计数原理专题

合集下载

专题11 计数原理【2023高考必备】2013-2022十年全国高考数学真题分类汇编(解析版)

专题11 计数原理【2023高考必备】2013-2022十年全国高考数学真题分类汇编(解析版)
【题目栏目】计数原理\二项式定理\二项展开式通项公式的应用
【题目来源】2020年高考数学课标Ⅲ卷理科·第14题
18.(2018年高考数学课标卷Ⅰ(理)·第15题)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有种.。(用数字填写答案)
【答案】16
解析:方法一:直接法,1女2男,有 ,2女1男,有
【题目栏目】计数原理\二项式定理\二项式定理
【题目来源】2020年高考数学课标Ⅰ卷理科·第8题
5.(2019年高考数学课标Ⅲ卷理科·第4题) 的展开式中 的系数为()
A.12B.16C.20D.24
【答案】【答案】A
【解析】因为 ,所以 的系数为 ,故选A.
【点评】本题主要考查二项式定理,利用展开式通项公式求展开式指定项的系数,是常规考法。
(2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解.
【题目栏目】计数原理\二项式定理\二项展开式通项公式的应用
【题目来源】2017年高考数学课标Ⅲ卷理科·第4题
9.(2017年高考数学课标Ⅱ卷理科·第6题)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()
2013-2022十年全国高考数学真题分类汇编
专题11计数原理
一、选择题
1.(2020年新高考I卷(山东卷)·第3题)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同 安排方法共有()
A.120种B.90种
C.60种D.30种
【答案】C
现在可看成是3组同学分配到3个小区,分法有:
根据分步乘法原理,可得不同的安排方法 种

高中数学:《计数原理》(理)知识点串讲

高中数学:《计数原理》(理)知识点串讲

《计数原理》(理)知识点串讲一、基本计数原理1.分类加法计数原理做一件事,完成它有n 类办法,在第一类办法中有1m 种不同的办法,在第二类办法中有2m 种不同的办法,…在第n 类办法中有n m 种不同的办法.那么完成这件事共有12n N m m m =+++种不同的办法.2.分步乘法计数原理做一件事,完成它需要分成n 个步骤,做第一个步骤有1m 种不同的方法,做第二个步骤有2m 种不同的方法,…,做第n 个步骤有n m 种不同的方法,那么完成这件事共有12n N m m m =⨯⨯⨯种不同的方法.说明:①分类加法计数原理和分步乘法计数原理的共同点是把一个原始事件分解成若干个分事件来完成.②两个原理的区别在于一个与分类有关,一个与分步有关,如果完成一件事情有n 类办法,这n 类办法彼此之间是相互独立的,无论哪一类办法中的哪一种方法都能独立完成这件事情,可类比物理中的“并联”电路来理解;如果完成一件事情需要分成n 个步骤,各个步骤都是相依的、不可缺少的,一个步骤只能完成事情的一部分,必须依次完成所有的步骤,才能完成这件事情,可类比物理中的“串联”电路来理解.③运用两个基本原理解题时,应善于从语言的差异与变化中弄清面临怎样的“一件事”,弄清事件之间的关系是相依还是相斥,然后按照恰当的“对象”进行分类或分步,合理的设计相应的做事方式.分类要做到“不重不漏”,分步要做到“步骤完整”.这两个原理是解决排列组合问题的理论基础.二、排列与组合1.排列一般地,从n 个不同元素中取出()m m n ≤个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.说明:①排列的定义中包括两个基本内容:一是“取出元素”;二是“按照一定的顺序排列”.②只有取出的元素完全相同,并且元素排列的顺序也完全相同时,才是同一个排列,元素不完全相同,或元素完全相同而顺序不同的排列属于不同排列.如1,2,3与2,3,4是不同排列;1,2,3与1,3,2也是不同排列.③排列中元素的有序性是判断一个具体问题是不是排列问题的标准,也是与组合问题的根本区别.例如:从1,2,3,5这四个数中每次任取两个数相加(或相乘),可得到多少个不同的和(积)?因为加法(乘法)满足交换律,它们的和(积)与顺序无关,如3+5=5+3,因此不是排列问题.如果从四个数中任取两个数相减(相除),一共有多少个不同的差(商)?因为减法(除法)不满足交换律,35355353⎛⎫-≠-≠ ⎪⎝⎭,取出的两个数就与顺序有关了,属于排列问题.2.排列数(1)定义:从n 个不同元素中取出()m m n ≤个元素的所有排列的个数,叫做从n 个不同元素中取出()m m n ≤个元素的排列数,用符号mn A 表示.说明:排列和排列数是两个不同的概念:一个排列是取出的m 个元素按照一定顺序排成的一个具体的排列,是具体的“一件事”;排列数是一个数,是所有的具体排列的数目. 如:从1、2、3中每次任取出两个元素,组成一个两位数.所有的排列有12,13,23,21,31,32.其中每一个数都是一个排列,而排列数是236card()A B ==,{}121323213132B ,,,,,.(2)排列数公式:!(1)(2)(1)()()!m n n A n n n n m n m m n n m =---+=∈N -,,≤. 说明:规定0!1=;乘积形式多用于数字计算,阶乘形式多用于证明恒等式;排列数性质:11m m n n A nA --=;111m m m n n n A mA A ---=+.3.组合一般地,从n 个不同元素中,任意取出()m m n ≤个元素并成一组,叫做从n 个不同元素中取出()m m n ≤个元素的组合.说明:如果两个组合中的元素完全相同,不管它们的顺序如何都是相同的组合.组合的定义中包含两个基本内容:一是取出元素;二是并成一组,并成一组表示将元素合在一起与元素取出的顺序无关.取出的元素是否有顺序,是区分排列和组合的根本依据.4.组合数(1)定义:从n 个不同元素中,任意取出()m m n ≤个元素的所有的组合的个数,叫做从n 个不同元素中取出()m m n ≤个元素的组合数,用符号C m n 表示.(2)组合数公式(1)(1)C !m n n n n m m --+=,C m m n n m mA A =. 5.组合数的性质性质1:C C m n m n n -=;性质112:C C C m m m n n n -+=+. 说明:性质1突出了从n 个不同元素中取出m 个元素与从n 个不同元素中取出n m -个元素是一一对应关系,当2n m <时,不计算C m n 而改为计算C n m n -.性质2中注意它的变形公式的应用,如1212(1)C C C (1)m m m n n n n n n m m m -----==-,11C C mm n n m n --=等.6.解排列组合问题的方法(1)先要判断是组合问题还是排列问题,按照元素的性质分类,按照事件的发生过程分步,不重不漏.借助树形图,框图等形的工具直观帮助解题.总体上有三种方法:直接法(先安排特殊元素和特殊位置),间接法(正难则反),分类讨论法.(2)排列组合问题的16字方针,12个技巧.方针是:分类相加、分步相乘、有序排列、无序组合;技巧是:相邻问题捆绑法(莫忘松绑),不相邻问题插空法,多排问题直排法,定序问题可能法,定位问题优先法,有序分配问题先整体后局部分步法,多元问题分类法,构造模型处理法,至少、至多问题间接法,选排问题先选后排法,局部与整体问题排除法,复杂问题转化法.(3)分组问题的求法:设有m n 个元素,平均分成n 组,每组m 个,则有(1)(2)C C C C mm m mm n n m n m mnn A --种分法;平均分成n 组,再分配到n 个位置,有(1)(2)C C C C mm m m mn n m n m m--种分法.若不平均分组或不平均分组再分配,如:6个元素分成3组,一组1个,二组2个,三组3个,则有123653C C C ;若再将这3组分配给3个位置,则有12336533C C C A 种分法.三、二项式定理1.二项展开式在011222()C C C C C n n n n r n r r n n n n n n na b a a b a b a b b ---+=++++++中,右边的多项式叫做()n a b +的二项展开式,其中各项的系数C (012)r n r n =,,,,叫做二项式系数.式中的C r n r r n a b -叫做二项展开式的通项,用1r T +表示,即通项为展开式的第1r +项;1r n r r r n T C a b -+=(0r n ≤≤,r ∈N ,n +∈N ),此公式称为二项展开式的通项公式. 说明:①其右端展开式共有1n +项.②通项公式1(0)r n r r r n T C a b r n r n -++=∈∈N N ,,≤≤表示的是第1(0)r r n +≤≤项.③a 与b 的位置不能互换,对于任意实数a 与b ,上面的等式恒成立.④二项式系数指01r n n n n n C C C C ,,,,,,二项展开式的系数与a b ,前面的系数有关.2.杨辉三角杨辉三角是我国古代数学的研究成果,它给我们提供了一种研究问题的数学模型,从不同的角度观察研究模型,就可以得到二项式系数的性质:一是对称性,结合公式m n m n n C C -=理解;二是增减性与最大值,如果二项式的幂指数是偶数,中间一项的二项式系数最大,最大为2nnC ;如果二项式的幂指数是奇数,中间两项的二项式系数相等并且最大,最大为1122n n n n C C -+=;三是各项的二项式系数的和等于2n ,即012r n n n n n n C C C C +++++=,它表明集合S 含有n 个元素,那么它的所有的子集(包括空集)的个数为2n 个.另外,二项展开式中,偶数项的二项式系数的和等于奇数项的二项式系数的和,即1350242n n n n n n n C C C C C C -+++=+++=.3.二项展开式的应用(1)利用通项公式1(0)r n r r r n T C a b r n r n -++=∈∈N N ,,≤≤求指定项、特征项(常数项,有理项等)或特征项的系数.(2)近似计算,当a 与1相比较很小且n 不大时,常用近似公式(1)1n a na ±≈±,使用公式时要注意a 的条件以及对计算精确度的要求.(3)整除性问题与求余数问题,对被除式进行合理的变形,把它写成恰当的二项式的形式,使其展开后的每一项含有除式的因式或只有一、二项不能整除.(4)求展开式的各项的系数和,对形如()n ax b +,2()()n ax bx c a b c ++∈R ,,的式子求其展开式的各项的系数和常用赋值法,即只需令1x =即可,奇数项的系数和为(1)(1)2f f +-,偶数项的系数和为(1)(1)2f f --. (5)最大系数与系数最大项的求法,如求()()nax b a b +∈R ,,展开式的系数最大的项,一般采用待定系数法,设展开式的各项系数分别为121n A A A +,,,,设第r 项的系数最大,应有11r r r r A A A A -+⎧⎨⎩,,≥≥,由此解出r 即可.。

高中数学专题“计数原理”

高中数学专题“计数原理”

