高二数学下学期期中试题文科实验班
高二数学下学期期中试题文_1

2021—2021〔下〕金堂中学高2021届期中考试试题制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日数 学〔文科〕Ⅰ卷 选择题〔一共60分〕一、选择题:(一共12个小题,每一小题5分,每道题只有一个选项是正确的,请将正确选项填涂到机读卡相应的地方) 1. 设集合{|12}A x x =-≤≤,{|1}B x x x Z =<∈,且,那么A B =( ▲ )A. {1}-B. {0}C. {1,0}-D. {0,1}2. 双曲线2213y x -=的渐近线方程为 ( ▲ )0y ±= B. 30x y ±= C. 0x ±= D. 30x y ±= 3. 命题00:21x p x R ∃∈=, ,那么 ( ▲ )A. :21xp x R ⌝∀∈=, B. :21xp x R ⌝∀∈≠, C. :21xp x R ⌝∀∉≠, D. :21xp x R ⌝∀∉=,4. 以下函数既是奇函数又在区间(0,)+∞上为增函数的是 ( ▲ ) A.sin y x =,x R ∈ B.2y x =,x R ∈ C.1y x x=-,0x ≠ D.2xy -=,x R ∈ 5. 平面向量a ,b 的夹角为23π,且,1a b ⋅=-,那么b = ( ▲ )1126. 将函数sin y x =的图象向左平移2π个单位,得到函数()y f x =的图象,那么 ( ▲ )A. ()y f x =是奇函数B. ()y f x =的周期为πC. ()y f x =的图象关于直线2x π=对称 D. ()y f x =的图象关于点(,0)2π-对称7.一个正方体被一个平面截去一局部后,剩余局部的三视图如下图,那么截去局部体积与剩余局部的体积的比值为 ( ▲ )A .18 B .17 C .16 D .15〔正视图〕 〔左视图〕 〔俯视图〕8.设x ,y 满足约束条件10101x y x y y +-≤⎧⎪--≥⎨⎪≥-⎩,,,那么2z x y =+的最大值为( ▲ )A .2B .1C .0D .2- 9. m n 、表示两条不同的直线,α ( ▲ )A. 假设//m α,//n α,那么//m nB. 假设m α⊥,n α⊂,那么m n ⊥C. 假设m α⊥,m n ⊥,那么//n αD. 假设//m α,m n ⊥,那么n α⊥ 10. 直线:1l y kx =+与抛物线24y x =恰有一个公一共点,那么实数k 的值是 ( ▲ ) A .0 B .1 C .1-或者0 D .0或者111. 执行右面的程序框图,假如输入的0.01t =,那么输出的n =( ▲ ) A.5 B.6C.7D.812. 对于以下四个命题:①假设0m >,那么函数2()f x x x m =+-有零点;②E F G H ,,,是空间四点,命题甲:E F G H ,,,四点不一共面,命题乙:直线EF 和GH 不相交,那么甲是乙成立的必要不充分条件;③2a <“”是“对任意的实数x ,11x x a ++-≥恒成立〞的充要条件;④01m <<“”是“方程22(1)1mx m y +-=表示双曲线〞的充分必要条件.其中正确命题的个数为 ( ▲ )A. 1B. 2C. 3D. 4Ⅱ卷非选择题〔一共90分〕二、填空题: (一共4个题,每一小题4分,每道题之答案请填写上到答题卷相应的地方)13.函数2log0()x xf xx>⎧⎪=≤,,那么(4)(4)f f+-=▲.14. 某单位有职工200人,其年龄分布如下表:为理解该单位职工的身体安康状况,用分层抽样的方法抽取一个容量为40的样本进展调查,那么年龄在[30,40)内的职工应被抽取的人数为▲.15. 过双曲线22221(00)x ya ba b-=>>,的两个焦点分别作垂直于x轴的直线与双曲线有四个交点,且这四个交点恰好为正方形的四个顶点,那么双曲线的离心率为▲.16.假设对任意x R∈,2sin2cos220x k x k+--<恒成立,那么实数k的取值范围是▲.三、解答题: (一共6个小题,一共74分,解答题须写出必要的过程,各小题的解答过程写在答题卷相应的地方)17.〔此题满分是12分〕数列{}na是递增的等差数列,2a,4a是方程2680x x-+=的根.(Ⅰ)求{}na的通项公式; (Ⅱ)求数列{2}nna+的前n项和nS.18.〔此题满分是12分〕经销商经销某种农产品,在一个销售季度内,每售出1t该产品获利润500元,未售出的产品,每1t亏损300元。
江苏省南京市高二(下)期中数学试卷(文科)

江苏省南京市2019-2019学年高二(下)期中数学试卷(文科)一、填空题:本大题共14小题,请把答案填写在答题纸相应位置、1、(5分)已知集合A={﹣1,2,4},B={﹣1,0,2} 则A∩B= {﹣1,2}、考点: 交集及其运算、专题: 计算题、分析:直截了当利用交集的概念进行求解运算。
解答:解:由集合A={﹣1,2,4},B={﹣1,0,2},因此A∩B={﹣1,2,4}∩{﹣1,0,2}={﹣1,2}。
故答案为{﹣1,2}。
点评:本题考查了交集及其运算,是基础的概念题,属会考题型。
2。
(5分)函数f(x)=+lg(3﹣x)的定义域是[﹣2,3)、考点: 对数函数的定义域;函数的定义域及其求法、专题: 函数的性质及应用。
分析:利用根式函数和对数函数的定义域,求函数f(x)的定义域、解答:解:要使函数有意义,则有,即,因此﹣2≤x〈3,即函数f(x)的定义域为[﹣2,3)。
故答案为:[﹣2,3)、点评:本题主要考查函数定义域的求法,要求熟练掌握常见函数的定义域的求法。
3、(5分)从某项综合能力测试中抽取7人的成绩,统计如表,则这7人成绩的方差为、考点: 极差、方差与标准差;茎叶图、专题: 概率与统计、分析:依照茎叶图得到数据,利用平均数、方差公式直截了当计算即可、解答:解:由题意得,这7人成绩为:8,8,9,10,11,12,12、其平均值=(8+8+9+10+11+12+12)=10,方差为s2=[(8﹣10)2+(8﹣10)2+(9﹣10)2+(10﹣10)2+(11﹣10)2+(12﹣10)2+(12﹣10)2]=,故答案为:、点评:本题考查茎叶图、样本的平均数、方差来估计总体的平均数、方差,属基础题,熟记样本的平均数、方差公式是解答好本题的关键、4、(5分)设f(x)=,则f(log23)=3、考点: 对数的运算性质;函数的值、专题: 计算题;函数的性质及应用、分析:判断出log23>1≥0,代入第二段解析式求解、解答:解:∵log23>1≥0,∴f(log23)=2log23=3故答案为:3点评:本题考查分段函数求函数值,要确定好自变量的取值或范围,再代入相应的解析式求得对应的函数值、分段函数分段处理,这是研究分段函数图象和性质最核心的理念。
