加权平均数 案例评析

加权平均数 案例评析
加权平均数 案例评析

20.1.1 加权平均数——案例和评析

【基本理念】《数学课程标准》指出:“学生是数学学习的主人,教师是数学学习的组织者,引导者与合作者”,其强调了学生在教学活动中的主体地位。实践证明,主体性教学是培养学生自主探索知识能力、实践能力和创新思维能力的重要途径。

作为数学学习的组织者、引导者和合作者——教师应以学生为中心,充分发挥学生的主体性。

【基本目标】

知识与技能(理解权的意义及作用、掌握计算方法)

过程与方法(体会数学知识的形成过程:观察、类比、探究、概括、归纳。/体会

数学知识的应用价值:体会加权平均数的作用,并解决实际问题。)情感态度与价值观(通过小组合作学习,养成交流分享的习惯;提高数学应用意识和能力,体会数学在生活中的重要作用。)

【实录评析】

一、创设情境,提出问题,明确思维目标

●发现矛盾,寻求新法

师:同学们好!今天我们进入平均数的学习。开启新课前呢,老师想请同学们来帮助解决一个问题。期末了,学校要评选优秀学生,老师对甲、乙两名候选人进行了平时、期中和期末这三项成绩汇总,他们的各项成绩(百分制)如下表所示,那老师该怎么选出‘优秀学生’呢?

生1:老师我觉得应该计算甲乙的总分或平均分,选分数高的那个?

师:哦~ 这样可行吗?大家先不要急着回答,自己想一想!

生2:老师我发现发现甲乙两人的三项成绩加起来,总分一样,算出的平均分也一样。

师:咦!是哦,观察的太仔细啦,给赞!看来呀,按照以前的方法算总分与平均分,没办法比较谁更适合“优秀学生”。那哪位同学可以想出一个厉害的方法解决这一问题呢?

生3:我认为可以从单项的成绩比较谁更适合。而且我认为平时成绩最重要,因为平时成绩体现的不仅是平时的学习成绩,同时也反应了平时的品德和作风。

师:大家有没有发现我们同学3很有自己的想法啊!好想法就同样赞!那大家觉得这个方法如何啊?

生4:老师我想说平时成绩虽重要,可期中、期末成绩也很重要的,不能只看一个成绩就决定谁更适合,缺失公平性!

师:老师听明白了:小4认为我们不能忽略掉期中和期末的重要性。老是觉得也很有道理呀,这可怎么办才好啊?!大家能否想到更适中的方法呢?

师:既然这个问题这么有困扰,那老师了解一种神奇的方法能够均衡的计算出谁更适合而且呀能够均衡各项成绩重要性,大家想不想了解呀?

评析:本小节着重探索新知验证猜想,提出怎样选出适合标准的优秀学生的问题,让学生思考分析,引导计算每位同学成绩的平均数,顺耳复习了小学学过的平均数,为学习加权平均数做好铺垫。而实际问题中,一组数据里的各个数据的重要程度”未必相同,因而,在计算这组数据的平均数时,往往给每个数据一个“权”,旧知识是获取新知识的基础,在现有知识的基础上,引导、启发学生通过联想、类比,发现现有知识的局限性,学会知识联系实际。激发学生学习的热情,引导学生积极主动的思考。引发讨论,讨论出各项成绩都有不同的重要性,从而引出“权”。

●引古论今,明白定义

生:想!

师:接下来老师带大家走进新知识“加权平均数”的学习世界。

看到“加权平均数”五个字,大家最关注什么呢?

生:权

师:厉害啊!同学们境界很高,第一眼就找准精髓啦!权是什么呢?(带着一种神秘的语气)不急,我们现在一起去探索。

在《孟子·梁惠王上》里面,有“权,然后知轻重”的说法,“权”——在古代有秤砣的意思。同学都知道,称是用来称量物品重量的。秤砣所在的位置不同,意味着物体的重量不同。从数学的角度出发,权应该表示什么呢?

生:代表数据的重要程度。

师:对,进一步讲呢就是权表示数据所占的比重、份数、百分比。而联想加权平均数又是什么呢?

评析:数学学习的过程,是一个不断探索、不断构建、不断总结知识的过程。而本节引用数学史中“权,然后知轻重”让学生感受到数学源远流长的文化之美之外,无形中培养了学生的美感,体会数学与生活是紧密相关的。而且让学生感受到“权”在数学中的重要性。

二、师生互动,探究发现,聚焦思维内容

●尝试新法,解决问题

生5:加了权以后计算出的平均数!

师:漂亮!老师需要这样的声音,讲的精简到位。那现在我们再回到刚刚那道题目。如果现在设置每一项成绩各占三分之一,大家想一想应该怎么计算甲的平均成绩呢?

生 6:把每一项成绩乘以三分之一,再相加,得到甲的分数为90分。老师是不是也可以写成这样呢?

