古典密码原理

合集下载

古典密码简介

古典密码简介

古典密码简介从密码学发展历程来看,可分为古典密码(以字符为基本加密单元的密码)以及现代密码(以信息块为基本加密单元的密码)两类。

⽽古典密码有着悠久的历史,从古代⼀直到计算机出现以前,古典密码学主要有两⼤基本⽅法:①置换密码(⼜称易位密码):明⽂的字母保持相同,但顺序被打乱了。

②代替密码:就是将明⽂的字符替换为密⽂中的另⼀种的字符,接收者只要对密⽂做反向替换就可以恢复出明⽂。

古典密码是密码学的根源,虽然都⽐较简单⽽且容易破译,但研究古典密码的设计原理和分析⽅法对于理解、分析以及设计现代密码技术是⼗分有益滴^_^⼀.置换密码1.列置换密码(矩阵置换密码)明⽂:ming chen jiu dian fa dong fan gong密钥:yu lan hua去掉密钥重复字母:yulanh,得出距阵列数为6;将明⽂按⾏填充距阵。

得到密钥字母顺序: 653142;按列(依顺序)写出距阵中的字母。

密⽂:giffg hddn0 njngn cuaa0 inano meiog解密:加密的逆过程;2.周期置换密码 周期置换密码是将明⽂串P按固定长度m分组,然后对每组中的⼦串按1,2,...,m的某个置换重排位置从⽽得到密⽂C。

其中密钥σ包含分组长度信息。

解密时同样对密⽂C按长度m分组,并按σ的逆置换σ-1把每组⼦串重新排列位置从⽽得到明⽂P。

明⽂:State Key Laboratory of Networking and Switching加密密钥:σ=(15623)明⽂分为七组:(StateK)(eyLabo)(ratory)(ofNetw)(orking)(andSwi)(tching)加密变换:密钥⾥没有4,则第4位保持不变,然后对应的第1位换到第5位,第5位换到第6位,第6位换到第2位....密⽂:(aKttSe)(Loyaeb)(tyaorr)(Nwfeot)(kgrion)(dinSaw)(hgcitn)解密密钥:σ-1 = (13265)3.栅栏密码此密码⼀般适⽤于较短的密码,原理是字母的错位。

2 古典密码

2 古典密码

• 实用加密体制需满足:
1.Εk,Dk易于计算
2.对任何敌手,即使获得密文y,不可能由此确
定k和x。
• 已知y,试图得到k的过程,称为密码分析。 • 要求:通过y计算k至少与通过y计算x同样困难。
移位密码不安全,可用穷尽密钥搜索破译 例: 密文 V H F X U LW B v h f x ul wb u g e w tk va
Jiangsu University
2 古典密码
古典密码体制

古典密码有两个基本工作原理:
代换(substitution) 置换(permutation)

这两个基本工作原理在仍然是现代对称加密算法的最重要 的核心技术

现代对称密码DES和AES中就有这两个工作原理的应用
11/10/15 10:57
• 已知m,确定K=(k1,k2,…km)
---- f0,f1,…,f25为A,B,…,Z在yi中出现的频数,n’=n/m为yi长度 26个字母在yi中的概率分布为: f0/n’,f1/n’,…,f25/n’ ---- yi中是由明文子集中字母移ki位所得,故移位后概率分布 fki/n’,f1+ki/n’,…,f25+ki/n’ 应近似等于p0,p1,…,p25 ---- 定义Mg=∑(pifi+g)/n’, g=0,1,…25
如果g=ki,
Mg ≈ ∑pi2=0.065
如果g≠ki, Mg 一般应该<0.065 对每个i,由此确定ki

换位密码
换位密码,也成为置换密码,通过重新排列消息中元素的位 置而不改变元素本身来变换一个消息,这种思想广泛应用于 现代分组密码的构造。
密钥为置换: 加密算法为: 显然有: 解密算法为:

第3章 古典密码学

第3章 古典密码学
表2.3 密钥为cipher的维吉尼亚密码加密过程
密文为:cxtsmvfkgftkqanzxvo。 解密使用相同的密钥,但用模26的减法代替模26加法,这里 不再赘述。
17
多表代换密码
3.一次一密密码(One Time Pad) 若替代码的密钥是一个随机且不重复的字符序列,这种密码 则称为一次一密密码,因为它的密钥只使用一次。 该密码体制是美国电话电报公司的Gilbert Vernam在 1917年为电报通信设计的一种密码,所以又称为Vernam 密码。后来被陆军情报军官Joseph Mauborgne改进。 Vernam密码在对明文加密前首先将明文编码为(0,1)序 列,然后再进行加密变换。 设m=(m1 m2 m3 … mn)为明文,k=(k1 k2 k3 … kn )为密 钥,其中mi,ki ∈(0,1), i≥1, 则加密和解密变换为,这里为 模2加法(或异或运算): c=(c1 c2 c3 … cn) , 其中ci = mi ki , i≥1
• 将Caesar密码一般化,取任意的整数k作为密钥:
加密变换: c=E(k,p)=(p + k) (mod 26) 解密变换: p=D(k,c)=(c – k) (mod 26)
9
一般单表; • 一般单表替代密码的原理是以26个英文字母集合上 的一个置换π为密钥构造代换表,对明文消息中的每 个字母依次进行变换。 • 例:设置换π的对应关系如下: abcdefghi jklmnopqrstuvwxyz qwertyuiopasdf ghjklzx cvbnm 试用单表替代密码以π为密钥对明文消息message 加密,然后写出逆置换 ,并对密文解密。 解:密文消息为: π(m)π(e)π(s)π(s)π(a)π(g)π(e)=dtllqut

古典密码-凯撒密码Caeser

古典密码-凯撒密码Caeser

古典密码-凯撒密码Caeser凯撒密码Caeser Cipher在早期,凯撒密码(Caeser Cipher)是指将密⽂平移三位,后来经过推⼴,平移个数扩展为任意位,即移位密码(Shift Cipher)原理凯撒密码(Caesar)加密时会将明⽂中的每个字母都按照其在字母表中的顺序向后(或向前)移动固定数⽬(循环移动)作为密⽂。

例如,当偏移量是左移 3 的时候(解密时的密钥就是 3):明⽂字母表:ABCDEFGHIJKLMNOPQRSTUVWXYZ密⽂字母表:DEFGHIJKLMNOPQRSTUVWXYZABC使⽤时,加密者查找明⽂字母表中需要加密的消息中的每⼀个字母所在位置,并且写下密⽂字母表中对应的字母。

需要解密的⼈则根据事先已知的密钥反过来操作,得到原来的明⽂。

例如:明⽂:THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG密⽂:WKH TXLFN EURZQ IRA MXPSV RYHU WKH ODCB GRJ特定名称根据偏移量的不同,还存在若⼲特定的恺撒密码名称:偏移量为 10:Avocat (A→K)偏移量为 13:偏移量为 -5:Cassis (K 6)偏移量为 -6:Cassette (K 7)此外,还有还有⼀种基于密钥的凯撒密码 Keyed Caesar。

其基本原理是利⽤⼀个密钥,将密钥的每⼀位转换为数字(⼀般转化为字母表对应顺序的数字),分别以这⼀数字为密钥加密明⽂的每⼀位字母,例如:密⽂:s0a6u3u1s0bv1a密钥:guangtou偏移:6,20,0,13,6,19,14,20明⽂:y0u6u3h1y0uj1u解密⼯具在线⽹站:该⽹站可以在线对凯撒进⾏25中移位的破解,并直接返回结果⼯具:CaptfEncoder⾥⾯集成了⼀堆各式各样的⼯具,其中就包含Caeser Cipher的解密。

古典算法加密实验报告

古典算法加密实验报告

一、实验目的通过本次实验,掌握古典加密算法的基本原理和实现方法,加深对古典加密算法的理解,提高编程能力。

二、实验内容本次实验主要涉及以下古典加密算法:1. 仿射密码2. 单表代替密码3. 维吉尼亚密码三、实验原理1. 仿射密码仿射密码是一种单字母替换密码,其加密原理为将明文进行0~25字母编码,按照加密公式计算出密文对应位置的字母编码,最后从密文的字母编码还原出密文对应位置的字母。

