二叉树的遍历课件
二叉树的基本操作课件浙教版(2019)高中信息技术选修1(24张PPT)

A
B
D
C
E
F
G
头指针
二叉树的list实现
二叉树节点可以看成是一个三元组,元素是左、右子树和本节点数据。
Python的list可以用于组合这样的三个元素。
下面介绍用list构造二叉树的方法。
(1)空树用None表示。
(2)非空二叉树用包含三个元素的列表[d,l,r]表示,其中:d表示根节点的元素,l和r是两棵子树,采用与整个二叉树同样结构的list表示。
二叉树的遍历
在完成二叉树的建立操作后,就可以对二叉树的各个节点进行访问,即遍历操作。二叉树的遍历,是指按照一定的规则和次序访问二叉树中的所有节点,使得每个节点都被访问一次且仅被访问一次。按照不同的遍历方式对节点进行访问,其处理效率不完全相同。二叉树的遍历方式有很多,主要有前序遍历、中序遍历和后序遍历等。
1.数组实现
用数组来表示二叉树时,分为以下两种情况。
(1)完全二叉树从二叉树的根节点开始,按从上而下、自左向右的顺序对n个节点进行编号,根节点的编号为0,最后一个节点的编号为n-1。然后依次将二叉树的节点用一组连续的数组元素来表示,节点编号与数组的下标一一对应。如下图中图甲所示的完全二叉树所对应的一维数组表示如图乙所示。
A
B
C
A
B
C
甲 原二叉树
乙 补全后的二叉树
0
1
2
3
4
5
6
7
丙 数组实现示意图
A
B
C
对于完全二叉树而言,一维数组的表示方式既简单又节省存储空间。但对于一般的二叉树来说,采用一维数组表示时,结构虽然简单,却容易造成存储空间的浪费。
二叉树的性质及其遍历

12.3.1 顺序存储结构 12.3.2 链式存储
•二叉树的性质及其遍历
12.1 二叉树的基本性质
定理 1:满二叉树第i层上恰好有2i-1个结点 (i≥1).
证:使用归纳法。i=1时,结论显然成立。设i=k时结 论成立,则考虑i=k+1的情形。由于(k+1)层上结点 是k层上结点的儿子,而且满二叉树每个非叶子结 点恰好有两个儿子,故(k+1)层上结点个数为k层上 结点个数的2倍,即2·2k-1 = 2k = 2(k+1)-1. 这表明, i=k+1时结论也成立。由归纳法原理,结论对任意 的k都成立,证毕。
x的相对地址x的编号x的父亲/儿子的编 号(性质7) x的父亲/儿子的相对地址。
•二叉树的性质及其遍历
至于结点的相对地址与编号之间的换算,有下列关系: 结点相对地址 = (结点编号 – 1)×每个结点所
占单元数目
a
b
f
cegh d
1 2 34 56 7 8 a b f ce g h d …
图 12-2 顺序二叉树的顺序存储
•二叉树的性质及其遍历
12.1.7 定理7 若对一棵有n个结点的顺序二叉树的结点按层序 编号,则对任一结点i(1≤i≤n),有(1)若i=1, 则结点i是根, 无父亲;若i〉1,则其父亲是结点i/2。(2)若2i>n,则结点i 无左儿子(从而也无右儿子,为叶子);否则i的左儿子是结 点2i。(3)若2i+1>n,则结点i无右儿子;否则右儿子是结点 2i+1。
12.3.1顺序存储结构
(一) 顺序二叉树的顺序存储结构
这种存储结构是按结点的层序编号的次序,将 结点存储在一片连续存储区域内。由定理 7知, 对顺序二叉树,若已知结点的层序编号,则可推 算出它的父亲和儿子的编号,所以,在这种存储 结构中,很容易根据结点的相对地址计算出它的 父亲和儿子的相对地址,方法是:
二叉树的遍历及常用算法

⼆叉树的遍历及常⽤算法⼆叉树的遍历及常⽤算法遍历的定义:按照某种次序访问⼆叉树上的所有结点,且每个节点仅被访问⼀次;遍历的重要性:当我们需要对⼀颗⼆叉树进⾏,插⼊,删除,查找等操作时,通常都需要先遍历⼆叉树,所有说:遍历是⼆叉树的基本操作;遍历思路:⼆叉树的数据结构是递归定义(每个节点都可能包含相同结构的⼦节点),所以遍历也可以使⽤递归,即结点不为空则继续递归调⽤每个节点都有三个域,数据与,左孩⼦指针和右孩⼦之指针,每次遍历只需要读取数据,递归左⼦树,递归右⼦树,这三个操作三种遍历次序:根据访问三个域的不同顺序,可以有多种不同的遍历次序,⽽通常对于⼦树的访问都按照从左往右的顺序;设:L为遍历左⼦树,D为访问根结点,R为遍历右⼦树,且L必须位于R的前⾯可以得出以下三种不同的遍历次序:先序遍历操作次序为DLR,⾸先访问根结点,其次遍历根的左⼦树,最后遍历根右⼦树,对每棵⼦树同样按这三步(先根、后左、再右)进⾏中序遍历操作次序为LDR,⾸先遍历根的左⼦树,其次访问根结点,最后遍历根右⼦树,对每棵⼦树同样按这三步(先左、后根、再右)进⾏后序遍历操作次序为LRD,⾸先遍历根的左⼦树,其次遍历根的右⼦树,最后访问根结点,对每棵⼦树同样按这三步(先左、后右、最后根)进⾏层次遍历层次遍历即按照从上到下从左到右的顺序依次遍历所有节点,实现层次遍历通常需要借助⼀个队列,将接下来要遍历的结点依次加⼊队列中;遍历的应⽤“遍历”是⼆叉树各种操作的基础,可以在遍历过程中对结点进⾏各种操作,如:对于⼀棵已知⼆叉树求⼆叉树中结点的个数求⼆叉树中叶⼦结点的个数;求⼆叉树中度为1的结点个数求⼆叉树中度为2的结点个数5求⼆叉树中⾮终端结点个数交换结点左右孩⼦判定结点所在层次等等...C语⾔实现:#include <stdio.h>//⼆叉链表数据结构定义typedef struct TNode {char data;struct TNode *lchild;struct TNode *rchild;} *BinTree, BinNode;//初始化//传⼊⼀个指针令指针指向NULLvoid initiate(BinTree *tree) {*tree = NULL;}//创建树void create(BinTree *BT) {printf("输⼊当前结点值: (0则创建空节点)\n");char data;scanf(" %c", &data);//连续输⼊整形和字符时.字符变量会接受到换⾏,所以加空格if (data == 48) {*BT = NULL;return;} else {//创建根结点//注意开辟的空间⼤⼩是结构体的⼤⼩⽽不是结构体指针⼤⼩,写错了不会⽴马产⽣问题,但是后续在其中存储数据时极有可能出现内存访问异常(飙泪....) *BT = malloc(sizeof(struct TNode));//数据域赋值(*BT)->data = data;printf("输⼊节点 %c 的左孩⼦ \n", data);create(&((*BT)->lchild));//递归创建左⼦树printf("输⼊节点 %c 的右孩⼦ \n", data);create(&((*BT)->rchild));//递归创建右⼦树}}//求双亲结点(⽗结点)BinNode *Parent(BinTree tree, char x) {if (tree == NULL)return NULL;else if ((tree->lchild != NULL && tree->lchild->data == x) || (tree->rchild != NULL && tree->rchild->data == x))return tree;else{BinNode *node1 = Parent(tree->lchild, x);BinNode *node2 = Parent(tree->rchild, x);return node1 != NULL ? node1 : node2;}}//先序遍历void PreOrder(BinTree tree) {if (tree) {//输出数据printf("%c ", tree->data);//不为空则按顺序继续递归判断该节点的两个⼦节点PreOrder(tree->lchild);PreOrder(tree->rchild);}}//中序void InOrder(BinTree tree) {if (tree) {InOrder(tree->lchild);printf("%c ", tree->data);InOrder(tree->rchild);}}//后序void PostOrder(BinTree tree) {if (tree) {PostOrder(tree->lchild);PostOrder(tree->rchild);printf("%c ", tree->data);}}//销毁结点递归free所有节点void DestroyTree(BinTree *tree) {if (*tree != NULL) {printf("free %c \n", (*tree)->data);if ((*tree)->lchild) {DestroyTree(&((*tree)->lchild));}if ((*tree)->rchild) {DestroyTree(&((*tree)->rchild));}free(*tree);*tree = NULL;}}// 查找元素为X的结点使⽤的是层次遍历BinNode *FindNode(BinTree tree, char x) {if (tree == NULL) {return NULL;}//队列BinNode *nodes[1000] = {};//队列头尾位置int front = 0, real = 0;//将根节点插⼊到队列尾nodes[real] = tree;real += 1;//若队列不为空则继续while (front != real) {//取出队列头结点输出数据BinNode *current = nodes[front];if (current->data == x) {return current;}front++;//若当前节点还有⼦(左/右)节点则将结点加⼊队列if (current->lchild != NULL) {nodes[real] = current->lchild;real++;}if (current->rchild != NULL) {nodes[real] = current->rchild;real++;}}return NULL;}//层次遍历// 查找元素为X的结点使⽤的是层次遍历void LevelOrder(BinTree tree) {if (tree == NULL) {return;}//队列BinNode *nodes[1000] = {};//队列头尾位置int front = 0, real = 0;//将根节点插⼊到队列尾nodes[real] = tree;real += 1;//若队列不为空则继续while (front != real) {//取出队列头结点输出数据BinNode *current = nodes[front];printf("%2c", current->data);front++;//若当前节点还有⼦(左/右)节点则将结点加⼊队列if (current->lchild != NULL) {nodes[real] = current->lchild;real++;}if (current->rchild != NULL) {nodes[real] = current->rchild;real++;}}}//查找x的左孩⼦BinNode *Lchild(BinTree tree, char x) {BinTree node = FindNode(tree, x);if (node != NULL) {return node->lchild;}return NULL;}//查找x的右孩⼦BinNode *Rchild(BinTree tree, char x) {BinTree node = FindNode(tree, x);if (node != NULL) {return node->rchild;}return NULL;}//求叶⼦结点数量int leafCount(BinTree *tree) {if (*tree == NULL)return 0;//若左右⼦树都为空则该节点为叶⼦,且后续不⽤接续递归了else if (!(*tree)->lchild && !(*tree)->rchild)return 1;else//若当前结点存在⼦树,则递归左右⼦树, 结果相加return leafCount(&((*tree)->lchild)) + leafCount(&((*tree)->rchild));}//求⾮叶⼦结点数量int NotLeafCount(BinTree *tree) {if (*tree == NULL)return 0;//若该结点左右⼦树均为空,则是叶⼦,且不⽤继续递归else if (!(*tree)->lchild && !(*tree)->rchild)return 0;else//若当前结点存在左右⼦树,则是⾮叶⼦结点(数量+1),在递归获取左右⼦树中的⾮叶⼦结点,结果相加 return NotLeafCount(&((*tree)->lchild)) + NotLeafCount(&((*tree)->rchild)) + 1;}//求树的⾼度(深度)int DepthCount(BinTree *tree) {if (*tree == NULL)return 0;else{//当前节点不为空则深度+1 在加上⼦树的⾼度,int lc = DepthCount(&((*tree)->lchild)) + 1;int rc = DepthCount(&((*tree)->rchild)) + 1;return lc > rc?lc:rc;// 取两⼦树深度的最⼤值 }}//删除左⼦树void RemoveLeft(BinNode *node){if (!node)return;if (node->lchild)DestroyTree(&(node->lchild));node->lchild = NULL;}//删除右⼦树void RemoveRight(BinNode *node){if (!node)return;if (node->rchild)DestroyTree(&(node->rchild));node->rchild = NULL;}int main() {BinTree tree;create(&tree);BinNode *node = Parent(tree, 'G');printf("G的⽗结点为%c\n",node->data);BinNode *node2 = Lchild(tree, 'D');printf("D的左孩⼦结点为%c\n",node2->data);BinNode *node3 = Rchild(tree, 