高中数学“计数原理”教学研究一、对“计数原理”教学知识的深层次理解计数问题是数学中的重要研究对象之一,分类加法计数原理、分步乘法计数原理是解决计数问题问题的最基本、最重要的方法,它们为解决很多的实际问题提供了思想和工具.在本章学生将学习计数基本原理、排列、组合、二项式定理及其应用,进行了解计数与现实生活的联系,会解决简单的计数问题.(一)知识结构图1.返璞归真地看两个计数原理,它们实际上是学生从小学就开始学习的加法运算与乘法运算的推广,它们是解决计数问题的理论基础.分类加法计数和分步乘法计数是处理计数问题的两种基本思想方法.2.排列、组合是两类特殊而重要的计数问题,而解决它们的基本思想和工具就是两个计数原理.教科书从简化运算的角度提出排列与组合的学习任务,通过具体实例的概括而得出排列、组合的概念;应用分步乘法计数原理得出排列数公式;应用分步计数原理和排列数公式推出组合数公式.对于排列与组合,有两个基本想法贯穿始终,一是根据一类问题的特点和规律寻找简便的计数方法,就像乘法作为加法的简便运算一样;二是注意应用两个计数原理思考和解决问题.3.二项式定理的学习过程是应用两个计数原理解决问题的典型过程,其基本思路是“先猜后证”.如可以通过对中n取1,2,3,4的展开式的形式特征的分析而归纳得出;或者直接应用两个计数原理对展开式的项的特征进行分析.这个分析过程不仅使学生对二项式的展开式与两个计数原理之间的内在联系获得认识的基础,而且也为证明猜想提供了基本思路.(二)“计数原理”在高中数学知识体系中的地位和作用为了更好的把握计数原理的要求,首先需要明确整体定位.标准对计数原理这部分内容的整体定位如下:“计数问题是数学中的重要研究对象之一,分类加法计数原理、分步乘法计数原理是解决计数问题的最基本、最重要的方法,也称为基本计数原理,它们为解决很多实际提供了思想和工具.在本摸块中,学生将学习计数基本原理、排列、组合、二项式定理及其应用,了解计数与现实生活的联系,会解决简单的计数问题.”为了更好的理解整体定位,需要明确以下几个方面的问题:(Ⅰ)两个基本计数原理是计数原理的开头课,学习它所需的先行知识与学生已熟知的数学知识联系很少,通常教师们或者感觉很简单,一带而过;或者感觉难以开头.中学数学课程中引进的关于排列、组合的计算公式都是以分类加法计数和分步乘法计数原理为基础的,而一些较复杂的排列、组合应用题的求解,更是离不开两个基本计数原理,因此必须使学生学会正确地使用两个基本计数原理,学会正确地使用基本计数原理是这一章教学中必须抓住的一个关键.(Ⅱ)正确使用两个基本原理的前提是要学生清楚两个基本原理使用的条件.而原理中提到的分步和分类,学生不是一下子就能理解深刻的,这就需要教师引导学生,帮助他们分析,找到分类和分步的具体要求——类类互斥,步步独立.(Ⅲ)分类加法计数原理,分步乘法计数原理,单纯这点学生是容易理解的,问题在于怎样合理地进行分类、分步,特别是在分类时必须做到既不重复,又不遗漏,找到分步的方法有时是比较困难的,这就要着重进行训练.(三)教学的重点和难点分析1.本章的重点是分类加法计数原理和分步乘法计数原理,排列和组合的意义,以及排列数、组合数计算公式,二项式定理.2.本章的主要难点是如何正确运用有关公式解决应用问题.在解决问题时,由于对问题本身和有关公式的理解不够准确,常常发生重复和遗漏计算、用错公式的情况.为了突破这一难点,教学中应强调一些容易混淆的概念之间的联系与区别,强调运用各个公式的前提条件,并对学生计算中出现的一些典型错误进行认真剖析.二、“计数原理”的教学策略(一)在”新课标”中的处理特点计数是人与生俱来的一种能力,也是了解客观世界的一种最基本的方法.计数问题是数学中的重要研究对象之一,分类加法计数和分步乘法计数是处理计数问题的两种基本思想方法.虽然该部分内容新教材和传统教材没有太大的区别,但在处理方式上,新教材更突出计数原理的地位和作用,强调计数原理的思想和方法,将排列、组合、二项式定理作为计数原理的一个应用实例.要求教学中要引导学生根据计数原理分析、处理问题,而不是机械地套用公式,同时要避免繁琐的、技巧性过高的计数问题.由于计数原理的思想和方法是最基本的,所有的计数问题都不会超越分类和分步这两大类,因此要求在推导排列数公式和组合数公式的过程中让学生进一步理解计数原理的思想;在用排列组合公式和组合数公式解决实际问题时,也不要只是片面地将问题归结为排列、组合两类,而是引导学生学会用计数原理来分析问题.二项式定理是中学数学的传统内容,定理揭示了二项式的正整数次幂的展开法则.这个定理既是初中代数乘法公式的推广,也是进一步研究概率中二项分步的准备知识.学习二项式定理还可以深化对组合数的认识.新课标强调利用基本计数原理对二项式定理进行证明.(二)课程标准要求的具体化和深广分析1.如何认识“通过实例,总结分类加法计数原理、分步乘法计数原理;能根据具体问题的特征,选择分类加法计数原理或分步乘法计数原理,解决一些简单的实际问题.”的含义.可以从以下两个方面来把握标准的要求:第一,通过具体问题情境和实际事例,让学生不断感悟和总结两个基本计数原理,仅仅由教材中的几个实例是不够的,教师必须补充与之匹配的事例充实教材,这样学生才能更深刻地领悟两个基本计数原理.第二,在理解具体问题时,着重分析题意,领悟题眼,用分类或者分步或两者都用,分类要做到“不重不漏”,分步要做到步骤完整,善于归纳用计数原理解决计数问题的方法,这样有利于充分利用两个基本计数原理解题.2.如何认识“通过实例,理解排列、组合的概念,能利用计数原理推导排列数公式、组合数公式,并能解决简单的实际问题.”第一,运用大量实例,理解排列的特殊性与组合的特殊性.排列的特殊性在于排列中元素的“互异性”和“有序性”,例如“从全班60名同学中选出4名同学,分别担任班长、学习委员、文艺委员、体育委员,”这就是一个排列问题.可以由学生思考为什么这个问题有元素的“互异性”和“有序性”的特点.与排列比较,组合的特殊性在于它只有元素的“互异性”而不需要考虑顺序,例如,上述问题如果改为“从全班60名同学中选出4名代表参加一项活动,”那么它就要变成一个组合问题了.本质上,“从n个不同元素中取出k个元素的组合”就是这几个不同元素组成的集合的一个k元子集.第二,排列数公式、组合数公式的推导是两个计数原理的一个应用过程,只有理解了排列、组合的概念,并会用两个计数原理解决实际问题,才能把排列数公式、组合数公式推导出来.第三,在教学中注意通过大量实例运用排列数公式、组合数公式解决,但是组合数的性质只作一般性的探究,至于应用不作重点要求,更不研究排列数的性质,在数学中必须引起注意.3.如何认识“能用计数原理证明二项式定理”利用计数原理求出的展开式的思维要点如下:第一,是个多项式乘法问题.根据多项式乘法,它的展开式的每一项,应是每一个多项式中某一项彼此相乘,所构成的单项式.第二,展开式的每一项是通过步乘积构成的,每一步有两种选择,因此,展开式的项数为.第三,展开式的每一项是由是由若干个和若干个的乘积构成,和的个数之和等于,它可以表示成:.第四,在展开式中,形如的同类项个数是多少呢?由于个来自不同的个多项式,它的个数是组合数.第五,在中,共有种不同的同类项,根据加法原理,其展开式为:(a+b)n=.这样,我们就通过乘法原理和加法原理证明了二项式定理,这是一种构造性的证明,即可以探索出问题的结果,同时可以证明出结果的正确性.4.如何理解“会用二项式定理解决与二项展开式有关的简单问题.”结合“杨辉三角”和从函数的角度来分析二项式系数的一些性质(①对称性②增减性与最大值③各二项式系数的和),在探究以上性质的过程中,实际上是二项式定理的应用,在教学中列举实例,将二项式系数的性质充分应用.(三)教学中的几个思维要点要点1:简单的计数问题讨论是有限集合所含元素的个数.排列数、组合数都是特定集合所含元素的个数,在讨论简单计数问题时,应明确所讨论的集合中元素的基本特征,这是解决简单计数问题的基点.要点2:正确使用基本计数原理是学习本部分内容的关键.中学数学课程中关于排列组合的计算公式都是以基本的计数原理为基础的,而一些较复杂的排列组合应用问题的求解,离不开两个计数原理,两个基本的计数原理是解决简单计数问题的通性通法,排列问题、组合问题以及二项式定理等都是依赖这些通性通法解决的.要点3:理解两个基本计数原理使用的条件是正确使用两个基本计数原理的前提.对于计数原理中的分布和分类,学生不是一下子就能理解深刻的,需要教师引导,帮助学生找到分类和分步的特征和要求:分类要“类类互斥”,分步要“步步独立”.