师:很好!小6同学有认真思考哦!其实在这里三分之一分别是85、95、90的权。如果现在设置每一项成绩的权都是1呢?快!大家想小6一样认真思考啊!小7同学来是要来说一下计算过程么?

生7:嗯~老师我发现权都是1,就是说三项成绩的比重都是一样的。

师:所以你是根据上一道题目的经验,用每一项成绩乘以1以后相加,再除以三,得到答案为90分。那你每一项乘以的1就是?

生7:权?

师:对!再准确一点是各项成绩对应的权。那除以的3又是什么呢?

生7:就是权的和!

师:厉害!面对老师重重问题都对答如流啊!后生可畏啊!!!对比问题1和问题2,我们有什么发现?

生:算出的结果是相同哒。

师:那如果每一项的成绩的权是2呢?还相同吗?

生:结果都是相同的!

师:没错,从这三题我们可以发现,只要权相等,算加权平均数就跟算简单平均数是?

生:是相同的。

师:又对啦!想一想,简单平均数和加权平均数有着什么样的关系呢?老师要找一位同学分享一下想法啊!来,小8!

生8:我是想以前学的简单平均数应该也是加权平均数

师:嗯,很对!只不过权是相等的!小8很会发现哦!所以同学们要善于发现新旧知识的联系与区别,这样才能帮助我们更好的理解概念!

评析:教师利用学过的知识创设出一个情景,通过与小学学习的平均数的类比,让学生初步体会加权平均数的计算方法,给学生的思维提供了一个生长的空间,让学生感觉到有方向,但又不确定能否推理出来。问题的设计让同学们感受加权平均数的计算方法。同时提醒同学们要善于发现新旧知识的联系与区别。让学生感觉到跳一跳能够的着,极大的激发了学生的兴趣和求知欲。

●细心辨析,归纳概念

师:现在,我们继续将刚刚那道题目变一变。把三项成绩的权分别设为4、3、3。这时候权不一样了,我们要怎么进行计算呢?请同学们用1分钟同桌之间交流想法,再用两分钟时间动手计算。

(三分钟过后)

师:有没有同学计算好啦?好,同学9分享一下计算过程。

生9:老师我是通过前面权相等的计算方法进行思考,用每一项成绩,乘以它所对应的权相加后再除以所有权的和的。

师:哦~小9同学是通过类比权相等时来计算的。想法很独特!那我们现在来看看正确的答案。

哇哦,答案相同!最后算得甲是89.5分,乙是90.5分。大家谢谢小9的新想法!鼓掌师:现在我们已经能计算三个数的的加权平均数了。如果现在给出n个数:x1.x2,x3……xn,他们的权用希腊字母欧米噶来表示,分别是w1,w2,……wn,那大家能不能类比这个方法,计算这n个数的加权平均数呢?请大家先在稿纸上试一试。

(老师自主找个例子同学)

师:大家看A同学是这样写的。同学A你能解释一下你所列的这个式子吗?

生:我是发现左边的式子中的85、95、90,就对应x1,x2,x3,而4、3、3就是他们对应的权。然后我对比了左边的式子得出,每个数字乘以它所对应的权后相加,最后除以权和,得到这n个数的加权平均数。

师:同学们,赞同他的说法吗?

生:赞同(同学们异口同声)

师:都赞同!老师真高兴大家都会啊!同学A通过对左边式子的仔细观察和认真分析,然后类比提炼出加权平均数的计算公式!这种仔细观察、认真思考的态度很值得我们大家学习!同学A要继续保持这种良好的品质哦!

评析:学生通过独立的完成例题的平均数计算,并根据计算结果判断,猜想是否正确,初步体验“权”的意义巩固加权平均数的计算方法,强化学生对“权”和“加权平均数”的认识,渗透从特殊到一般的数学思想方法,为加权平均数公式的得出做好铺垫从上面的探索基础上,教师把有限个数变为无限个数,提出问题,学生思考归纳出n个数的加权平均数公式让学生知道小学学过的平均数其实就是特殊的加权平均数,实现新旧知识的衔接和统一。

课堂,应该成为学生探究与发明的“加油站”,而并非是每个知识点的“终

点站”。所以,我们应在把握教学内容本质的基础上,适当拓展教学内容,让教学建构在探究与发明的基础上,不断引发学生深入学习的信心和兴趣,让他们体会“跳一跳可以摘到果子”的喜悦。

三、应用新知,拓展提高,开发思维潜能

●变式训练,加深理解

师:下面我们来练一练,进一步熟悉所学的知识。还是刚刚的题目。变一变,假设平时成绩最重要,设置各项成绩分别占百分之50%、20%、30%,该评选谁为“优秀学生”呢?当期末成绩最重要时,设置三项成绩的比为3:2:5,这时又该选谁呢?给同学们6分钟时

间进行演练。

师:好!我们先看第五问,哪位同学先来同大家分享下自己的算法呀?

