∆与A B C '''∆关于直线MN 对称,BB '交MN 于点O ,则下列说法不一定正确的是 ( )A .AC AC ''=B .BO B O '=C .AA MN '⊥D .AB B C ''=8.如图,四边形ABCD 中,点M N ,分别在,AB BC 上,100,70,A C ∠=∠=将BMN △沿MN 翻折,得FMN ,若////,MF AD FN DC ,则B 的度数为( )A .80B .85C .90D .959.如图,下列图案是我国几家银行的标志,其中轴对称图形有( )A .1个B .2个C .3个D .4个10.如图是3×3的正方形网格,其中已有2个小方格涂成了黑色.现在要从编号为①‒④的小方格中选出1个也涂成黑色,使黑色部分依然是轴对称图形,不能选择的是( )A .①B .②C .③D .④11.下面汉字的书写中,可以看做轴对称图形的是( )A .B .C .D .12.下列大学的校徽图案是轴对称图形的是()A.B.C.D.二、填空题13.如图,将一张长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置上,ED′的延长线与BC的交点为G,若∠EFG=50°,则∠2-∠1=_____.CD=折叠纸片,使点D落在AB边上的14.如图,在矩形纸片ABCD中,5BC=,13点H处,折痕为MN,当点H在AB边上移动时,折痕的端点M,N也随之移动,若限定点M,N分别在AD,CD边上移动,则点H在AB边上可移动的最大距离为__________.15.如图,在一张直角三角形纸片ABC中,∠ACB=90°,∠A=30°P是边AB上的一动点,将△ACP沿着CP折叠至△A1CP,当△A1CP与△ABC的重叠部分为等腰三角形时,则∠ACP 的度数为_____.16.如图,∠AOB=30°,点M、N分别在边OA、OB上,且OM=2,ON=6,点P、Q分别在边OB、OA上,则MP+PQ+QN的最小值是_____.17.如图,三角形纸片中,AB=5cm,AC=7cm,BC=9cm.沿过点B的直线折叠这个三角形,使点A落在BC边上的点E处,折痕为BD,则△DEC的周长是________cm.18.如图,长方形纸片ABCD ,点E ,F 分别在边AB ,CD 上,连接EF ,将BEF ∠对折B 落在直线EF 上的点'B 处,得折痕EM ;将AEF ∠对折,点A 落在直线EF 上的点'A 得折痕EN ,若6215'BEM ∠=︒,则AEN ∠=____.19.如图,在Rt ABC 中,ACB 90∠=︒,AC 6=,BC 8=,AD 是BAC ∠的平分线.若P ,Q 分别是AD 和AC 上的动点,则PC PQ +的最小值是____.20.如图,33⨯方格图中,将其中一个小方格的中心画上半径相等的圆,使整个图形为轴对称图形,这样的轴对称图形共有_________ 个.三、解答题21.下图,要在燃气管道L 上修建一个泵站,分别向A 、B 两镇供气.泵站修在管道的什么地方,可使所用的输气管线最短?(不写做法,保留作图痕迹)22.如图,△ABC 与△ADE 关于直线MN 对称,BC 与DE 的交点F 在直线MN 上.若ED=4cm ,FC=lcm ,∠BAC=76°,∠EAC=58°(1)求出BF 的长度;(2)求∠CAD 的度数;23.如图,将一张长方形纸片分别沿着EP 、FP 对折,使点B 落在点'B ,点C 落在点'C(1)若点P ,'B ,'C 在同一直线上(如图1),求两条折痕的夹角EPF ∠的度数; (2)若点P ,'B ,'C 不在同一条直线上(如图2),且''B PC ∠=10°,求EPF ∠的度数.24.在平面直角坐标系网格中,格点A 的位置如图所示:(1)若点B 坐标为(2,3),请你画出△AOB ;(2)若△AOB 与△A′O′B′关于y 轴对称,请你画出△A′O′B';(3)请直接写出线段AB 的长度.25.如图,△ABC 三个顶点的坐标分别为A (1,1),B (4,2),C (3,4). (1)请画出△ABC 关于y 轴的对称图形△A 1B 1C 1;(2)在y 轴上求作一点P ,使△PAC 的周长最小,并直接写出P 的坐标.26.ABC 在直角坐标系中的位置如图所示.(1)写出ABC 各顶点的坐标;(2)画出ABC 关于y 轴、x 轴的对称图形111A B C △,222A B C △;(3)求出111A B C △的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】将△ABD 沿着AD 翻折,可得AB =AE ,∠B =∠AEB ,将△CEF 沿着EF 翻折,可得AE =CE ,∠C =∠CAE ,可得∠B =2∠C .【详解】解:∵将△ABD 沿着AD 翻折,使点B 和点E 重合,∴AB =AE ,∠B =∠AEB ,∵将△CEF 沿着EF 翻折,点C 恰与点A 重合,∴AE =CE ,∠C =∠CAE ,∴AB =EC ,∴②正确;∵∠AEB =∠C +∠CAE =2∠C ,∴∠B=2∠C,故⑤正确;其余的都无法推导得出,故选:A.【点睛】本题考查翻折变换,三角形外角性质等知识,掌握旋转的性质是本题的关键.2.B解析:B【解析】分析:观察四个选项中的图形,找出既是轴对称图形又是中心对称图形的那个即可得出结论.详解:A是中心对称图形;B既是轴对称图形又是中心对称图形;C是轴对称图形;D既不是轴对称图形又不是中心对称图形.故选B.点睛:本题考查了中心对称图形以及轴对称图形,牢记轴对称及中心对称图形的特点是解题的关键.3.B解析:B【分析】根据轴对称图形的概念对各图形分析判断即可得解.【详解】第一个图形不是轴对称图形,第二个图形不是轴对称图形,第三个图形是轴对称图形,第四个图形是轴对称图形,综上所述,是轴对称图形的有2个.故选:B.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4.B解析:B【分析】根据平移、翻折或旋转的性质逐项判断可求解.【详解】解:①轴对称的两个三角形形状相同,故正确;②面积相等的两个三角形形状不一定相同,故不是轴对称图形,故错误;③轴对称的两个三角形的周长相等,故正确;④经过平移、翻折或旋转得到的三角形与原三角形是形状相同的,故正确.故选:B.【点睛】本题考查了图形的变换,掌握平移、翻折或旋转的性质是解题的关键.5.A解析:A【分析】依据点D 在△ABC 的边BC 上,BD >CD ,即可得到S △ABD >S △ACD ,再根据折叠的性质,即可得到S 1>S 2.【详解】解:∵点D 在△ABC 的边BC 上,BD >CD ,∴S △ABD >S △ACD ,由折叠可得,S △ABD =S △AED ,∴S △AED >S △ACD ,∴S △AED −S △ADF >S △ACD −S △ADF ,即S 1>S 2,故选:A .【点睛】本题主要考查了折叠的性质,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.6.B解析:B【分析】根据轴对称的定义即可解答.【详解】解: 如果一个图形沿着一条直线对折后两部分完全重合,这样的图叫做轴对称图形,这条直线叫做对称轴,根据轴对称的定义可得只有B 选项是轴对称图形.故选B .【点睛】本题考查轴对称的定义,熟悉掌握是解题关键.7.D解析:D【分析】根据轴对称的性质解答.【详解】∵ABC ∆与A B C '''∆关于直线MN 对称,BB '交MN 于点O ,∴AC AC ''=,BO B O '=,AA MN '⊥,AB A B ''=,BC B C ''=,故选:D .【点睛】此题考查了轴对称的性质:关于轴对称的两个图形的对应边相等,对应角相等,对应点的连线垂直于对称轴.8.D解析:D【分析】首先利用平行线的性质得出100,70BMF FNB =︒=︒∠∠,再利用翻折的性质得出50,35FMN BMN FNM MNB ==︒==︒∠∠∠∠,进而求出∠B 的度数.【详解】∵//,//MF AD FN DC ,100,70,A C ∠=∠=∴100,70BMF FNB =︒=︒∠∠∵将△BMN 沿MN 翻折,得△FMN∴50,35FMN BMN FNM MNB ==︒==︒∠∠∠∠∴180503595F B ==︒-︒-︒=︒∠∠故答案为:D .【点睛】本题考查了四边形翻折的问题,掌握翻折的性质、平行线的性质是解题的关键. 9.C解析:C【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此可知只有第三个图形不是轴对称图形.【详解】解:根据轴对称图形的定义:第一个图形和第二个图形有2条对称轴,是轴对称图形,符合题意;第三个图形找不到对称轴,则不是轴对称图形,不符合题意.第四个图形有1条对称轴,是轴对称图形,符合题意;轴对称图形共有3个.故选:C .【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.10.D解析:D【分析】根据轴对称图形的概念分别找出各个能成轴对称图形的小方格,剩下的一个即为所求.【详解】如图所示:从编号为①‒④的小方格中选出1个也涂成黑色,使黑色部分依然是轴对称图形,使黑色部分成为轴对称图形,这样的白色小方格有:①,②,③,方格④不可以.故选:D.【点睛】此题主要考查了利用轴对称设计图案,正确利用轴对称图形的性质得出是解题关键.11.D解析:D【解析】【分析】根据轴对称图形的概念判断即可.【详解】鹏、程、万都不是轴对称图形,里是轴对称图形,故选D.【点睛】本题考查的是轴对称图形的概念,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.12.B解析:B【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:B.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.二、填空题13.20°【分析】根据AD∥BC折叠可知∠EFG=∠DEF=∠D′EF=50°进而知∠1度数再根据两直线平行同旁内角互补可得∠2度数可得答案【详解】解:∵AD∥BC∴∠DEF=∠EFG∵∠EFG=50°解析:20°【分析】根据AD∥BC、折叠可知,∠EFG=∠DEF=∠D′EF=50°,进而知∠1度数,再根据两直线平行,同旁内角互补可得∠2度数,可得答案.【详解】解:∵AD∥BC,∴∠DEF=∠EFG,∵∠EFG=50°,∴∠DEF=50°;又∵∠DEF=∠D′EF,∴∠D′EF=50°;∴∠1=180°-50°-50°=80°;又∵AD∥BC,∴∠1+∠2=180°,即∠2=180°-∠1=180°-80°=100°,∴∠2-∠1=20°.故答案为:20°.【点睛】本题主要考查翻折问题及平行线的性质,结合题干熟悉翻折过程中相等的量及平行线的性质是关键.14.4【分析】分别利用当点M与点A重合时以及当点N与点C重合时求出AH的值进而得出答案【详解】解:如图1当点M与点A重合时根据翻折对称性可得AH=AD=5如图2当点N与点C重合时根据翻折对称性可得CD=解析:4【分析】分别利用当点M与点A重合时,以及当点N与点C重合时,求出AH的值进而得出答案.