高二下学期期中联考数学(文科)试题级答案(Word版)

高二(下)年级期中考试文科数学试题一.选择题:(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.命题“”的否定是()A.,假命题B.,真命题C.,假命题D.,真命题2.已知为虚数单位,为实数,复数在复平面内对应的点为,则“”是“点在第四象限”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.函数的定义域为开区间导函数在内的图象如图所示,则函数在内的极大值点有()A.1个B.2个C.3个D.4个4.已知,若的必要条件是,则之间的关系是()A.B.C.D.5.若,且函数在处有极值,则的最大值等于()A.2B.3C.6D.96.已知集合,,则等于()A.B.C.D.7.已知命题,命题恒成立.若为假命题,则实数的取值范围是()A.B.C.D.8.设函数的图象关于直线对称,则的值为()A.-1B.2C.1D.39.若函数在区间上不是单调函数,则实数的取值范围是()A.B.C.D.不存在这样的实数10已知为抛物线上一个动点,为圆上一个动点,那么点到点的距离与点到抛物线的准线距离之和的最小值是()A.5B.8 C.17-1 D.5+2二、填空题(本大题共7小题,每小题5分,共35分.把答案填在答题卡相应位置上.) 11.已知复数(i为虚数单位),则=_____.12.在实数范围内,不等式的解集为________.13.若不等式对恒成立,则实数的取值范围是______. 14.已知,且,则的最小值是________.15.若双曲线的离心率是2,则的最小值为________.16.若双曲线的两个焦点为;为双曲线上一点,且,则该双曲线离心率的取值范围是________.17.已知函数在上是减函数,在上是增函数,函数在上有三个零点,且是其中一个零点.(1)的值为________;(2)的取值范围是________.三、解答题(本大题共5小题,共65分.解答应写出文字说明,证明过程或演算步骤.)18.(本小题满分12分)已知命题方程有两个不等的负实根,命题函数的定义域为,若为真,求实数的取值范围。
高中数学 2021-2022学年河南省南阳市高二(下)期中数学试卷(文科)

(VIP&校本题库)2021-2022学年河南省南阳市南召第一高级中学高二(下)期中数学试卷(文科)一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的)A .第一象限B .第二象限C .第三象限D .第四象限1.(5分)已知复数z =i3+i,则复数z 在复平面中对应的点在( )A .1B .2C .3D .42.(5分)设某大学的女生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的回归方程为̂y =0.85x -85.71.①y 与x 具有正的线性相关关系;②回归直线过样本点的中心(x ,y );③若该大学某女生身高增加1cm ,则其体重约增加0.85kg ;④若该大学某女生身高为170cm ,则其体重必为58.79kg .则上述判断不正确的个数是( )A .0.02B .0.28C .0.72D .0.983.(5分)甲、乙两个雷达独立工作,它们发现飞行目标的概率分别是0.9和0.8,飞行目标被雷达发现的概率为( )A .160B .162C .166D .1704.(5分)为了研究某班学生的脚长x (单位:厘米)和身高y (单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y 与x 之间有线性相关关系,设其回归直线方程为̂y =̂b x +̂a .已知10i =1x i =225,10i =1y i =1600,̂b =4.该班某学生的脚长为23,据此估计其身高为( )A .-1B .12C .−12D .15.(5分)在一组样本数据(x 1,y 1),(x 2,y 2),⋯,(x n ,y n ),(n ≥2,x 1,x 2,…,x n 不相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,⋯,n )都在直线y =−12x +3上,则这组样本数据的样本相关系数为( )A .假设a 、b 、c 都是偶数B .假设a 、b 、c 都不是偶数C .假设a 、b 、c 至多有一个偶数D .假设a 、b 、c 至多有两个偶数6.(5分)用反证法证明:若整系数一元二次方程ax 2+bx +c =0(a ≠0)有有理数根,那么a 、b 、c 中至少有一个偶数时,下列假设正确的是( )7.(5分)目前国家为进一步优化生育政策,实施一对夫妻可以生育三个子女的政策.假定生男孩和生女孩是等可能的,现随机选择一个有三个小孩的家庭,如果已经知道这个家庭有女孩,那么在此条件下该家庭也有男孩的概率是( )A .12B .23C .34D .67A .使得ni =1[y i -(a +bx i )]最小B .使得ni =1[y i -(a +bx i )2]最小C .使得ni =1[y i 2-(a +bx i )2]最小D .使得ni =1[y i -(a +bx i )]2最小8.(5分)最小二乘法的原理是( )A .1B .2C .3D .49.(5分)下列四个命题:①在线性回归分析中,相关系数r 的取值范围是(-1,1);②在线性回归分析中,相关系数r 的值越大,变量间的相关性越强;③在线性回归分析中,相关系数r >0时,两个变量正相关;④在对两件事进行独立性检验时,用χ2作为统计量,χ2越大,则能判定两件事有关联的把握越大.其中真命题的个数是( )A .9B .16C .23D .3010.(5分)定义[x ]表示不超过x 的最大整数,例如[2]=2,[3.6]=3,执行如图的程序框图,则输出的结果是( )11.(5分)研究发现,任意一个三次函数f (x )=ax 3+bx 3+cx +d (a ≠0)的图象必有一个对称中心,一般地,判断点(x 0,f (x 0))是否是三次函数f (x )图象的对称中心的流程如图所示,则对于函数f (x )=x 3-32x 2+34x +18,其图像的对称中心以及f(12021)+f (22021)+f (32021)+…+f (20202021)的值分别是( )二、填空题(本大题共4小题,每小题5分,共20分)三、解答题(本大题共6小题,共70分。
河南名校联盟2021-2022学年高二下学期期中考试文科数学试题(解析版)

A. 都小于 1 4
C. 都大于 1 4
【答案】B
B. 至少有一个不小于 1 4
D. 至少有一个不大于 1 4
【解析】
【分析】先求出 x y z 3 ,通过反证法证得 x, y, z 都小于 1 不成立,即可得出结果.
