平稳性检验理论说明面板数据分析方法步骤全解
面板数据模型的分析

面板数据模型能够充分利用数据中的 时间和个体信息,提供更准确的估计 和更全面的解释,有助于揭示数据的 动态变化和个体差异。
面板数据模型的适用场景
经济领域
适用于分析国家、地区或行业的经济增长、 产业发展、劳动力市场等。
社会学领域
适用于研究人口变化、教育发展、犯罪率等 社会现象。
金融领域
适用于股票价格、收益率、市场波动等金融 市场分析。
面板数据模型的分析
contents
目录
• 面板数据模型概述 • 面板数据模型的类型 • 面板数据模型的估计方法 • 面板数据模型的检验与诊断 • 面板数据模型的应用案例
01 面板数据模型概述
定义与特点
定义
面板数据模型是一种统计分析方法, 用于分析时间序列和截面数据的结合 ,即同时包含多个个体在一段时间内 的数据。
随机效应模型
01
随机效应模型是一种面板数据模型,它假设个体之间的效应是随机的, 并且与解释变量相关。
02
该模型通过将个体效应作为解释变量的函数来估计参数,并使用最大 似然估计等方法进行估计。
03
随机效应模型适用于研究不同个体在一段时间内的行为或表现,并分 析这些行为或表现的变化趋势。
04
它还可以用于评估不同个体的特定效应,并解释不同个体之间的差异。
总结词
经济增长的面板数据模型分析主要关注国家或地区经济 随时间的变化情况,通过面板数据模型可以探究经济增 长的驱动力和影响因素。
详细描述
经济增长的面板数据模型分析通常涉及对国家或地区生 产总值、人均收入、工业增加值等经济指标的时间序列 数据进行建模,以揭示经济增长的规律、趋势和影响因 素。通过面板数据模型,可以分析不同国家或地区经济 增长的差异、收敛与发散,以及产业结构、投资、人力 资本等因素对经济增长的作用机制。
时间序列的平稳性及其检验.ppt

图形表示出:该序列具有相同的均值, 但从样本自相关图看,虽然自相关系数迅速 下降到0,但随着时间的推移,则在0附近波 动且呈发散趋势。
样本自相关系数显示:r1=0.48,落在 了区间[-0.4497, 0.4497]之外,因此在5% 的显著性水平上拒绝1的真值为0的假设。
该随机游走序列是非平稳的。
(2)
(Xi X)2 / n
依概率收敛:Plim((X i X )2 / n) Q n
第(1)条是OLS估计的需要
第(2)条是为了满足统计推断中大样本下的“一致
性”特性: P lim(ˆ) n
注意:在双变量模型中:
ˆ xiui xiui / n
xi2
xi2 / n
因此:
Xt=Xt-1+t 生成的一随机游走时间序列样本。 其中,第0项取值为0, t是由Random1表示的白噪声。
0.4 0.2 0.0 -0.2 -0.4 -0.6 -0.8 -1.0
2 4 6 8 10 12 14 16 18 RANDOM2
(a)
1.2
0.8
0.4
0.0
-0.4
-0.8 2 4 6 8 10 12 14 16 18 RANDOM2AC
2 4 6 8 10 12 14 16 18 RANDOM1AC
(b)
由于该序列由一随机过程生成,可以认为不存 在序列相关性,因此该序列为一白噪声。
• 根据Bartlett的理论:k~N(0,1/19)
因此任一rk(k>0)的95%的置信区间都将是
[Z0.025 • , Z0.025 • ] [1.96 1/19 ,1.96 1/19 ] [0.4497 ,0.4497 ]
P lim
面板数据_精品文档

面板数据面板数据是指在经济学和社会科学研究中常用的一种数据形式。
它是一种横截面数据,也被称为截面数据。
面板数据由多个个体或单位在一段时间内的多个观测值组成。
在面板数据中,观测对象可以是个别人、家庭、企业、国家等,并且可以在多个时间点上进行观测。
面板数据的独特之处在于,它能够同时捕捉到个体间的差异和时间的变化,有利于更全面、准确地分析变量之间的关系。
面板数据常见的形式是平衡面板数据和非平衡面板数据。
平衡面板数据是指所有观测对象在每个时间点上都有观测值,而非平衡面板数据则只在一部分时间点上有观测值。