【详解】解:如图1,当点M与点A重合时,根据翻折对称性可得AH=AD=5,如图2,当点N与点C重合时,根据翻折对称性可得CD=HC=13,在Rt△HCB中,HC2=BC2+HB2,即132=(13-AH)2+52,解得:AH=1,所以点H在AB上可移动的最大距离为5-1=4.故答案为:4.【点睛】本题主要考查的是折叠的性质、勾股定理的应用,注意利用翻折变换的性质得出对应线段之间的关系是解题关键.15.40°或70°【分析】分两种情形画出图形分别求解即可当PC=CE时设∠ACP =x利用等腰三角形的性质可证得∠CPE=x+30°再利用三角形内角和定理建立关于x的方程解方程即可;当CP=CE时设∠AC解析:40°或70°【分析】分两种情形,画出图形分别求解即可.当PC=CE时,设∠ACP=x,利用等腰三角形的性质,可证得∠CPE=x+30°,再利用三角形内角和定理建立关于x的方程,解方程即可;当CP=CE时,设∠ACP=x,用含x的代数式表示出∠CPE、∠CEP,再利用三角形内角和定理建立关于x的方程,解方程即可求得结论.【详解】当PC=CE时,如图1所示:设∠ACP=x,根据折叠的性质得∠A1CP=x,∵CP=CE,∴∠CPE=∠CEP,∵∠CPE=∠ACP+∠A=x+30°,∴在PCE中:x+x+30°+x+30°=180°,∴x=40°;当CP=CE时,如图2所示:设∠ACP=x.根据折叠的性质得∠A1CP=x,∠A1=∠A=30°,则∠CPE=∠CEP=∠ECA+∠A1=∠ACP +∠A1CP -∠ACB= 2x﹣90°+30°=2x﹣60°,在△CPE中,90°﹣x+2(2x﹣60°)=180°,解得:x=70°,综上所述,∠ACP的度数为40°或70°,故答案为:40°或70°.【点睛】本题考查了折叠的性质、等腰三角形的性质、三角形外角定理、三角形内角和定理,用含x的代数式表示出∠CPE,再利用三角形内角和定理建立关于x的方程是解决本题的关键. 16.2【解析】【分析】作M关于OB的对称点M′作N关于OA的对称点N′连接M′N′即为MP+PQ+QN的最小值;证出△ONN′为等边三角形△OMM′为等边三角形得出∠N′OM′=90°由勾股定理求出M′解析:210【解析】【分析】作M关于OB的对称点M′,作N关于OA的对称点N′,连接M′N′,即为MP+PQ+QN的最小值;证出△ONN′为等边三角形,△OMM′为等边三角形,得出∠N′OM′=90°,由勾股定理求出M′N′即可.【详解】作M关于OB的对称点M′,作N关于OA的对称点N′,如图所示:连接M′N′,即为MP+PQ+QN的最小值.根据轴对称的定义可知:∠N′OQ=∠M′OB=30°,∠ONN′=60°,∴△ONN′为等边三角形,△OMM′为等边三角形,∴∠N′OM′=90°,∴在Rt△M′ON′中,22062=21故答案为:10.【点睛】本题考查了轴对称--最短路径问题,根据轴对称的定义,找到相等的线段,得到等边三角形是解题的关键.17.11【解析】【分析】根据折叠的性质可知ED=ADBE=BA结合AB=5cmBC=9cmAC=7cm可得出CE=4cmAC=CD+AD再套用三角形的周长公式即可得出△CED的周长【详解】∵△BDA与△解析:11【解析】【分析】根据折叠的性质可知ED=AD、BE=BA,结合AB=5cm、BC=9cm、AC=7cm可得出CE=4cm、AC=CD+AD,再套用三角形的周长公式即可得出△CED的周长.【详解】∵△BDA与△BDE关于BD对称,∴△BDA≌△BDE,∴DA=DE,BA=BE.∴CE=CB−BE =CB−BA.∵BC=9cm,AB=5cm,∴CE=4cm.∴△CDE的周长=CE+DE+CD=CE+AC∵AC=7cm,∴△CED的周长=7+4=11cm.【点睛】本题考查翻转问题,解题关键在于熟练掌握折叠的性质.18.【分析】先根据折叠的性质求出∠B′EM根据邻补角求出∠AEA′再根据折叠的性质即可求出∠AEN【详解】解:根据折叠可知:EM平分∠BEB′∴∠B′EM=∠BEM=62°15′∴∠AEA′=180°-解析:2745'【分析】先根据折叠的性质求出∠B′EM,根据邻补角求出∠AEA′,再根据折叠的性质即可求出∠AEN.【详解】解:根据折叠可知:EM平分∠BEB′,∴∠B′EM=∠BEM=62°15′,∴∠AEA′=180°-2×62°15′=55°30′,EN平分∠AEA′,∴∠AEN=∠A′EN=12∠AEA′=12×55°30′=27°45′,故答案为:27°45′.【点睛】本题考查了折叠的性质,邻补角的定义,以及角的计算、度分秒的换算,解决本题的关键是掌握折叠的性质.19.【分析】过点C作CM⊥AB交AB于点M交AD于点P过点P作PQ⊥AC于点Q由AD是∠BAC的平分线得出PQ=PM这时PC+PQ有最小值即CM的长度运用勾股定理求出AB再运用得出CM的值即PC+PQ的解析:24 5【分析】过点C 作CM ⊥AB 交AB 于点M ,交AD 于点P ,过点P 作PQ ⊥AC 于点Q ,由AD 是∠BAC 的平分线.得出PQ =PM ,这时PC +PQ 有最小值,即CM 的长度,运用勾股定理求出AB ,再运用1122ABC S AB CM AC BC =⋅=⋅△,得出CM 的值,即PC +PQ 的最小值. 【详解】如解图,过点C 作CM AB ⊥,交AB 于点M ,交AD 于点P ,过点P 作PQ AC ⊥于点Q ,∵AD 是BAC ∠的平分线,∴PQ PM =,这时PC PQ +有最小值,即CM 的长度,∵6AC =,8BC =,90ACB ∠=︒,∴22226810AB AC BC =+=+=.∵1122ABC S AB CM AC BC =⋅=⋅△, ∴6824105AC BC CM AB ⋅⨯===,即PC PQ +的最小值为245. 故答案为245.【点睛】本题主要考查了轴对称问题,解题的关键是找出满足PC +PQ 有最小值时点P 和Q 的位置.20.【分析】利用轴对称图形的定义作出轴对称图形后即可确定轴对称图形的个数【详解】解:将其中一个小方格的中心画上半径相等的圆使整个图形为轴对称图形这样的轴对称图形为:故答案为:3【点睛】考查了轴对称图形的 解析:3【分析】利用轴对称图形的定义作出轴对称图形后即可确定轴对称图形的个数.【详解】解:将其中一个小方格的中心画上半径相等的圆,使整个图形为轴对称图形,这样的轴对称图形为:故答案为:3.【点睛】考查了轴对称图形的知识,解题的关键是了解轴对称图形的定义,难度不大.三、解答题21.见解析【详解】试题分析:作出A镇关于燃气管道的对称点A′,连接A′B,根据轴对称确定最短路线问题,A′B与燃气管道的交点即为所求的点P的位置.试题作点A关于燃气管道的对称点A′,连接A′B交燃气管道于点P,即点P即为所求.22.(1)3cm;(2)18°【分析】(1)根据△ABC与△ADE关于直线MN对称确定对称点,从而确定对称线段,利用轴对称的性质即可解决问题;(2)根据△ABC与△ADE关于直线MN对称确定对称角和对称三角形,利用轴对称的性质即可解决问题.【详解】解:(1)∵△ABC与△ADE关于直线MN对称,ED=4cm,∴BC=ED=4cm,又∵FC=1cm,∴BF=BC﹣FC=3cm.(2)∵△ABC与△ADE关于直线MN对称,∠BAC=76°,∠EAC=58°,∴∠EAD=∠BAC=76°,∴∠CAD=∠EAD﹣∠EAC=76°﹣58°=18°.【点睛】本题考查轴对称的性质,解题的关键是灵活运用所学知识解决问题.23.(1)90°;(2)85°【分析】(1)由对称性得到两对角相等,而这两对角之和为180︒,利用等量代换及等式的性质即∠的度数;可求出折痕的夹角EPF(2)由对称性得到两对角相等,根据题意得到这两对角之和为190︒,利用等量代换及等式的性质即可求出EPF ∠的度数.【详解】解:(1)由对称性得:BPE B PE ∠=∠',CPF C PF ∠=∠',180BPE B PE CPF C PF ∠+∠'+∠+∠'=︒, 1180902EPF B PE C PF ∴∠=∠'+∠'=⨯︒=︒; (2)由对称性得:BPE B PE ∠=∠',CPF C PF ∠=∠',18010190BPE B PE CPF C PF ∠+∠'+∠+∠'=︒+︒=︒,95BPE CPF ∴∠+∠=︒,9510=85EPF ∴∠=︒-︒︒.【点睛】本题考查了角的计算,以及折叠的性质,熟练掌握折叠的性质是解本题的关键. 24.(1)见解析;(2)见解析;(3)AB =2.【分析】(1)根据点A 、O 、B 的坐标,顺次连接即可得△AOB ;(2)根据关于y 轴对称的点的坐标特征可得出A′、B′、O′的坐标,顺次连接A′、O′、B′即可得△A′O′B';(3)利用勾股定理求出AB 的长即可.【详解】(1)如图所示,△AOB 即为所求;(2)∵△AOB 与△A′O′B′关于y 轴对称,∴A′(-3,2),B′(-2,3),O′(0,0),如图所示,△A′O′B '即为所求;(3)AB 2211+2.【点睛】本题考查了作图-轴对称变换,熟练掌握关于y 轴对称的点的坐标特征是解题关键. 25.(1)详见解析;(2)图详见解析,P (0,74).【分析】(1)根据轴对称的性质进行作图,即可得到△ABC 关于y 轴的对称图形△A 1B 1C 1; (2)连接A 1C 交y 轴于P ,连接AP ,则点P 即为所求,再根据C (3,4),A 1(-1,1),求得直线A 1C 解析式为y=34x+74,最后令x=0,求得y 的值,即可得到P 的坐标. 【详解】(1)如图所示,△A 1B 1C 1即为所求;(2)连接A 1C 交y 轴于P ,连接AP ,则点P 即为所求.根据轴对称的性质可得,A 1P =AP ,∵A 1P +CP =A 1C (最短),∴AP +PC +AC 最短,即△PAC 的周长最小,∵C (3,4),A 1(﹣1,1),∴直线A 1C 解析式为y =34x +74, ∴当x =0时,y =74, ∴P (0,74). 【点睛】本题主要考查了运用轴对称变换进行作图,以及待定系数法求一次函数解析式的运用,解决问题的关键是掌握轴对称的性质.解题时注意:两点之间,线段最短.26.(1)()()()2,33,21,1A B C ---、、;(2)详见解析;(3)32. 【分析】(1)根据平面直角坐标系写出各点的坐标即可;(2)根据关于坐标轴对称的点的坐标特征,利用网格结构准确找出对应点A 1、B 1、C 1、A 2、B 2、C 2的位置,然后顺次连接即可;(3)用111A B C △所在正方形减去三个直角三角形的面积即可得答案.【详解】(1)根据平面直角坐标系可知:()()()2,33,21,1A B C ---、、.(2)ABC 关于y 轴、x 轴的对称图形是111A B C △,222A B C △,∴A 1(2,3),B 1(3,2),C 1(1,1),A 2(-2,-3),B 2(-3,-2),C 2(-1,-1), ∴111A B C △,222A B C △如图所示,(3)111111322 1 112122222A B C S =⨯-⨯⨯-⨯⨯-⨯⨯=. 【点睛】本题考查了利用轴对称变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.。