(四)典型例题的教学1.分清两个原理掌握分类计数原理和分步计数原理是复习好本章的基础.其应用贯穿于本章的始终.正确运用两个原理的关键在于:(1)先要搞清完成的是怎样的“一件事”.例1.4名同学选报跑步、跳高、跳远三个项目,每人报一项,共有多少种报名方法?分析:要完成的是“4名同学每人从三个项目中选报一项报名”这件事,因为每人必报一项,四人都报完才算完成,于是应按人分步,且分为四步,又每人可在三项中选一项,选法为3种,所以共有:3×3×3×3=34=81种报名方法.例2.4名同学争夺跑步、跳高、跳远三项冠军,共有多少种可能的结果?分析:完成的是“三个项目冠军的获取”这件事,因为每项冠军只能有一人获得,三项冠军都有得主,这件事才算完成,于是应以“确定三项冠军得主”为线索进行分步.而每项冠军是四人中的某一人,有4种可能情况,于是共有4×4×4=43=64种可能的情况.例3.乘积(a1+a2+a3)(b1+b2+b3+b4)(c1+c2+c3+c4+c5)展开后共有多少项?分析:因为展开后的每一项为第一个括号中的一个,第二括号中的一个与第三个括号中的一个的乘积,所以应分三步m1=3,m2=4,m3=5,于是展开后共有m1×m2×m3=3×4×5=60项.例4.有4部车床,需加工3个不同的零件,其不同的安排方法有()A.34B.43 C43 D.44分析:事件为“加工3个零件”,每个零件都加工完这件事就算完成,应以“每个零件”分步,共3步,而每个零件能在四部车床中的任一台上加工,所以有4种方法,于是安排方法为4×4×4=43=64种,故选B.例5.5名同学去听同时进行的4个课外知识讲座,每个同学可自由选择,则不同的选择种数是()A.54B.45C.5×4×3×2D.分析:因为5名同学都去听讲座,这件事才能完成,所以应以同学进行分步,又因为讲座是同时进行的,每个同学只能选其中一个讲座来听,于是有4种选择,当完成时共有4×4×4×4×4=45种不同的选法,故选B.例6.设集合A=,B=,则从A集到B集所有不同映射的个数是()A.81B.64C.12D.以上都不正确分析:因映射为从A到B,所以A中每一元素在B中应有一元素与之对应,也就是A中所有元素在B中都有象,因此,应按A中元素分为4步,而对于A中每一元素,可与B中任一元素对应,于是不同对应个数应为3×3×3×3=34=81,故选A.(2)明确事件需要“分类”还是“分步 .例7.用1,5,9,13任意一个数做分子,4,8,12,16中任意一个数作分母,可构造多少个不同的分数?可构造多少个不同的真分数?解:由分步计数原理,可构造N=44=16个不同的分数由分类计数原理,可构造N=4+3+2+1=10个不同的真分数例8. 已知集合,,映射,当且时,为奇数,则这样的映射f的个数是()A.10个 B.18个 C.32个 D.24个分析当取-1时,,共有4种取法;当取0时,,有2种取法;当取1时,,显然是奇数,共有4种选法.因此,这样的映射f的个数是是:种.(3)“分类”是要注意“类”与“类”之间的独立性和并列性.“分步”时要注意“步”与“步”之间的连续性.例9. 小李有10个朋友,其中两人是夫妻,他准备邀请其中4人到家中吃饭,这对夫妻或者都邀请,或者都不邀请,有几种请客方法?解:请客方法以“这对夫妻是否被邀请”可分两类:(1)请其中的夫妻二人,则还须从余下的8人中选请2个,有种方法.(2)不请其中的夫妻二人,则应从其余的8人中选请4人,有种方法.由分类计数原理请客方法共有+=98种.例10.有10双互不相同的鞋子混装在一只口袋中,从中任意取出4只,试求各有多少种情况出现如下结果.①4只鞋子没有成双的;②4只鞋中有2只成双,另两支不成双.解:①从10双鞋子中选取4双,有种不同选法;再在每双鞋子中各取一只,分别有取法,根据乘法原理,选取种数为:N==3360(种)②方法1:先选取一双有种选法,再从9双鞋种选取2双鞋有种选法,每双鞋各取一只,有种选法,根据乘法原理,选取种数为:N==1140(种)方法2:先选取一双有种选法,再从18只鞋中选取2只鞋有,而其中成双的可能性有9种,根据乘法原理,选取种数为:N=(-9)例11. 有红、蓝、绿三种颜色的卡片,每种颜色均有A、B、C、D、E字母的各一张,现每次取出四张,要求字母各不相同,三种颜色齐备,问有多少种不同的取法?分析:每次取出四张,所以有一种颜色的卡片取两张,这种颜色的取法数有,确定了颜色之后,再在这种颜色里取两个字母,方法数有;最后,在剩下的两种颜色的卡片及每种颜色下的三个字母中分别取一个,方法数有:故N=.2.分清是排列问题还是组合问题这两个概念共同点都是指从n个不同元素中进行不重复抽取的情况.分清一个具体问题是排列问题还是组合问题的关键在于看从n个不同元素取出m(m n)个元素是否与顺序有关,有序就是排列问题,无序则属于组合问题.例12.某街道有十只路灯,为节约用电又看清路面,可以把其中的三只灯关掉,但不能同时关掉相邻的两只,在两端的灯也不能关掉的情况下,求满足条件的关灯方法有多少种?解:问题等价于在七只亮着的路灯产生的六个空档中放入三只熄掉的路灯,因此满足条件的关灯方法有种.例13.有7名同学排成一排,甲同学最高,排在中间,其它六名同学身高不相等,甲的左边和右边以身高为准,有高到低排列,共有排法总数是分析:此问题相当于求六个元素中取出三个元素的组合数. 所以满足条件的排法有:例14.从12名队员中组队打篮球比赛,要求其中一队的年龄最小的队员也比另一队中年龄最大的队员要大,问有多少种不同的组队方法?分析:从12名队员中选两名观战的每一种选法,对应着一种组队方法:=66例15. 从0,1,……9这十个数字中任取3个组成没有重复数字的三位数,且要求百位数大于十位数,十位数大于个位数,这样的三位数有多少个?分析:显然顺序只有一种,任取3个数的组合数就是这样的三位数的个数,即个.例16.从2,3,5,7四个数中任取不同的两数,分别作对数的底数和真数问:(1)可得多少个不同的对数值?(2)可得多少个大于1的对数值?分析:(1)与顺序有关,是排列问题.;(2) 与顺序无关,是组合问题. .例17. 甲乙两队各出7名队员按事先排好的顺序出场参加围棋擂台赛,双方先由1号队员比赛,负者被淘汰,胜者在与负方2号队员比赛,......直到有一方队员全被淘汰为止,另一方获胜,形成一种比赛过程.那么,所有可能出现的比赛过程共有多少种?分析:设甲队:乙队:下标表示事先安排好的出场顺序,若以依次被淘汰的队员为顺序,比赛过程可类比为这14个字母互相穿插的一个排列.如:最后是胜队中不被淘汰的队员,如,和未参赛的队员,如所以比赛过程可表示为14个位置中取7个位置安排甲队队员,其余位置安排乙队队员.故比赛过程的总数:=3432.3.对复杂的排列组合问题,能正确解决的关键:做好分类,将复杂问题简单化.例18. 一天排语、数、外、生、体、班六节课(上午4节,下午2节),要求:第1节不排体育,数学课一定排在上午,班会一定排在下午,问这样的条件下,共有多少种排课表的方法?解法1:以数学课分类:(1)数学课排在第1节,则有种(2)数学课排在第2,3,4节之一,则有=108种由(1)(2)知,共有156种解法2:以体育课分类:(1)体育课在上午:=108种(2)体育课在下午:=48 .共有156种.例19. 在某次数学测验中,学号i(i=1,2,3,4)的四位同学考试成绩,且满足,则这四位同学的考试成绩的所有可能情况的种数为解:分两类:①共有种;②共有种.例20. 如果三位数的十位数字既大于百位数字也大于个位数字,则这样的三位数一共有()A、240个B、285个C、231个D、204个分析:①如果三个数字是不重复的:含0:=36;不含0:.共有204个.②如果可以重复:=36. 综合①②:共有240种.例21.在5名乒乓球队员中,其中有2名老队员和3名新队员.现从中选出3名队员排成1、2、3号参加团体比赛,则入选的3名队员中至少有一名老队员,且1、2号中至少有1名新队员的排法有_______种.(以数作答)解:两老一新时, 有种排法;两新一老时, 有种排法,即共有48种排法.例22.某外商计划在四个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有 ( )A.16种B.36种C.42种D.60种解析:投资于2个城市的方案有;投资于3个城市的方案有种.所以,共60种.答案选D.三、学习目标的检测正确使用两个基本原理的前提是要学生清楚两个基本原理使用的条件。

