1.4.1有理数的乘法(二)
1.4.1第2课时 有理数的乘法

几个数相乘,如果其中有因数为0,积等于( ).
探究点2:绝对值的性质及应用
例4:计算
四、课堂小结
通过本节课的学习你有哪些收获?
多个有理数相乘:
第一步:是否有因数0;
第二步:确定符号(奇负偶正);
第三步:绝对值相乘.
作业设计
教科书P32页练习第1、2题.
板书设计
第1.4.1单元
课 题 名 称
《有理数的乘法》
总课时数
2
第( 2 )课 时
教材及学情分析
教材分析:教材用一个思考引入,几个不是0的数相乘,从而让学生发现积的符号与负因数的个数之间的关系.
学情分析:1.学生已学习了有理数乘法法则,并会运用法则计算,为学生学习多个有理数相乘打下了基础.
2.学生已经具备了一定的自主探究能力,所以本节课中,主要采用学生自主学习、合作学习的方式,让他们主动参与、勤于动手、从而乐于探究.
教学目标
1、理解并掌握多个有理数相乘时积的符号的确定,能利用法则正确进行多个有理数乘法运算.
2、通过学生自学,小组讨论,师生答疑的方式促进学生归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力.
教学重点
理解并会运用多个有理数乘法法则.
教学难点
符号法则及对法则的理解.
教法
学法
师生互动,启发式和讲授式结合。
有理数的乘法(2)
多个有理数相乘:
第一步:是否有因数0;
第二步:确定符号(奇负偶正);
第三步:绝对值相乘.
教学反思
负数的倒数是 ________.
a的倒数是______.
二、学生自主探究
自学课本P31页,思考:
初一数学学科课程资源库人教版七年级上册—1.4.1有理数的乘法2

1.经历探索多个有理数相乘的符号确定法则;
2.会进行有理数的乘法运算;
3.通过对问题的探索,培养观察、分析和概括的能力
三、学情分析
学生已经学习了两个有理数的乘法,对于有理数的乘法法则有了深刻的理解,而本节课则是在前一节课的基础上进一步探究多个有理数的乘法,通过题组的训练,引导学生发现多个有理数乘法的规律,帮助学生对有理数乘法的进一步理解。
四、翻转独学任务设计
五、小组互学任务设计
活动一:创设时空,小组互学
活动一:复习回顾
小学里学过的乘法运算时,运算律都有哪些?交换律、结合律、分配律,这些运算律对于有理数是否还成立呢?
活动二:创设情境,问题导学
活动一:验证归纳
= ,两个数相乘,交换两个因数的位置,积不变。即:
,三个数相乘,先把前两个数相乘或者先把后两个数相乘,积不变。即
,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.即
以上就为乘法分配律
活动三:拓展提高,合作探学
例1:确定下列各式积的符号
(1) ;(2) ;(3) ;(4) ;(5)
观察以上结果,能不能总结出这类题的规律?
归纳:1.几个相乘,如果有因数为0,积为0
2.几个不等于0的数相乘,积的符号由_负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。
六、教学设计反思
板书设计:
例2:计算:(1) (可利用交换律);(2) (可利用交换律);(3) ;(4) (两种方法)。
总结:先达到符号,再计算绝对值,注意运用运算律简化运算。
巩固练习:1.计算下列各式:(1) ;(2) ;
(3)
2.选择题:(1)几个不等于0的有理数相乘,积的符号由()、
人教版七年级上数学:1.4.1《有理数的乘法(2)》学案

数学:1.4.1《有理数的乘法(2)》学案(人教版七年级上)【学习目标】:1、经历探索多个有理数相乘的符号确定法则;2、会进行有理数的乘法运算;3、通过对问题的探索,培养观察、分析和概括的能力;【学习重点】:多个有理数乘法运算符号的确定;【学习难点】:正确进行多个有理数的乘法运算;【导学指导】一、温故知新1、有理数乘法法则:二、自主探究1、观察:下列各式的积是正的还是负的?2×3×4×(-5),2×3×(-4)×(-5),2×(-3)× (-4)×(-5),(-2) ×(-3) ×(-4) ×(-5);思考:几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?分组讨论交流,再用自己的语言表达所发现的规律:几个不是0的数相乘,负因数的个数是时,积是正数;负因数的个数是时,积是负数。
2、新知应用1、例题3,(P31页)请你思考,多个不是0的数相乘,先做哪一步,再做哪一步?你能看出下列式子的结果吗?如果能,理由7.8×(-8.1)×O× (-19.6)师生小结:【课堂练习】计算:(课本P32练习)(1)、—5×8×(—7)×(—0.25);(2)、5812 ()() 121523-⨯⨯⨯-;(3)5832(1)()()0(1)41523-⨯-⨯⨯⨯-⨯⨯-;【要点归纳】:1.几个不是0的数相乘,负因数的个数是时,积是正数;负因数的个数是时,积是负数。