第五章《生活中的轴对称》测试题卷及答案

第五章生活中得轴对称全章测试卷一、选择题(每小题2分,共20分)1、下列说法正确得就是( ).A.轴对称涉及两个图形,轴对称图形涉及一个图形B.如果两条线段互相垂直平分,那么这两条线段互为对称轴C.所有直角三角形都不就是轴对称图形D.有两个内角相等得三角形不就是轴对称图形2、点M(1,2)关于轴对称得点得坐标为( ).A.(-1,-2)B.(-1,2)C.(1,-2)D.(2,-1)3、下列图形中对称轴最多得就是( ) .A.等腰三角形B.正方形C.圆D.线段4、已知直角三角形中30°角所对得直角边为2,则斜边得长为( ).A.2B.4C.6D.85、若等腰三角形得周长为26,一边为11,则腰长为( ).A.11B.7、5C.11或7、5D.以上都不对6、如图:DE就是△ABC中AC边得垂直平分线,若BC=8厘米,AB=10厘米,则△EBC得周长为( )厘米.A.16B.18C.26D.287、如图所示,就是四边形ABCD得对称轴,AD∥BC,现给出下列结论:①AB∥CD;②AB=BC;③AB⊥BC;④AO=OC 其中正确得结论有( ).A.1个B.2个C.3个D.4个8、若等腰三角形腰上得高就是腰长得一半,则这个等腰三角形得底角就是( ).A.75°或15°B.75°C.15°D.75°与30°9、把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行得方向平移,我们把这样得图形变换叫做滑动对称变换.在自然界与日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换与平移变换得有关性质,您认为在滑动对称变换过程中,两个对应三角形(如图2)得对应点所具有得性质就是( ).A.对应点连线与对称轴垂直B.对应点连线被对称轴平分ACB图2图1lODCBABAC.对应点连线被对称轴垂直平分D.对应点连线互相平行10、等腰三角形ABC 在直角坐标系中,底边得两端点坐标就是(2,0),(6,0),则其顶点得坐标,能确定得就是( ) .A.横坐标B.纵坐标C.横坐标及纵坐标D.横坐标或纵坐标 二、填空题(每小题2分,共20分)11、设A 、B 两点关于直线MN 对称,则______垂直平分________. 12、已知点P 在线段AB 得垂直平分线上,PA=6,则PB= . 13、等腰三角形一个底角就是30°,则它得顶角就是__________度.14、等腰三角形得两边得边长分别为20与9,则第三边得长就是__________. 15、等腰三角形得一内角等于50°,则其它两个内角各为 .16、如图:点P 为∠AOB 内一点,分别作出P 点关于OA 、OB 得对称点P 1,P 2,连接P 1P 2交OA 于M,交OB 于N,P 1P 2=15,则△PMN 得周长为 .17、如图,在△ABC 中,AB=AC,AD 就是BC 边上得高,点E 、F 就是AD 得三等分点,若△ABC 得面积为12,则图中阴影部分得面积为 .18、如图所示,两个三角形关于某条直线对称,则= . 19.已知A(1,2)与B(1,3),将点A 向______平移________ 个单位长度后得到得点与点B 关于轴对称.20.坐标平面内,点A 与B ,若点A 到轴得距离就是3,则点B 到•轴得距离就是_________.三、解答题(每小题6分,共60分)21、已知:如图,已知△ABC,(1)分别画出与△ABC 关于轴、轴对称得图形△A 1B 1C 1 与△A 2B 2C 2 ;(2)写出 △A 1B 1C 1 与△A 2B 2C 2 各顶点坐标; (3)求△ABC 得面积.22、如图,已知点M 、N 与∠AOB,求作一点P,使P 到点M 、N 得距离相等,•且到∠AOB 得两边得距离相等.23、如图:在△ABC 中,∠B=90°,AB=BD,AD=CD,求∠CAD 得度数.FEP 2P 1NM O P BAα35°115°ADEF BC DECBA O ABCD E24、已知:E 就是∠AOB 得平分线上一点,EC ⊥OA ,ED ⊥OB ,垂足分别为C 、D.求证:(1)∠ECD=∠EDC ;(2)OE 就是CD 得垂直平分线.25、已知:如图△ABC 中,AB=AC,∠C=30°,AB ⊥AD,AD=4,求BC 得长.26、如图,已知在△ABC 中,AB=AC,∠BAC=120o ,AC 得垂直平分线EF 交AC 于点E,交BC 于点F.求证:BF=2CF.27、已知:△ABC 中,∠B 、∠C 得角平分线相交于点D,过D 作EF//BC 交AB 于点E,交AC 于点F.求证:BE+CF=EF.28、如图,△ABD 、△AEC 都就是等边三角形,求证:BE=DC .29、如图所示,在等边三角形ABC 中,∠B 、∠C 得平分线交于点O,OB 与OC 得垂直平分线交BC 于E 、F,试用您所学得知识说明BE=EF=FC 得道理.30.已知:如图△ABC 中,AB=AC,AD 与BE 就是高,它们交于点H,且AE=BE,求证:AH=2BD. 答案: 一、选择题: 二、填空题:11.MN,AB 12.6 13.120 14.20 15.,或, 16.15 17.6 18. 19.上,5 20.3 三、解答题 略FOCBAEH E DCBA。
七年级数学下册《第五章生活中的轴对称》单元测试卷附答案-北师大版

七年级数学下册《第五章生活中的轴对称》单元测试卷附答案-北师大版一、单选题1.下列图形中是中心对称图形但不是轴对称图形的是()A.B.C.D.∠=︒,则∠2为()2.如图,将一个长方形纸条折成如图的形状,若已知1116A.125°B.124°C.122°D.116°3.一个等腰三角形的两边长分别为6和12,则这个等腰三角形的周长为()A.30B.24C.18D.24或304.面对新冠疫情,我国毫不动摇坚持动态清零总方针,外防输入,内防反弹.下面是支付宝“国家政务服务平台”上与疫情防控相关的四个小程序图标,其中是轴对称图形的是()A.B.C.D.5.下列汉字中,可以看成轴对称图形的是()A.B.C.D.6.如图,把长方形ABCD沿EF折叠后使两部分重合,若∠1=40°,则∠AEF= ()A.110°B.100°C.120°D.140°7.如图,把一张长方形纸片ABCD折叠后,点C、点D的对应点分别为点C′和点D′,若∠1=48°,则∠2的度数为()A.138°B.132°C.121°D.111°8.如图,将∠ABC绕点A顺时针旋转角100°,得到∠ADE,若点E恰好在CB的延长线上,则∠BED的度数为()A.80°B.70°C.60°D.50°9.如图,在∠ABC中,∠ACB=90°,BE平分∠ABC,DE∠AB于D.如果AC=10cm,那么AE+DE 等于()A.6cm B.8cm C.10cm D.12cm10.下面是四位同学作∠ABC关于直线MN的轴对称图形,其中正确的是()A.B.C .D .二、填空题11.如图,APT 与CPT 关于直线PT 对称,A APT ∠=∠,延长AT 交PC 于点F 当A ∠= °时FTC C ∠=∠.12.如图,∠ABC 中,∠B=40°,点D 为边BC 上一点,将∠ADC 沿直线AD 折叠后,点C 落到点E 处,若DE∠AB ,则∠ADE 的度数为 °.13.如图,ABC 中,DE 垂直平分BC ,若ABD 的周长为104AB =,,则AC = .14.如图是由三个小正方形组成的图形请你在图中补画一个小正方形使补画后的图形为轴对称图形,共有 种补法.三、作图题15.如图,在正方形网格中,ABC 的三个顶点均在格点上.(1)画出111A B C ,使得111A B C 和ABC 关于直线l 对称;(2)过点C 作线段CD ,使得CD AB ,且CD AB .四、解答题16.如图,在∠ABC 中,高线CD 将∠ACB 分成20°和50°的两个小角.请你判断一下∠ABC 是轴对称图形吗?并说明你的理由.17.如图,长方形纸片ABCD ,点E 为BC 边的中点,将纸片沿AE 折叠,点B 的对应点为'B ,连接'.B C 求证:AE ∠'B C .18.如图,在∠ABC 中,AF 平分∠BAC 交BC 于点F ,AC 的垂直平分线交BC 于点E ,交AC 于点D ,∠B =60°,∠C =26°,求∠FAE 的度数.19.如图,在平面直角坐标系xOy 中,A (1,2),B (3,1),C (﹣2,﹣1).(1)在图中作出∠ABC关于y轴的对称图形∠A1B1C1(2)写出点A1,B1,C1的坐标(直接写答案).A1B1C1五、综合题20.如图,点P在∠AOB的内部,点C和点P关于OA对称,点P关于OB对称点是D,连接CD交OA于M,交OB于N.(1)①若∠AOB=60°,则∠COD= ▲ °;②若∠AOB=α,求∠COD的度数.(2)若CD=4,则∠PMN的周长为.21.已知:如图,∠ABD和∠BDC的平分线交于点E,BE交CD于点F,∠1+∠2=90°.(1)试说明:AB CD;(2)试探究DF与DB的数量关系,并说明理由.22.如图,在长度为1个单位长度的小正方形组成的正方形中,点A、B、C在小正方形的顶点上.(1)在图中画出与∠ABC关于直线l成轴对称的∠AB′C′;(2)求∠ABC的面积为;(3)在直线l上找一点P,使PB+PC的长最短,则这个最短长度为.参考答案与解析1.【答案】A【解析】【解答】解:A、是中心对称图形,但不是轴对称图形,故符合题意;B、不是中心对称图形,但是轴对称图形,故不符合题意;C、是中心对称图形,也是轴对称图形,故不符合题意;D、不是中心对称图形,但是轴对称图形,故不符合题意.故答案为:A.【分析】中心对称图形的定义:一个图形绕对称中心旋转180°后能够与原图形完全重合,这个图形叫做中心对称图形;轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,据此一一判断得出答案.2.【答案】C【解析】【解答】解:如图∵纸条的两边互相平行∴∠1+∠3=180°∵∠1=116°∴∠3=180°-∠1=180°-116°=64°根据翻折的性质得,2∠4+∠3=180°∴∠4= 12(180°-∠3)=12(180°-64°)=58°∵纸条的两边互相平行∴∠2+∠4=180°∴∠2=122°故答案为:C.【分析】由两直线平行同旁内角互补得∠1+∠3=180°,∠2+∠4=180°,结合已知可求得∠3的度数,由翻折性质得2∠4+∠3=180°可求得∠4的度数,把∠4的度数代入∠2+∠4=180°计算可求解.3.【答案】A【解析】【解答】当三边6,6,12时,6+6=12,不符合三角形的三边关系,应舍去;当三边是6,12,12时,符合三角形的三边关系,此时周长是30.故答案为:A.【分析】利用三角形三边的关系及等腰三角形的性质求解即可。
第五章生活中的轴对称单元测试题(北师大2013版)