4
4
【详解】
x
y
z
a2
b
b2
c
c2
a
a
1 2
2
b
1 2
2
质:过圆
C 上一点 M (x0,
y0 ) 的圆的切线方程是 x0x
y0 y
r2 .类比上述结论,过椭圆 E : x2 12
y2 4
1 的点
P 3, 1 的切线方程为______.
【答案】 x y 4 0
【解析】
【分析】通过类比可得类似结论:过椭圆 E :
x2 a2
y2 b2
1上一点 P(x0,
【详解】∵ f x 2 a ln x ax ,
x
∴
f
x
2 x2
a x
a
,
∵曲线 y f x 在 x 1处的切线与直线 y 2 平行,
∴ f 1 0 2 a a 0 a 1.
故选:A﹒
5. 已知 a,b, c R ,且 x a2 b , y b2 c , z c2 a ,则 x, y, z 三个数( )
由不等式得性质,D 正确. 故选:D.
2. 已知 k R ,则“ 2 k 3 ”是“方程 x2 y2 1表示双曲线”的( ) 6k k2
A. 充分不必要条件
B. 必要不充分条件
C. 充要条件
D. 既不充分也不必要条件
【答案】A
陕西省宝鸡市金台区2022-2023学年高二下学期期中文科数学试题

A. b c 0
B. (a c)(b c) 0
C. (a b)(a c) > 0
D. (a b)(b c) 0
7.在一次独立性检验中得到如下列联表:
A1 A2
总计
试卷第 1 页,共 5 页
B1 200 800
1000
B2 180 a
180+a
总计 380 800+a 1180+a
2i 平面内对应的点在第一象限. (1)求 z ; (2)求 a 的取值范围. 20.某车间为了规定工时定额,需要确定加共某零件所花费的时间,为此作了四次实验, 得到的数据如下:
零件的个数 x(个) 2 3 4 5
加工的时间 y(小时) 2.5 3 4 4.5
(1)求出 y 关于 x 的线性回归方程;
4.独立性检验中,假设:变量 X 与变量Y 没有关系,则在上述假设成立的情况下,估
算概率 P(K 2 6.635) 0.01,表示的意义是
A.变量 X 与变量Y 有关系的概率为1%
B.变量 X 与变量Y 没有关系的概率为 99.9%
C.变量 X 与变量Y 没有关系的概率为 99%
D.变量 X 与变量Y 有关系的概率为 99%
僧,大僧三个更无争,小僧三人分一个,大小和尚各几个?程序框图反映了对此题的一
个求解算法,则输出 n 的值为( )
A. 20
B. 25
C. 75
D. 80
10.已知 y 与 x 及 与 v 的对应数据如下表,且 y 关于 x 的线性回归方程为 $y 1.2x 0.6 ,
则 关于 v 的线性回归方程为( )
重要的地位.根据欧拉公式可知, ei 表示的复数在复平面内对应的点位于( )
A.第一象限
高二下学期期中考试数学试题 (二)(文科)
高二下学期期中考试数学试题 (二)(文科)本试卷全卷满分150分。
考试用时120分钟★ 祝 考 试 顺 利 ★一、选择题(本大题共10小题,每小题5分,共50分, 在每小题给出的四个选项中,只有一项是符合题目要求的) 1.函数 3cos y x x =的导数为( D )A.23sin y x x '=- B.233cos sin y x x x x '=+ C. 32sin 3cos y x x x x '=- D. 233cos sin y x x x x '=- 2. 下列命题中为真命题的是(C )A . 命题“若1x =,则220x x +-=”的否命题B .命题“若1x >,则21x >”的否命题 C .命题“若x y >,则x y >”的逆命题 D .命题“若20x >,则1x >”的逆否命题3.曲线21x y xe x =++在点(0,1)处的切线方程为(A )A .31y x =+B .31y x =-C .21y x =+D .21y x =-4. 不能表示的曲线是()方程1cos sin ],,0[22=+∈ααπαy x C A 椭圆 B 双曲线 C 抛物线 D 圆5. 设:()ln 21p f x x x mx =++++1x e mx ++在(0)+∞,内单调递增,:q m -≥0m ≥,则p 是q 的( C ) A .充分不必要条件 B . 充分必要条件 C .必要不充分条件D .既不充分也不必要条件6.已知对k R ∈,直线10y kx --=与椭圆2215x y m+=恒有公共点,则实数m 的取值范围是( D ) A .(0,1)B .(0,5)C .[1,5)D .),5()5,1[+∞⋃7.设P 为双曲线22112y x -=上的一点,12F F ,是该双曲线的两个焦点,若12||:||3:2PF PF =,则12PF F △的面积为( A )A .12B . . 24 D . 8.方程322670x x -+=在(0,2)内根的个数有(B )A. 0个B. 1个C. 2个D. 3个9. 已知函数()f x 的定义域为[1,4]-,部分对应值如下表,()f x 的导函数()y f x '=的图象如右图所示。
2023—2024学年陕西省咸阳市高二下学期期中数学(文科)试题(含答案)
2023-2024学年陕西省咸阳市高二下册期中数学(文)试题一、单选题1.复数23i z =-的虚部为()A .3B .3-C .3iD .i3-【正确答案】B【分析】直接求出虚部即可.【详解】虚部为3-.故选:B.2.为了调查中学生近视情况,某校160名男生中有90名近视,150名女生中有75名近视,在检验这些中学生眼睛近视是否与性别有关时用什么方法最有说服力()A .平均数B .方差C .回归分析D .独立性检验【正确答案】D【分析】近视与性别时两类变量,根据分类变量的研究方法即可确定答案.【详解】解:近视与性别时两类变量,在检验两个随机事件是否相关时,最有说服力的方法时独立性检验.故选:D.3.对四组数据进行统计,获得如图所示的散点图,关于其相关系数的比较,正确的是()A .14320r r r r <<<<B .41320r r r r <<<<C .42310r r r r <<<<D .24130r r r r <<<<【正确答案】A【分析】根据题中给出的散点图,先判断是正相关还是负相关,然后根据散点图的集中程度分析相关系数的大小【详解】解:由图可知,图2和图3是正相关,图1和图4是负相关,囷1和图2的点相对更加集中,所以相关性更强,所以1r 接近于1-,2r 接近1,所以14320r r r r <<<<,故选:A4.