高考数学复习热点11 计数原理

高考数学复习热点11 计数原理

热点11 计数原理【命题趋势】计数原理包含排列组合与二项式定理,在高考数学中通常是以选择题的形式呈现.另外在解答题中与统计概率相结合比较普遍.高考中通常难度不是很大,主要考查是排列与组合的先后顺序或者是有条件限制的排列与组合.二项式定理也是高考考查的一个重点,主要考查二项式定理的展开.本专题通过列举排列组合与二项式定理常见的考题类型,总结此些类型题目的解题方法以及易错点,能够让你在高考中遇到计数原理类型的题目能够迎刃而解.【满分技巧】捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如 此继续下去,依次即可完成.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 对于二项式定理的应用,只要会求对应的常数项以及对应的n 项即可,但是应注意是二项式系数还是系数.【考查题型】选择题【限时检测】(建议用时:35分钟)1.(2021·全国高三专题练习)的展开式中各项的()()()()()234511111x x x x x -----指数之和再减去各项系数乘以各项指数之和的值为()A .0B .C .D .5590120【答案】C【分析】()()()()()234511111x x x x x -----,151413109876521x x x x x x x x x x x =--+++---++-所以,的展开式中各项的指数之和为()()()()()234511111x x x x x -----,15141310987652190++++++++++=展开式中各项系数乘以各项指数之和为,1514131098765210--+++---++=因此,所求结果为.90090-=故选:C.2.(2021·山东高三专题练习)已知若()20121nn n px b b x b x b x -=+++⋅⋅⋅+,则( )123,4b b =-=,p =A .1B .C .D .121314【答案】C【分析】展开式的通项为:,()1n px -()()()11n rr rrrr n n T C px C px -+=⋅⋅-=⋅-故,,解得,.()113nb C p pn =⋅-=-=-()2222142n n n b C p p -=⋅==9n =13p =故选:C.3.(2021·山东高三专题练习)2019年10月17日是我国第6个“扶贫日”,某医院开展扶贫日“送医下乡”医疗义诊活动,现有五名医生被分配到四所不同的乡镇医院中,医生甲被指定分配到医院,医生乙只能分配到医院或医院,医生丙不能分配到医生甲、A A B 乙所在的医院,其他两名医生分配到哪所医院都可以,若每所医院至少分配一名医生,则不同的分配方案共有( )A .18种B .20种C .22种D .24种【答案】B【分析】根据医院A 的情况分两类:第一类:若医院A 只分配1人,则乙必在医院B ,当医院B 只有1人,则共有种不2232C A 同分配方案,当医院B 有2人,则共有种不同分配方案,所以当医院A 只分配1人1222C A 时,共有种不同分配方案;2232C A +122210C A =第二类:若医院A 分配2人,当乙在医院A 时,共有种不同分配方案,当乙不在A 医33A 院,在B 医院时,共有种不同分配方案,所以当医院A 分配2人时,1222C A 共有种不同分配方案;33A +122210C A =共有20种不同分配方案.故选:B4.(2021·全国高三专题练习)某人设计一项单人游戏,规则如下:先将一棋子放在如图所示正方形(边长为2个单位)的顶点处,然后通过掷骰子来确定棋子沿正方ABCD A 形的边按逆时针方向行走了几个单位,如果掷出的点数为,则棋子就按逆()1,2,,6i i =⋅⋅⋅时针方向行走个单位,一直循环下去.则某人抛掷三次骰子后棋子恰好又回到起点处的i A所有不同走法共有( )A .21种B .22种C .25种D .27种【答案】D【分析】由题意,正方形的周长为8,抛掷三次骰子的点数之和为8或16,ABCD ①点数之和为8的情况有:;;;;,排列方法共有1,1,61,2,51,3,42,2,42,3,3种;133113333321C A A C C ++++=②点数之和为16的情况有:;,排列方法共有种.4,6,65,5,611336C C +=所以,抛掷三次骰子后棋子恰好又回到起点处的所有不同走法共有种.A 21627+=故选:D.5.(2021·山东高三专题练习)已知参加某项活动的六名成员排成一排合影留念,且甲乙两人均在丙领导人的同侧,则不同的排法共有( )A .240种B .360种C .480种D .600种【答案】C【解析】:用分类讨论的方法解决.如图中的6个位置,123456①当领导丙在位置1时,不同的排法有种;55120A =②当领导丙在位置2时,不同的排法有种;143472C A =③当领导丙在位置3时,不同的排法有种;2323233348A A A A +=④当领导丙在位置4时,不同的排法有种;2323233348A A A A +=⑤当领导丙在位置5时,不同的排法有种;143472C A =⑥当领导丙在位置1时,不同的排法有种.55120A =由分类加法计数原理可得不同的排法共有480种.故选C .6.(2021·山东高三专题练习)某电视台的一个综艺栏目对六个不同的节目排演出顺序,最前只能排甲或乙,最后不能排甲,则不同的排法共有( )A .240种B .288种C .192种D .216种【答案】D【详解】最前排甲,共有种;最前排乙,最后不能排甲,有种,根55A 120=据加法原理可得,共有种,故选D .7.(2020·全国高三专题练习(理))某节目组决定把《将进酒》《山居秋暝》《望岳》《送杜少府之任蜀州》和另外确定的两首诗词排在后六场做节目开场诗词,并要求《将进酒》与《望岳》相邻,且《将进酒》排在《望岳》的前面,《山居秋暝》与《送杜少府之任蜀州》不相邻,且均不排在最后,则后六场开场诗词的排法有( )A .72种B .48种C .36种D .24种【答案】C【分析】首先可将《将进酒》与《望岳》捆绑在一起和另外确定的两首诗词进行全排列,共有种排法,336A =再将《山居秋暝》与《送杜少府之任蜀州》插排在3个空里(最后一个空不排),共有种排法,236A =则后六场开场诗词的排法有种,6636⨯=故选:C.8.(2020·全国高三专题练习(理))为向国际化大都市目标迈进,某市今年新建三大类重点工程,它们分别是30项基础设施类工程、20项民生类工程和10项产业建设类工程.现有3名民工相互独立地从这60个项目中任选一个项目参与建设,则这3名民工选择的项目所属类别互异的概率是()A .B .C .D .12131416【答案】D【分析】记第名民工选择的项目属于基础设施类、民生类、产业建设类i 分别为事件,,,.i A i B i C 1,2,3i =由题意,事件,,,相互独立,i A i B i C 1,2,3i =则,,,,301()602i P A ==201()603i P B ==101()606i P C ==1,2,3i =故这3名民工选择的项目所属类别互异的概率是.331111()62366i i i P A P A B C ==⨯⨯⨯=故选:D.9.(2020·全国高三专题练习(理))在()()()()()2345111111x x x x x ++++++++++的展开式中,含项的系数是( )2xA .B .1015C .D .2025【答案】C【分析】解法一:中含的项为,中含的项为,中()21x +2x 222C x ()31x +2x 223C x ()41x +含的项为,中含的项为,2x 224C x ()51x +2x 225C x 则含项的系数为.2x 2222234520C C C C +++=故选:C .解法二:由等比数列求和公式知:,()()()()()()6234511111111x x x x x x x+-++++++++++=中含的系数为,原式含项的系数为.()31x + 3x 3620C =∴2x 20故选:C .10.(2020·全国高三专题练习(理))若(1+x +x 2)6=a 0+a 1x +a 2x 2+…+a 12x 12,则a 2+a 4+…+a 12=()A .284B .356C .364D .378【答案】C【分析】令x =1,则a 0+a 1+a 2+…+a 12=36, ①令x =-1,则a 0-a 1+a 2-…+a 12=1, ②①②两式左右分别相加,得2(a 0+a 2+…+a 12)=36+1=730,所以a 0+a 2+…+a 12=365,再令x =0,则a 0=1,所以a 2+a 4+…+a 12=364.故选:C.11.(2020·山西高三月考(理))如图所示的是古希腊数学家阿基米德的墓碑上刻着的一个圆柱,圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等,相传这个图形表达了阿基米德最引以为荣的发现.设圆柱的体积与球的体积之比为,圆柱的表面积与球的表面m 积之比为,则的展开式中的常数项是( )n 621m x nx ⎛⎫- ⎪⎝⎭A .15B .-15C .D .13541354-【答案】A【分析】:设球的半径为,则圆柱的底面半径为,高为,所以圆柱的体积R R 2R ,球的体积,所以.又圆柱的表面23122V R R R ππ=⨯=3243V R π=313223423V R m V R ππ===积为,球的表面积为,所以2212226S R R R R πππ=⨯+=224S R π=,,,展开式的通项21226342S R n S R ππ===1m n =662211m x x nx x ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,令,解得,其常数项为.()123161rr rr T C x-+=-1230r -=4r =()42426115C x x ⎛⎫-= ⎪⎝⎭故选:A12.(2020·江西吉安市·白鹭洲中学高三期中(理))已知随机变量,且()2~1,X N σ,则的展开式中的系数为( )()()0P X P X a ≤=≥()43221ax x x ⎛⎫+⋅+ ⎪⎝⎭2x A .40B .120C .240D .280【答案】D【分析】根据正态曲线的性质可知,,解得,012a +=⨯2a =的展开式的通项公式为,,()312x +132r r r r T C x +=⋅{}0,1,2,3r ∈的展开式的通项公式为,,422x x ⎛⎫+ ⎪⎝⎭()243814422s s s s s s s s T C x c x -+--++=⋅=⋅{}0,1,2,3,4s ∈令两式展开通项之积的指数为,可得或,x 382r s -+=33r s =⎧⎨=⎩02r s =⎧⎨=⎩∴的展开式中的系数为()432212x x x ⎛+⋅⎫+ ⎪⎝⎭2x ,333300223434222225624280C C C C ⋅⋅⋅+⋅⋅⋅=+=13.(2020·湖南长沙市·高三月考)某单位有6名员工,2020年国庆节期间,决定从6人中留2人值班,另外4人分别去张家界、南岳衡山、凤凰古城、岳阳楼旅游.要求每个景点有1人游览,每个人只游览一个景点,且这6个人中甲、乙不去衡山,则不同的选择方案共有()A .120种B .180种C .240种D .320种【答案】C【分析】以人为对象,分类讨论:甲不值班乙值班:;甲值班乙不值班:;31343372C C A =31343372C C A =甲乙都不值班;;甲乙都值班;.21342372C C A =4424A =故不同的选择方案.72727224240N =+++=故选:C14.(2020·全国高三专题练习(理))中国有十二生肖,又叫十二属相,每一个人的出生年份对应了十二种动物(鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪)中的一种,现有十二生肖的吉祥物各一个,三位同学依次选一个作为礼物,甲同学喜欢牛和马,乙同学喜欢牛、狗和羊,丙同学哪个吉祥物都喜欢,如果让三位同学选取礼物都满意,则选法有( )A .种B .种C .种D .种30506090【答案】B【分析】若同学甲选牛,那么同学乙只能选狗和羊中的一种,丙同学可以从剩下的10种任意选,所以共有1121020C C ⋅=若同学甲选马,那么同学乙能选牛、狗和羊中的一种,丙同学可以从剩下的10种任意选,所以共有1131030C C ⋅=所以共有种203050+=故选B15.(2020·湖北武汉市·华中师大一附中高三其他模拟(理))2020年湖北抗击新冠肺炎期间,全国各地医护人员主动请缨,支援湖北,某地有3名医生、6名护士来到武汉,他们被随机分到3家医院,每家医院1名医生、2名护士,则医生甲和护士乙分到同一家医院的概率为()A .B .C .D .16121813【答案】D【分析】3名医生平均分成3组,有1种分法,6名护士平均分成3组有种分法,226433156156C C A ⨯==3名医生、6名护士分到3家医院,每家医院1名医生、2名护士的分配方法有(种),333315540A A ⨯⨯=医生甲和护士乙分到同一家医院的分配方法有(种),211224532222180C C C A A A ⨯⨯⨯=则医生甲和护士乙分到同一家医院的概率为.18015403=故选:D .16.(2020·全国高三其他模拟(理))公元五世纪,数学家祖冲之估计圆周率的值的范π围是:,为纪念数学家祖冲之在圆周率研究上的成就,3.141592631415927π<< .某教师在讲授概率内容时要求学生从小数点后的6位数字1,4,1,5,9,2中随机选取两个数字做为小数点后的前两位(整数部分3不变),那么得到的数字大于3.14的概率为( )A .B .C .D .15174567【答案】D【分析】由题意从小数点后的6位数字中随机选取两个数字做为小数点后的前两位,可分为以下情况:①选出两个1,共可组成1个数字;②选出一个1,共可组成个不同数字;12428C A ⋅=③没有选出1,共可组成个不同数字;2412A =所以共可组成个不同的数字;181221++=其中小于等于3.14的数字有:3.11、3.12、3.14,共3个,则大于3.14的数字个数为18,故所求概率.186217P ==故选:D.17.(2020·全国高三专题练习(理))某学校实行新课程改革,即除语、数、外三科为必考科目外,还要在理、化、生、史、地、政六科中选择三科作为选考科目.已知某生的高考志愿为某大学环境科学专业,按照该大学上一年高考招生选考科目要求理、化必选,为该生安排课表(上午四节、下午四节,每门课每天至少一节),已知该生某天最后两节为自习课,且数学不排下午第一节,语文、外语不相邻(上午第四节和下午第一节不算相邻),则该生该天课表有( ).A .444种B .1776种C .1440种D .1560种【答案】B【分析】理、化、生、史、地、政六选三,且理、化必选,所以只需在生、史、地、政中四选一,有(种).14C 4=对语文、外语排课进行分类,第1类:语文、外语有一科在下午第一节,则另一科可以安排在上午四节课中的任意一节,剩下的四科可全排列,有(种);114244192C C A =第2类:语文、外语都不在下午第一节,则下午第一节可在除语、数、外三科的另三科中选择,有(种),133C =语文和外语可都安排在上午,即上午第一、三节,上午第一、四节,上午第二、四节3种,也可一科在上午任一节,一科在下午第二节,有(种),14C 4=其他三科可以全排列,有(种).()12332334252C A A +=综上,共有(种).()41922521776⨯+=故选:B18.(2020·全国高三专题练习)函数的导函数为,则的展开261()(=-f x x x ()f x '()f x '式中含项的系数为( )2x A .20B .C .60D .20-60-【答案】D【分析】函数导函数为,()f x 25211()6()(2)f x x x x x '=-+则的展开式的通项公式为,251(x x -251031551()()(1)r r r r r r r T C x C x x --+=-=-令,则,此时含项为,1031r -=3r=x 335(1)10C x x -=-再令,则,此时含项为,1034r -=2r =4x 22445(1)10C x x -=所以含的项为,2x 4221(10210660x x x x x -⨯+⨯⨯=-故含项的系数为,2x 60-故选:.D 19.(2020·湖南郴州市·高三二模(理))中国古代中的“礼、乐、射、御、书、数”合称“六艺”.“礼”,主要指德育;“乐”,主要指美育;“射”和“御”,就是体育和劳动;“书”,指各种历史文化知识;“数”,数学.某校国学社团开展“六艺”课程讲座活动,每艺安排一节,连排六节,一天课程讲座排课有如下要求:“乐”不排在第一节,“射”和“御”两门课程不相邻,则“六艺”课程讲座不同的排课顺序共有( )种.A .408B .120C .156D .240【答案】A【分析】解:根据题意,首先不做任何考虑直接全排列则有(种),66720A =当“乐”排在第一节有(种),55120A =当“射”和“御”两门课程相邻时有(种),2525240A A =当“乐”排在第一节,且“射”和“御”两门课程相邻时有(种),242448A A =则满足“乐”不排在第一节,“射”和“御”两门课程不相邻的排法有(种),72012024048408--+=故选:.A 20.(2020·全国高三专题练习)展开式中的常数项为()6331x x ⎫⎫-⎪⎪⎭⎭A .B .15C .D .6666-15-【答案】C展开式的通项公式为,而61x ⎫-⎪⎭()363216611rrrr r rr T C C x x --+⎛⎫=⋅⋅-=⋅-⋅ ⎪⎝⎭,故要想产生常数项,则或3323323x x x ---=-333122r r -=⇒= ,则所求常数为.33302rr -=⇒=()106621315C C ⨯⨯--⨯=-故选:C.。