第五章生活中的轴对称单元测试题一、选择题 ( 每题 3 分, 共 30 分)以下说法中错误的选项是()A.对于某条直线对称的两个图形必定可以完整重合B.轴对称图形的对称轴起码有一条C.两个全等的图形必定对于某条直线成轴对称D.圆是轴对称图形2、到三角形三边距离都相等的点是三角形()的交点.A. 三边中垂线B.三条中线C.三条高D.三条内角均分线3、到三角形三个极点距离都相等的点是三角形()的交点.A. 三边中垂线B.三条中线C.三条高D. 三条内角均分线4、如图 1,有一张直角三角形纸片,两直角边 AC=5cm,BC=10cm,将△ ABC折叠,使点 B与点 A 重合,折痕为 DE,则△ ACD的周长为().A. 10 cm B.12cm C.15cm D .20cm5、如图 2,AB AC ,BAC 120, AB的垂直均分线交BC于点 D,那么DAC 的度数为().A.90B.80C.70D.606、如图 3,已知△ ABC中, AC+BC=24,AO、BO分别是角均分线,且MN∥ BA,分别交 AC于 N、BC于 M,则△ CMN的周长为()A.12B.24 C .36 D .不确立图 1图 2ANOB M C图 37.如图 4 所示 ,Rt △ ABC中,∠ C=90° ,AB 的垂直均分线 DE交 BC于 D,交 AB于点 E.当∠B=30°时,图中不必定相等的线段有()A.AC=AE=BE B.AD=BD C. CD=DE D. AC=BD8.如图 5,在△ ABC中, AB=AC,点 D 在 AC上,且 BD= BC=AD,则∠ A 等于()A.30o B.40o C.45o D.36o19.如图6,等腰△ABC的周长为,底边 BC =5,AB的垂直均分线 DE交 AB于点D,21交 AC于点 E,则△ BEC的周长为()A.13B.14 C .15D. 1610、如图 7,∠ AOB内一点 P,P1、P2分别是 P 对于 OA、OB的对称点, P1P2交 OA于 M,交OB 于 N,若 P P = 5cm ,则PMN的周长是 ()12A.3cmB.4cmC.5cmD.6cmAAEC D B图 4D EB C图5图6图 7二、填空题 ( 每题 5分,共30分)1、在△ABC中,已知AB=AC,∠ A=°, AB的垂直均分线 MN交AC于 D 在以下结论36.中:①∠C=°;② BD是∠ABC的均分线;③∠ BDC= °;④△ ABD是等腰三角72100形;⑤ AD=BD=BC上.述结论中,正确的有 _____________.(填写序号)2、如图 1,在 ABC 中, ABC ACB , AB=25cm, AB的垂直均分线交 AB于点 D,交AC 于点 E,若BCE 的周长为 43cm,则底边 BC的长为 ______.3、如图 2,在△ ABC中,DE是 AC的垂直均分线, AE=3,△ABD的周长为 13,那么△ABC的周长为4、如图 3,已知:在 ABC 中,D、E 是 BC上的两点,且 AD BD ,AE CE, ADE 82 ,AED 48 ,则BAC _____图 1图 3图 25、如图 4,已知∠ C=90°,∠ 1=∠2,若 BC=10,BD=6,则点 D 到边 AB的距离为 _____26、如图 5,在△ ABC中,∠ A=90°, BD是∠ ABC的均分线, DE是 BC的垂直均分线,则∠ C=_________ADC BE图 4图 5三、解答题 ( 共 90 分)1.如图 1,在正方形网格上有一个△ABC.(1)画△ ABC对于直线 MN的对称图形(不写画法);(2)若网格上的每个小正方形的边长为1,求△ ABC的面积 .(4分)图 12、如图 2,在△ ABC中, DE是 AC的垂直均分线, AE=3cm,△ ABC的周长为 13cm,求△ ABD的周长。
生活中的轴对称单元测试

第5章<生活中的轴对称>单元测试姓名分数等级一、选择题1.下列各选项的图形中,不是轴对称图形的是()A. B. C. D.2.已知等腰三角形的内角是40°,则另外两个内角的度数分别是()A. 70°,70°B. 70°,70°或40°,100°C. 40°,40°D. 40°,70°3.如图,ΔABC与ΔA’B’C’关于直线l对称,则∠B的度数为()A. 80°B. 100°C. 30°D. 50°4.如图,在△ABC中,AC的垂直平分线交BC于点D,交AC于点E,连接AD.若△ABC的周长是17cm,AE=2cm,则△ABD的周长是()A. 13cmB. 15cmC. 17cmD. 19cm5.如图,8×8方格纸的两条对称轴EF,MN相交于点O,图a到图b的变换是()A. 绕点O旋转180°B. 先向上平移3格,再向右平移4格C. 先以直线MN为对称轴作轴对称,再向上平移4格D. 先向右平移4格,再以直线EF为对称轴作轴对称6.如图,已知点D是等边三角形ABC中BC的中点,BC=2,点E是AC边上的动点,则BE+ED的和最小值为()A. B. C. 3 D.7.如图,△ABC中∠A=30°,E是AC边上的点,先将△ABE沿着BE翻折,翻折后△ABE的AB边交AC于点D,又将△BCD沿着BD翻折,C点恰好落在BE上,此时∠CDB=82°,则原三角形的∠B为()A. 75°B. 76°C. 77°D. 78°8.如图,矩形ABCD中,AB=3,AD=9,将此矩形折叠,使点B与点D重合,折痕为EF,则△ABE 的面积为()9.小明将一正方形纸片画分成16个全等的小正方形,且如图所示为他将其中四个小正方形涂成灰色的情形.若小明想再将一小正方形涂成灰色,使此纸片上的灰色区域成为线对称图形,则此小正方形的位置为何?()A. 第一列第四行B. 第二列第一行C. 第三列第三行D. 第四列第一行10.如图,正六边形ABCDEF关于直线l的轴对称图形是六边形A′B′C′D′E′F′,下列判断错误的是()A. AB=A′B′B. BC∥B′C′C. 直线l⊥BB′D. ∠A′=120°二、填空题11.把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在M、N的位置上,若∠EFG=55°,则∠2=________.12.如图,正三角形网络中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有________ 种.13.如图,在∠AOB的内部有一点P,点M、N分别是点P关于OA,OB的对称点,MN分别交OA,OB于C,D点,若△PCD的周长为30cm,则线段MN的长为________cm.14.如图,∠A=29°,∠C′=62°,△ABC与△A′B′C′关于直线l对称,则∠B=________.15.如图,在△ABC中,AB=AC,点D、F分别在AB,AC上,DF垂直平分AB,E是BC的中点,若∠C=70°,则∠EDF=________13 14 15三、解答题16.如图,把一张长方形纸片ABCD沿AF折叠,使B点落在B′处,若∠ADB=20°,那么∠BAF应为多少度时才能使AB′∥BD?17.如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(1)画出格点△ABC(顶点均在格点上)关于直线DE对称的△A1B1C1;(2)在DE上画出点Q,使QA+QC最小.19.如图,△ABC中,∠A=60°,∠ABC的平分线BD与∠ACB的平分线CE相交于点O.(1)∠BOC=________°;(2)将△ABC沿BD所在直线折叠,若点E落在BC上的M处,试证明:CM=CD.。
北师大七年级下《第五章生活中的轴对称》单元测试(含答案)

第五章生活中的轴对称一、选择题1.下列图形中对称轴最多的是( )A. 等腰三角形B. 正方形C. 圆形D. 线段2. 在一些美术字中,有的汉字是轴对称图形,下列四个汉字中,可以看作轴对称图形的是( )A. B. C. D.3.如图,ΔABC与ΔA’B’C’关于直线l对称,则∠B的度数为()A. 80°B. 100°C. 30°D. 50°4.如图,等腰三角形ABC的周长为21,底边BC的长为5,腰AB的垂直平分线交AB于点D,交AC于点E,连接BE,则三角形BEC的周长为( )A. 11B. 12C. 13D. 145.如图,既是轴对称图形又是中心对称图形的是()A. B. C. D.6.如图,∠AOB=30°,点P是∠AOB内的一个定点,OP=20cm,点C、D分别是OA、OB上的动点,连结CP、DP、CD,则△CPD周长的最小值为( )A. 10cmB. 15cmC. 20cmD. 40cm7.如图,已知矩形ABCD,AB=3,AD=4,点P在AD边上移动,点Q在BC边上移动,且满足PB∥DQ,则AP+PQ+QB的最小值是( )A. 6B. 7C. 8D. 98.已知∠AOB=45°,点P在∠AOB内部,点P1与点P关于OA对称,点P2与点P关于OB对称,则△P1OP2是()A. 含30°角的直角三角形B. 等腰直角三角形C. 等边三角形D. 顶角是30°的等腰三角形9.如图所示,△ABC中,AB+BC=10,A、C关于直线DE对称,则△BCD的周长是()A. 6B. 8C. 10D. 无法确定10.如图,已知OP平分∠AOB,∠AOB=60°,PC⊥OA于点C,PD⊥OB于点D,EP∥OA,交OB于点E,且EP=6.若点F是OP的中点,则CF的长是( )A. 6B. 3C. 2D. 311.如图,在△ABC中,D,E分别是边AB,AC的中点,∠B=30°.现将△ADE沿DE折叠,点A落在三角形所在平面内的点为A′,则∠BDA′的度数为( )A. 100°B. 120°C. 130°D. 140°二、填空题12.已知等腰三角形的一个内角是30°,那么这个等腰三角形顶角的度数是________13.如图,现要利用尺规作图作△ABC关于BC的轴对称图形△A′BC.若AB=5cm ,AC=6cm ,BC=7cm ,则分别以点B、C为圆心,依次以________cm、________cm为半径画弧,使得两弧相交于点A′,再连结A′C、A′B,即可得△A′BC.14.如图,在△ABC中,AB=6cm,AC=4cm,BC的垂直平分线分别角AB、BC于D、E,则△ACD的周长为________cm.15.如图,等边△ABC中,D是边BC上的一点,且BD:DC=1:3,把△ABC折叠,使点A落在边BC上的点D处,那么的值为________16.如图的2×5的正方形网格中,△ABC的顶点都在小正方形的格点上,这样的三角形称为格点三角形,在网格中与△ABC成轴对称的格点三角形一共有________ 个.17.如图,已知△ABC沿角平分线BE所在的直线翻折,点A恰好落在边BC的中点M处,且AM=BE,那么∠EBC的正切值是________18.如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,且OE=OD,则AP的长为________三、作图题19.仔细观察下列图案,并按规律在横线上画出合适的图案.四、解答题20.如图,由4个大小相等的正方形组成的L形图案,(1)请你改变1个正方形的位置,使它变成轴对称图形(2)请你再添加一个小正方形,使它变成轴对称图形21.小强和小勇想利用课本上学过的知识来进行台球比赛:小强把白球放在如图所示的位置,想通过击打白球撞击黑球,使黑球撞AC边后反弹进F洞;想想看,小强这样打,黑球能进F洞吗?请用画图的方法验证你的判断,并说出理由.22.利用关于坐标轴对称的点的坐标的特点,在下面坐标系中作出△ABC关于y轴对称的图形△A′B′C′,并直接写出A′,B′,C′的坐标.23.下列为边长为1的小正方形组成的网格图.(1)请画出△ABC关于直线a对称的图形(不要求写作法);(2)求△ABC的面积(直接写出即可).参考答案一、选择题C D B C A C B B C D B二、填空题12.30°或120°13.5;614.1015.16.417.18.4.8三、作图题19.解:如图所示:四、解答题20.(1)解:答案不惟一,(2)解:答案不惟一,21.【解答】不会进入F号洞,如图:22.解:如图所示,△A′B′C′即为所求,故A′(3,2),B′(4,﹣3),C′(1,﹣1)23.(1)解:如图:(2)解:S△ABC=矩形的面积﹣三个三角形的面积=3×4﹣3×1÷2﹣3×2÷2﹣4×1÷2=5.5.。