解密原理与加密原理相反。

2. 单表代替密码单表代替密码的加密原理为利用代替表,将明文中的每个字符映射到密文。

解密原理为对代替表进行反向查找,由密文映射回明文。

3. 维吉尼亚密码维吉尼亚密码的加密原理为通过加密方程Ci = (pi k(i mod m)) mod 26,由明文得到密文。

解密原理为解密过程是加密过程的逆过程,通过解密方程pi = (Ci k(i mod m)) mod 26。

四、实验步骤1. 仿射密码(1)编写加密函数encrypt,输入明文和密钥a、b,输出密文。

(2)编写解密函数decrypt,输入密文和密钥a、b,输出明文。

(3)测试加密和解密函数,验证其正确性。

2. 单表代替密码(1)编写加密函数subencrypt,输入明文和代替表,输出密文。

(2)编写解密函数subdecrypt,输入密文和代替表,输出明文。

(3)测试加密和解密函数,验证其正确性。

3. 维吉尼亚密码(1)编写加密函数vigenereencrypt,输入明文和密钥,输出密文。

(2)编写解密函数vigeneredecrypt,输入密文和密钥,输出明文。

(3)测试加密和解密函数,验证其正确性。

五、实验结果与分析1. 仿射密码通过编写encrypt和解密函数,成功实现了仿射密码的加密和解密过程。

实验结果表明,加密和解密函数运行正常,能够正确转换明文和密文。

2. 单表代替密码通过编写subencrypt和解密函数,成功实现了单表代替密码的加密和解密过程。

实验1-古典密码算法

实验1-古典密码算法

实验1-古典密码算法一、实验目的通过编程实现替代密码算法和置换密码算法,加深对古典密码体系的了解,为以后深入学习密码学奠定基础。

二、实验原理古典密码算法曾被广泛应用,大都比较简单。

它的主要应用对象是文字信息,利用密码算法实现文字信息的加密和解密。

其中替代密码和置换密码是具有代表性的两种古典密码算法。

1、替代密码替代密码算法的原理是使用替代法进行加密,就是将明文中的字符用其他字符替代后形成密文。

例如,明文字母a、b、c、d,用D、E、F、G做对应替换后形成密文。

最早的替代密码是由Julius Caesar 发明的Caesar (恺撒)密码,又叫循环移位密码。

它的加密过程可以表示为下面的函数:E(m) = (m+k ) mod n其中,m为明文字母在字母表中的位置数;n为字母表中的字母个数;k为密钥;E(m)为密文字母在字母表中对应的位置数。

例如,对于明文字母H,其在字母表中的位置数为8,设k=4,则按照上式计算出来的密文为L,计算过程如下:E(8) = (m+k ) mod n = (8+4 ) mod 26 = 12 = L 解密算法是:m = D(L) =(L-k)mod 262、置换密码置换密码算法的原理是不改变明文字符,只将字符在明文中的排列顺序改变,从而实现明文信息的加密。

置换密码又称为换位密码。

矩阵换位法是实现置换密码的一种常用方法。

它将明文中的字母按照给定的顺序安排在一个矩阵中,然后又根据密钥提供的顺序重新组合矩阵中的字母,从而形成密文。

例如,明文为 attack begins at five ,密钥为 cipher ,将明文按照每行6个字母的形式排在矩阵中,形成如下形式:a t t a c kb e g i n sa t f i v e根据密钥 cipher 中各字母在字母表中出现的先后顺序,得到给定的一个置换:f = 1 4 5 3 2 6因此有:密钥: 1 4 5 3 2 6明文: a t t a c kb e g i n sa t f i v e根据上面的置换,将原有矩阵中的字母按照第1列、第4列、第5列、第3列、第2列、第6列的顺序排列、则有下面的形式:a a c t t kb i n g e sa i v f t e从而得到密文:abatgftetcnvaiikse其解密过程是根据密钥的字母数作为列数,将密文按照列、行的顺序写出,再根据由密钥给出的矩阵置换产生新的矩阵,从而恢复明文。