在面板数据中,每个观测值都有个体指示变量和时间指示变量。
个体指示变量用于区分不同的观测对象,时间指示变量用于区分不同的时间点。
面板数据的优势之一是可以控制了个体的固定效应和时间的固定效应。
个体固定效应是指个体特有的因素对观测值的影响,时间固定效应是指随着时间的推移,所有个体都会受到的共同影响。
通过引入个体固定效应和时间固定效应,可以减少模型中的遗漏变量偏误,并更好地捕捉到变量之间的因果关系。
面板数据的另一个优势是可以分析群组特征和个体特征的影响。
在面板数据中,观测对象可以划分为不同的群组或类型。
通过比较不同群组或类型之间的观测值,可以研究群组特征对变量的影响。
同时,也可以通过比较同一群组或类型在不同时间点上的观测值,研究个体特征对变量的影响。
面板数据的分析方法包括面板数据回归,面板单位根检验,面板协整分析等。
面板数据回归是常用的一种面板数据分析方法,它可以估计变量之间的关系,并控制固定效应。
面板单位根检验用于检验变量是否具有单位根,从而判断时间序列数据的平稳性。
面板协整分析用于研究多个变量之间的长期关系,建立协整关系模型。
在实际应用中,面板数据广泛用于经济学、金融学、社会学等领域的研究。
它可以用于分析个体行为和组织决策的影响因素,预测宏观经济指标和金融市场的变化趋势,评估政策措施的效果等。
面板数据的使用在学术研究和实际决策中都具有重要意义。
面板数据模型介绍

融合发展的方法可以充分利用各种方法的优点,提高模型的预测精度和稳 定性。
融合发展的方法有助于解决复杂的数据分析问题,促进相关领域的发展和 应用。
THANKS FOR WATCHING
感谢您的观看
公司财务数据的面板数据模型分析
要点一
总结词
要点二
详细描述
公司财务数据的面板数据模型分析是评估公司财务状况和 经营绩效的有效手段。
通过收集公司在一段时间内的财务数据,如收入、利润、 资产负债表等,利用面板数据模型分析这些数据的动态变 化,可以评估公司的盈利能力、偿债能力和运营效率,为 投资者和债权人提供决策依据。
02 面板数据模型的类型
固定效应模型
01
固定效应模型是一种用于面板数据分析的统计模型,它通过控 制个体和时间特定效应来估计变量的影响。
02
该模型假设个体和时间特定效应是恒定的,不会随着自变量的
变化而变化。
它主要用于消除个体和时间特定效应对估计的影响,以更好地
03
解释变量的影响。
随机效应模型
01
02
该模型同时控制个体和时间特定效应,并允许它们在某些情 况下随自变量的变化而变化。
03
它适用于当个体和时间特定效应对解释变量有不同程度的影 响时的情况。
其他类型
其他类型的面板数据模型包括空间面板数据模型、动态面板 数据模型等。
这些模型在特定的研究领域和应用场景中有其特定的用途和 优势。
03 面板数据模型的估计方法
面板数据模型介绍
目录
• 面板数据模型概述 • 面板数据模型的类型 • 面板数据模型的估计方法 • 面板数据模型的检验与诊断 • 面板数据模型的应用案例 • 面板数据模型的发展趋势与展望
面板数据的常见处理

面板数据的常见处理引言概述:面板数据是一种由时间序列和横截面数据组成的数据结构,常用于经济学和社会科学研究中。
由于其特殊的数据结构,面板数据的处理方法与传统的时间序列或者横截面数据有所不同。
本文将介绍面板数据的常见处理方法,包括数据清洗、面板单位根检验、面板回归分析和面板数据的固定效应模型。
一、数据清洗1.1 缺失值处理:面板数据中往往存在缺失值,处理缺失值的方法包括删除缺失观测、插补缺失值和使用面板数据的特征进行缺失值预测。
1.2 异常值处理:面板数据中可能存在异常值,可以通过箱线图、离群值检测方法等进行识别和处理。
1.3 数据平滑:面板数据中的变量可能存在噪声,可以使用平滑方法如挪移平均、指数平滑等对数据进行平滑处理。
二、面板单位根检验2.1 单位根概念:单位根是时间序列分析中的重要概念,用于判断变量是否具有非平稳性。
对于面板数据,我们需要进行面板单位根检验,判断变量的平稳性。