2.几个数相乘,如果其中有一个因数为0,积等于0;【拓展训练】:一、选择1.若干个不等于0的有理数相乘,积的符号( )A.由因数的个数决定B.由正因数的个数决定C.由负因数的个数决定D.由负因数和正因数个数的差为决定2.下列运算结果为负值的是( )A.(-7)×(-6)B.(-6)+(-4)C. 0×(-2)(-3)D.(-7)-(-15)3.下列运算错误的是( )A.(-2)×(-3)=6B.1(6)32⎛⎫-⨯-=- ⎪⎝⎭C.(-5)×(-2)×(-4)=-40D.(-3)×(-2)×(-4)=-24二、计算:1、111111111111234567⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯---⨯-⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭;2、111111 111111 223344⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯+⨯-⨯+⨯-⨯+⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭;【总结反思】:2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如图,OB 是∠AOC 的平分线,OD 是∠COE 的平分线.如果∠AOB =50°,∠COE =60°,则下列结论错误的是( )A.∠AOE =110°B.∠BOD =80°C.∠BOC =50°D.∠DOE =30°2.如图,快艇从P 处向正北航行到A 处时,向左转50°航行到B 处,再向右转80°继续航行,此时的航行方向为( )A .北偏东30°B .北偏东80°C .北偏西30°D .北偏西50°3.如图,甲从A 点出发向北偏东60°方向走到点B ,乙从点A 出发向南偏西15°方向走到点C ,则BAC ∠的度数是( )A.105°B.115°C.125°D.135°4.我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各多少人?设大和尚有x 人,依题意列方程得( ) A.()31001003x x +-= B.()31001003x x --= C.10031003x x -+= D.10031003x x --= 5.方程1﹣22x -=13x +去分母得( ) A.1﹣3(x ﹣2)=2(x+1)B.6﹣2(x ﹣2)=3(x+1)C.6﹣3(x ﹣2)=2(x+1)D.6﹣3x ﹣6=2x+26.若单项式2x 3y 2m 与﹣3x n y 2的差仍是单项式,则m+n 的值是( )A .2B .3C .4D .57.有理数m ,n 在数轴上的位置如图所示,则化简│n│-│m -n│的结果是( )A.mB.2n-mC.-mD.m-2n8.人类的遗传物质是DNA ,DNA 是一个很长的链,最短的22号染色体也长达30 000 000个核苷酸.30 000 000用科学记数法表示为( )A .3×107B .30×106C .0.3×107D .0.3×1089.运用等式性质的变形,正确的是( )A.如果 a=b ,那么 a+c=b ﹣cB.如果a b c c =,那么 a=bC.如果 a=b ,那么a b c c =D.如果 a=3,那么 a 2=3a 210.若8a =, 5b =,且 0a b +>,那么-a b 的值为( ) A .3或13 B .13或-13 C .3或-3 D .-3或-1311.如果温度上升10℃记作+10℃,那么温度下降5℃记作( )A .+10℃B .﹣10℃C .+5℃D .﹣5℃12.据资料显示,地球的海洋面积约为360000000平方千米,请用科学记数法表示地球海洋面积面积约为多少平方千米( )A.73610⨯B.83.610⨯C.90.3610⨯D.93.610⨯二、填空题13.如图是正方体的一个表面展开图,在这个正方体中,与“晋”字所在面相对的面上的汉字是_____.14.22.5°=________°________′;12°24′=________°.15.一商店在某一时间以每件a 元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,若卖出这两件衣服商店共亏损8元,则a 的值为______.16.小明买了20本练习本,店主给他八折优惠,结果便宜1.6元,每本练习本的标价是________元 .17.﹣3xy ﹣x 3+xy 3是_____次多项式.18.填在如图各正方形中的四个数之间都有相同的规律,则a+b ﹣c 的值是_____.193-的相反数是_____.20.对于有理数a ,()b a b ≠,我们规定:2*5a b a ab =--,下列结论中:()()3*22--=-①;**a a b b =②;**a b b a =③;()()**.a b a b -=-④正确的结论有______.(把所有正确答案的序号都填在横线上)三、解答题21.