计数原理(最全面的方法汇总)

计数原理(最全面的方法汇总)

计数原理(排列组合)插空法,挡板法,捆绑法,优选法,平均分配问题等例题精选+练习一、挡板法(插板法、隔板法、插刀法)将n个相同的元素排成一行,n个元素之间出现了(n-1)个空档,现在我们用(m-1)个“档板”插入(n-1)个空档中,就把n个元素隔成有序的m份,每个组依次按组序号分到对应位置的几个元素(可能是1个、2个、3个、4个、….),这样不同的插入办法就对应着n个相同的元素分到m组的一种分法,这种借助于这样的虚拟“档板”分配元素的方法称之为挡板法。

(1)例题解读【例1】共有10完全相同的球分到5个盒里,每个盒至少要分到一个球,问有几种不同分法?解析:我们可以将10个相同的球排成一行,10个球之间出现了9个空隙,现在我们用4个档板”插入这9个空隙中,就“把10个球隔成有序的5份,每个盒子依次按盒子序号分到对应位置的几个球(可能是1个、2个、3个、4个、5个),这样,借助于虚拟“档板”就可以把10个球分到了5个班中。

【基本题型的变形(一)】题型:有n个相同的元素,要求分到m组中,问有多少种不同的分法?解题思路:这种问题是允许有些组中分到的元素为“0”,也就是组中可以为空的。

对于这样的题,我们就首先将每组都填上1个,这样所要元素总数就m个,问题也就是转变成将(n+m)个元素分到m组,并且每组至少分到一个的问题,也就可以用插板法来解决。

【例2】有8个相同的球放到三个不同的盒子里,共有()种不同方法.A.35 B.28 C.21 D.45解答:题目允许盒子有空,则需要每个组添加1个,则球的总数为8+3×1=11,此题就有C (10,2)=45(种)分法了,选项D为正确答案。

【基本题型的变形(二)】题型:有n个相同的元素,要求分到m组,要求各组中分到的元素至少某个确定值S(s>1,且每组的s值可以不同),问有多少种不同的分法?解题思路:这种问题是要求组中分到的元素不能少某个确定值s,各组分到的不是至少为一个了。

专题01 两个计数原理(原卷版)

专题01 两个计数原理(原卷版)

专题01 两个计数原理类型一、加法原理例1.(2023·全国·高三专题练习)某奥运村有A,B,C三个运动员生活区,其中A区住有30人,B区住有15人,C区住有10人.已知三个区在一条直线上,位置如图所示.奥运村公交车拟在此间设一个停靠点,为使所有运动员步行到停靠点路程总和最小,那么停靠点位置应在()A.A区B.B区C.C区D.A,B两区之间例2.(2023·全国·高三专题练习)现有5幅不同的油画,2幅不同的国画,7幅不同的水彩画,从这些画中选一幅布置房间,则不同的选法共有()A.7种B.9种C.14种D.70种例3.(2023·全国·高三专题练习)2010年世界杯足球赛预计共有24个球队参加比赛,第一轮分成6个组进行单循环赛(在同一组的每两个队都要比赛),决出每个组的一、二名,然后又在剩下的12个队中按积分取4个队(不比赛),共计16个队进行淘汰赛来确定冠亚军,则一共需比赛()场次.A.53B.52C.51D.50例4.(2023·全国·高三专题练习)在北京冬奥会短道速滑混合团体2000米接力决赛中,中国队成功夺冠,为中国体育代表团夺得本届冬奥会首金.短道速滑男女接力赛要求每队四名运动员,两男两女,假设男女队员间隔接力,且每位队员只上场一次,则不同的上场次序的种数为()A.8B.16C.18D.24例5.(2023·高二单元测试)某学校为落实“双减政策,在每天放学后开设拓展课程供学生自愿选择,开学第一周的安排如下表.小明同学要在这一周内选择编程、书法、足球三门课,不同的选课方案共有()A.15种B.10种C.8种D.5种类型二、乘法原理例6.(2023·高二课时练习)一次时装表演,有7顶不同款式的帽子,12件不同款式的上衣和8条不同款式的裤子.一位模特要从这些帽子、上衣和裤子中各选1款穿戴,则有______种不同的选法.例7.(2023·高二课时练习)4个学生各写一张贺卡放在一起,然后每人从中各取一张,要求不能取自己写的那张贺卡,但有1个学生取错了,则不同的取法共有______种.例8.(2023·高二课时练习)有四位学生参加三项竞赛,要求每位学生必须参加其中一项竞赛,有______种参赛情况.例9.(2023·高二课时练习)有四位学生参加三项竞赛,要求每项竞赛只需其中一位学生参加,有______种参赛情况.例10.(2023·高二课时练习)甲、乙、丙、丁四个人各写一张贺卡,放在一起,再各取一张不是自己所写的贺卡,共有______种不同的取法.例11.(2023·高二课时练习)某酒店的大楼有18层,每层12个房间,如果每个房间都安装一个电话分机,那么用1、2、3、4、5、6这六个数字所组成的三位数作为各分机的号码,是否够用?例12.按序给出a,b两类元素,a类中的元素排序为甲、乙、丙、丁、戊、己、庚、辛、壬、癸,b类中的元素排序为子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.在a,b两类中各取1个元素组成1个排列,求a类中选取的元素排在首位,b类中选取的元素排在末位的排列的个数.a类的10个元素叫作天干,b类的12个元素叫作地支.两者按固定顺序相配,形成古代纪年历法,求天干各地支相配可形成的纪年历法可以表示多少年.例13.某班有男生30名、女生24名,从中任选男生和女生各1名代表班级参加比赛,共有多少种不同的选法?类型三、基本计数原理的综合应用例14.(2023秋·河北·高二河北省文安县第一中学校考期末)如图,要让电路从A处到B处接通,不同的路径条数为()A.5B.7C.8D.12例15.(2023·高二单元测试)一杂技团有8名会表演魔术或口技的演员,其中有6人会表演口技,有5人会表演魔术,现从这8人中选出2人上台表演,1人表演口技,1人表演魔术,则不同的安排方法有______种.例16.(2023·全国·高三专题练习)如图,一条电路从A处到B处接通时,可以有_____________条不同的线路(每条线路仅含一条通路).例17.(2023春·四川绵阳·高三绵阳中学校考阶段练习)小小的火柴棒可以拼成几何图形,也可以拼成数字.如下图所示,我们可以用火柴棒拼出1至9这9个数字比如:“1”需要2根火柴棒,“7”需要3根火柴棒.若用8根火柴棒以适当的方式全部放入右面的表格中(没有放入火柴棒的空位表示数字“0”),那么最多可以表示无重复数字的三位数有______个例18.(2023·全国·高三专题练习)某学校每天安排4项课后服务供学生自愿选择参加.学校规定:(1)每位学生每天最多选择1项;(2)每位学生每项一周最多选择1次.学校提供的安排表如下:例19.(2023·高二课时练习)书架上放有3本不同的数学书,5本不同的语文书,6本不同的英语书.(1)从这些书中任取一本,有多少种不同的取法?(2)从这些书中取数学书、语文书、英语书各一本,有多少种不同的取法?(3)从这些书中取不同科目的书共两本,有多少种不同的取法?例20.(2023·高二单元测试)在某次国际高峰论坛上,组委会要从6个国内媒体团和3个国外媒体团中选出3个媒体团进行提问,要求这3个媒体团中既有国内媒体团又有国外媒体团,且国内媒体团不能连续提问,则不同的提问方式的种数是多少?。