下列的三句话,若按照演绎推理的“三段论”模式,排列顺序正确的应是()①()cos y x x R =∈是周期函数;②()cos y x x R =∈是三角函数;③三角函数是周期函数;A .①②③B .②①③C .②③①D .③②①【正确答案】D【分析】本题可根据“三段论”的相关性质得出结果.【详解】由“三段论”易知:三角函数是周期函数,()cos y x x R =∈是三角函数,()cos y x x R =∈是周期函数,故选:D.5.用反证法证明命题“a ,b ,R c ∈,若0a b c ++>,则a ,b ,c 中至少有一个正数”时,假设应为()A .a ,b ,c 均为负数B .a ,b ,c 中至多一个是正数C .a ,b ,c 均为正数D .a ,b ,c 中没有正数【正确答案】D【分析】由反证法的概念判断即可.【详解】由题,“至少有一个”相对的情况就是“一个都没有”,故应假设a ,b ,c 中没有正数,故选:D6.已知x ,y 的取值如下表所示:x234y546如果y 与x 呈线性相关,且线性回归方程为72y bx =+,则b 等于()A .12-B .12C .110-D .110【正确答案】B【分析】求出x 、y 的值,将点(),x y 的坐标代入回归直线方程,即可求得实数b 的值.【详解】由表格中的数据可得23433x ++==,54653y ++==,将点(),x y 的坐标代入回归直线方程得7352b +=,解得12b =.故选:B.7.对标有不同编号的6件正品和4件次品的产品进行检测,不放回地依次摸出2件.在第一次摸到正品的条件下,第二次也摸到正品的概率是()A .35B .59C .15D .110【正确答案】B【分析】根据给定条件,以第一次摸到正品的事件为样本空间,利用古典概率公式计算作答.【详解】用A 表示事件“第一次摸到正品”,B 表示“第二次摸到正品”,在事件A 发生的条件下,事件B 发生的概率,相当于以A 为样本空间,事件B 就是积事件AB ,显然()9n A =,()5n AB =,所以在第一次摸到正品的条件下,第二次也摸到正品的概率是()5(|)()9n AB P B A n A ==.故选:B8.设,R a b ∈,“复数i a b +是纯虚数”是“0a =”的()A .充分而不必要条件;B .必要不充分条件;C .充分必要条件;D .既不充分也不必要条件.【正确答案】A【分析】根据纯虚数的定义,结合充分性、必要性的定义进行求解即可.【详解】当i a b +是纯虚数时,一定有0a =,但是当0a =时,只有当0b ≠时,i a b +才能是纯虚数,所以“复数i a b +是纯虚数”是“0a =”的充分而不必要条件,故选:A9.已知复数1z ,2z 在复平面内对应的点分别为()1,2A ,()1,3B -,则复数12z z 在复平面内对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限【正确答案】D【分析】由123,12i 1i =+=-+z z ,代入复数12z z ,利用复数的除法运算和几何意义可得答案.【详解】因为复数1z ,2z 在复平面内对应的点分别为()1,2A ,()1,3B -,所以123,12i 1i =+=-+z z ,则复数()()()()1212i 13i 12ii 3111213i 1i 23i +--+-+-+-=-==-z z ,在复平面内对应的点1122,⎛⎫- ⎪⎝⎭位于第四象限.故选:D.10.若实数,a b满足12a b+=ab 的最小值为AB .2C.D .4【正确答案】C【详解】121200a b ab a b a b +=∴=+≥=∴≥ >,>,(当且仅当2b a =时取等号),所以ab的最小值为 C.基本不等式【名师点睛】基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,因此可以用在一些不等式的证明中,还可以用于求代数式的最值或取值范围.如果条件等式中,同时含有两个变量的和与积的形式,就可以直接利用基本不等式对两个正数的和与积进行转化,然后通过解不等式进行求解.11.如图所示的是某小朋友在用火柴拼图时呈现的图形,其中第1个图形用了3根火柴,第2个图形用了9根火柴,第3个图形用了18根火柴, ,按此规律,则第2022个图形用的火柴根数为()A .20192022⨯B .20192023⨯C .30332021⨯D .30332023⨯【正确答案】D【分析】根据已知条件,进行归纳推理即可求解.【详解】由图可知第1个图形用了31(11)32⨯⨯+=根火柴第2个图形用了32(21)92⨯⨯+=根火柴,第3个图形用了33(31)182⨯⨯+=根火柴,……归纳得,第n 个图形用了3(1)3(123)2n n n +++++= 根火柴,当2022n =时,3(1)303320232n n +=⨯.故选:D.12.学校开设了多种体有类的校本选修课程,以更好的满足学生加强体有锻炼的需要.该校学生小明选择确定后,有三位同学根据小明的兴趣爱好,对他选择的体育类的校本课程进行猜测.甲说“小明选的不是游泳,选的是武术”,乙说“小明选的不是武术,选的是体操”,丙说“小明选的不是武术,也不是排球”,已知这三人中有两个人说的全对,有一个人只说对了一半,则由此推断小明选择的体育类的校本课程是()A .游泳B .武术C .体操D .排球【正确答案】C【分析】根据题意,分别分析甲乙说的全对,甲丙全对,乙丙全对三种情况,分析即可得答案.【详解】若甲说的全对,则小明选的是武术,若乙说的全对,则小明选的是体操,矛盾,若甲说的全对,则小明选的是武术,若丙说的全对,则小明选的不是武术,矛盾,若乙说的全对,则小明选的是体操,若丙说的全对,不是武术也不是排球,满足题意,此时甲说的不是游泳正确,是武术错误,所以甲说的半对,满足题意,所以小明选择的是体操,故选:C 二、填空题13.若复数21iz =+,z 是其共轭复数,则z =_______.【正确答案】1i +/1i +【分析】根据复数的四则运算法则化简计算z ,再由共轭复数的概念写出z .