如图,在四边形ABCD 中, //AD BC ,B D ∠=∠延长BA 至点E ,连接CE ,且CE 交AD 于点F ,EAD ∠和ECD ∠的角平分线相交于点P .(1)求证:①//AB CD ;②2EAD ECD APC ∠+∠=∠;(2)若70B ∠=︒,60E ∠=︒,求APC ∠的度数;(3)若APC m ∠=︒,EFD n ∠=︒请你探究m 和n 之间的数量关系.22.解下列方程(1)2x+5=3(x ﹣1)(2).23.如图,点O 为原点,A ,B 为数轴上两点,AB=15,且OA :OB=2(1)A ,B 对应的数分别为 , .(2)点A ,B 分别以2个单位/秒和5个单位/秒的速度相向而行,则几秒后A ,B 相距1个单位长度?(3)点AB 以(2)中的速度同时向右运动,点P 从原点O 以4个单位秒的速度向右运动,是否存在常数m ,使得3AP+2PB ﹣mOP 为定值?若存在,请求出m 值以及这个定值;若不存在,请说明理由.24.一辆出租车从A 地出发,在一条东西走向的街道上往返,每次行驶的路程(记向东为正)记录如下(x >6且x <14,单位:km):(1)写出这辆出租车每次行驶的方向;(2)求经过连续4次行驶后,这辆出租车所在的位置(结果可用x 表示);(3)这辆出租车一共行驶了多少路程(结果用x 表示)?25.先化简,再求值:5(3a 2b-ab 2)-4(-ab 2+3a 2b ),其中a=12,b=-13. 26.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着格线运动,它从A 处出发去看望B 、C 、D 处的其它甲虫,规定:向上向右走为正,向下向左走为负.例如从A 到B 记为:A→B(+1,+4),从D 到C 记为:D→C(﹣1,+2),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中A→C(______,_____),B→C(______,_____),D→_____(﹣4,﹣2);(2)若这只甲虫从A 处去P 处的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P 的位置;(3)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程.27.已知a 、b 互为倒数,c 、d 互为相反数,2x =,且x 在数轴上表示的数在原点的左边. 求式子32339()4c d x ab+-⨯-+的值 28.如图1,已知∠MON=140°,∠AOC 与∠BOC 互余,OC 平分∠MOB ,(1)在图1中,若∠AOC=40°,则∠BOC=__________°,∠NOB=__________°.(2)在图1中,设∠AOC=α,∠NOB=β,请探究α与β之间的数量关系(必须写出推理的主要过程,但每一步后面不必写出理由);(3)在已知条件不变的前提下,当∠AOB 绕着点O 顺时针转动到如图2的位置,此时α与β之间的数量关系是否还成立?若成立,请说明理由;若不成立,请直接写出此时α与β之间的数量关系.【参考答案】***一、选择题1.A2.A3.D4.C5.C6.C7.C8.A9.B10.A11.D12.B二、填空题13.祠14.30 12.415.6016.417.四18.-12819.3﹣ SKIPIF 1 < 0 .解析:320. SKIPIF 1 < 0解析:①②④三、解答题21.(1)①见解析,②见解析;(2)65°;(3)12m n=,见解析.22.(1)x=8;(2)x=423.﹣10 524.(1)第一次是向东,第二次是向西,第三次是向东,第四次是向西;(2)这辆出租车所在的位置是向东(7﹣12x)km;(3)这辆出租车一共行驶了(7172x-)km的路程.25.-11 3626.(1) (3,4);(2,0);A;(2)答案见解析;(3)10.27.6428.(1)50°,40°;(2)2α-β=40°;(3)不成立,2α+2β=40°.2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如图,快艇从P 处向正北航行到A 处时,向左转50°航行到B 处,再向右转80°继续航行,此时的航行方向为( )A .北偏东30°B .北偏东80°C .北偏西30°D .北偏西50°2.在直线l 上有A 、B 、C 三点,AB=5cm,BC=2cm,则线段AC 的长度为( )A .7cmB .3cmC .7cm 或3cmD .以上答案都不对3.∠A 的余角与∠A 的补角互为补角,那么 2∠A 是( )A .直角B .锐角C .钝角D .以上三种都有可能4.方程x ﹣4=3x+5移项后正确的是( )A .x+3x =5+4B .x ﹣3x =﹣4+5C .x ﹣3x =5﹣4D .x ﹣3x =5+45.我国古代数学著作《孙子算经》中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步.问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐. 