新北师大版七年级数学下第五章《生活中的轴对称》单元检测及答案(精)
第五章生活中的轴对称单元检测一、选择题1.如图所示,平放在竖立镜子前的桌面上的数码“21085”在镜子中的像是( ).A.21085 B.28015C.58012 D.510822.如图,在△ABC中,AB=14厘米,BC=9厘米,E为AC的中点,DE⊥AC,则△BDC的周长是( ).A.23厘米B.16厘米C.19厘米D.无法确定3.等腰三角形一腰上的高与底边所夹的角为α,则这个等腰三角形的顶角为( ).A.αB.90°-αC.90°+αD.2α4.如图,在直角三角形ABC中,∠BAC=90°,AB=AC,D为BC上一点,AB=BD,DE⊥BC,交AC于E,则图中的等腰三角形有( )个.A.3 B.4 C.5 D.65.下列四个图案中,轴对称图形的个数是( ).A.1 B.2C.3 D.46.点A与点A′关于直线l对称,则直线l是( ).A.线段AA′的垂直平分线B.垂直于线段AA′的直线C.平分线段AA′的直线D.过线段AA′中点的直线7.在数学符号“+,-,×,÷,≈,=,<,>,⊥,≌,△,∥,( )”中,轴对称图形的个数是( ).A.9 B.10 C.11 D.128.如图,△ABC和△ADE关于直线l对称,下列结论:①△ABC≌△ADE;②l垂直平分DB;③∠C=∠E;④BC与DE的延长线的交点一定落在直线l上.其中错误的有( ).A.0个B.1个C.2个D.3个二、填空题9.如图,在△ABC中,∠A=80°,∠B,∠C的平分线相交于点O,则∠BOC的度数等于__________.10.如图,在△ABC中,BE平分∠ABC,DE∥B C,∠ABE=35°,则∠DEB=________度,∠ADE =__________度.11.已知M,N是线段AB的垂直平分线上任意两点,则∠MAN和∠MBN之间的关系是∠MAN__________∠MBN.12.在照镜子时,小丽发现镜子中显示其上衣右上部不知什么时候弄上了一块墨水痕迹,实际上墨水痕迹在上衣的__________.13.已知OC是∠AOB的平分线,直线MN∥OB,分别交OA,OC于M,N,则△MON是__________三角形.14.如图,在△ABC中,∠C=90°,AB的垂直平分线交BC于D,交AB于E,∠CAD∶∠DBA=1∶2,则∠DBA的度数为__________.三、解答题15.如图,以虚线为对称轴,画出下列图案的另一半.16.如图所示,在△ABC中,AB=AC,∠A=60°,BD⊥AC于点D,DG∥AB,DG交BC于点G,点E在BC的延长线上,且CE=CD.(1)求∠ABD和∠BDE的度数;(2)写出图中的等腰三角形(写出3个即可).17.如图,已知点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.(1)如图①,若点O在边BC上,求证:AB=AC;图①图②(2)如图②,若点O在△ABC的内部,求证:AB=AC.18.如图是由4个大小相等的正方形组成的L形图案.(1)请你改变1个正方形的位置,使它变成轴对称图形;(2)请你再添加一个小正方形,使它变成轴对称图形.19.两个大小不同的圆可以组成如图中的五种图形,它们仍旧是轴对称图形,请找出每个图形的对称轴,并说一说它们的对称轴有什么特点.20.如图,某考古队为进行研究,寻找一座古城遗址.根据资料记载,该城在森林附近,到两条河岸的距离相等,到古塔的距离是 3 000 m.根据这些资料,考古队很快找到了这座古城的遗址.你能运用学过的知识在图中合理地标出古城遗址的位置吗?请你试一试.(比例尺为1∶100 000)参考答案1.D2.A 点拨:因为E为AC的中点,DE⊥AC,所以AD=CD,所以△BDC的周长=BC+CD+BD=BC +AD+BD=BC+AB=9+14=23(厘米).3.D4.B 点拨:首先直角三角形ABC是一个等腰三角形;AB=BD,所以△ABD也是一个等腰三角形;DE⊥BC,∠C=45°,所以CD=DE,所以△CDE也是等腰三角形;AB=BD,∠B=45°,所以∠BAD=67.5°,所以∠EAD=22.5°,∠CED=45°,所以∠AED=135°,所以∠EDA=22.5°,所以AE=DE,所以△ADE也是一个等腰三角形.所以共4个.5.C 6.A7.C 点拨:轴对称图形有:+,-,×,÷,=,<,>,⊥,△,∥,( ),共11个.8.A9.130°点拨:利用三角形的内角和定理以及角平分线的定义求∠BOC与∠A的关系,再把∠A 代入即可求出∠BOC的度数.10.35 70 点拨:因为在△ABC中,BE平分∠ABC,∠ABE=35°,所以∠ABC=70°,∠EBC =35°;因为DE∥BC,所以∠DE B=∠EBC=35°,∠ADE=∠ABC=70°.11.=12.左上部13.等腰14.36°点拨:因为DE垂直平分AB,所以∠DBA=∠BAD,因为∠CAD∶∠DBA=1∶2,所以设∠DBA=2x,则∠BAD=2x,∠CAD=x,所以x+2x+2x=90°,所以x=18°,所以∠DBA =2x=2×18°=36°.15.解:所作图形如图所示.16.解:(1)因为AB=AC,∠A=60°,所以△ABC是等边三角形,因为BD⊥AC,所以∠ABD=30°,因为CD=CE,∠ACB=60°,所以∠CDE=30°,所以∠BDE=120°.(2)因为AB=AC,所以△ABC是等腰三角形.因为DG∥AB,所以∠DGC=∠ABC=∠ACB,所以△CDG为等腰三角形.因为CD=CE,所以△CDE是等腰三角形.17.证明:(1)如图①,过点O分别作OE⊥AB,OF⊥AC,E,F分别是垂足,由题意知,OE=OF,OB=OC,所以Rt△OEB≌Rt△OFC(HL),所以∠B=∠C(全等三角形的对应角相等),所以AB=AC(等角对等边).(2)如图②,过点O分别作OE⊥AB,OF⊥AC,E,F分别是垂足,由题意知,OE=OF,在Rt△OEB 和Rt△OFC中,因为OE=OF,OB=OC,所以Rt△OEB≌Rt△OFC(HL),所以∠OBE=∠OCF.又因为OB =OC ,所以∠OBC =∠OCB ,所以∠ABC =∠ACB ,所以AB =AC .图① 图②18.解:答案不唯一,如 (1)(2)19.解:它们的对称轴均为经过两圆圆心的一条直线.图略.点拨:注意确定由两个轴对称图形组合而成的图形的对称轴时,要分析它们的公共对称轴. 20.解:如图.作法:(1)以点C 为圆心,以任意长为半径画弧,交两河岸于A ,B 两点,分别以A ,B 为圆心,以大于12AB 长为半径画弧,两弧交于点O ,过C ,O 作射线CO .(2)按比例尺计算得古塔与P 的图上距离为3 cm ,以古塔为圆心,以3 cm 长为半径画弧交CO 于点P ,则点P 即为所求.。
北师大版数学七年级下第五章《生活中的轴对称》单元测试题.docx
北师大版数学七年级下第五章《生活中的轴对称》单元测试题.docx初中数学试卷桑水出品七年级下册第五章《生活中的轴对称》单元测试题龙华中英文实验学校班级: 姓名: 成绩:一、选择题(每小题3分,共36 分)1. 下列图形中,不是轴对称图形的是( )A. 等边三角形B. 平行四边形C. 圆D. 等腰梯形2.下图中的图形属于是轴对称图形的有( )A.(1),(2)B. (1),(4)C. (2),(3)D. (3),(4)3.下列轴对称图形中,对称轴条数最多的是( )A. 等腰三角形B. 60度的角C. 长方形D. 等边三角形4.下列说法错误的是()A. 成轴对称的两个图形的对应点连线的垂直平分线是它们的对称轴B. 关于某条直线对称的两个图形全等C. 全等的三角形一定关于某条直线对称D. 若两个图形沿某条直线对折后能够完全重合,我们称两个图形成轴对称5. 如图所示的矩形纸片,先沿虚线按箭头方向向右对折,接着将对折后的纸片沿虚线剪下一个小圆和一个小三角形,然后将纸片打开是下列图中的哪一个( ).A. B. C. D.6.等腰三角形中的一个角等于100°,则另两个内角的度数分别为()A.40°,40°B.100°,20°C.50°,50°D.40°,40°或100°,20°7.已知等腰三角形的一边等于3,一边等于6,则它的周长等于 ( )A.12B.12或15C.15D.15或188.下列说法中正确的是()①角平分线上任意一点到角的两边的线段长相等②角是轴对称图形③线段不是轴对称图形;④线段垂直平分线上的点到这条线段两个端点的距离相等A.①②③④B.①②③C.②④D.②③④9.等腰三角形的周长为20厘米,其中一边长为8厘米,则腰长为()A.6厘米B.8厘米C.6厘米或8厘米D.以上都不对10.如图,OE 是AOB ∠的平分线,OA BD ⊥于点D,BO AC ⊥于点C ,则关于直线OE 对称的三角形有()A. 1对B.2对C.3对D.4对11.如图,在折纸活动中,小明制作了一张ABC ?纸片,点D,E 分别是边AB ,AC 上,将ABC沿着DE 折叠压平,A 与A ’重合,若?=∠75A ,则=∠+∠21 ( )A.?150B.?210C.?105D.?75第10题图第11题图12.如图,在△ABC 中,BC =8cm ,AB 的垂直平分线交AB 于点D ,交边ACE ,△BCE 的周长等于18cm ,则AC 的长等于()A .6cmB .8cmC .10cmD .12cm二、填空题(每小题3分,共12 分)13.△ABC 中,AB 的垂直平分线交AC 于D ,如果AC =5 cm ,BC =4cm ,那么△DBC 的周长是。
(好题)初中数学七年级数学下册第五单元《生活中的轴对称》检测题(包含答案解析)