【详解】化简()()()21i 222i 1i 1i 1i 1i 2z --====-++-,所以1i z =+.故1i+14.在等差数列{}n a 中,若50a =,则有1290a a a +++= 成立.类比上述性质,在等比数列{}n b 中,若91b =,则存在的等式为______.【正确答案】12171b b b = 【分析】由29117n n b b b +-=⋅,利用类比推理即可得出.【详解】利用类比推理,借助等比数列的性质可知29117n n b b b +-=⋅,即291172168101b b b b b b b ===== ,可知存在的等式为12171b b b = .故12171b b b = 15.执行下面的程序框图,若输入的0k =,0a =,则输出的k 为_______.【正确答案】4【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出k 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,即可求得答案.【详解】输入0k =,0a =,则第一次循环:1a =,1k =,不符合判断框条件,继续循环;第二次循环:3a =,2k =,不符合判断框条件,继续循环;第三次循环:7a =,3k =,不符合判断框条件,继续循环;第四次循环:15a =,4k =,此时满足判断框条件10a >,退出循环,输出4k =.故416.在复平面内,平行四边形ABCD 的三个顶点A 、B 、C 对应的复数分别是1+3i,-i,2+i,则点D 对应的复数为_________【正确答案】3+5i【详解】试题分析:,,A B C 三点对应的复数分别是13,,2i i i +-+,(1,3),(0,1),(2,1)A B C ∴-,设(,)D x y ,则:(1,4),(2,1)AB DC x y =--=--,在平行四边形ABCD 中,有AB DC =,即(1,4)(2,1)x y --=--,213{{145x x y y -=-=∴⇒-=-=,即(3,5)D 对应的复数为.35i +故答案应填:35i +.复的几何意义.三、解答题17.计算:(1)(1)(1)(1)i i i +-+-+;(2)2020121()341i i i i+++--【正确答案】(1)1i +(2)4255i +【分析】(1)根据复数的运算法则可得结果;(2)根据复数的除法运算和乘法运算可得结果.【详解】(1)原式2111111i i i i =--+=+-+=+.(2)原式()()()()()()()2020212341343411i i i i i i i ⎛⎫+++ ⎪=+ ⎪-+-+⎝⎭()505451025ii -+=+12155i =-++4255i =+.18.当实数m 取何值时,在复平面内复数()()222334i z m m m m =--+--对应的点满足下列条件:(1)在实轴上;(2)z 是纯虚数.【正确答案】(1)1m =-或4m =(2)3m =【分析】(1)由虚部为0得出m 的值;(2)由纯虚数的定义得出m 的值.【详解】(1)复数z 在复平面内的坐标为22(23,34)m m m m ----因为复数z 对应的点在实轴上,所以2340m m --=,解得1m =-或4m =即1m =-或4m =(2)因为z 是纯虚数,所以2230m m --=且2340m m --≠,解得1m =-(舍)或3m =故3m =19.某机械厂制造一种汽车零件,已知甲机床的正品率是0.9,乙机床的次品率是0.2,现从它们制造的产品中各任意抽取一件.(1)求两件产品都是正品的概率;(2)求恰好有一件是正品的概率;(3)求至少有一件是正品的概率.【正确答案】(1)0.72(2)0.26(3)0.98【分析】(1)根据相互独立事件概率计算公式,计算出所求概率.(2)根据相互独立事件、互斥事件概率计算公式,计算出所求概率.(3)由(1)(2)求得至少有一件是正品的概率.【详解】(1)两件产品都是正品的概率为()0.910.20.72⨯-=.(2)恰好有一件是正品的概率为()()0.90.210.910.20.26⨯+-⨯-=.(3)由(1)(2)得至少有一件是正品的概率为0.720.260.98+=20.证明:(1)>(2)如果0,0,a b >>则ln ln ln22a b a b++≥.【正确答案】(1)证明见解析(2)证明见解析【分析】(1)由不等式的性质结合分析法证明即可;(2)由基本不等式结合ln y x =的单调性证明即可.【详解】(1>只需证22>即证1414+>+即证即证126>因为126>(2)当0,0a b >>时,a b +≥2a b+≥a b =时,等号成立ln y x = 在(0,)+∞上单调递增ln2a b+∴≥即11ln ln (ln ln )222a b ab a b +≥=+ln ln ln22a b a b ++∴≥21.甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别抽查了两台机床生产的产品,产品的质量情况统计如下表:一级品二级品合计甲机床30乙机床40合计90200(1)请将上述22⨯列联表补充完整;(2)能否有99.9%的把握认为甲机床的产品质量与乙机床的产品质量有差异?附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.()20P K k ≥0.100.050.0100.0050.001k 2.706 3.841 6.6357.87910.828【正确答案】(1)列联表见解析(2)有99.9%的把握认为甲机床的产品质量与乙机床的产品质量有差异【分析】(1)直接计算补充列联表即可;(2)先计算2K ,再和10.828比较作出判断即可.【详解】(1)补充完整的22⨯列联表如下:一级品二级品合计甲机床3070100乙机床6040100合计90110200(2)∵()222003040706018.1810.82890110100100K ⨯⨯-⨯=≈>⨯⨯⨯,∴有99.9%的把握认为甲机床的产品质量与乙机床的产品质量有差异.22.“俯卧撑”是日常体能训练的一项基本训练,坚持做可以锻炼上肢、腰部及腹部的肌肉.某同学对其“俯卧撑”情况作了记录,得到如表数据.