2.2 常见的面板单位根检验方法包括Levin-Lin-Chu(LLC)检验、Im-Pesaran-Shin(IPS)检验和Maddala-Wu(MW)检验等。
2.3 单位根检验的结果可以匡助我们选择合适的模型和估计方法,避免估计结果的偏误。
三、面板回归分析3.1 固定效应模型:面板数据的回归分析中,固定效应模型是常用的方法之一。
该模型可以控制个体间的异质性,并通过固定效应项捕捉个体固定的影响。
3.2 随机效应模型:随机效应模型是另一种常用的面板回归模型,它假设个体效应项与解释变量无关,通过随机效应项来捕捉个体间的异质性。
3.3 混合效应模型:混合效应模型是固定效应模型和随机效应模型的组合,它可以同时考虑个体效应和时间效应。
四、面板数据的固定效应模型4.1 模型假设:固定效应模型假设个体效应是固定的,即个体效应项与解释变量无关。
4.2 估计方法:固定效应模型的估计方法包括最小二乘法和差分法。
最小二乘法可以直接估计固定效应模型的参数,而差分法则通过对数据进行差分来消除个体效应。
面板数据分析方法

面板数据分析方法
面板数据是指多个观察对象在同一时间序列下的数据。
面板数据分析方法可以帮助我们更好地理解时间序列数据,并进一步得出结论,这些数据通常用于经济学研究和社会科学研究。
以下是一些常用的面板数据分析方法:
1. 固定效应模型(Fixed Effects Model):固定效应模型是一种广泛应用于分析面板数据的方法。
它可以帮助我们控制可能影响结果的变量,并提高模型的可靠性和准确性。
2. 随机效应模型(Random Effects Model):随机效应模型与固定效应模型类似,但是它假设未观测到的变量对结果有影响,并对这种影响进行建模。
3. 差分法(Differences-in-Differences):差分法是一种比较两个实验组之间差异的方法。
在差分法中,我们比较一个实验组的结果与一个对照组的结果,以确定实验组的结果是否受到实验的影响。
4. 面板单位根检验(Panel Unit Root Test):面板单位根检验可以帮助我们确定一个时间序列是否具有单位根,这在面板数据分析中十分有用。
如果一个序列具有单位根,这意味着它是非平稳的,需要进行差分或其他方法来消除这种影响。
5. 面板数据模型选择(Model Selection):在进行面板数据分析时,我们需要选择一个合适的模型来准确地描述数据。
面板数据模型选择方法包括信息准则法、比较误差方差分解和Hausman检验等。
这些方法可以帮助我们更好地理解面板数据,并从中得出有意义的结论。
固定面板模型建模前的检验
固定面板模型建模前的检验1. 引言固定面板模型(Fixed Effects Model)是一种经济学中常用的统计分析方法,主要用于处理面板数据(Panel Data)。
在进行固定面板模型建模之前,需要进行一系列的检验,以确保模型的可靠性和有效性。
本文将详细介绍固定面板模型建模前的检验内容和步骤。
2. 面板数据简介面板数据是指在一段时间内对多个个体或单位进行观察所得到的数据。
它包括两个维度:时间维度和个体维度。
时间维度反映了观察时期的变化,而个体维度则代表了被观察对象。
3. 固定面板模型简介固定面板模型是一种通过引入个体固定效应来解决异质性问题的方法。
它假设每个个体都有一个特定的、与其他因素无关的效应,并将这些效应作为一个常数加入到回归方程中。
这样可以消除个体间的异质性,提高估计结果的准确性。
4. 检验内容和步骤4.1 数据平稳性检验在进行固定面板模型建模前,首先需要对数据的平稳性进行检验。
平稳性是指时间序列数据在统计特性上保持不变的性质。
常用的平稳性检验方法包括ADF检验(Augmented Dickey-Fuller Test)和单位根检验。
4.2 异方差性检验异方差性是指随机误差项的方差在不同条件下发生变化的现象。
在固定面板模型中,如果存在异方差性,会导致参数估计结果的不准确性。
常用的异方差性检验方法包括Breusch-Pagan检验和White检验。
4.3 多重共线性检验多重共线性是指自变量之间存在高度相关关系的情况。