计数原理题型总结

计数原理题型总结
计数原理是组合数学的一个基本原理,用于计算具有特定属性的对象的个数。

常见的计数原理题型包括排列、组合和二项式系数等。

1. 排列问题:
- n个元素的全排列个数为n!,其中n表示元素的个数。

- 从n个元素中取出m(m≤n)个元素的排列个数为A(n,m)
= n!/(n-m)!,称为从n个元素中取出m个元素的排列数。

2. 组合问题:
- 从n个元素中取出m(m≤n)个元素的组合个数为C(n,m)
= n!/((n-m)!·m!),称为从n个元素中取出m个元素的组合数。

- 组合数C(n,m)满足下列性质:
(1)C(n,0) = C(n,n) = 1;
(2)C(n,m) = C(n,n-m);
(3)C(n,m) = C(n-1,m) + C(n-1, m-1);
3. 二项式系数:
- 二项式系数的计算公式为:C(n,m) = C(n-1,m) + C(n-1, m-1)。

- 二项式系数有许多重要的性质,如:
(1)二项式定理:(a+b)^n = C(n,0)a^n·b^0 + C(n,1)a^(n-1)·b^1 + ... + C(n,n)a^0·b^n;
(2)二项式系数的对称性:C(n,m) = C(n,n-m);
(3)二项式系数的递推关系:C(n,m) = C(n-1,m) + C(n-
1,m-1);
(4)二项式系数的性质:C(n,m) = C(n-1,m-1) + C(n-2,m-1)
+ ... + C(m,m-1)。

通过理解和熟练运用计数原理,可以帮助解决各种实际问题,如排列组合选择问题、概率计算问题等。

计数原理-完整版课件

解析: ∵C06+C16+C26+C36+C46+C56+C66=26=64, ∴C16+C26+C36+C46+C56=64-2=62. 答案: 62
• 7.某校高中部,高一有6个班,高二有7个班,高三有8个班,学 校利用星期六组织学生到某厂进行社会实践活动.
• 1.书架上有不同的语文书10本,不同的英语书7本,不同的数学 书5本,现从中任选一本阅读,不同的选法有( )
• A.22种 B.350种
• C.32种 D.20种
• 解析: 由分类加法计数原理得,不同的选法有10+7+5=22 种.
• 答案: A
• 2.一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的 坐法种数为( )
两通项相乘得:C6r x3r Ck10x-4k=C6r C1k0x3r -4k,

r 3

k 4
=0,得4r=3k,这样一来,(r,k)只有三组:
(0,0),(3,4),(6,8)满足要求.
故常数项为:1+C36C410+C66C810=4 246.
答案: 4 246
6.C16+C26+C36+C46+C56的值为________.
• A.3×3! B.3×(3!)3
• C.(3!)4 D.9!
• 解析: 把一家三口看作一个排列,然后再排列这3家,所以有 (3!)4种.
• 答案: C
• 3.(2013·山东卷)用0,1,…,9十个数字,可以组成有重复数字的 三位数的个数为( )
• A.243 B.252
• C.261 D.279
• 解析: 能够组成三位数的个数是9×10×10=900,能够组成无 重复数字的三位数的个数是9×9×8=648,故能够组成有重复数字的三 位数的个数是900-648=252.

高考数学专题复习十-10.1计数原理、排列与组合-模拟练习题(附答案)

专题十计数原理10.1计数原理、排列与组合基础篇考点计数原理、排列与组合考向一两个计数原理的应用1.(2023届河南洛阳模拟,1)一个电路中含有(1)(2)两个零件,零件(1)含有A,B两个元件,零件(2)含有C,D,E三个元件,每个零件中有一个元件能正常工作则该零件就能正常工作,则该电路能正常工作的线路条数为()A.9B.8C.6D.5答案C2.(2023届黑龙江牡丹江二中段考一,2)若3个班级分别从6个风景点中选择一处游览,则不同选法有() A.A63种 B.C63种 C.36种 D.63种答案D3.(2021江西宜春月考,8)“回文数”是指从左到右读与从右到左读都一样的正整数.如22,121,3443等.那么在四位数中,回文数共有()A.81个B.90个C.100个D.900个答案B4.(2016课标Ⅱ,5,5分)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()A.24B.18C.12D.9答案B5.(2022福建泉州科技中学月考,6)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.如图,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种颜色可供使用,则不同的染色方法总数为()A.180B.240C.420D.480答案C6.(2023届甘肃张掖重点校检测四,16)如图,节日花坛中有5个区域,现有4种不同颜色的花卉可供选择,要求相同颜色的花不能相邻栽种,则符合条件的种植方案有种.答案72考向二排列与组合1.(2020新高考Ⅰ,3,5分)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有() A.120种 B.90种C.60种D.30种答案C2.(2021全国乙,6,5分)将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有() A.60种 B.120种C.240种D.480种答案C3.(2022新高考Ⅱ,5,5分)甲、乙、丙、丁、戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻,则不同的排列方式共有() A.12种 B.24种 C.36种 D.48种答案B4.(2022新疆莎车一中期中,7)7个人排成一排准备照一张合影,其中甲、乙要求相邻,丙、丁要求分开,则不同的排法有() A.480种 B.720种 C.960种 D.1200种答案C5.(2022西安二模,5)现有语文、数学、英语、物理各1本书,把这4本书分别放入3个不同的抽屉里,要求每个抽屉至少放一本书且语文和数学不在同一个抽屉里,则放法种数为() A.18 B.24 C.30 D.36答案C6.(2023届哈尔滨质检,5)小张接到5项工作,要在周一、周二、周三、周四这4天中完成,每天至少完成1项,且周一只能完成其中1项工作,则不同的安排方式有() A.180种 B.480种 C.90种 D.120种答案A7.(2022陕西交大附中模拟,7)将4个9和2个6随机排成一行,则2个6不相邻的排法有()A.240种B.120种C.20种D.10种答案D8.(2020课标Ⅱ,14,5分)4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有种.答案369.(2021云南顶级名校检测,15)某班6名同学去A,B,C,D四个城市参加社会调查,要求将这6名同学分成四组,每组去一个城市,其中两组各有两名同学,另外两组各有1名同学,则不同的分配方案的种数是.(用数字作答)答案1080综合篇考法一排列问题的解题方法1.(2022哈尔滨六中期中,8)用1,2,3,4,5,6六个数字组成六位数,其中奇数不相邻且1、2必须相邻,则满足要求的六位数共有() A.72个 B.96个 C.120个 D.288个答案A2.(2021四川顶级名校检测,7)成都七中举行的秋季运动会中,有甲、乙、丙、丁四位同学参加了50米短跑比赛,现将四位同学安排在1,2,3,4这4个跑道上,每个跑道安排一名同学,则甲不在1跑道,乙不在2跑道的不同安排方法有() A.12种 B.14种 C.16种 D.18种答案B3.(2023届四川南江中学阶段测试,9)4张卡片的正、反面分别写有数字1,2;1,3;4,5;6,7.将这4张卡片排成一排,可构成不同的四位数的个数为()A.288B.336C.368D.412答案B4.(2018浙江,16,4分)从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成个没有重复数字的四位数.(用数字作答)答案12605.(2022四川诊断性测试,16)电影院一排有八个座位,甲、乙、丙、丁四位同学相约一起观影,他们要求坐在同一排,则恰有两个连续的空座位的情况有种.答案7206.(2022江西智学联盟联考一,15)某公司在元宵节组织了一次猜灯谜活动,主持人事先将10条不同的灯谜分别装在了如图所示的10个灯笼中,猜灯谜的职员每次只能任选每列最下面的一个灯笼中的谜语来猜(无论猜中与否,选中的灯笼都被拿掉),则这10条灯谜依次被选中的所有不同顺序种数为.(用数字作答)答案25200考法二分组、分配问题的求解策略1.(2023届安徽蚌埠第一次质检,8)为贯彻落实《中共中央国务院关于全面深化新时代教师队伍建设改革的意见》精神,加强义务教育教师队伍管理,推动义务教育优质均衡发展,安徽省全面实施中小学教师“县管校聘”管理改革,支持建设城乡学校共同体.2022年暑期某市教体局计划安排市区学校的6名骨干教师去4所乡镇学校工作一年,每所学校至少安排1人,则不同安排方案的总数为()A.2640B.1440C.2160D.1560答案D2.(2022吉林东北师大附中模拟,4)某中学响应国家双减政策,开设了乒乓球,羽毛球,书法,小提琴四门选修课程,要求每位同学每学年至多选2门,初一到初三三学年将四门选修课程选完,则每位同学的不同选修方式有()A.60种B.78种C.54种D.84种答案C3.(2023届山东潍坊临朐实验中学月考,5)某市因新冠疫情封闭管理期间,为了更好地保障社区居民的日常生活,选派6名志愿者到甲、乙、丙三个社区进行服务,每人只能去一个地方,每地至少派一人,则不同的选派方案共有() A.540种 B.180种 C.360种 D.630种答案A4.(2023届安徽江淮十校联考,14)安徽省地形具有平原、台地(岗地)、丘陵、山地等类型,其中丘陵地区占了很大比重,因此山地较多,著名的山也有很多.某校开设了研学旅行课程,该校有6个班级分别选择黄山、九华山、天柱山中的一座山作为研学旅行的地点,每座山至少有一个班级选择,则恰好有2个班级选择黄山的方案有种.答案2105.(2022成都模拟,15)将甲、乙、丙、丁四人安排到A,B,C三所学校工作,每校至少安排一人,每人只能到一所学校,甲不能到A学校工作,则不同的安排方法共有种.答案24。