密码发展史之古典密码

密码发展史之古典密码密码(Cryptology)是一种用来混淆的技术,它希望将正常的、可识别的信息转变为无法识别的信息。

密码学是一个即古老又新兴的学科,密码学一词源自希腊文“krypto's”及“logos”两字,直译即为“隐藏”及“讯息”之意。

密码学是一门拥有几千年历史的学科。

密码学的发展大概经历了三个阶段:古典密码阶段、近代密码阶段、现代密码阶段。

下面我们一起了解古典密码阶段。

古典密码阶段是指从密码的产生到发展成为近代密码之间的这段时期密码的发展历史。

我们从古代产生密码的各个国家和几个简单的古典密码体制等方面来认识一下古典密码。

一、古典密码在古代各国的使用古代中国:从古到今,军队历来是使用密码最频繁的地方,因为保护己方秘密并洞悉敌方秘密是克敌制胜的重要条件。

正如中国古代军事著作《孙子兵法》中所说:知己知彼,百战不殆;不知彼而知己,一胜一负;不知彼不知己,每战必败。

中国古代有着丰富的军事实践和发达的军事理论,其中不乏巧妙、规范和系统的保密通信和身份认证方法。

中国古代兵书《六韬》中的阴符和阴书:《六韬》又称《太公六韬》或《太公兵法》,据说是由西周的开国功臣太公望(又名吕尚或姜子牙,约公元前1128—公元前1015)所著。

书中以周文王和周武王与太公问答的形式阐述军事理论,其中《龙韬•阴符》篇和《龙韬•阴书》篇,讲述了君主如何在战争中与在外的将领进行保密通信。

以下是关于“阴符”使用方法对话的译文。

武王问太公说:领兵深入敌国境内,军队突然遇到紧急情况,战事或有利,或失利。

我要与各军远近相通,内外相应,保持密切的联系,以便及时应对战场上军队的需求,应该怎么办呢?太公回答说:国君与主将之间用阴符秘密联络。

阴符共有八种:一种长一尺,表示大获全胜,摧毁敌人;一种长九寸,表示攻破敌军,杀敌主将;一种长八寸,表示守城的敌人已投降,我军已占领该城;一种长七寸,表示敌军已败退,远传捷报;一种长六寸,表示我军将誓死坚守城邑;一种长五寸,表示请拨运军粮,增派援军;一种长四寸,表示军队战败,主将阵亡;一种长三寸,表示战事失利,全军伤亡惨重。

古典密码汇总

古典密码汇总
古典密码是指在计算机技术出现之前使用的一种数据加密方式。

以下是一些常见的古典密码:
1. 凯撒密码:将明文中的每个字母按照字母表顺序向后移动固定的位置来生成密文。

2. 维吉尼亚密码:通过使用不同的密钥按字母表顺序对明文逐字母进行移位加密。

3. 单换密码:根据某种规则将明文中的每个字母替换为另一个字母来生成密文。

4. 多换密码:类似于单换密码,但使用多个替换规则来加密明文。

5. 栅栏密码:将明文按照一定长度分成多行,然后按行输出密文。

6. 简单替换密码:将明文中的每个字母替换为另一个字母或符号来生成密文。

7. 维因纳尔方阵密码:使用一个方阵将明文中的字母映射为密文中的其他字母。

8. 培根密码:将明文中的每个字母映射为5个二进制位,然后用A和B表示。

这只是一小部分古典密码,还有许多其他类型的古典密码存在。

由于古典密码的安全性相对较低,现代密码学已经发展出了更加复杂和安全的加密算法。

古典密码方法是

古典密码方法是
古典密码方法是一种使用传统技术和手段进行加密和解密的密码方法。

这些方法通常是基于置换、替换和混淆的原理,使用字母、数字或符号进行编码和解码。

它们通常依赖于密钥,通过改变字母的顺序、替换字母或使用其他算法来隐藏原始信息。

常见的古典密码方法包括凯撒密码、单行移位密码、多行移位密码、培根密码等。

凯撒密码是一种基于字母位移的替换密码,通过将字母按照一定的位移量移动来加密信息。

单行移位密码和多行移位密码是一种将字母按照指定的规则在网格中移动,然后读取特定位置上的字母来加密信息的方法。

培根密码则是将字母表按照一定的规则与一个由五个字母组成的组合进行对应,将原始信息转换为一串由'A'和'B'组成的编码。

古典密码方法在现代密码学中已经不再安全,因为它们往往容易受到频率分析、统计分析和其他攻击方法的攻击。

现代密码学中更常使用的是基于数学原理和复杂算法的对称加密和非对称加密方法。

查理九世加密原理

查理九世加密原理
查理九世加密原理,又称“凯撒密码”,是最简单的替换密码之一,属于古典密码学的范畴。

其原理是通过将明文中的每个字母按照一个固定的字母表中的顺序向后移动若干个位置,从而得到密文。

这个移位的距离称之为密钥,只有知道密钥的人才能正确地将密文解密为明文。

具体来说,设密钥为 n(取值范围为 1~25),A~Z 的字母表
分别为 0~25,则加密的操作为:
C = (P + n) % 26
其中,C 为密文,P 为明文,% 表示取余操作。