在固定面板模型中,多重共线性会导致参数估计结果不稳定,并且降低模型解释能力。
常用的多重共线性检验方法包括方差膨胀因子(VIF)和条件数(Condition Number)。
4.4 固定效应存在与否检验固定面板模型建立的前提是个体固定效应存在。
因此,在进行固定面板模型建模前,需要进行固定效应存在与否的检验。
常用的方法包括Hausman测试和LSDV(Least Squares Dummy Variables)回归。
面板数据模型入门讲解
面板数据模型入门讲解面板数据模型是经济学和社会科学研究中常用的一种数据分析方法。
它是对跨时间和跨个体的数据进行统计分析的一种有效方式。
本文将介绍面板数据模型的基本概念、应用场景以及如何进行面板数据的建模和分析。
一、面板数据模型的基本概念面板数据模型是指在一段时间内,对多个个体(如个人、家庭、企业等)进行观测得到的数据。
它包含了时间维度和个体维度,可以用来分析个体和时间对变量之间的关系。
面板数据模型的优势在于可以控制个体固定效应和时间固定效应,从而减少了误差项的异质性。
面板数据模型可以分为两种类型:平衡面板数据和非平衡面板数据。
平衡面板数据是指在每一个时间点上,每一个个体都有观测值;非平衡面板数据则是指在某些时间点上,某些个体可能没有观测值。
根据面板数据的类型,我们可以选择不同的面板数据模型进行分析。
二、面板数据模型的应用场景面板数据模型在经济学和社会科学的研究中有广泛的应用。
例如,经济学家可以利用面板数据模型来研究个体的收入与教育水平之间的关系,企业可以利用面板数据模型来研究市场份额与广告投入之间的关系。
面板数据模型还可以用于政策评估。
例如,政府实施了一项教育政策,为了评估该政策的效果,可以利用面板数据模型来比较政策实施先后个体的教育水平变化。
这样可以更准确地评估政策的影响。
三、面板数据模型的建模和分析在进行面板数据模型的建模和分析时,需要考虑以下几个步骤:1. 确定面板数据的类型:首先需要确定面板数据是平衡面板数据还是非平衡面板数据。
如果是非平衡面板数据,需要考虑如何处理缺失观测值的问题。
2. 检验面板数据的平稳性:面板数据模型的前提是变量是平稳的。
可以通过单位根检验等方法来检验变量的平稳性。
3. 选择面板数据模型:根据面板数据的特点和研究问题的需要,选择适合的面板数据模型。
常用的面板数据模型包括固定效应模型、随机效应模型和混合效应模型等。
4. 进行面板数据模型的估计和判断:利用面板数据模型进行参数估计和假设检验。
时间序列的平稳性及其检验
• (2)
•依概率收敛:
PPT文档演模板
时间序列的平稳性及其检验
•第(1)条是OLS估计的需要
第(2)条是为了满足统计推断中大样本下的“一致 性”特性:
•注意:在双变量模型中:
•因此:
•▲如果X是非平稳数据(如表现出向上的趋势), 则(2)不成立,回归估计量不满足“一致性”,基 于大样本的统计推断也就遇到麻烦。
•
Xt=Xt-1+t
•不难验证:1)||>1时,该随机过程生成的时间序列 是发散的,表现为持续上升(>1)或持续下降(<-1), 因此是非平稳的;
PPT文档演模板
时间序列的平稳性及其检验
• 2)=1时,是一个随机游走过程,也是非平稳的。
第二节中将证明:只有当-1<<1时,该随机过程 才是平稳的。
• 1阶自回归过程AR(1)又是如下k阶自回归AR(K)过 程的特例:
•
Xt=Xt-1+t
•这里, t是一个白噪声。
PPT文档演模板
时间序列的平稳性及其检验
• 容易知道该序列有相同的均值:E(Xt)=E(Xt-1)
为了检验该序列是否具有相同的方差,可假设Xt的 初值为X0,则易知
X1=X0+1 X2=X1+2=X0+1+2 ……
Xt=X0+1+2+…+t 由于X0为常数,t是一个白噪声,因此Var(Xt)=t2 即Xt的方差与时间t有关而非常数,它是一非平稳序 列。
•
k=k/0
•自相关函数是关于滞后期k的递减函数(Why?)。
data) ★时间序列数据是最常见,也是最常用到的数据。
PPT文档演模板
平稳性检验方法整理
1)
2)
3) 。
5.