一、选择题1.如图,点D 在△ABC 的边BC 上,BD CD >.将△ABD 沿AD 翻折,使B 落在点E 处.且DE 与AC 交于点F .设△AEF 的面积为1S ,△CDF 的面积为2S ,则1S 与2S 的大小关系为( )A .12S S >B .12S SC .12S S <D .不确定 2.正方形是轴对称图形,它的对称轴有( )A .2条B .4条C .6条D .8条 3.如图,矩形纸片ABCD 沿着BE 折叠,使C 、D 两点分别落在C 1、D 1处,若∠ABC 1=45°,则∠ABE 的度数为( )A .22.5°B .21.5°C .22°D .21° 4.把一张对边互相平行的纸条按如图所示折叠,EF 是折痕,若∠EFB =34°,则下列结论不正确的是( )A .34C EF '∠︒=B .∠AEC =146° C .∠BGE =68°D .∠BFD =112° 5.在如图所示的直角坐标系中,三颗棋子A 、O 、B 的位置如图,它们的坐标分别是(-1,1),(0,0)和(1,0),添加棋子C ,使A 、O 、B 、C 四颗棋子成为一个轴对称图形,则C 的坐标一定不是( )A .(-1,-1)B .(1,1)C .(-1,2)D .(0,-1) 6.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是轴对称图形的是( ) A . B .C .D .7.在汉字“生活中的日常用品”中,成轴对称的有( )A .3个B .4个C .5个D .6个8.如图,点P 是AOB ∠外的一点,点,M N 分别是AOB ∠两边上的点,点P 关于OA 的对称点Q 恰好落在线段MN 上,点P 关于OB 的对称点R 落在MN 的延长线上,若2.5,3,4PM cm PN cm MN cm ===,则线段QR 的长为( )A .4.5B .5.5C .6.5D .79.如图,若ABC ∆的面积为24,6AC =,现将ABC ∆沿 AB 所在直线翻折,使点 C 落在直线 AD 上的C '处,P 为直线AD 上一点,则线段 BP 的长可能是( )A .3B .5C .6D .1010.下列图形中是轴对称图形的个数为( )A.2个B.3个C.4个D.5个11.在4×4的正方形网格中,以格点为顶点的三角形称为格点三角形,在图中画出与△ABC关于某条直线对称的格点三角形,最多能画()个.A.5 B.6 C.7 D.812.如图所示,在锐角三角形ABC中,AB=8,AC=5,BC=6,沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,下列结论:①∠CBD=∠EBD,②DE⊥AB,③三角形ADE的周长是7,④34 BCDABDSS=△△,⑤34CDAD=.其中正确的个数有()A.2 B.3 C.4 D.5二、填空题13.如图,将书页斜折过去,使角的顶点A落在A'处,BC为折痕,BD是A BE∠'的平分线,则∠CBD=______.14.如图将长方形ABCD折叠,折痕为EF,BC的对应边B C''与CD交于点M,若40C FM'∠=︒,则BEF∠的度数为_______.15.如图,将一张长方形纸片分别沿着EP、FP对折,使点A落在点A′,点B落在点B′,若点P ,A ′,B ′在同一直线上,则两条折痕的夹角∠EPF 的度数为_____.16.如图,△ABC 中,∠ACB =90°,AC <BC ,将△ABC 沿EF 折叠,使点A 落在直角边BC 上的D 点处,设EF 与AB 、AC 边分别交于点E 、F ,如果折叠后△CDF 与△BDE 均为等腰三角形,那么∠B =_____.17.小明将一张正方形纸片按如图所示顺序折叠成纸飞机,当机翼展开在同一平面时(机翼间无缝隙),AOB ∠的度数是________.18.如图,长方形纸片ABCD ,点E ,F 分别在边AB ,CD 上,连接EF ,将BEF ∠对折B 落在直线EF 上的点'B 处,得折痕EM ;将AEF ∠对折,点A 落在直线EF 上的点'A 得折痕EN ,若6215'BEM ∠=︒,则AEN ∠=____.19.如图,AOB 与COB △关于边OB 所在的直线成轴对称,AO 的延长线交BC 于点D .若46BOD ∠=︒,22C ∠=︒,则ADC ∠=______°.20.如图,BD 平分ABC ∠交AC 于点D ,DE BC ⊥于点E ,若2DE =,7BC =,12ABC S =△,则AB 的长为______.三、解答题21.如图,在Rt ABC △中,AC BC =,90ACB ∠=︒,D 是AC 的中点,DG AC ⊥交AB 于点G ,E 为线段DC 上任意一点,点F 在线段DG 上,且DE DF =,连结EF 与CF ,过点F 作FH FC ⊥,交直线AB 于点H .(1)试说明DG DC =的理由;(2)判断FH 与FC 的数量关系,并说明理由.22.如图,邮递员小王的家在两条公路OM 和ON 相交成的角(MON ∠)的内部A 处,小王每天都要到开往OM 方向的车上取下快件,然后再送到开往ON 方向的车上,这样他就可以回家了,为使小王每天接送快件时的行程最短,请帮助他找出在公路OM 和ON 上的等车地点.(画草图,保留作图痕迹)23.如图,已知ABC ∆,点B 在直线a 上,直线,a b 相交于点O .(1)画ABC ∆关于直线a 对称的111A B C ∆;(2)在直线b 上画出点P ,使BP CP +最小.24.如图所示,ABC ∆在正方形网格中,若点A 的坐标是()2,4,点B 的坐标是()1,0-,按要求解答下列问题:(1)在图中建立正确的平面直角坐标系,写出点C 的坐标.(2)在图中作出△ABC 关于x 轴对称的△A 1B 1C 1.25.如图,在平面直角坐标系中有一个ABC ,顶点()1,3A -,()2,0B ,()3,1C --. (1)画出ABC 关于y 轴的对称图形111A B C △(不写画法);(2)点C 关于x 轴对称的点的坐标为__________,点B 关于y 轴对称的点的坐标为__________;(3)若网格上每个小正方形的边长为1,求111A B C △的面积?26.如图,在平面直角坐标系中()3,2A -、()4,3B --、()1,1C --.(1)在图中作出ABC ∆关于y 轴对称的图形111A B C ∆;(2)写出1A 、1B 、1C 的坐标,分别是1A (____,_____)、1B (____,_____)、1C (____,_____);(3)ABC ∆的面积是______________.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】依据点D 在△ABC 的边BC 上,BD >CD ,即可得到S △ABD >S △ACD ,再根据折叠的性质,即可得到S 1>S 2.【详解】解:∵点D 在△ABC 的边BC 上,BD >CD ,∴S △ABD >S △ACD ,由折叠可得,S △ABD =S △AED ,∴S △AED >S △ACD ,∴S △AED −S △ADF >S △ACD −S △ADF ,即S 1>S 2,故选:A .【点睛】本题主要考查了折叠的性质,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.2.B解析:B【分析】正方形既是矩形,又是菱形,具有矩形和菱形的轴对称性,由此可知其对称轴.【详解】解:正方形的对称轴是两对角线所在的直线,两对边中点所在的直线,对称轴共4条.故选B .【点睛】本题考查了正方形的轴对称性.关键是明确正方形既具有矩形的轴对称性,又具有菱形的轴对称性.3.A解析:A【分析】根据折叠前后对应角相等即可得出∠CBE 的度数,再根据∠ABC 为直角即可得到答案.【详解】设∠ABE=x ,根据折叠前后角相等可知,∠C 1BE=∠CBE=45x ︒+,∵∠ABC=90°,∴∠CBE+∠ABE=90°,即4590x x ︒++=︒,解得22.5x =︒.故选:A .【点睛】本题考查了图形的翻折变换,折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.4.B解析:B【分析】根据平行线的性质以及翻折不变性,分别求出∠C′EF ;∠AEC ;∠BGE ;∠BFD 即可判断.【详解】解:A 、∵∠EFB =34°,AC′∥BD′,∴∠EFB =∠FEC′=∠FEG =34°,故正确,不符合题意;B 、由折叠可得∠C′EG =68°,则∠AEC=180°﹣∠C′EG=112°,故错误,符合题意;C、∵∠BGE=∠C′EG=68°,故正确,不符合题意;D、∵EC∥DF,∴∠BFD=∠BGC=∠AEC=112°,故正确,不符合题意.故选:B.【点睛】本题考查的是平行线的性质及翻折变换的性质,熟知图形翻折不变性的性质是解答此题的关键.5.B解析:B【分析】根据A,B,O,C的位置,结合轴对称图形的性质,进而画出对称轴即可.【详解】如图所示,C点的位置为(-1,2),(2,1),A,O,B,C四颗棋子组成等腰梯形,直线l为该图形的对称轴,C点的位置为(-1,-1),x轴是对称轴,C点的位置为(0,-1),故选:B.【点睛】此题主要考查了利用轴对称设计图案,正确把握轴对称图形的性质是解题关键.6.C解析:C【解析】【分析】根据轴对称的概念对各选项分析判断即可得答案.【详解】A.不是轴对称图形,故该选项不符合题意,B.不是轴对称图形,故该选项不符合题意,C.是轴对称图形,故该选项符合题意,D.不是轴对称图形,故该选项不符合题意.故选:C .【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.7.A解析:A【分析】根据轴对称的定义,找出成轴对称的字,即可解答.【详解】在汉字“生活中的日常用品”中,成轴对称的字有“中、日、品”3个;故选A.【点睛】本题考查轴对称,解题关键是熟练掌握轴对称的定义.8.A解析:A【分析】根据轴对称性质可得出PM=MQ ,PN=RN ,因此先求出QN 的长度,然后根据QR=QN+NR 进一步计算即可.【详解】由轴对称性质可得:PM=MQ=2.5cm ,PN=RN=3cm ,∴QN=MN−MQ=1.5cm ,∴QR=QN+RN=4.5cm ,故选:A.【点睛】本题主要考查了轴对称性质,熟练掌握相关概念是解题关键.9.D解析:D【分析】过B 点作BM ⊥AD 于M 点,作BN ⊥AC 于N 点,P 点在AD 上运动,,利用三角形的面积求出BN ,进而得到BM ,BM 的长即为BP 的最小值.【详解】如图,过B 点作BM ⊥AD 于M 点,作BN ⊥AC 于N 点,△ABC 面积为24,AC 为6,故可得到BN=24×2÷6=8,因为△ABC 翻转得到ABC ∆',故=A B C C B A ,所以有BM=BN=8,所以BP 的最小值为8,选项中只有D 选项大于8,故选D.【点睛】本题考查翻转的性质,解题关键在于能够合理做出辅助线.10.B解析:B【分析】根据轴对称图形的概念对各图形分析判断即可得解.【详解】解:第1个是轴对称图形;第2个不是轴对称图形;第3个是轴对称图形;第4个是轴对称图形;第5个不是轴对称图形.故选:B.【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.11.C解析:C【分析】根据网格结构分别确定出不同的对称轴,然后作出轴对称三角形即可得解.【详解】如图,最多能画出7个格点三角形与△ABC成轴对称.故选:C .【点睛】本题考查了利用轴对称变换作图,熟练掌握网格结构并准确找出对应点的位置是解题的关键,本题的难点在于确定出不同的对称轴.12.C解析:C【分析】根据翻折变换的性质得到DC=DE ,BE=BC ,BCD BED ∠=∠,根据已知求出AE 的长,根据三角形周长公式计算即可,根据高相等判断34BCD ABD S S =△△ ,根据△BCD ≅△BDE 判断①的对错,根据等高,则面积的比等于底边的比判断⑤.