解密的操作为:
P = (C - n + 26) % 26
这里需要注意的是,解密的过程中要加上 26 才能保证结果为
正数,否则可能出现负数无法正确解密的情况。

这种加密方法看似非常简单,但在历史上被广泛应用,尤其是在通信机密方面。

例如在第二次世界大战时期,德军使用的Enigma 密码机就是基于凯撒密码进行改进的,其中包含了多
种变换和复杂的密钥生成算法,使得破解极为困难,直到英国人图灵破译了密钥生成算法才成功破解了 Enigma 的加密。

虽然查理九世加密不足以满足当代的安全需求,但它的思想对于现代密码算法的发展具有重要的借鉴意义。

例如 DES
(Data Encryption Standard)算法就是基于替换和置换运算来
实现的,而 AES(Advanced Encryption Standard)算法则采用
了更加复杂的替换和置换操作,并且密钥长度比DES大得多,更加安全可靠。

总的来说,查理九世加密原理是古典密码学中最基础的加密算法之一,它虽然已经过时,但其思想和基本原理对于密码学的发展和研究仍然具有重要的意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

古典密码原理
古典密码原理是密码学领域中一门基础的密码学原理,初衷是为了保护通信内容的安全性,同时利用加密和解密的算法确保信息的保密性。

古典密码原理主要基于替换和排列的思想,在古典密码学中,常见的加密技术有凯撒密码、栅栏密码和多表密码等。

凯撒密码是古典密码学中最早出现的一种密码算法。

它使用了一种简单的替换技术,即将明文中的每个字母替换为字母表中的另一个字母。

在凯撒密码中,字母表按字母顺序排列,密钥表示字母表中字母的偏移量。

例如,若密钥为3,则明文中的字母A将被替换为字母D,字母B
将被替换为字母E,以此类推。

凯撒密码的加解密算法简单易懂,但安全性较低,容易被破解。

栅栏密码是古典密码学中另一种常见的加密算法。

它利用了一种排列技术,即将明文按照一定规则排列成栅栏形式,然后从上至下读取加密后的密文。

在栅栏密码中,密钥表示栅栏的高度。

例如,若密钥为3,则明文"HELLO WORLD"首先按照栅栏高度3排列如下:
H . . . O . . . L . . . .
. E . L . . O . . W . R .
. . L . . . . . D . . . .
然后从上至下读取加密后的密文"HOEULRLDLOLDW"。

栅栏密码的特点是简单明了,但加密
后的密文存在一定规律,易被破解。

多表密码是古典密码学中一种复杂的加密算法。

它通过使用多个不同的替代字母表对明文进行加密,增加了密码分析者破译密文的难度。

多表密码利用了一系列字母表在密码系统中的循环使用,使得同一个字母在不同情况下可能被替换为不同的字母。

例如,一个使用三个不同的字母表的多表密码,明文中的字母A可能被替换为字母B、C或D,具体替换规则依赖于明文中
字母的位置和上下文环境。

多表密码的复杂性使得破译者难以识别加密规则和找出明文与密文之间的关系。

古典密码学虽然有一些不足之处,但在密码学历史中扮演了重要角色,为现代密码学的发展奠定了基础。

古典密码的主要目标是实现信息的保密性,确保加密后的密文只能被授权用户解读。

然而,随着计算机技术的快速发展和密码分析方法的提升,古典密码的安全性变得不够可靠。

为了提高密码系统的安全性,人们开发了更复杂、更安全的加密算法,如对称密钥加密算法和公钥加密算法等。

这些现代密码算法利用了数学和计算机科学的原理,能够提供更高层次的安全性和可靠性。

总而言之,古典密码原理是密码学领域中最早出现的密码算法原理之一,它应用了替代和排列的技术。

无论是凯撒密码、栅栏密码还是多表密码,它们都在一定程度上确保了信息的保密性。

古典密码学的发展促使现代密码学的引入,现代密码学中的密码算法更加复杂、安全性更高。

由此可见,古典密码原理在密码学领域中具有重要地位,它不仅为密码学的发展提供了基础,也为学者们带来了启示和思考。

相关文档
最新文档