5.1建立RP。RP是一个由黑点和白点以及两条时间轴组成的二维方阵,建立方法如下:
设 是某一动力系统相空间中的一条轨迹线,考察轨迹中某两个相点之间的距离是否小于选取的阈值,当距离小于选定的阈值 ,则代表这两个点是递归的,用一个黑点表示,否则代表不递归,用一个白点或者空格表示。用方阵表示如下:
1.
1.1将N个数据分成M段,求取每段的平均值。
1.2计算均值序列逆序总数A。
1.3计算统计量进行统计校验,观察Z是否符合N(0,1)分布。
当显著性水平 时,若 ,则认为是平稳序列。
2.
2.1求出序列均值,序列中比均值小的记为“-”,比均值大的记为“+”,得到符号序列。
2.2每一段连续相同的符号称为一个游程,计算游程总数r。
2.3计算统计量进行统计校验,观察Z是否符合N(0,1)分布。
当显著性水平 时,若 ,则认为是平稳序列。
3.
3.1拟合序列的适应性模型。
3.2求得由模型参数组成的特征方程的特征根,若所有特征根满足平稳性条件 ,则该序列是平稳的。
4.
4.1利用自回归参数构造下表。
其中, 为模型中自ห้องสมุดไป่ตู้归参数。
以此类推,知道2n-3行只剩下三个元素。
是Heaviside函数, 。
5.2典型信号的RP。
均匀性:状态明显是平稳的。
分裂:代表非平稳,信号有变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
面板数据分析方法步骤全解面板数据的分析方法或许我们已经了解许多了,但是到底有没有一个基本的步骤呢?那些步骤是必须的?这些都是我们在研究的过程中需要考虑的,而且又是很实在的问题。
面板单位根检验如何进行?协整检验呢?什么情况下要进行模型的修正?面板模型回归形式的选择?如何更有效的进行回归?诸如此类的问题我们应该如何去分析并一一解决?以下是我近期对面板数据研究后做出的一个简要总结,和大家分享一下,也希望大家都进来讨论讨论。
步骤一:分析数据的平稳性(单位根检验)按照正规程序,面板数据模型在回归前需检验数据的平稳性。
李子奈曾指出,一些非平稳的经济时间序列往往表现出共同的变化趋势,而这些序列间本身不一定有直接的关联,此时,对这些数据进行回归,尽管有较高的R平方,但其结果是没有任何实际意义的。
这种情况称为称为虚假回归或伪回归(spurious regression)。
他认为平稳的真正含义是:一个时间序列剔除了不变的均值(可视为截距)和时间趋势以后,剩余的序列为零均值,同方差,即白噪声。
因此单位根检验时有三种检验模式:既有趋势又有截距、只有截距、以上都无。
因此为了避免伪回归,确保估计结果的有效性,我们必须对各面板序列的平稳性进行检验。
而检验数据平稳性最常用的办法就是单位根检验。
首先,我们可以先对面板序列绘制时序图,以粗略观测时序图中由各个观测值描出代表变量的折线是否含有趋势项和(或)截距项,从而为进一步的单位根检验的检验模式做准备。
单位根检验方法的文献综述:在非平稳的面板数据渐进过程中,Levin andLin(1993) 很早就发现这些估计量的极限分布是高斯分布,这些结果也被应用在有异方差的面板数据中,并建立了对面板单位根进行检验的早期版本。
后来经过Levin et al. (2002)的改进,提出了检验面板单位根的LLC 法。
Levin et al. (2002) 指出,该方法允许不同截距和时间趋势,异方差和高阶序列相关,适合于中等维度(时间序列介于25~250 之间,截面数介于10~250 之间) 的面板单位根检验。
Im et al. (1997) 还提出了检验面板单位根的IPS 法,但Breitung(2000) 发现IPS 法对限定性趋势的设定极为敏感,并提出了面板单位根检验的Breitung 法。
Maddala and Wu(1999)又提出了ADF-Fisher和PP-Fisher面板单位根检验方法。
由上述综述可知,可以使用LLC、IPS、Breintung、ADF-Fisher 和PP-Fisher5种方法进行面板单位根检验。