分析发现他能完成“俯卧撑”的个数y (个)与坚持的时间x (周)线性相关.x1245y5152535(1)求y 关于x 的线性回归方程y b x a ∧∧∧=+;(2)预测该同学坚持10周后能完成的“俯卧撑”个数.参考公式:121()()()niii nii x x y y b x x ∧==--=-∑∑,a y b x ∧∧=-,其中x ,y 表示样本平均值.【正确答案】(1)71y x ∧=-;(2)69个.【分析】(1)根据数据求得均值,代入公式求得回归方程;(2)令10x =代入预测出函数值.【详解】(1)由所给数据计算得1(1245)34x =⨯+++=,1(5152535)204y =⨯+++=,44211()()70,()10,i i i i i x x yy x x ==--=-=∑∑所以,41421()()70710()i i i i i x x y y b x x ∧==--===-∑∑1a yb x ∧∧=-=-故y 关于x 的线性回归方程是71y x ∧=-(2)令10x =,得710169,y ∧=⨯-=故预测该同学坚持10周后能完成69个“俯卧撑”.23.已知函数()ln 3f x a x x =+-.(1)若1a =,求曲线()y f x =在点()()1,1f 处的切线方程;(2)若()f x 的最小值为2-,求a 的值.【正确答案】(1)240x y --=(2)1a =-【分析】(1)求出函数的导数,根据导数的几何意义即可求得答案.(2)利用函数的导数判断函数的单调性,求得函数的最小值并令其等于-2,得到()1ln 10a a---=,构造函数()1ln 1x g x x =+-,利用导数确定a 的值.【详解】(1)∵()ln 3f x a x x =+-,∴()1a x a f x x x +'=+=,∴当1a =时,()12f =-,()12f '=,∴()221y x +=-,∴所求切线方程为240x y --=.(2)由(1)知,()x a f x x+'=,0x >.当0a ≥时,()0f x ¢>,()f x 在()0,∞+上单调递增,此时无最小值;当a<0时,令()0f x '=,得x a =-,当()0,x a ∈-时,()0f x '<;当(),x a ∈-+∞时,()0f x ¢>,∴()f x 在()0,a -上单调递减,在(),a -+∞上单调递增,∴()f x 的最小值为()()ln 32f a a a a -=---=-,则()1ln 10a a---=.令()1ln 1x g x x =+-,则()21x g x x -'=,∴当()0,1x ∈时,()0g x '<;当()1,x ∈+∞时,()0g x '>.∴()g x 在()0,1上单调递减,在()1,+∞上单调递增,∵()10g =,∴()0g x =有一个根1x =,∴1a -=,即1a =-.。
山西省太原市实验中学校2021-2022高二数学下学期期中试题 文.doc
山西省太原市实验中学校2021-2022高二数学下学期期中试题 文一、选择题(本大题共12小题,每小题3分,共36分) 1.若复数z 满足i z i 43)1(+=+,则z 的虚部为 A .5B .25C .25-D .-52.已知命题p :R x ∈∀,012>+-x x ,则p ⌝() A .R x ∈∃,012≤+-x x B .R x ∈∀,012≤+-x x C .R x ∈∃,012>+-x xD .R x ∈∀,012≥+-x x3.点M 的直角坐标是(-,则点M 的极坐标为( ) A .(2,)3π B .(2,)3π- C .2(2,)3π D .(2,2),()3k k Z ππ+∈ 4.下面四个推理,不属于演绎推理的是( )A.因为函数sin ()y x x R =∈的值域为[1,1],21,x R --∈所以sin(21)()y x x R =-∈的值域也为[]1,1-B.昆虫都是6条腿,竹节虫是昆虫,所以竹节虫有6条腿C.在平面中,对于三条不同的直线,,a b c ,若//,//,a b b c .则//,a c 将此结论放到空间中也如此D.如果一个人在墙上写字的位置与他的视线平行,那么墙上的字迹离地面的高度大约是他的身高,凶手在墙上写字的位置与他的视线平行,福尔摩斯量得墙壁上的字迹距地面六尺多,于是他得出了凶手身高六尺多的结论5.p :(2-x )(x +1)>0;q :0≤x ≤1。
则p 成立是q 成立的( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件6.直角坐标系xoy 中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,设点A ,B 分别在曲线13cos :4sin x C y θθ=+⎧⎨=+⎩(θ为参数)和曲线2:1C ρ=上,则AB 的最小值为( ) A. 7 B. 5 C. 3 D. 17.研究变量x ,y 得到一组样本数据,进行回归分析,有以下结论①残差平方和越小的模型,拟合的效果越好;②用相关指数2R 来刻画回归效果,2R 越小说明拟合效果越好;③在回归直线方程0.2.8ˆ0y x =+中,当解释变量x 每增加1个单位时,预报变量ˆy 平均增加0.2个单位④若变量y 和x 之间的相关系数为0.9462r =-,则变量y 和x 之间的负相关很强,以上正确说法的个数是( )A.1B.2C.3D.48.命题“若x 2>y 2,则x >y ”的逆否命题是( )A .“若x <y ,则x 2<y 2” B .“若x >y ,则x 2>y 2” C .“若x ≤y ,则x 2≤y 2” D .“若x ≥y ,则x 2≥y 2”9.将曲线x 2+4y=0作如下变换:124x xy y⎧'=⎪⎨⎪'=⎩, 则得到的曲线方程为( )A. 214x y ''=-B. 214y x ''=- C. 24y x ''=- D. 24x y ''=-10.满足条件|z +i|+|z -i|=4的复数z 在复平面上对应点的轨迹是( ).A .椭圆B .两条直线C .圆D .一条直线11.利用反证法证明:“若220x y +=,则0x y ==.”时,假设为( )A.x ,y 都不为0B.x y ≠且x ,y 都不为0C.x y ≠且x ,y 不都为0D.x ,y 不都为012.已知命题p :∃x ∈R ,x -1≥lg x ,命题q :∀x ∈(0,π),sin x +1sin x >2,则下列判断正确的是( )A .p ∨q 是假命题B .p ∧q 是真命题C .p ∨(綈q )是假命题D .p ∧(綈q )是真命题二、填空题:本大题共4小题,每小题4分,共16分13.若)(x f 为一次函数,且19)]([+=x x f f ,则=)(x f 14.已知函数y =f (x )的定义域为[-7,1],则函数2)32(+-=x x f y 的定义域是________15.设集合A ={x |2a +1≤x ≤3a -5},B ={x |3≤x ≤22}。