问人数和车数各多少?设车x 辆,根据题意,可列出的方程是 ( ).A.3229x x -=+B.3(2)29x x -=+C.2932x x +=- D.3(2)2(9)x x -=+ 6.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.现有一个长方形的周长为30cm ,这个长方形的长减少1cm ,宽增加2cm ,就可以变成一个正方形,设长方形的宽为x cm ,可列方程为( )A.2(30)1x x -=-+B.2(15)1x x -=-+C.2(30)1x x +=--D.2(15)1x x +=-- 7.若A 和B 都是五次多项式,则( )A.A+B 一定是多项式B.A ﹣B 一定是单项式C.A ﹣B 是次数不高于5的整式D.A+B 是次数不低于5的整式8.下列说法中正确的是( )A .4xy x y -+-的项是xy ,x ,y ,4B .单项式m 的系数为0,次数为0C .单项式22a b 的系数是2,次数是2D .1是单项式 9.下列结论正确的是( )A .x =2是方程2x+1=4的解B .5不是单项式C .﹣3ab 2和b 2a 是同类项D .单项式3ab 的系数是3 10.已知a ,b 两数在数轴上对应的点如图所示,下列结论正确的是( )A.a b -<B.0ab <C.0a b +>D.b-a >011.如果a 与-3的和是0,那么a 是( ) A.13- B.13 C.-3 D.312.下列各组数中互为相反数的一组是( )A.3与13B.2与|-2|C.(-1) 2与1D.-4与(-2) 2二、填空题13.若90,90αββγ∠+∠=︒∠+∠=︒,则α∠与γ∠的关系是_______ ,理由是_____14.如图是一个正方体的平面展开图,正方体中相对的面上的数字或代数式互为相反数,则2x+3y 的值为____.15.某小组几名同学准备到图书馆整理一批图书,若一名同学单独做要 40h 完成.现在该小组全体同学一起先做 8h 后,有 2 名同学因故离开,剩下的同学再做 4h ,正好完成这项工作.假设每名同学的工作效率相同,问该小组共有多少名同学?若设该小组共有 x 名同学,根据题意可列方程为___________.16.若a 、b 互为相反数,c 、d 互为倒数,p 的绝对值等于2,则关于x 的方程(a+b)x 2+3cd•x-p 2=0的解为________.17.有理数a ,b ,c 在数轴上的对应点如图所示,化简:|b|-|c +b|+|b -a|=________.18.若23a b =,则a b b +=_____. 19.用“>”“<”或“=”填空.(1)-56________-67;(2)-45________-35; (3)|-7|________0;(4)|-2.75|________|+234| 20.计算(﹣0.25)2007×(﹣4)2008=______.三、解答题21.如图,已知O 为直线AD 上一点,∠AOC 与∠AOB 互补,OM 和ON 分别是∠AOC 和∠AOB 的平分线.(1) 试说明:∠AOB =∠COD ;(2) 若∠COD =36°,求∠MON 的度数.22.(1)如图,点C 、D 在线段AB 上,点C 为线段AB 的中点,若AC =5cm ,BD =2cm ,求线段CD 的长.(2)如图,已知∠COB =2∠AOC ,OD 平分∠AOB ,且∠COD =20°,求∠AOB 的度数.23.(12分)阅读:我们知道, 于是要解不等式,我们可以分两种情况去掉绝对值符号,转化为我们熟悉的不等式,按上述思路,我们有以下解法:解:(1)当30x -≥,即3x ≥时: 34x -≤解这个不等式,得:由条件,有: (2)当< 0,即 x < 3时,解这个不等式,得:由条件x < 3,有: < 3∴ 如图, 综合(1)、(2)原不等式的解为:根据以上思想,请探究完成下列2个小题:(1); (2)。
1.4.1有理数的乘法(2)

解:
(1)5.01 (12 ) (5 0.01) (-12) 5 (-12) 0.01 (-12) -60 0.12 -60.12
1 2 1 2 1 2 (2) 12 1 12 12 4 3 4 3 2 3 1 1 1 2 ( 1 ) 12 4 4 2 3 1 5 2 2 2 2 ( ) 12 112 12 4 4 4 3 3 3
例1
计算:(第(2)题用两种方法)
(1)( 125 ) (0.04) 8 (25) 1 1 1 (2)( ) 12 4 6 2
解:
(1)( 125 ) ( 0.05) 8 ( 40 ) -125 0.05 8 40 -125 8 0.05 40 -(125 8) (0.05 40) -1000 2 -2000
解:
(2)解法 1: 1 1 1 ( ) 12 4 6 2 3 2 6 ( ) 12 12 12 12 1 12 12 1 解法 2: 1 1 1 ( )12 4 6 2 1 1 1 12 12 12 4 6 2 3 2-6 -1
如果a,b,c分别表示任一有理数,那 么: 乘法交换律: ab=ba