第85讲、计数原理(学生版)2025高考数学一轮复习讲义

第85讲计数原理知识梳理知识点1、分类加法计数原理完成一件事,有n 类办法,在第1类办法中有1m 种不同的办法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:12n N m m m =+++ 种不同的方法.知识点2、分步乘法计数原理完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:12n N m m m =⋅⋅⋅ 种不同的方法.注意:两个原理及其区别分类加法计数原理和“分类”有关,如果完成某件事情有n 类办法,这n 类办法之间是互斥的,那么求完成这件事情的方法总数时,就用分类加法计数原理.分步乘法计数原理和“分步”有关,是针对“分步完成”的问题.如果完成某件事情有n 个步骤,而且这几个步骤缺一不可,且互不影响(独立),当且仅当依次完成这n 个步骤后,这件事情才算完成,那么求完成这件事情的方法总数时,就用分步乘法计数原理.当然,在解决实际问题时,并不一定是单一应用分类计数原理或分步计数原理,有时可能同时用到两个计数原理.即分类时,每类的方法可能运用分步完成;而分步后,每步的方法数可能会采取分类的思想求方法数.对于同一问题,我们可以从不同的角度去处理,从而得到不同的解法(但方法数相同),这也是检验排列组合问题的很好方法.知识点3、两个计数原理的综合应用如果完成一件事的各种方法是相互独立的,那么计算完成这件事的方法数时,使用分类计数原理.如果完成一件事的各个步骤是相互联系的,即各个步骤都必须完成,这件事才告完成,那么计算完成这件事的方法数时,使用分步计数原理.必考题型全归纳题型一:分类加法计数原理的应用例1.(2024·全国·高三专题练习)如果一条直线与一个平面垂直,那么称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是()A.48B.18C.24D.36例2.(2024·四川成都·双流中学校考模拟预测)如图,小黑圆表示网络的结点,结点之间的连线表示它们有网线相连.连线上标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点A向结点B传递信息()A.26B.24C.20D.19例3.(2024·江苏镇江·高三扬中市第二高级中学校考阶段练习)定义:“各位数字之和为7的四位数叫好运数”,比如1006,2203,则所有好运数的个数为()A.82B.83C.84D.85变式1.(2024·全国·高三专题练习)从1,2,3,4,5,6中选取4个数字,组成各个数位上的数字既不全相同,也不两两互异的四位数,记四位数中各个数位上的数字从左往右依次≤≤≤,则满足条件的四位数的个数为.为a,b,c,d,且要求a b c d变式2.(2024·全国·高三专题练习)已知直线方程0Ax By +=,若从0、1、2、3、5、7这六个数中每次取两个不同的数分别作为A 、B 的值,则0Ax By +=可表示条不同的直线.变式3.(2024·辽宁·高三校联考开学考试)某迷宫隧道猫爬架如图所示,B ,C 为一个长方体的两个顶点,A ,B 是边长为3米的大正方形的两个顶点,且大正方形由完全相同的9小正方形拼成.若小猫从A 点沿着图中的线段爬到B 点,再从B 点沿着长方体的棱爬到C 点,则小猫从A 点爬到C 点可以选择的最短路径共有条.【解题方法总结】分类标准的选择(1)应抓住题目中的关键词、关键元素、关键位置.根据题目特点恰当选择一个分类标准.(2)分类时应注意完成这件事情的任何一种方法必须属于某一类,并且分别属于不同种类的两种方法是不同的方法,不能重复,但也不能有遗漏.题型二:分步乘法计数原理的应用例4.(2024·广东深圳·高三校考阶段练习)甲、乙、丙3个公司承包6项不同的工程,甲承包1项,乙承包2项,丙承包3项,则共有种承包方式(用数字作答).例5.(2024·全国·高三专题练习)若一个三位数同时满足:①各数位的数字互不相同;②任意两个数位的数字之和不等于9,则这样的三位数共有个.(结果用数字作答)例6.(2024·安徽亳州·高三蒙城第一中学校考阶段练习)将3名男生,2名女生排成一排,要求男生甲必须站在中间,2名女生必须相邻的排法种数有()A .4种B .8种C .12种D .48种变式4.(2024·四川成都·高三统考开学考试)“数独九宫格”原创者是18世纪的瑞士数学家欧拉,它的游戏规则很简单,将1到9这九个自然数填到如图所示的小九宫格的9个空格里,每个空格填一个数,且9个空格的数字各不相同,若中间空格已填数字5,且只填第二行和第二列,并要求第二行从左至右及第二列从上至下所填的数字都是从小到大排列的,则不同的填法种数为()A.72B.108C.144D.196变式5.(2024·全国·高三专题练习)三棱柱各面所在平面将空间分成不同部分的个数为()A.18B.21C.24D.27变式6.(2024·河北石家庄·高三校联考期中)临近春节,某校书法爱好小组书写了若干副春联,准备赠送给四户孤寡老人.春联分为长联和短联两种,无论是长联或短联,内容均不相同.经过调查,四户老人各户需要1副长联,其中乙户老人需要1副短联,其余三户各要2副短联.书法爱好小组按要求选出11副春联,则不同的赠送方法种数为()A.15120B.7560C.12520D.12160变式7.(2024·北京东城·高三北京市广渠门中学校考开学考试)鱼缸里有8条热带鱼和2条冷水鱼,为避免热带鱼咬死冷水鱼,现在把鱼缸出孔打开,让鱼随机游出,每次只能游出1条,直至2条冷水鱼全部游出就关闭出孔,若恰好第3条鱼游出后就关闭了出孔,则不同游出方案的种数为()A.16B.32C.36D.48变式8.(2024·湖南·高三临澧县第一中学校联考开学考试)在如图所示的表格中填写1,2,3三个数字,要求每一行、每一列均有这3个数字,则不同的填法种数为().A.6B.9C.12D.18变式9.(2024·黑龙江佳木斯·高三校考开学考试)甲、乙分别从4门不同课程中选修1门,且2人选修的课程不同,则不同的选法有()种.A.6B.8C.12D.16变式10.(2024·陕西西安·西安市第三十八中学校考模拟预测)从六人(含甲)中选四人完成四项不同的工作(含翻译),则甲被选且甲不参加翻译工作的不同选法共有()A.120种B.150种C.180种D.210种变式11.(2024·贵州黔东南·凯里一中校考模拟预测)某足球比赛有A,B,C,D,E,F,G,H,J共9支球队,其中A,B,C为第一档球队,D,E,F为第二档球队,G,H,J为第三档球队,现将上述9支球队分成3个小组,每个小组3支球队,若同一档位的球队不能出现在同一个小组中,则不同的分组方法有()A.27种B.36种C.72种D.144种【解题方法总结】利用分步乘法计数原理解题的策略(1)明确题目中的“完成这件事”是什么,确定完成这件事需要几个步骤,且每步都是独立的.(2)将这件事划分成几个步骤来完成,各步骤之间有一定的连续性,只有当所有步骤都完成了,整个事件才算完成.题型三:两个计数原理的综合应用例7.(2024·全国·高三专题练习)第31届世界大学生夏季运动会于6月26日至7月7日在成都举办,现在从6男4女共10名青年志愿者中,选出3男2女共5名志愿者,安排到编号为1、2、3、4、5的5个赛场,每个赛场只有一名志愿者,其中女志愿者甲不能安排在编号为1、2的赛场,编号为2的赛场必须安排女志愿者,那么不同安排方案有()A.1440种B.2352种C.2880种D.3960种例8.(2024·江苏南京·高三校联考阶段练习)从2位男生,3位女生中安排3人到三个场馆做志愿者,每个场馆各1人,且至少有1位男生入选,则不同安排方法有()种A.16B.36C.54D.96例9.(2024·上海黄浦·高三上海市敬业中学校考开学考试)三位同学参加跳高、跳远、铅球项目的比赛,若每人只选择一个项目,则同一个项目最多只有2人参赛的情况共有种.变式12.(2024·广东·高三河源市河源中学校联考阶段练习)现有5名同学从北京、上海、深圳三个路线中选择一个路线进行研学活动,每个路线至少1人,至多2人,其中甲同学不选深圳路线,则不同的路线选择方法共有种.(用数字作答)变式13.(2024·浙江·高三舟山中学校联考开学考试)杭州亚运会举办在即,主办方开始对志愿者进行分配.已知射箭场馆共需要6名志愿者,其中3名会说韩语,3名会说日语.目前可供选择的志愿者中有4人只会韩语,5人只会日语,另外还有1人既会韩语又会日语,则不同的选人方案共有种.(用数字作答).变式14.(2024·江苏扬州·高三仪征中学校考阶段练习)已知如图所示的电路中,每个开关都有闭合、不闭合两种可能,因此5个开关共有52种可能,在这52种可能中,电路从P到Q接通的情况有种.变式15.(2024·湖北·高三校联考开学考试)从5男3女共8名学生中选出组长1人,副组长1人,普通组员3人组成5人志愿组,要求志愿组中至少有3名男生,且组长和副组长性别不同,则共有种不同的选法.(用数字作答)变式16.(2024·湖北·高三校联考阶段练习)有两个家庭共8人暑假到新疆结伴旅游(每个家庭包括一对夫妻和两个孩子),他们在乌鲁木齐租了两辆不同的汽车进行自驾游,每辆汽车乘坐4人,要求每对夫妻乘坐同一辆汽车,且该车上至少有一个该夫妻自己的孩子,则满足条件的不同乘车方案种数为.变式17.(2024·福建福州·高三统考开学考试)“二十四节气”是中国古代劳动人民伟大的智慧结晶,其划分如图所示.小明打算在网上搜集一些与二十四节气有关的古诗.他准备在春季的6个节气与夏季的6个节气中共选出3个节气,若春季的节气和夏季的节气各至少选出1个,则小明选取节气的不同情况的种数是()A.90B.180C.270D.360【解题方法总结】利用两个计数原理解题时的三个注意点(1)当题目无从下手时,可考虑要完成的这件事是什么,即怎样做才算完成这件事.(2)分类时,标准要明确,做到不重不漏,有时要恰当画出示意图或树状图.(3)对于复杂问题,一般是先分类再分步。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计数原理专题(七十八)1.有不同的语文书9本,不同的数学书7本,不同的英语书5本,从中选出不属于同一学科的书2本,则不同的选法有()A.21种B.315种C.143种D.153种答案 C解析可分三类:一类:语文、数学各1本,共有9×7=63种;二类:语文、英语各1本,共有9×5=45种;三类:数学、英语各1本,共有7×5=35种;∴共有63+45+35=143种不同选法.2.(优质试题·武汉市二中月考)从1到10的正整数中,任意抽取两个相加所得和为奇数的不同情形的种数是()A.10 B.15C.20 D.25答案 D解析当且仅当偶数加上奇数后和为奇数,从而不同情形有5×5=25(种).3.现有4种不同颜色要对如图所示的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法共有()A.24种B.30种C.36种D.48种答案 D解析共有4×3×2×2=48(种),故选D.4.5名应届毕业生报考3所高校,每人报且仅报1所院校,则不同的报名方法的种数是() A.35B.53C.A32D.C53答案 A解析第n名应届毕业生报考的方法有3种(n=1,2,3,4,5),根据分步计算原理,不同的报名方法共有3×3×3×3×3=35(种).5.