其中LLC-T 、BR-T、IPS-W 、ADF-FCS、PP-FCS 、H-Z 分别指Levin, Lin & Chu t* 统计量、Breitung t 统计量、lm Pesaran & Shin W 统计量、ADF- Fisher Chi-square统计量、PP-Fisher Chi-square统计量、Hadri Z统计量,并且Levin, Lin & Chu t* 统计量、Breitung t统计量的原假设为存在普通的单位根过程,lm Pesaran & Shin W 统计量、ADF- Fisher Chi-square统计量、PP-Fisher Chi-square统计量的原假设为存在有效的单位根过程,Hadri Z统计量的检验原假设为不存在普通的单位根过程。
有时,为了方便,只采用两种面板数据单位根检验方法,即相同根单位根检验LLC (Levin-Lin-Chu)检验和不同根单位根检验Fisher-ADF检验(注:对普通序列(非面板序列)的单位根检验方法则常用ADF检验),如果在两种检验中均拒绝存在单位根的原假设则我们说此序列是平稳的,反之则不平稳。
如果我们以T(trend)代表序列含趋势项,以I(intercept)代表序列含截距项,T&I代表两项都含,N(none)代表两项都不含,那么我们可以基于前面时序图得出的结论,在单位根检验中选择相应检验模式。
但基于时序图得出的结论毕竟是粗略的,严格来说,那些检验结构均需一一检验。
具体操作可以参照李子奈的说法:ADF检验是通过三个模型来完成,首先从含有截距和趋势项的模型开始,再检验只含截距项的模型,最后检验二者都不含的模型。
并且认为,只有三个模型的检验结果都不能拒绝原假设时,我们才认为时间序列是非平稳的,而只要其中有一个模型的检验结果拒绝了零假设,就可认为时间序列是平稳的。
此外,单位根检验一般是先从水平(level)序列开始检验起,如果存在单位根,则对该序列进行一阶差分后继续检验,若仍存在单位根,则进行二阶甚至高阶差分后检验,直至序列平稳为止。
我们记I(0)为零阶单整,I(1)为一阶单整,依次类推,I(N)为N阶单整。
步骤二:协整检验或模型修正情况一:如果基于单位根检验的结果发现变量之间是同阶单整的,那么我们可以进行协整检验。
协整检验是考察变量间长期均衡关系的方法。
所谓的协整是指若两个或多个非平稳的变量序列,其某个线性组合后的序列呈平稳性。
此时我们称这些变量序列间有协整关系存在。
因此协整的要求或前提是同阶单整。
但也有如下的宽限说法:如果变量个数多于两个,即解释变量个数多于一个,被解释变量的单整阶数不能高于任何一个解释变量的单整阶数。
另当解释变量的单整阶数高于被解释变量的单整阶数时,则必须至少有两个解释变量的单整阶数高于被解释变量的单整阶数。
如果只含有两个解释变量,则两个变量的单整阶数应该相同。
也就是说,单整阶数不同的两个或以上的非平稳序列如果一起进行协整检验,必然有某些低阶单整的,即波动相对高阶序列的波动甚微弱(有可能波动幅度也不同)的序列,对协整结果的影响不大,因此包不包含的重要性不大。
而相对处于最高阶序列,由于其波动较大,对回归残差的平稳性带来极大的影响,所以如果协整是包含有某些高阶单整序列的话(但如果所有变量都是阶数相同的高阶,此时也被称作同阶单整,这样的话另当别论),一定不能将其纳入协整检验。
协整检验方法的文献综述:(1)Kao(1999)、Kao and Chiang(2000)利用推广的DF和ADF检验提出了检验面板协整的方法,这种方法零假设是没有协整关系,并且利用静态面板回归的残差来构建统计量。
(2)Pedron(1999)在零假设是在动态多元面板回归中没有协整关系的条件下给出了七种基于残差的面板协整检验方法。
和Kao的方法不同的是,Pedroni的检验方法允许异质面板的存在。
(3)Larsson et al(2001)发展了基于Johansen(1995)向量自回归的似然检验的面板协整检验方法,这种检验的方法是检验变量存在共同的协整的秩。