(ab)c=a(bc) 乘法结合律:
乘法分配律: a(b+c)=ab+ac
作业:
综合能力训练: 16题(2)(4) (5),第34题。
我会做:
( )( 85) 25) 4) 1 ( (
7 1 (2)( ) 15 1 ) ( 8 7 9 1 (3)( ) 30 10 15
看谁算的快:
5 (1)( 12) (37) 6
1.4.1 有理数的乘法(2)课后练习

1.4.1有理数的乘法(2)班级:___________ 姓名:___________ 得分:___________一、选择题(每小题6分,共30分)1.观察算式(﹣4)(﹣25)×28,在解题过程中,能使运算变得简便的运算律是( )A .乘法交换律B .乘法结合律C .乘法交换律、结合律D .乘法对加法的分配律2.下列运算结果是负数是( )A .(﹣1)×2×3×(﹣4)B .5×(﹣3)×(﹣2)×(﹣6)C .﹣11×5×6×0D .5×(﹣6)×7×(﹣8) 3.如果a +b <0,ab <0,那么这两个数( )A .都是负数B .都是正数C .一正一负,且负数的绝对值大D .一正一负,且正数的绝对值大4.计算9×(-4)×14=9×1(4)4⎡⎤-⨯⎢⎥⎣⎦=9×(-1)=-9,这个运算应用了() A .加法结合律 B .加法交换律 C .乘法结合律 D .分配律5.计算)12()4131211(-⨯++-,运用哪种运算律可避免通分() A .加法交换律 B .加法结合律 C .乘法交换律 D .分配律二、填空题(每小题6分,共30分)6.如果abcd <0,a +b =0,cd >0,那么这四个数中负因数的个数至少有个.7.四个互不相等的整数的积是9,那么这四个整数的和等于.8.如下图是小明用火柴搭的1条、2条、3条“金鱼”,则搭10条“金鱼”需要火柴__________根9.用“=”或“≠”填空:-12×(31-41)______-4-3. 10.计算(-2.5)×0.37×1.25×(-4)×(-8)=.三、解答题(每小题20分,共40分)11.若定义一种新的运算“*”,规定有理数a *b =4ab ,如2*3=4×2×3=24.(1)求3*(﹣4)的值;(2)求(﹣2)*(6*3)的值.12.计算:已知|m |=1,|n |=4.(1)当mn <0时,求m +n 的值;(2)求m ﹣n 的最大值.参考答案1.C【解析】原式=[(﹣4)×(﹣25)](28)=100×4=400, 所以在解题过程中,能使运算变得简便的运算律是乘法交换律、结合律. 故选:C .2.B【解析】A 、(﹣1)×2×3×(﹣4),积为正数,不符合题意;B、5×(﹣3)×(﹣2)×(﹣6),积为负数,符合题意;C、﹣11×5×6×0,积为零,不符合题意;D、5×(﹣6)×7×(﹣8),积为正数,不符合题意;故选:B.3.C【解析】∵a+b<0,ab<0,∴一正一负,且负数的绝对值大,故选:C.4.C【解析】本题将后两个数先乘,用了乘法结合律.故选C.5.D【解析】由题意得,运用分配律可避免通分,故选D.6.1个【解析】根据a+b=0,cd>0,推出cd同号,ab异号,分为两种情况①a>0,b<0,c<0,d<0,②a>0,b<0,c>0,d>0,判断即可.∵abcd<0,a+b=0,cd>0,∴cd同号,ab异号,∴①a>0,b<0,c<0,d<0,∴负因数得个数是3个,②a>0,b<0,c>0,d>0,∴负因数得个数是1个.7.0【解析】根据题意可得出这四个数的值,继而可以确定这四个数的和.解:由题意得:这四个数小于等于9,且互不相等.再由乘积为9可得,四个数中必有3和-3,∴四个数为:1,-1,3,-3,和为0.8.62【解析】本题是有关于图形的变化的问题.分别数出图中搭1条,2条,3条“金鱼”需用的火柴根数,可以发现:搭多少条“金鱼”需用的火柴根数等于6与多少的乘积加2.如搭3条“金鱼”需用的火柴根数为20=6×3+2.按照这个规律即可求出搭10条“金鱼”需用的火柴根数.分别数出图中搭1条,l 条,3条“金鱼”需用的火柴根数,搭1条“金鱼”需用的火柴根数为8=6×1+2;搭2条“金鱼”需用的火柴根数为14=6×2+2;搭3条“金鱼”需用的火柴根数为20=6×3+2;可以发现,搭多少条“金鱼”需用的火柴根数等于6与多少的乘积加2. 所以,搭10条“金鱼”需用的火柴根数为6×10+2=62.9.≠【解析】-12×(31-41)=-1,而-4-3=-7,所以答案为:≠. 10.-37【解析】原式=[(-2.5)×(-4)]×[1.25×(-8)]×0.37=10×(-10)×0.37=-37.11.若定义一种新的运算“*”,规定有理数a*b =4ab ,如2*3=4×2×3=24.(1)求3*(﹣4)的值;(2)求(﹣2)*(6*3)的值.【分析】分别根据运算“*”的运算方法列式,然后进行计算即可得解.【解析】(1)3*(﹣4),=4×3×(﹣4),=﹣48;(2)(﹣2)*(6*3),=(﹣2)*(4×6×3),=(﹣2)*(72),=4×(﹣2)×(72),=﹣576.12.计算:已知|m|=1,|n|=4.(1)当mn<0时,求m+n的值;(2)求m﹣n的最大值.【分析】由已知分别求出m=±1,n=±4;(1)由已知可得m=1,n=﹣4或m=﹣1,n=4,再求m+n即可;(2)分四种情况分别求解即可.【解析】∵|m|=1,|n|=4,∴m=±1,n=±4;(1)∵mn<0,∴m=1,n=﹣4或m=﹣1,n=4,∴m+n=±3;(2)m=1,n=4时,m﹣n=﹣3;m=﹣1,n=﹣4时,m﹣n=3;m=1,n=﹣4时,m﹣n=5;m=﹣1,n=4时,m﹣n=﹣5;∴m﹣n的最大值是5.。