(优质试题·沧州七校联考)高三年级的三个班去甲、乙、丙、丁四个工厂进行社会实践,其中工厂甲必须有班级去,每班去何工厂可自由选择,则不同的分配方案有( ) A .16种 B .18种 C .37种 D .48种答案 C解析 自由选择去四个工厂有43种方法,甲工厂不去,自由选择去乙、丙、丁三个工厂有33种方法,故不同的分配方案有43-33=37种.6.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了2个新节目.如要将这2个节目插入原节目单中,那么不同插法的种类为( ) A .42 B .30 C .20 D .12 答案 A解析 将新增的2个节目分别插入原定的5个节目中,插入第一个有6种插法,插入第2个时有7个空,共7种插法,所以共6×7=42(种).7.(优质试题·绵阳二诊)小孔家有爷爷、奶奶、姥爷、姥姥、爸爸、妈妈,包括他,一共7人,一天爸爸从果园里摘了7个大小不同的梨,给家里每人一个,小孔拿了最小的一个,爷爷、奶奶、姥爷、姥姥4位老人之一拿了最大的一个,则梨子的不同分法共有( ) A .96种 B .120种 C .480种 D .720种 答案 C解析 由题意知,小孔拿了最小的一个,爷爷、奶奶、姥爷、姥姥4位老人之一拿了最大的一个的拿法有C 41=4种,其余人的拿法有A 55=120种,故梨子的不同分法共有4×120=480种.8.从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为( ) A .5 B .4 C .6 D .8 答案 D解析 分类考虑,当公比为2时,等比数列可为1,2,4;2,4,8,当公比为3时,可为1,3,9,当公比为32时,可为4,6,9,将以上各数列颠倒顺序时,也是符合题意的,因此,共有4×2=8个.9.(2014·安徽,理)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有( ) A .24对 B .30对 C .48对 D .60对答案 C解析 先找出正方体一个面上的对角线与其余面对角线成60°角的对数,然后根据正方体六个面的特征求解.如图,在正方体ABCD -A 1B 1C 1D 1中,与面对角线AC 成60°角的面对角线有B 1C ,BC 1,A 1D ,AD 1,AB 1,A 1B ,D 1C ,DC 1,共8条,同理与DB 成60°角的面对角线也有8条.因此一个面上的2条面对角线与其相邻的4个面上的8条对角线共组成16对.又正方体共有6个面,所以共有16×6=96(对).又因为每对被计算了2次,因此成60°的面对角线有12×96=48(对).10.(优质试题·定州一模)将“福”、“禄”、“寿”填入到如图所示的4×4小方格中,每格内只填入一个汉字,且任意的两个汉字既不同行也不同列,则不同的填写办法有( )A.288种 C .576种 D .96种 答案 C解析 依题意可分为以下3步:(1)先从16个格子中任选一格放入第一个汉字,有16种方法;(2)任意的两个汉字既不同行也不同列,第二个汉字只有9个格子可以放,有9种方法;(3)第三个汉字只有4个格子可以放,有4种方法.根据分步乘法计数原理可得不同的填写方法有16×9×4=576种.11.(优质试题·福建福州闽侯二中期中)把3盆不同的兰花和4盆不同的玫瑰花摆放在下图图案中的1,2,3,4,5,6,7所示的位置上,其中三盆兰花不能放在一条直线上,则不同的摆放方法有()A.2 680种B.4 320种C.4 920种D.5 140种答案 B解析由题图可知7个点可组成的三角形有C73-5=30个,∵三盆兰花不能放在一条直线上,∴可放入三角形的三个顶点上,有C301A33=180种放法,再放4盆不同的玫瑰花,没有限制,放在剩余4个位置,有A44=24种放法,∴不同的摆放方法有180×24=4 320种.12.已知I={1,2,3},A,B是集合I的两个非空子集,且A中所有数的和大于B中所有数的和,则集合A,B共有()A.12对B.15对C.18对D.20对答案 D解析依题意,当A,B均有一个元素时,有3对;当B有一个元素,A有两个元素时,有8对;当B有一个元素,A有三个元素时,有3对;当B有两个元素,A有三个元素时,有3对;当A,B均有两个元素时,有3对;共20对,选择D.13.(优质试题·邯郸一中模拟)我们把各位数字之和为6的四位数称为“六合数”(如2 013是“六合数”),则“六合数”中首位为2的“六合数”共有()A.18个B.15个C.12个D.9个答案 B解析依题意知,这个四位数的百位数、十位数、个位数之和为4.由4,0,0组成有3个数,分别为400,040,004;由3,1,0组成有6个数,分别为310,301,130,103,013,031;由2,2,0组成有3个数,分别为220,202,022;由2,1,1组成有3个数,分别为211,121,112,共3+6+3+3=15个.14.直线方程Ax+By=0,若从0,1,2,3,5,7这6个数字中任取两个不同的数作为A,B的值,则可表示________条不同的直线.答案22解析分成三类:A=0,B≠0;A≠0,B=0和A≠0,B≠0,前两类各表示1条直线;第三类先取A有5种取法,再取B有4种取法,故5×4=20种.所以可以表示22条不同的直线.15.由1到200的自然数中,各数位上都不含8的有________个.答案162解析一位数8个,两位数8×9=72个.3位数有9×9=81个,另外1个(即200),共有8+72+81+1=162个.16.某书店有11种杂志,2元1本的8种,1元1本的3种,小张用10元钱买杂志(每种至多买一本,10元钱刚好用完),则不同买法的种数是________种(用数字作答).答案266解析分两类:第一类,买5本2元的有C85种;第二类,买4本2元的和2本1元的有C84×C32种.故共有C85+C84×C32=266种不同的买法种数.17.(优质试题·东北三校联考)在平面直角坐标系内,点P(a,b)的坐标满足a≠b,且a,b 都是集合{1,2,3,4,5,6}中的元素,又点P到原点的距离|OP|≥5,则这样的点P的个数为______.答案20解析依题意可知:当a=1时,b=5,6,两种情况;当a=2时,b=5,6,两种情况;当a=3时,b=4,5,6,三种情况;当a=4时,b=3,5,6,三种情况;当a=5或6时,b各有五种情况.所以共有2+2+3+3+5+5=20种情况.18.标号为A,B,C的三个口袋,A袋中有1个红色小球,B袋中有2个不同的白色小球,C袋中有3个不同的黄色小球,现从中取出2个小球.(1)若取出的两个球颜色不同,有多少种取法? (2)若取出的两个球颜色相同,有多少种取法? 答案 (1)11 (2)4解析 (1)若两个球颜色不同,则应在A ,B 袋中各取一个或A ,C 袋中各取一个,或B ,C 袋中各取一个.∴应有1×2+1×3+2×3=11种.(2)若两个球颜色相同,则应在B 或C 袋中取出2个. ∴应有1+3=4种.19.三边长均为整数,且最大边长为11的三角形的个数是多少? 答案 36个解析 设较小的两边长为x 、y 且x ≤y ,则⎩⎪⎨⎪⎧x ≤y ≤11,x +y>11,x 、y ∈N *.当x =1时,y =11; 当x =2时,y =10,11; 当x =3时,y =9,10,11; 当x =4时,y =8,9,10,11; 当x =5时,y =7,8,9,10,11; 当x =6时,y =6,7,8,9,10,11; 当x =7时,y =7,8,9,10,11; ……当x =11时,y =11. 所以不同三角形的个数为1+2+3+4+5+6+5+4+3+2+1=36个.1.如果一个三位正整数“a 1a 2a 3”满足a 1<a 2且a 3<a 2,则称这样的三位数为凸数(120,343,275),那么所有凸数的个数为( ) A .240B .204C.729 D.920答案 A解析当中间数为2时,有1×2=2个;当中间数为3时,有2×3=6个;当中间数为4时,有3×4=12个;当中间数为5时,有4×5=20个;当中间数为6时,有5×6=30个;当中间数为7时,有6×7=42个;当中间数为8时,有7×8=56个;当中间数为9时,有8×9=72个.故共有2+6+12+20+30+42+56+72=240个凸数.2.从2,3,4,5,6,7,8,9这8个数中任取2个不同的数分别作为一个对数的底数和真数,则可以组成不同对数值的个数为()A.56 B.54C.53 D.52答案 D解析在8个数中任取2个不同的数共有8×7=56个对数值;但在这56个数值中,log24=log39,log42=log93,log23=log49,log32=log94,即满足条件的对数值共有56-4=52个.3.(优质试题·山东济宁模拟)6人分乘两辆不同的出租车,每辆车最多乘4人,则不同的乘车方案数为()A.70 B.60C.50 D.40答案 C解析C62+C63+C64=50,故选C.4.从集合{1,2,3,4,…,10}中,选出5个数组成该集合的子集,使得这5个数中任意两个数的和都不等于11,则这样的子集有()A.32个B.34个C.36个D.38个答案 A解析先把数字分成5组:{1,10},{2,9},{3,8},{4,7},{5,6},由于选出的5个数中,任意两个数的和都不等于11,所以从每组中任选一个数字即可,故共可组成2×2×2×2×2=32个这样的子集.5.某大楼安装了5个彩灯,它们闪亮的顺序不固定,每个彩灯只能闪亮红、橙、黄、绿、蓝中的一种颜色,且这5个彩灯所闪亮的颜色各不相同,记这5个彩灯有序地各闪亮一次为一个闪烁.在每个闪烁中,每秒钟有且仅有一个彩灯闪亮,而相邻两个闪烁的时间间隔均为5秒.如果要实现所有不同的闪烁,那么需要的时间至少是()A.1 205秒B.1 200秒C.1 195秒D.1 190秒答案 C解析要实现所有不同的闪烁且需要的时间最少,只要所有闪烁连续地、不重复地依次闪烁一遍.而所有的闪烁共有A55=120个;因为在每个闪烁中,每秒钟有且仅有一个彩灯闪亮,即每个闪烁的时长为5秒,而相邻两个闪烁的时间间隔均为5秒,所以要实现所有不同的闪烁,需要的时间至少是120×(5+5)-5=1 195秒.6.若从集合P到集合Q={a,b,c}所有的不同映射共有81个,则从集合Q到集合P所有的不同映射共有()A.32个B.27个C.81个D.64个答案 D解析可设P集合中元素的个数为x,由映射的定义以及分步乘法计数原理,可得P→Q的映射种数为3x=81,可得x=4.反过来,可得Q→P的映射种数为43=64.7.(优质试题·山东日照模拟)将1,2,3,…,9这9个数字填在如图的9个空格中,要求每一行从左到右,每一列从上到下分别依次增大.当3,4固定在图中的位置时,填写空格的方法为()A.6种B.12种C.18种D.24种答案 A解析因为每一行从左到右,每一列从上到下分别依次增大,1,2,9只有一种填法,5只能填在右上角或左下角,5填好后之相邻的空格可填6,7,8任一个,余下两个数字按从小到大只有一种方法.共有2×3=6种结果,故选A.8.(优质试题·郑州市市高三第二次质量预测)将数字“124467”重新排列后得到不同的偶数的个数为()A.72 B.120C.192 D.240答案 D解析将“数字124467”重新排列后所得数字为偶数,则末位数应为偶数,(1)若末位数字。

相关文档
最新文档