我们主要采用的是Pedroni、Kao、Johansen的方法。
通过了协整检验,说明变量之间存在着长期稳定的均衡关系,其方程回归残差是平稳的。
因此可以在此基础上直接对原方程进行回归,此时的回归结果是较精确的。
这时,我们或许还想进一步对面板数据做格兰杰因果检验(因果检验的前提是变量协整)。
但如果变量之间不是协整(即非同阶单整)的话,是不能进行格兰杰因果检验的,不过此时可以先对数据进行处理。
引用张晓峒的原话,“如果y和x不同阶,不能做格兰杰因果检验,但可通过差分序列或其他处理得到同阶单整序列,并且要看它们此时有无经济意义。
”下面简要介绍一下因果检验的含义:这里的因果关系是从统计角度而言的,即是通过概率或者分布函数的角度体现出来的:在所有其它事件的发生情况固定不变的条件下,如果一个事件X的发生与不发生对于另一个事件Y的发生的概率(如果通过事件定义了随机变量那么也可以说分布函数)有影响,并且这两个事件在时间上又有先后顺序(A前B后),那么我们便可以说X是Y的原因。
考虑最简单的形式,Granger检验是运用F-统计量来检验X的滞后值是否显著影响Y(在统计的意义下,且已经综合考虑了Y的滞后值;如果影响不显著,那么称X不是Y的“Granger原因”(Granger cause);如果影响显著,那么称X是Y的“Granger 原因”。
同样,这也可以用于检验Y是X的“原因”,检验Y的滞后值是否影响X(已经考虑了X的滞后对X自身的影响)。
Eviews好像没有在POOL窗口中提供Granger causality test,而只有unit root test和cointegration test。
说明Eviews是无法对面板数据序列做格兰杰检验的,格兰杰检验只能针对序列组做。
也就是说格兰杰因果检验在Eviews中是针对普通的序列对(pairwise)而言的。
你如果想对面板数据中的某些合成序列做因果检验的话,不妨先导出相关序列到一个组中(POOL窗口中的Proc/Make Group),再来试试。
情况二:如果基于单位根检验的结果发现变量之间是非同阶单整的,即面板数据中有些序列平稳而有些序列不平稳,此时不能进行协整检验与直接对原序列进行回归。
但此时也不要着急,我们可以在保持变量经济意义的前提下,对我们前面提出的模型进行修正,以消除数据不平稳对回归造成的不利影响。
如差分某些序列,将基于时间频度的绝对数据变成时间频度下的变动数据或增长率数据。
此时的研究转向新的模型,但要保证模型具有经济意义。
因此一般不要对原序列进行二阶差分,因为对变动数据或增长率数据再进行差分,我们不好对其冠以经济解释。
难道你称其为变动率的变动率?步骤三:面板模型的选择与回归面板数据模型的选择通常有三种形式:一种是混合估计模型(Pooled Regression Model)。
如果从时间上看,不同个体之间不存在显著性差异;从截面上看,不同截面之间也不存在显著性差异,那么就可以直接把面板数据混合在一起用普通最小二乘法(OLS)估计参数。
一种是固定效应模型(Fixed Effects Regression Model)。
如果对于不同的截面或不同的时间序列,模型的截距不同,则可以采用在模型中添加虚拟变量的方法估计回归参数。
一种是随机效应模型(Random Effects Regression Model)。
如果固定效应模型中的截距项包括了截面随机误差项和时间随机误差项的平均效应,并且这两个随机误差项都服从正态分布,则固定效应模型就变成了随机效应模型。
在面板数据模型形式的选择方法上,我们经常采用F检验决定选用混合模型还是固定效应模型,然后用Hausman检验确定应该建立随机效应模型还是固定效应模型。
检验完毕后,我们也就知道该选用哪种模型了,然后我们就开始回归:在回归的时候,权数可以选择按截面加权(cross-section weights)的方式,对于横截面个数大于时序个数的情况更应如此,表示允许不同的截面存在异方差现象。