七年级(人教版)集体备课教案:1.4.1《有理数的乘法(2)》

七年级(人教版)集体备课教案:1.4.1《有理数的乘法(2)》一. 教材分析《有理数的乘法(2)》这一节内容,是在学生已经掌握了有理数乘法的基本法则的基础上进行深入学习的。
本节内容主要让学生进一步理解有理数乘法的运算规律,能够熟练地进行有理数的乘法运算,并能够解决一些实际问题。
二. 学情分析七年级的学生已经掌握了有理数乘法的基本法则,对于有理数的乘法运算有一定的了解和认识。
但是在进行复杂的乘法运算时,部分学生可能会出现运算混乱,对运算规律理解不深的情况。
因此,在教学过程中,需要引导学生深入理解乘法运算的规律,提高运算的准确性。
三. 教学目标1.让学生进一步理解有理数乘法的运算规律。
2.培养学生熟练进行有理数乘法运算的能力。
3.培养学生解决实际问题的能力。
四. 教学重难点1.有理数乘法的运算规律。
2.复杂有理数乘法运算的准确性。
五. 教学方法采用问题驱动法,引导学生通过自主学习,合作交流,发现和总结有理数乘法的运算规律。
同时,通过例题讲解,让学生掌握有理数乘法运算的方法,提高运算的准确性。
六. 教学准备3.练习题。
七. 教学过程1.导入(5分钟)利用PPT展示一些实际问题,让学生思考如何利用有理数乘法来解决这些问题。
通过问题驱动,激发学生的学习兴趣。
2.呈现(10分钟)通过PPT展示有理数乘法的运算规律,引导学生进行自主学习,合作交流,发现和总结运算规律。
3.操练(10分钟)让学生进行一些有理数乘法的练习,巩固所学知识。
教师可以通过巡堂的方式,及时发现和纠正学生的错误。
4.巩固(10分钟)通过PPT展示一些复杂的有理数乘法运算,让学生独立完成。
教师可以选取一些典型的错误,进行讲解和分析。
5.拓展(10分钟)让学生尝试解决一些实际问题,运用所学的有理数乘法知识。
教师可以给予适当的引导和帮助。
6.小结(5分钟)让学生总结本节课所学的内容,教师进行补充和讲解。
7.家庭作业(5分钟)布置一些有理数乘法的练习题,让学生进行巩固。
1.4.1有理数的乘法(2)
1、课本P38习题1.4 第1题,第7题(1)(2)(3)题
2、《全品学练考》P 23- 24
课外训练: 1 ( 0.25) (1) 24 3
3 1 8 (2) ( ) ( ) ( ) 3 7 2 15
1 (3) 4 ( 3) ( 0.2) 2
课外训练:
1 1 ( 0.25) (1) 28 7 3
5 1 7 2 1 Байду номын сангаас ) ( ) ( ) ( ) (2) 7 5 15 3 2
3 1 1 (3) 4 ( ) ( 0.2) 4 2 4
1 2 6 (6) 2 (0.5 ) 3 3 7
=1/3
2.如果三个有理数的积为负数,那么 这三个有理数中( D ) A 只有一个是负数 B 有两个负数 C D 三个都是负数 有一个或三个负数
课本P32练习题
粒粒归仓
(1)几个不为0的有理数相乘,积的符 号如何确定?若有一个因数为0呢? (2)几个不为0的有理数相乘,一般 步骤怎样? (3)说说你还有那些疑惑和收获?
1 (7) (6) ( ) =1 6
判断下列各式的积是正的还是负的? 2×3×4×(-5) 负
2×3×(-4)×(-5) 正 2×(-3)×(-4)×(-5)
负 正
(-2)×(-3)×(-4)×(-5)
7.8×(-8.1)×0×(-19.6) 零
议一议: 几个有理数相乘,因数都不为 0 时,
(1)(-3)×(-5) ×(-7) ×(-9) (2)(+8.36) ×(+2.9) ×(-7.89)
> <
0 0
(3)50 ×(-2) ×(-3) ×(-2) ×(-5) (4)(-3) ×(-2) ×(-1)
1.4.1(2)有理数乘法
小结:本节课你学到了什2、一个数同1相乘得它本身
3、一个数同-1相乘得它的相反数.
再 见
几个不是0的数相乘,负因数的个数 偶数 时,积是正数;负因数的个数是 是_____ 奇数 时,积是负数. _____
再看两题. (1) (-2)×(-3)×0×(-4)= 0 (2) 2×0×(-3)×(-4)= 0
0 试一试:7.8×(-8.1)×0×(-19.6)=____
0 几个数相乘,如果其中有因数为0,积等于 __. 几个有理数相乘的积的符号法则 : 1、几个不是0的数相乘,负因数的个数 是偶数个时,积是正数;负因数的个数是奇 数个时,积是负数. 2、如果多个因数相乘,有一个为0,积 等于0.