'D');printf("D的右孩⼦结点为%c\n",node3->data);printf("先序遍历为:");PreOrder(tree);printf("\n");printf("中序遍历为:");InOrder(tree);printf("\n");printf("后序遍历为:");PostOrder(tree);printf("\n");printf("层次遍历为:");LevelOrder(tree);printf("\n");int a = leafCount(&tree);printf("叶⼦结点数为%d\n",a);int b = NotLeafCount(&tree);printf("⾮叶⼦结点数为%d\n",b);int c = DepthCount(&tree);printf("深度为%d\n",c);//查找F节点BinNode *node4 = FindNode(tree,'C');RemoveLeft(node4);printf("删除C的左孩⼦后遍历:");LevelOrder(tree);printf("\n");RemoveRight(node4);printf("删除C的右孩⼦后遍历:");LevelOrder(tree);printf("\n");//销毁树printf("销毁树 \n");DestroyTree(&tree);printf("销毁后后遍历:");LevelOrder(tree);printf("\n");printf("Hello, World!\n");return 0;}测试:测试数据为下列⼆叉树:运⾏程序复制粘贴下列内容:ABDGHECKFIJ特别感谢:iammomo。
《二叉树模型》课件

二叉树的分类
01 满二叉树
如果一个二叉树的每个节点都有两个子节点,则 该二叉树称为满二叉树。
02 完全二叉树
如果一个二叉树的最后一层是满的,且除了最后 一层外,其他各层的节点数达到最大,则该二叉 树称为完全二叉树。
03 平衡二叉树
平衡二叉树是一种特殊的完全二叉树,它的左右 子树的高度差不超过1。
二叉树的应用场景
详细描述
在n叉树模型中,每个节点可以拥有任意数 量的子节点,而不仅仅是两个。这种模型在 处理具有多个分支的数据结构时非常有用, 例如决策树和知识图谱。n叉树模型在搜索 、排序和数据压缩等领域有广泛应用。
B树模型
要点一
总结词
B树模型是一种自平衡的多路搜索树,用于数据库和文件系 统的索引。
要点二
详细描述
详细描述
二叉树的插入操作包括节点的添加和位置调整两个步骤。在添加节点时,需要找到合适 的位置将其插入到二叉树中,并保持二叉树的平衡性。位置调整是为了维护二叉树的性
质,确保每个节点的左子树和右子树的高度差不超过1。
插入操作的时间复杂度
总结词
插入操作的时间复杂度取决于具体的实现方式和数据结构。
详细描述
在平衡二叉树中,插入操作的时间复杂度为O(log n),其中n为二叉树中节点的数量。而在一般的二 叉树中,插入操作的时间复杂度可能达到O(n),因为可能需要遍历整棵树才能找到合适的位置插入新 节点。因此,选择合适的二叉树数据结构和算法对于提高插入操作的效率至关重要。
05
二叉树算法的应用
堆排序算法
平衡二叉树的性质:平衡二叉树具有以下性质:1)它的左右子树的高度差不超过1;2)它的左 子树和右子树都是平衡二叉树;3)它的左子树和右子树的节点数相差不超过1。
二叉树的遍历(课件)

7
二叉树的遍历——递归算法
中序遍历算法 LDR(node *root) {if(root !=NULL) {LDR(root->lchild);
printf(“%d”,root->data); LDR(root->rchild); } return(0);}
后序遍历算法 LRD (node *root) {if(root !=NULL) {LRD(root->lchild); LRD(root->rchild); printf(“%d”,root->data); } return(0);}
二叉树的遍历
单位:xx师范学院科技学院 作者:xx
1
二叉树的遍历——定义
定义——
指如何按某条搜索路径巡访二叉树 中每个结点,使得每个结点均被访 问一次,而且仅被访问一次。
2
二叉树的遍历——规则
二叉树由根、左子树、右子树构成,定义为D、 L、R ❖ D、 L、R的组合定义了六种可能的遍历方案:
LDR, LRD, DLR, DRL, RDL, RLD ❖ 若限定先左后右,则有三种实现方案:
B
E
中序序列:
C
F
B D C AE H G K F
D
G
后序序列:
H K DCBHKGFEA
10
谢谢观看!
11
DLR 先序遍历
LDR 中序遍历
LRD 后序遍历
3
二叉树的遍历——先序遍历
A
D
L
R
B D
C
A
D LR
D LR
B
先序遍历序列:A B D C
C D LR
D
4
二叉树的遍历——中序遍历
《二叉树的遍历》PPT课件.ppt

a
b
c
前序遍历:abdefgc
d
f
中序遍历: debgfac
ห้องสมุดไป่ตู้
后序遍历: edgfbca
eg
练习!!!!!!!!
练习!!!!!!!!