高二下学期期中考试数学(文科)试题与答案
高二下学期期中考试数学(文科)试题与答案高二年级下学期期中考试数学(文)试题一、选择题(本大题共12小题,每小题5分,共60分)1.复数 $2-i$ 与 $2+i$ 的商为()A。
$1-\frac{4}{5}i$。
B。
$\frac{33}{43}+\frac{4}{5}i$。
C。
$1-\frac{1}{5}i$。
D。
$1+\frac{1}{5}i$2.设有一个回归方程为 $y=2-2.5x$,则变量 $x$ 增加一个单位时()A。
$y$ 平均增加 $2.5$ 个单位。
B。
$y$ 平均减少$2.5$ 个单位。
C。
$y$ 平均增加 $2$ 个单位。
D。
$y$ 平均减少 $2$ 个单位3.所有金属都能导电,铁是金属,所以铁能导电,属于哪种推理().A。
类比推理。
B。
演绎推理。
C。
合情推理。
D。
归纳推理4.点 $M$ 的极坐标 $(5,\frac{2\pi}{3})$ 化为直角坐标为()A。
$(-\frac{5\sqrt{3}}{2},-2)$。
B。
$(2,-2)$。
C。
$(-\frac{5}{2},2)$。
D。
$(2,2)$5.用反证法证明命题“若 $a^2+b^2=0$,则 $a$、$b$ 全为$0$($a$、$b\in R$)”,其假设正确的是()A。
$a$、$b$ 至少有一个不为 $0$。
B。
$a$、$b$ 至少有一个为 $0$。
C。
$a$、$b$ 全不为 $0$。
D。
$a$、$b$ 中只有一个为 $0$6.直线 $y=2x+1$ 的参数方程是($t$ 为参数)()A。
$\begin{cases}x=t^2\\y=2t^2+1\end{cases}$。
B。
$\begin{cases}x=2t-1\\y=4t+1\end{cases}$。
C。
$\begin{cases}x=t-1\\y=2t-1\end{cases}$。
D。
$\begin{cases}x=\sin\theta\\y=2\sin\theta+1\end{cases}$7.当 $\frac{2}{3}<m<1$ 时,复数 $m(3+i)-(2+i)$ 在复平面内对应的点位于()A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
陕西省西安市2016-2017学年高二数学下学期期中试题(文科实验班)参考公式及数据:))()()(()(22d b c a d c b a bc ad n k ++++-=线性回归方程y bx a=+中,1221ni ii nii x y nx yb xnx==-=-∑∑,a y bx =-,其中x ,y 为样本平均值,线性回归方程也可写为y bx a =+.一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知b a >,0≠c ,则下列不等式一定成立的是( )A .22b a > B .bc ac > C .c b c a +>+ D .cb c a > 2.用反证法证明命题“设,为实数,则方程至少有一个实根”时,要做的假设是( ) A .方程没有实根 B .方程至多有一个实根 C .方程至多有两个实根 D .方程恰好有两个实根3. 已知关于某设备的使用年限x 与所支出的维修费用y(万元),有如下统计资料: 若y 对x 呈线性相关关系,则回归直线方程y bx a =+表示的直线一定过定点( ) A .(5,4) B .(4,5) C .(4,5.5) D .(5.5,4)4.已知正数a, b 满足4a +b=30,使得ba 11 取最小值的实数对(a, b)是( ) A .(5,10) B .(6,6) C .(10,5) D .(7,2) 5.下列四个图形中,着色三角形的个数依次构成一个数列的前4项,则这个数列的一个通项公式为( )A .a n =3n -1B .a n =3nC .a n =3n-2nD .a n =3n -1+2n -36.对两个变量的相关系数r ,下列说法中正确的是( ) A .||r 越大,相关程度越大B .||r 越小,相关程度越大C .||r 趋近于0时,没有非线性相关关系D .||r 越接近于1时,线性相关程度越强 7.某地区气象台统计,该地区下雨的概率是154,刮三级以上风的概率为152,既刮风又下雨的概率为101,则在下雨天里,刮风的概率为() A .2258 B .21 C .83 D .438. 在ABC 中,ACB,BC=3,AC=4, P 是AB 上的点,则点P 到AC ,BC 的距离的乘积的最大值是()A .2 B. 3 C .9.如图1所示,在△ABC 中,AB ⊥AC ,AD ⊥BC ,则AB 2=BD ·B C .类似有命题:在三棱锥A -BCD 中,如图2所示,AD ⊥面AB C .若A 在△BCD 内的射影为O ,E 在BC 上,且E ,O ,D 在同一条直线上,则2ABC S △=S △BCO ·S △BCD ,此命题是( )图1 图2A .假命题B .增加AB ⊥AC 的条件才是真命题C .真命题D .增加三棱锥A -BCD 是正棱锥的条件才是真命题10.对于实数x ,y ,若|x -1|≤1,|y -2|≤1,则|x -2y +1|的最大值为( ) A .5 B .4C .8D .711. 若正数a ,b 满足2a b +=,则14+1+1a b +的最小值是( ) A .1 B .94C .9D .1612.若x ,y R +∈≤a 的最小值是()A ..2 D .二、填空题(本大题共4小题,每小题5分,共20分,请把答案填写在答题纸上) 13. 