问题3:计算: -6 (1)(-2)×3 =____; 6 (2)(-2)×(-3)=___ 120 (3)1×2×3×4×5=_____ -120 (4)1×2×3×4×(-5)=____ 120 (5)1×2×3×(-4)×(-5)=____ -120 (6)1×2×(-3)×(-4)×(-5)=____ 120 (7)1×(-2)×(-3)×(-4)×(-5)=____ (8)(-1)×(-2)×(-3)×(-4)×(-5)=____ -120
(3)
5 8 3 2 1 4 15 2 3 0 1
例题:用计算器计算(-51)×(-14)
P39练习 用计算器计算: (1) 26×(-41) (2) (-35)×(-17)
活动与探究
翻牌游戏中的数学道路
矿产
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。
1.4.1有理数乘法(2)
(3) 2 (3) (4) (5) _______; -120 (4) (2) (3) (4) (5) _____; +120
几个不等于 0 的因数相乘 ,积的符号与负因数的个 数之间有什么关系?
奇数个 当负因数的个数是_______时,积的符号为负; 偶数个 当负因数的个数是_______时,积的符号为正。
0
归纳:
零 多个因数相乘,如果有一个因数为_。
例题分析
练习:教材32页练习题。
知识引入
一、计算下列式子:
(1) 2 ( 5) _____; -10 ( 5) 2 _____; -10 ( 2) [ 2 ( 3)] ( 4) ____; 24 2 [( 3) ( 4)] ____; 24 (3) 5 [3 ( 7)] ____; -20 5 3 5 ( 7) ____; -20
乘法分配律:a(b+c)=ab+ac
例题分析
练习
思考:
如果abc=0,那么一定有: ( C ) A、a=b=c=0 ; B、 a=0 ; C、 a,b,c中至少有一个为0; D、a,b,c中最多有一个为0 。
计算:
1 (1)4¡ (£ Á )¡ 2£ Á » 5 1 3 (3) 3 ¡ (£ 1 )£ Á » 2 7 (2)£ £ 1.2£ ¡ 0.75¡ (£ 1.25)£ ¨ © Á Á » 3 7 2 5 (4)£ ¡ Á ¡ (£ )¡ (£ Á Á )£ » 4 15 3 14 13 (6)29 ¡ ( £ 5) £ Á » 15
(2)乘法运算律:
乘法交换律:ab=ba
乘法结合律:(ab)c=a(bc)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3 3 1 3 解:原式= ( ) 8 ( ) (1 ) ( ) (0.16) 4 4 3 4
6 1 0.12
4.48
例2
15 ( 8) 计算: 71 16
分析:本题从题型结构来看,直接计算比较麻烦,又不 具备应用分配律的条件,但观察它的数量特点,使用拆 分方法,可以创造应用分配律的条件解题,即将 71 15 拆分成一个整数与一个分数之差,再用分配律计算.16
[3×(-4)]×(- 5) = 3×[(-4)×(-5)] (3) 5×[3+(-7 )]= 5×(-4) = -20 5×3+5×(-7 ) =15 - 35= -20 5×[3+(-7 )] = 5×3+5×(-7 )
思考:
正数 (1)第一组式子中数的范围是 ________; 有理数 (2)第二组式子中数的范围是 ________;
C、一个为0,另两个不为0;
3.如果三个有理数的积为负数,那么 这三个有理数中( D ) A 只有一个是负数 B 有两个负数 C D 三个都是负数 有一个或三个负数
一、温故知新
第一组: (1) 2×3= 6 3 × 2= 6 2× 3 = 3× 2 乘法交换律 (2) (3×4)×0.25= 3 3×(4×0.25)= 3
, 如a×b可以写成a· b或ab.
根据乘法交换律和结合律可以推出: 三个以上有理数相乘,可以任意交换因数 的位置,也可先把其中的几个数相乘.
乘法分配律:
一个数同两个数的和相乘,等于把这个数分别同 这两个数相乘,再把积相加.
a(b+c) = ab+ac 2×[(-3)+4]
3 4 12 [( ) ( )] 4 9
1 1 1 1 解:原式 ( ) (5 ) ( ) 3.5 ( ) 2 4 2 4 4 1 1 ( ) (5 3.5 2) 4 2 1 0 4 0
完成33页的练习。ቤተ መጻሕፍቲ ባይዱ
小结
1.乘法交换律:
ab=ba
数的范围已扩 充到有理数.
两个数相乘,交换两个因数的位置,积不变.
(3)比较第一组和第二组中的算式,可以发现
各运算律在有理数范围内仍然适用 ______________________________________.
乘法交换律:
ab=ba
数的范围已扩 充到有理数.
两个数相乘,交换两个因数的位置,积相等.