A
B
C
前序序列: ABDGCEFH 中序序列: DGBAECHF 后序序列: GDBEHFCA
D G
E
F
H
图 5-15
下面我们再给出一种遍历二叉树的方法
二叉树的遍历
二叉树遍历的定义
所谓二叉树的遍历,是指按一定的顺序对二叉 树中的每个结点均访问一次,且仅访问一次。
按照根结点访问位置的不同,通常把二叉树的 遍历分为六种:
TLR(根左右), TRL(根右左) LTR(左根右), RTL(右根左) LRT(左右根), RLT(右左根)
其中,TRL、RTL和RLT三种顺序在左右子树之间均 是先右子树后左子树,这与人们先左后右的习惯不 同,因此,往往不予采用。余下的三种顺序TLR、 LTR和LRT根据根访问的位置不同分别被称为前序遍 历、中序遍历和后序遍历。
(1)二叉树的前序遍历 首先访问根结点; 然后按照前序遍历的顺序访问根结点的左子树; 再按照前序遍历的顺序访问根结点的右子树。
(2)二叉树的中序遍历 首先按照中序遍历的顺序访问根结点的左子树;
然后访问根结点; 最后按照中序遍历的顺序访问根结点的右子树。
(3)二叉树的后序遍历 首先按照后序遍历的顺序访问根结点的左子树; 然后按照后序遍历的顺序访问根结点的右子树;
(1)对一棵二叉树中序遍历时,若我们将二叉树严
格地按左子树的所有结点位于根结点的左侧,右子树的所
有结点位于根右侧的形式绘制,就可以对每个结点做一条
非递归中序遍历二叉树课件
04 非递归中序遍历 二叉树的复杂度 分析
时间复杂度
最好情况:O(n) 最坏情况:O(n)
平均情况:O(n)
空间复杂度
最好情况:O(1) 最坏情况:O(n)
平均情况:O(n)
05 非递归中序遍历 二叉树的优缺点
优点
01
02
03
空间效率高
非递归算法通常只需要常 数级别的额外空间,相比 之下,递归算法可能需要 更多的堆栈空间。
代码简洁
非递归算法的代码通常更 简洁,更易于理解和维护。
适合处理大型数据
由于非递归算法不需要大 量的堆栈空间,因此更适 合处理大型数据集。
缺点
编程技巧要求高
非递归算法需要更多的编程技巧, 特别是对于那些不熟悉这种技术 的人来说,理解和实现可能会比 较困难。
遍历过程
01
02
03
04
弹出栈顶元素,访问该 节点。
如果该节点右子节点存 在,将右子节点入栈。
如果该节点左子节点存 在,将左子节点入栈。
重复上述步骤,直到栈 为空。
遍历后的结果
01
中序遍历的顺序为:左子树 -> 根节点 -> 右子树。
02
非递归方法利用了栈的性质,实 现了从上到下、从左到右的遍历 顺序。
THANKS
感谢观看
栈为空。
实例二:复杂的二叉树
总结词:进阶应用
详细描述:对于复杂的二叉树,非递归中序遍历需要 更加细致的处理。由于树的形状可能不规则,我们需 要更加灵活地使用栈来处理节点之间的关系。在遍历 过程中,我们需要注意处理各种特殊情况,例如循环 引用、节点值相等的情况,以避免陷入无限循环或访 问错误的节点。此外,我们还需要注意优化算法的时 间复杂度和空间复杂度,以提高遍历的效率和准确性。
二叉树的遍历课件ppt
后序遍历顺序:
A
B
C
DE
F
中序遍历: 寒假来临,不少的高中毕业生和大学在校生都选择去打工。准备过一个充实而有意义的寒假。但是,目前社会上寒假招工的陷阱很多
DBEAF
C
前序遍历: A B D E C F
后序遍历
A
B
C
D EF
二叉树
遍历的概念
所谓遍历是指沿着某条搜索路线, 依次对二叉树中每个结点均做一次且仅 做一次访问。
遍历分为:前序遍历、中序遍历、 后序遍历。
寒假来临,不少的高中毕业生和大学 在校生 都选择 去打工 。准备 过一个 充实而 有意义 的寒假 。但是 ,目前 社会上 寒假招 工的陷 阱很多
2011年3月全国计算机等级考试笔试填空题第2题
寒假来临,不少的高中毕业生和大学 在校生 都选择 去打工 。准备 过一个 充实而 有意义 的寒假 。但是 ,目前 社会上 寒假招 工的陷 阱很多
总结:
我们这节课主要采用“案例驱动式”教 学方法讲解了二叉树的遍历,以案例方式讲 解通过其中两种遍历顺序推断出第三种遍历 顺序的分析方法。主要培养大家灵活运用知 识的能力和举一反三的分析能力。
谢谢!