【详解】根据翻折变换的性质得到DC=DE ,BE=BC=6,BCD BED ∠=∠,故DE ⊥AB 错误,即②错误∴△BCD ≅△BDE ,∴∠CBD =∠EBD,故①正确;∵AB=8,∴AE=AB-BE=2,△AED 的周长为:AD+AE+DE=AC+AE=7,故③正确;设三角形BCD 的高为h ,则三角形BAD 的高也为h ∴116322114822BCD ABD h BC h S S h AB h ⨯⨯⨯⨯==⨯⨯⨯⨯△△=,故④正确; 当三角形BCD 的高为H ,底边为CD ,则三角形BAD 的高也为H ,底边为AD ∴34BCD ABD S C S D AD ==△△,故⑤正确.【点睛】本题考查的是翻折变换的知识涉及了三角形全等、等高等知识点,掌握翻折变换的性质、找准对应关系是解题的关键.第II卷(非选择题)请点击修改第II卷的文字说明二、填空题13.90°【分析】根据折叠得出∠ABC=∠CBA′=∠ABA′根据角平分线得出∠A′BD=∠A′BE求出∠CBA′+∠A′BD=(∠ABA′+∠A′BE)=90°即可得出答案【详解】解:∵将书页斜折过去解析:90°【分析】根据折叠得出∠ABC=∠CBA′=12∠ABA′,根据角平分线,得出∠A′BD=12∠A′BE,求出∠CBA′+∠A′BD=12(∠ABA′+∠A′BE)=90°,即可得出答案.【详解】解:∵将书页斜折过去,使角的顶点A落在A′处,BC为折痕,∴∠ABC=∠CBA′=12∠ABA′,∵BD为∠A′BE的平分线,∴∠A′BD=12∠A′BE,∴∠CBA′+∠A′BD=12(∠ABA′+∠A′BE)=12×180°=90°,即∠CBD=90°.故答案为:90°.【点睛】本题考查了角的计算和翻折变换的应用,关键是求出∠CBA′+∠A′BD=1 2(∠ABA′+∠A′BE).14.70°【分析】依据矩形的性质以及折叠的性质即可得到∠DFE=∠BEF设∠BEF=α则∠DFE=∠BEF=α根据BE∥CF即可得出∠BEF+∠CFE=180°进而得到∠BEF的度数【详解】解:∵四边形解析:70°【分析】依据矩形的性质以及折叠的性质,即可得到∠DFE=∠B'EF,设∠BEF=α,则∠DFE=∠B'EF=α,根据B'E∥C'F,即可得出∠B'EF+∠C'FE=180°,进而得到∠BEF的度数.解:∵四边形ABCD是矩形,∴AB∥DC,∴∠BEF=∠DFE,由折叠可得,∠BEF=∠B'EF,设∠BEF=α,则∠DFE=∠B'EF=α,∵B'E∥C'F,∴∠B'EF+∠C'FE=180°,即α+α+40°=180°,解得α=70°,∴∠BEF=70°,故答案为:70°.【点睛】本题考查折叠问题以及矩形的性质的运用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.15.90°【分析】根据翻折的性质得到∠APE=∠APE∠BPF=∠BPF根据平角的定义得到∠APE+∠BPF=90°即可求得答案【详解】解:如图所示:∵∠APE=∠APE∠BPF=∠BPF∠APE+∠A解析:90°【分析】根据翻折的性质得到∠APE=∠A'PE,∠BPF=∠B'PF,根据平角的定义得到∠A'PE+∠B'PF =90°,即可求得答案.【详解】解:如图所示:∵∠APE=∠A'PE,∠BPF=∠B'PF,∠APE+∠A'PE+∠BPF+∠B'PF=180°,∴2(∠A'PE+∠B'PF)=180°,∴∠A'PE+∠B'PF=90°,又∴∠EPF=∠A'PE+∠B'PF,∴∠EPF=90°,故答案为:90°.【点睛】此题考查折叠的性质,平角的定义.16.30°【分析】先确定△CDF是等腰三角形得出∠CFD=∠CDF=45°因为不确定△BDE是以那两条边为腰的等腰三角形故需讨论①DE=DB②BD=BE③DE=BE然后分别利用角的关系得出答案即可【详解解析:30°【分析】先确定△CDF是等腰三角形,得出∠CFD=∠CDF=45°,因为不确定△BDE是以那两条边为腰的等腰三角形,故需讨论,①DE=DB,②BD=BE,③DE=BE,然后分别利用角的关系得出答案即可.【详解】解:∵△CDF中,∠C=90°,且△CDF是等腰三角形,∴CF=CD,∴∠CFD=∠CDF=45°,设∠DAE=x°,由对称性可知,AF=FD,AE=DE,∠CFD=22.5°,∠DEB=2x°,∴∠FDA=12分类如下:①当DE=DB时,如图1所示:∠B=∠DEB=2x°,由∠CDE=∠DEB+∠B,得45°+22.5°+x=4x,解得:x=22.5°.此时∠B=2x=45°,∵AC<BC,∴∠B=45°不成立;②当BD=BE时,如图2所示:则∠B=(180°﹣4x)°,∠CAD=22.5°.由∠CDE=∠DEB+∠B得:45°+22.5°+x=2x+180°﹣4x,解得x=37.5°,此时∠B=(180﹣4x)°=30°.③DE=BE时,则∠B=12(180﹣2x)°,由∠CDE=∠DEB+∠B得,45°+22.5°+x=2x+12(180﹣2x)°,此方程无解.∴DE=BE不成立.综上所述,∠B=30°.故答案为:30°.【点睛】本题考查翻折变换的性质、等腰三角形的判定与性质、三角形内角和定理等知识,在不确定等腰三角形的腰时要注意分类讨论,不要漏解,另外要注意方程思想在求解几何问题中的应用.17.45°【分析】根据折叠过程可知在折叠过程中角一直是轴对称的折叠【详解】在折叠过程中角一直是轴对称的折叠故答案为45°【点睛】考核知识点:轴对称理解折叠的本质是关键解析:45°【分析】根据折叠过程可知,在折叠过程中角一直是轴对称的折叠.【详解】在折叠过程中角一直是轴对称的折叠,22.5245AOB︒︒∠=⨯=故答案为45°【点睛】考核知识点:轴对称.理解折叠的本质是关键.18.【分析】先根据折叠的性质求出∠B′EM根据邻补角求出∠AEA′再根据折叠的性质即可求出∠AEN【详解】解:根据折叠可知:EM平分∠BEB′∴∠B′EM=∠BEM=62°15′∴∠AEA′=180°-解析:2745'︒【分析】先根据折叠的性质求出∠B′EM,根据邻补角求出∠AEA′,再根据折叠的性质即可求出∠AEN.【详解】解:根据折叠可知:EM平分∠BEB′,∴∠B′EM=∠BEM=62°15′,∴∠AEA′=180°-2×62°15′=55°30′,EN平分∠AEA′,∴∠AEN=∠A′EN=12∠AEA′=12×55°30′=27°45′,故答案为:27°45′.【点睛】本题考查了折叠的性质,邻补角的定义,以及角的计算、度分秒的换算,解决本题的关键是掌握折叠的性质.19.70【分析】根据三角形的外角和定理得和再根据轴对称的性质得和列式求出的值即可得到结果【详解】解:∵是的外角∴∵是的外角∴∵与关于边OB 所在的直线成轴对称∴∴即解得∴故答案是:【点睛】本题考查轴对称的 解析:70【分析】根据三角形的外角和定理,得ADC A ABC ∠=∠+∠和ADC BOD OBD ∠=∠+∠,再根据轴对称的性质得12OBD ABC ∠=∠和22C A ∠=∠=︒,列式求出ABC ∠的值,即可得到结果.【详解】解:∵ADC ∠是ABD △的外角, ∴ADC A ABC ∠=∠+∠, ∵ADC ∠是BOD 的外角, ∴ADC BOD OBD ∠=∠+∠, ∵AOB 与COB △关于边OB 所在的直线成轴对称, ∴12OBD ABC ∠=∠,22C A ∠=∠=︒, ∴12A ABC BOD ABC ∠+∠=∠+∠, 即122462ABC ABC ︒+∠=︒+∠, 解得48ABC ∠=︒, ∴224870ADC A ABC ∠=∠+∠=︒+︒=︒.故答案是:70.【点睛】本题考查轴对称的性质和三角形外角和定理,解题的关键是熟练运用这两个性质定理进行求解.20.5【分析】作DF ⊥AB 于F 根据角平分线的性质得到DE=DF 根据三角形的面积公式计算即可;【详解】如图:作DF ⊥AB 于F ∵BD 平分∠ABCDE ⊥BCDF ⊥AB ∴DE=DF ∴×AB×DF+×BC×DE=解析:5【分析】作DF ⊥AB 于F ,根据角平分线的性质得到DE=DF ,根据三角形的面积公式计算即可;【详解】如图:作DF ⊥AB 于F ,∵ BD 平分∠ABC ,DE ⊥BC ,DF ⊥AB ,∴DE=DF , ∴12×AB×DF+12×BC×DE=ABC S ∆ , 即12×AB×2+12×7×2=12, 解得:AB=5.故答案为:5.【点睛】本题考查了角平分线的性质,掌握角平分线上的点到角的两边的距离相等是解题的关键;三、解答题21.(1)见解析;(2)FH FC =,见解析.【分析】(1)求出∠A =∠AGD =45°,根据等腰三角形的判定得出AD =DG ,再由AD =DC 即可得出结论;(2)根据已知可依次证得FG =CE ,∠GFH =∠DCF ,∠HGF =∠FEC ,利用ASA 推出△HGF ≌△FEC ,再由全等三角形的性质即可得出结论.【详解】解:(1)∵AC BC =,90ACB ∠=︒,∴45A B ∠=∠=︒.∵DG AC ⊥,所以90ADG ∠=︒.∴45AGD ∠=︒.∴A AGD ∠=∠.∴AD DG =.∵D 是AC 的中点,∴AD DC =.∴DG DC =.(2)FH FC =.理由如下:∵DE DF =,DG DC =,∴DG DF DC DE -=-即FG CE =.∵FH FC ⊥,∴90GFH DFC ∠+∠=︒.又∵90DCF DFC ∠+∠=︒,∴GFH DCF ∠=∠.∵DG AC ⊥,DE DF =,∴45DEF DFE ∠=∠=︒.∴135FEC ∠=︒.同理可得:135HGF ∠=︒.∴HGF FEC ∠=∠.在HGF △和FEC 中,GFH DCF FG CE HGF FEC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴HGF △≌FEC .∴FH FC =.【点睛】 本题考查了等腰三角形及全等三角形的判定和性质的应用,掌握等腰三角形与全等三角形的判定与性质的相关知识点并能灵活运用定理进行推理是解答此题的关键.22.图见解析【分析】如图所示,分别作点A 关于射线OM 所在直线的对称点E ,点A 关于射线ON 所在直线的对称点F ,连接EF ,分别交射线OM 、ON 于点B 、C ,则根据轴对称的性质可知B 处、C 处分别为小王在公路OM 和ON 上的的等车地点.【详解】解:如图所示,分别作点A 关于射线OM 所在直线的对称点E ,点A 关于射线ON 所在直线的对称点F ,连接EF ,分别交射线OM 、ON 于点B 、C ,连接AB 、AC . 根据轴对称的性质可得AB EB =、AC FC =,此时ABC 的周长最小,则B 处、C 处分别为小王在公路OM 和ON 上的的等车地点.【点睛】本题考查了轴对称—路径最短问题,属于常考题型,正确理解题意、掌握解答的方法是解题的关键.23.(1)见解析;(2)见解析【分析】(1)根据题意,过点A 作直线a 的对称点1A ,过点C 作直线a 的对称点1C ,然后顺次连线,即可得到图形;(2)过点B 作直线b 的对称点B 2,连接CB 2与直线b 相交于点P ,则点P 为所求.