乘法结合律:
三个数相乘,先把前两个数相乘,或先把后两 注意:用字母表示乘数时 个数相乘,积相等. ”或省略 (ab)c = a(bc) ,“×”号可以写成“·
分配律:a×(b+c)=a×b+b×c
乘法结合律(a×b)×c=a×(b×c) 5、(-8)+(-9)=(-9)+(-8)
加法交换律:a+b=b+a
想一想
1 - 3+ 1- 5) 计算: (-24)×( 3 4 6 8
? 3 ? 1 ? 1 5 解: 原式= -24× 3 - 24× 4 + 24× 6 - __ 24× 8 __ __ = - 8 -18 +4- 15
多个有理数相乘,先做哪一步, 再做哪一步? 第一步:是否有因数0;
第二步:奇负偶正;
第三步:绝对值相乘。
1、几个不等于0的有理数相乘,积的符号由( B )
A、正因数的个数决定; B、负因数的个数决定;
C、因数的个数决定;D、负数的大小决定。 2、若三个有理数的积为0,则( D ) A、三个数都为0; D、至少有一个为0。 B、两个数为0;
3.乘法分配律: 一个数同两个数的和相乘,等于把这个数 分别同这两个数相乘,再把积相加. a(b+c) = ab+ac 根据分配律可以推出:一个数同几个数 的和相乘,等于把这个数分别同这几个数相乘 ,再把积相加. a(b+c+d)=ab+ac+ad
4.注意: (1) 乘法的交换律、结合律只涉及一种运算,而分配 律要涉及两种运算. (2) 分配律还可写成: a×b+a×c=a×(b+c),利用 它有时也可以简化计算. (3) 字母a、b、c可以表示正数、负数,也可以表示零 ,即a、b、c可以表示任意有理数. (4) 乘法分配律揭示了加法和乘法的运算性质,利用 它可以简化有理数的运算,对于乘法分配律,不仅要会 正向应用,而且要会逆向应用,有时还要构造条件变形 后再用,以求简便、迅速、准确解答习题.
例4
练一练
练习1、下列各式中用了哪条运算律?如何用字母表示? 1、(-4)×8 = 8 ×(-4) 乘法交换律:a×b=b×a 2、[(-8)+5]+(-4)=(-8)+[5+(-4)] 加法结合律:(a+b)+c=a+(b+c)
2 2 1 1 3、(-6)×[ - +(- -)]=(-6)× - +(-6)×(- - ) 3 3 2 2 5 5 4、[29×(- - )] ×(-12)=29 ×[(- - ) ×(-12)] 6 6
(3×4)×0.25 = 3×(4×0.25) (3) 2×(3+4)= 14
乘法结合律
2×3+2×4= 14 乘法分配律
2×(3+4) = 2×3+2×4
思考:上面每小组运算分别体现了什么运算律?
第二组: (1) 5×(-6) = -30 (-6 )×5= -30 5× (-6) = (-6) ×5 (2) [3×(-4)]×(- 5)= (-12)×(-5) =60 3×[(-4)×(-5)]= 3×20= 60
特别提醒:
= - 8 + 18 - 4 + 15 = - 12 +33 = 21
1.不要漏掉符号,
2.不要漏乘.
3 1 例 1 计算 (8 1 0.16). 4 3
分析:本题按混合运算法则,先计算括号里 的代数和,无论化成分数还是小数运算都比 较麻烦,为了简便解决这道题,必须运用乘 法的分配律,易得解.
= - 41 +4 = - 37
这题有错吗? 错在哪里?
想一想
正确解法:
计算: (-24)×( 1 - 3 + 1 - 5 ) 4 3 6 8
3 )+(-24)× 1 +(-24)×(- 5 =(-24)× 1 + ( - 24) × ( - 8 3 4 6 )
_____ ______ ______ ______
=
2×(-3)+ 2×4
3 4 = 12 ( ) 12 ( ) 4 9 根据分配律可以推出:一个数同几个数的和相乘, 等于把这个数分别同这几个数相乘,再把积相加. a(b+c+d)=ab+ac+ad
二、探究归纳
用两种方法计算 1 1 - 1 )×12 ( 4+ 6 2 6 2 3 解法1: 原式= ( 12 + 12 - 12 )×12 1 =- 12 ×12 解法1先算括号 =- 1 1 1 1 解法2: 原式= 4 ×12 + 6 ×12- 2 ×12 = 3 + 2- 6 解法2运用了乘法分配 律,这样便于计算。 =- 1
义务教育课程标准实验教科书
七年级上册
人民教育出版社出版
第一章 有理数
归纳: 几个不等于零的数相乘,积的符号由 _____________ 负因数的个数决定。
} 偶数 个时,积为正。 当负因数有_____
当负因数有奇数 ____个时,积为负;
奇负偶正
几个数相乘,如果其中有因数为0, _________ 积等于0
解:原式
1 (7 2 ) ( 8) 16 1 7 2 ( 8) ( ) ( 8) 16 1 5 7 6 2 1 5 7 5 2
例3
计算:
1 1 1 ( ) (5 ) 0.25 (3.5) ( ) 2 4 2 4
分析:细心观察本题三项积中,都有-1/4这个因数, 所以可逆用乘法分配律求解.
2.乘法结合律:
三个数相乘,先把前两个数相乘,或先把后两 注意:用字母表示乘数时 个数相乘,积不变. ”或省略 (ab)c = a(bc),“×”号可以写成“·
, 如a×b可以写成a· b或ab.
根据乘法交换律和结合律可以推出: 三个以上有理数相乘,可以任意交换因数 的位置,也可先把其中的几个数相乘.