前序遍历顺序:ABCDEF
寒假来临,不少的高中毕业生和大学 在校生 都选择 去打工 。准备 过一个 充实而 有意义 的寒假 。但是 ,目前 社会上 寒假招 工的陷 阱很多
中序遍历:若二叉树非空,则先遍历左子树,再 访问根节点,最后遍历右子树。
中序遍历顺序:
A
B
C
DE
F
寒假来临,不少的高中毕业生和大学 在校生 都选择 去打工 。准备 过一个 充实而 有意义 的寒假 。但是 ,目前 社会上 寒假招 工的陷 阱很多
遍历二叉树与线索二叉树PPT
作业:P217-218
后序列:DGJHEBIFCA, 中序列:DBGEHJACIF, 求:1、画出该二叉树; 2、先序; 3、画出该二叉树对应的森林。
由此可以看出:
(1)遍历操作实际上是将非线性结构线性化的过程, 其结果为线性序列; (2)遍历操作是一个递归的过程,因此,这三种遍历 操作的算法可以用递归函数实现。 先序遍历递归算法: DLR ( BiTree T ) { if (T) //非空二叉树 { printf(“%d”,T->data); //访问根结点D DLR(T->lchild); //递归遍历左子树 DLR(T->rchild); //递归遍历右子树 } return(0); }
这就是线索二叉树(Threaded Binary Tree)
如何预存这类信息?有两种解决方法: 缺点:空间效 ① 每个结点增加两个域:fwd和bwd; 率太低! fwd lchild data rchild bwd ② 与原有的左右孩子指针域“复用”,充分利用那n+1 个空链域。 lchild data rchild 如何判断是孩 子指针还是线 规 定: 索指针? 1)若结点有左子树,则lchild指向其左 孩子;否则,lchild指向其直接前驱(即 线索); 如何区 别? 2)若结点有右子树,则rchild指向其右 孩子;否则,rchild指向其直接后继(即线索) 。
中序遍历递归算法: LDR(BiTree T) { if(T) { LDR(T->lchild); printf(“%d”,T->data); LDR(T->rchild); } return(0); }
后序遍历递归算法 LRD (BiTree T) { if(T) { LRD(T->lchild); LRD(T->rchild); printf(“%d”,T->data); } return(0);}
二叉树遍历讲课教案ppt课件
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
6.5 线索二叉树
§ 何谓线索二叉树? § 线索链表的遍历算法 § 如何建立线索链表?
一、问题的提出
顺着某一条搜索路径巡访二叉树 中的结点,使得每个结点均被访问一 次,而且仅被访问一次。
“访问”的含义可以很是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
if (T) {
visit(T->data);
// 访问结点
Preorder(T->lchild, visit); // 遍历左子树
Preorder(T->rchild, visit);// 遍历右子树 }
}
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
二、先左后右的遍历算法
先(根)序的遍历算法 中(根)序的遍历算法 后(根)序的遍历算法
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
先(根)序的遍历算法:
若二叉树为空树,则空操作;否则, (1)访问根结点; (2)先序遍历左子树; (3)先序遍历右子树。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学目标
通过本案例的学习,能够认识和了 解二叉树的遍历,进而掌握通过其中 两种遍历顺序推出第三种遍历顺序的 分析方法,并且能够举一反三。
遍历的概念
所谓遍历是指沿着某条搜索路线, 依次对二叉树中每个结点均做一次且仅 做一次访问。
遍历分为:前序遍历、中序遍历、 后序遍历。
2011年3月全国计算机等级考试笔试填空题第2题
一棵二叉树的中序遍历结果为 DBEAFC,前序遍历结果为ABDECF, 则后序遍历结果为 【 】 。
前序遍历:若二叉树非空,则先访问根节点,再 遍历左子树,最后遍历右子树。
前序遍历顺序:
A
B
C
DE
F
中序遍历:若二叉树非空,则先遍历左子树,再 访问根节点,最后遍历右子树。
中序遍历顺序:
A
B
C
DE
F
后序遍历:若二叉树非空,则先遍历左子树,再 遍历右子树,最后访问根节点。
后序遍历顺序:
A
B
C
DE
F
中序遍历: D B E A F C 前序遍历: A B D E C F
后序遍历
A
B
C
D EF
二叉树
总结:
我们这节课主要采用“案例驱动式”教 学方法讲解了二叉树的遍历,以案例方式讲 解通过其中两种遍历顺序推断出第三种遍历 顺序的分析方法。主要培养大家灵活运用知 识的能力和举一反三的分析能力。
拓展:
已知ቤተ መጻሕፍቲ ባይዱ叉树的 后序遍历:D A B E C 中序遍历:D E B A C
请问前序遍历结果为?