若关于实数x 的不等式52x x a --->无解,则实数a 的取值范围是14.已知两个变量y x ,的关系可以近似地用函数by ax =来表示,通过两边取自然对数变换后得到一个线性函数.利用最小二乘法得到的线性回归方程为20.5u v =+,则y x ,的近似函数关系式为15. 甲乙两人下棋,若甲获胜的的概率为15,甲乙下成和棋的概率为25,则乙不输棋的概率为16. 二维空间中圆的一维测度(周长)2l r π=,二维测度(面积)2S r π=,观察发现S l '=;三维空间中球的二维测度(表面积)24S r π=,三维测度(体积)343V r π=,观察发现V S '=.已知四维空间中“超球”的三维测度38V r π=,猜想其四维测度W =_________.三、解答题(本大题共6小题,共70分,解答应写出必要的文字说明、证明过程或演算步骤) 17.(本小题满分10分) 一位网民在网上光顾某网店,经过一番浏览后,对该店铺中的A ,B ,C 三种商品有购买意向.已知该网民购买A 种商品的概率为34,购买B 种商品的概率为23,购买C 种商品的概率为12.假设该网民是否购买这三种商品相互独立. (1)求该网民三种商品都买的概率; (2)求该网民至少购买2种商品的概率.18. (本小题满分12分)从某居民区随机抽取10个家庭,获得第i 个家庭的月收入i x (单位:千元)与月储蓄i y (单位:千元)的数据资料,算得10180ii x==∑,10120i i y ==∑,101184i i i x y ==∑,1021720ii x==∑.(1)求家庭的月储蓄y 对月收入x 的线性回归方程y bx a =+,并判断变量x 与y 之间是正相关还是负相关;(2)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.19. (本小题满分12分)已知0a >2a a+-120. (本小题满分12分)已知函数()2f x x =-,()3g x x m =-++ (1) 若关于x 的不等式 ()0g x ≥的解集为[]5,1--,求实数m 的值; (2) 若()f x 的图象恒在()g x 图象的上方,求实数m 的取值范围.21. (本小题满分12分)2017年9月20日是第29个全国爱牙日。
某地卫生部门成立了调查小组,调查 “常吃零食与患龋齿的关系”,对该区某校高一年级800名学生进行检查,按患龋齿和不患龋齿分类,得汇总数据:不常吃零食且不患龋齿的学生有60名,常吃零食但不患龋齿的学生有100名,不常吃零食但患龋齿的学生有140名.(1) 在答题卡上完成下面表格,并判断能否在犯错概率不超过0.001的前提下,认为该区学生的常吃零食与患龋齿有关系?(2)4名卫生部门的工作人员随机分成两组,每组2人,一组负责数据收集,另一组负责数据处理.求工作人员甲分到负责收集数据组,工作人员乙分到负责数据处理组的概率.22.(本小题满分12分)设函数()2|1|1f x x x =-+-,2()1681g x x x =-+,记()1f x ≤的解集为M ,()4g x ≤的解集为N. (1)求M ; (2)当x M N ∈时,证明:221()[()]4x f x x f x +≤.答案一、选择题CABAA DCBCA BB 二、填空题 13. 3a ≥14. 122y e x = 15.4516. 42r π 三、解答题 17. (1)14(2)记“该网民购买i 种商品”为事件,2,3i A i =,则:33211()4324P A =⨯⨯=,232132132111()(1)(1)(1)43243243224P A =⨯⨯-+⨯-⨯+-⨯⨯=, 所以该网民至少购买2种商品的概率为 3211117()()42424P A P A +=+=. 答:该网民至少购买2种商品的概率为1724. 18. (1)由题意知n=10,1118018,10n ni i i i x x y y n n =======∑∑20210= 2221172010880184108224nxx i i nxy i i i l x nx l x y nxy ===-=-⨯==-=-⨯⨯=∑∑由此得b=240.3,80xy l lxx== a=y -b x =.3⨯8=-0.4,\ 故所求回归方程为 y=0.3x-0.4由于变量y 的值随x 的值增加而增加(b=0.3>0),故x 与y 之间是正相关 (2)将x=7代入回归方程可以预测该家庭的月储蓄为0.370.4 1.7y =⨯-=(千元) 19. 解:本题主要考察应用分析证明不等式,只需要注意分析法证明问题的步骤即可.因为0a >12a a+-12a a++≥即只需证明2212)(a a++≥,即22221114)4,a a a a a a++++++≥即只需证明1)a a+,只需证明2222114()2(2)a a a a +++≥,即2212a a+≥.因为2212a a +≥,当且仅当1a =时,等号成立.1 2.a a+- 20. 解(1)2m =(2)5m ≤ 21. 解:(1)由题意可得列联表:因为828.10667.16600200640160)14010050060(80022>≈⨯⨯⨯⨯-⨯=k 。
所以能在犯错率不超过0.001的前提下,为该区学生常吃零食与患龋齿有关系。
(2)设其他工作人员为丙和丁,4人分组的所有情况如下表分组的情况总有6中,工作人员甲负责收集数据且工作人员乙负责处理数据占两种, 所以工作人员甲负责收集数据且工作人员处理数据的概率是3162==P 。
22.解(1)33,[1,)()1,(,1)x x f x x x -∈+∞⎧=⎨-∈-∞⎩当1x ≥时,由()331f x x =-≤得43x ≤,故413x ≤≤;当1x <时,由()11f x x =-≤得0x ≥,故01x ≤<;所以()1f x ≤的解集为4{|0}3M x x =≤≤. (2)由2()16814g x x x =-+≤得2116()4,4x -≤解得1344x -≤≤,因此13{|}44N x x =-≤≤,故3{|0}4M N x x =≤≤.当x MN ∈时,()1f x x =-,于是22()[()]()[()]x f x x f x xf x x f x +⋅=+2111()(1)()424x f x x x x =⋅=-=--≤.。