【详解】解:(1)如图所示:111A B C 为所求;(2)如图,点P 为所求.【点睛】本题考查了轴对称的性质,画轴对称图形,解题的关键是熟练掌握轴对称的性质进行解题. 24.(1)见解析;C(3,2);(2)见解析.【分析】(1)利用点A 的坐标和点B 的坐标,确定原点,建立平面直角坐标系,并写出点C 的坐标即可;(2)利用关于x 轴对称的点的坐标特征写出A 1、B 1、C 1的坐标,然后描点即可得到△A 1B 1C 1.【详解】(1)如图所示;C(3,2);(2)如图所示:【点睛】本题考查了作图——轴对称变换,以及建立平面直角坐标系,解题的关键是熟练掌握轴对称的性质,正确建立平面直角坐标系.25.(1)见解析;(2)()3,1-,()2,0-;(3)9【分析】(1)关于y 轴对称,则纵坐标不变,横坐标变成相反数,先确定三个顶点的对称点,再一次连接即可;(2)关于x 轴对称则横坐标不变,纵坐标变为相反数;关于y 轴对称,则纵坐标不变,横坐标变成相反数;(3)利用网格,所求面积=三角形所在的长方形的面积-多余的三角形面积,计算即可.【详解】解:(1)如解图所示,111A B C △即为所求;(2)点C 关于x 轴对称的点的坐标为()3,1-,点B 关于y 轴对称的点的坐标为()2,0-;(3)111A B C △的面积为:111452433159222⨯-⨯⨯-⨯⨯-⨯⨯=. 【点睛】本题考查的主要是轴对称变换以及三角形面积求法,根据题意求出对应点的位置是解题关键.26.(1)如图所示,见解析;(2)3,2;4,-3;1,-1;(3)132. 【分析】(1)根据网格结构找出点A 、B 、C 关于y 轴的对称点111A B C 、、的位置,然后顺次连接即可;(2)由点关于y 轴对称点的特点填空即可;(3)根据△ABC 所在的矩形的面积减去四周三个直角三角形的面积列式计算即可得解.【详解】(1)如图所示:(2)A1(3,2),B1(4,-3),C1(1,-1),故答案为3,2;4,-3;1,-1;(3)S△ABC=5×3-12×5×1-12×2×3-12×2×3=132.故答案为:132.【点睛】本题考查了利用轴对称变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.。
北师大版初中数学七年级下册第五单元《生活中的轴对称》单元测试卷(较易)(含答案解析)
北师大版初中数学七年级下册第五单元《生活中的轴对称》单元测试卷(较易)(含答案解析)考试范围:第五单元; 考试时间:120分钟;总分:120分,第I卷(选择题)一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1. 下列运动图标中,属于轴对称图形的是( )A. B. C. D.2. 如图,牧童家在B处,A、B两处相距河岸的距离AC、BD分别为500m和300m,且C、D两处的距离为600m,天黑牧童从A处将牛牵到河边去饮水,在赶回家,那么牧童最少要走( )A. 800mB. 1000mC. 1200mD. 1500m3. 如图,在锐角三角形ABC中,AB=4,∠BAC=60°,∠BAC的平分线交BC于点D,M,N分别是AD和AB上的动点,当BM+MN取得最小值时,AN=( )A. 2B. 4C. 6D. 84. 如图,将△ABC折叠,使AC边落在AB边上,展开后得到折痕l,则l是△ABC的( )A. 中线B. 中位线C. 高线D. 角平分线5. 2021年是农历辛丑牛年,习近平总书记勉励全国各族人民在新的一年发扬“为民服务孺子牛、创新发展拓荒牛、艰苦奋斗老黄牛”精神,某社区也开展了“迎新春牛年剪纸展”,下面的剪纸作品是轴对称图形的是( )A.B.C.D.6. 用直尺和圆规作一个角的平分线的示意图如图所示,则能说明∠AOC=∠BOC的依据是( )A. SSSB. ASAC. AASD. 角平分线上的点到角两边距离相等7. 如图,在△ABC中,AB=AC,D是BC边的中点,则下列结论中不一定正确的是( )A. ∠B=∠CB. AD⊥BCC. AD平分∠BACD. AB=2BD8. 如图,在Rt△ABC中,∠C=90°,在AC和AB上分别截取AE、AD,使AE=AD.再分别以DE长为半径作弧,两弧在∠BAC内交于点F,作射线AF交边BC于点G,点D、E为圆心,大于12若CG=4,AB=10,则△ABG的面积为( )A. 12B. 20C. 30D. 409. 如图,分别以点A,点B为圆心,以大于1AB的长为半径画弧,两弧相交于点M,N,作2直线MN,点C在直线MN外,且与点A在MN的同一侧,BC交MN于点P,则( )A. BC>PC+APB. BC<PC+APC. BC=PC+APD. 无法判断10. 如图所示,直线l是线段AB的垂直平分线,O,P是直线l上的两点,则线段PA,PB,OA,OB的关系是( )A. PA=OA,PB=OBB. PA=PB=OA=OBC. PA=OB,PB=OAD. PA=PB,OA=OB11. 下列图案中,是利用轴对称设计的图案的有( )A. B. C. D.12. 如图是3×3的正方形网格,其中已有2个小方格涂成了黑色.现在要从编号为①‒④的小方格中选出1个也涂成黑色,使黑色部分依然是轴对称图形,不能选择的是( )A. ①B. ②C. ③D. ④第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13. 如图,从标有数字1,2,3,4的四个小正方形中拿走一个,成为一个轴对称图形,则应该拿走的小正方形的标号是______.14. 把一张长方形纸条按下图的方式折叠后,量得∠AOB′=110°,则∠BOC=______.15. 如图,在△ABC中,AB=AC.以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连接BD.若∠A=32°,则∠CDB的度数为________.16. 如图是3×3的正方形网格,要在图中再涂黑一个小正方形,使得图中黑色的部分成为轴对称图形,这样的小正方形有个.三、解答题(本大题共9小题,共72.0分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章生活中的轴对称
一、选择题
1.下列图形中对称轴最多的是()
A. 等腰三角形
B. 正方形
C. 圆形
D. 线段
2. 在一些美术字中,有的汉字是轴对称图形,下列四个汉字中,可以看作轴对称图形的是()
A. B. C. D.
3.如图,ΔABC与ΔA’B’C’关于直线l对称,则∠B的度数为()
A. 80°
B. 100°
C. 30°
D. 50°
4.如图,等腰三角形ABC的周长为21,底边BC的长为5,腰AB的垂直平分线交AB于点D,交AC于点E,连接BE,则三角形BEC的周长为()
A. 11
B. 12
C. 13
D. 14
5.如图,既是轴对称图形又是中心对称图形的是()
A. B. C. D.
6.如图,∠AOB=30°,点P是∠AOB内的一个定点,OP=20cm,点C、D分别是OA、OB上的动点,连结CP、DP、CD,则△CPD周长的最小值为()
A. 10cm
B. 15cm
C. 20cm
D. 40cm
7.如图,已知矩形ABCD,AB=3,AD=4,点P在AD边上移动,点Q在BC边上移动,且满足PB∥DQ,则AP+PQ+QB的最小值是()
A. 6
B. 7
C. 8
D. 9
8.已知∠AOB=45°,点P在∠AOB内部,点P1与点P关于OA对称,点P2与点P关于OB对称,则△P1OP2是()
A. 含30°角的直角三角形
B. 等腰直角三角形
C. 等边三角形
D. 顶角是30°的等腰三角形
9.如图所示,△ABC中,AB+BC=10,A、C关于直线DE对称,则△BCD的周长是()
A. 6
B. 8
C. 10
D. 无法确定
10.如图,已知OP平分∠AOB,∠AOB=60°,PC⊥OA于点C,PD⊥OB于点D,EP∥OA,交OB于点E,且EP=6.若点F是OP的中点,则CF的长是()
A. 6
B. 3
C. 2
D. 3
11.如图,在△ABC中,D,E分别是边AB,AC的中点,∠B=30°.现将△ADE沿DE折叠,点A落在三角形所在平面内的点为A′,则∠BDA′的度数为()
A. 100°
B. 120°
C. 130°
D. 140°
二、填空题
12.已知等腰三角形的一个内角是30°,那么这个等腰三角形顶角的度数是________
13.如图,现要利用尺规作图作△ABC关于BC的轴对称图形△A′BC .若AB=5cm ,AC=6cm ,BC =7cm ,则分别以点B、C为圆心,依次以________cm、________cm为半径画弧,使得两弧相交于点A′ ,再连结A′C、A′B ,即可得△A′BC .
14.如图,在△ABC中,AB=6cm,AC=4cm,BC的垂直平分线分别角AB、BC于D、E,则△ACD的周长为________cm.
15.如图,等边△ABC中,D是边BC上的一点,且BD:DC=1:3,把△ABC折叠,使点A落在边BC上的点D处,那么的值为________
16.如图的2×5的正方形网格中,△ABC的顶点都在小正方形的格点上,这样的三角形称为格点三角形,在网格中与△ABC成轴对称的格点三角形一共有________ 个.
17.如图,已知△ABC沿角平分线BE所在的直线翻折,点A恰好落在边BC的中点M处,且AM=BE,那么∠EBC的正切值是________
18.如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,且OE=OD,则AP的长为________
三、作图题
19.仔细观察下列图案,并按规律在横线上画出合适的图案.
四、解答题
20.如图,由4个大小相等的正方形组成的L形图案,
(1)请你改变1个正方形的位置,使它变成轴对称图形
(2)请你再添加一个小正方形,使它变成轴对称图形
21.小强和小勇想利用课本上学过的知识来进行台球比赛:小强把白球放在如图所示的位置,想通过击打白球撞击黑球,使黑球撞AC边后反弹进F洞;想想看,小强这样打,黑球能进F洞吗?请用画图的方法验证你的判断,并说出理由.
22.利用关于坐标轴对称的点的坐标的特点,在下面坐标系中作出△ABC关于y轴对称的图形△A′B′C′,并直接写出A′,B′,C′的坐标.
23.下列为边长为1的小正方形组成的网格图.
(1)请画出△ABC关于直线a对称的图形(不要求写作法);
(2)求△ABC的面积(直接写出即可).
参考答案
一、选择题
C D B C A C B B C D B
二、填空题
12.30°或120°
13.5;6
14.10
15.
16.4
17.
18.4.8
三、作图题
19.解:如图所示:
四、解答题
20.(1)解:答案不惟一,
(2)解:答案不惟一,
21.【解答】不会进入F号洞,如图:
22.解:如图所示,△A′B′C′即为所求,
故A′(3,2),B′(4,﹣3),C′(1,﹣1)23.(1)解:如图:
(2)解:
S△ABC=矩形的面积﹣三个三角形的面积
=3×4﹣3×1÷2﹣3×2÷2﹣4×1÷2=5.5.。