生B:老师我来吧

师:够勇敢!先看看我们同学B的。大家来欣赏一下,同学B写得怎么样呀?

生:很细、很好、有条理

师:嗯,那大家是不是该学习这些优点啊。解题步骤很详细,书写也很规范。那答案对了吗?生:对啦!

师:没错!结果也是正确的,算得甲乙的成绩分别是88.5和91.5,选乙为优秀学生。来看看老师的解题过程。相对于同学B写的,老师没有写分母。因为用百分比表示权的时候,权的和等于1 ,分母可以忽略不写。在数学上我们提倡的是简、精、美!下面,我们来看看第六问。大家看看同学C的解题过程。觉得她写得如何?

生D:答案是正确的。但她这样先计算出每项成绩的占的百分比较麻烦。可以直接把各项成绩的比代入公式计算的。

师:同学C也是很厉害的啊,稍稍完善一下就完美啦!同学D评价得很仔细啊!各项成绩的比也是权,直接代入加权平均数的计算公式就可以了。

师:好的,现在请同学们对比一下,前后两种情况计算出的的结果一样吗?

生:不一样!第五问中,甲是88.5分,乙是91.5分。

师:那说明了什么呢?

生:说明不同的权会产生不同的结果。

师:没错!

评析:变式进一步开拓了学生的视野,增长了学生的见识。同学在不断地讨论和质疑、答疑的过程中,发现权还有百分比和比两种表示方法,同时也让学生在练习中明白不同的权会产生不同的结果。这样,思维得到了充分的锻炼,碰撞出了许多智慧的火花。

四、回顾总结,交流收获,梳理思维脉络

●反思小结,畅谈收获

师:好啦!今天的新课内容就讲到这里。请同学们谈一谈通过今天的学习你还有哪些困惑和收获呢?

生:(同学们都踊跃发言)

师:真好!大家发言很积极,通过大家的分享我了解到,同学们在今天的学习中:了解了权的意义和三种表示方法,学会了怎么计算加权平均数。还体验到了用对比和从特殊到一般的方法进行学习。同时大家还提出困惑。这个问题,大家可以跟老师或同学进行交流。

最后我们来看看课后作业,必做题为课本练习的第一题,选做题是课本练习第二题。最

后一题是开放题,请同学们当一回招聘人员,按照你们公司的需要,设置各项成绩的权,并计算出选谁做英语翻译。好啦!今天的课就上到这里,谢谢同学们!

评析:总结的不仅是知识,更重要的是方法;作业布置不仅有书面作业,还有自主的课下思考,本节三种类型的作业,巩固新知的同时,提升发散思维

帮助学生总结知识,形成体系,最终使学生探究热情得以延续。

【教学总评】

一堂好课的评价标准,不是学生学了多少知识,完成了多少题目,而是在这个过程中体会运用只是解决问题的方法,享受学习过程中的快乐。课堂教学的直接目标,是为了帮助学生的学习,促使学生“学会”与“会学”。一堂好的数学课的标准,是要让学生真正的参与到学习中,获得知识,形成能力。相信学生,把舞台交给学生,这节《加权平均数》的新授课很好的诠释了这一点。

教学有法,教无定法。仁者见仁,智者见智。

算数平均数与加权平均数

第六章数据的分析 1.平均数(第1课时) 本节课的教学目标是: 1. 知识与技能:掌握算术平均数、加权平均数的概念,会求一组数的算术平均数和加权平均数。 2. 过程与方法:经历数据的收集与处理的过程,发展学生初步的统计意识和数据处理的能力;通过有关平均数问题的解决,发展学生的数学应用能力。 3. 情感与态度:通过小组合作活动,培养学生的合作意识;通过解决实际问题,让学生体会数学与生活的密切联系。 第一环节:情境引入 内容:1. 投影展示课本第八章的章前文字、章前图和一组问题,引入本章主题。 2. 用篮球比赛引入本节课题: 篮球运动是大家喜欢的一种运动项目,尤其是男生们更是倍爱有加。下面播放一段CBA(中国篮球协会)2005—2006赛季“广东宏远队”和“八一双鹿队”的一场比赛片段,请同学们欣赏。 在学生观看了篮球比赛的片段后,请同学们思考: (1)影响比赛的成绩有哪些因素?(心理、技术、配合、身高、年龄等因素) (2)如何衡量两个球队队员的身高?怎样理解“甲队队员的身高比乙队更高”?要比较两个球队队员的身高,需要收集哪些数据呢?(收集两个球队队员的身高,并用两个球队队员身高的平均数作出判断) 在学生的议论交流中引入本节课题:“平均数”。 第二环节:合作探究 内容1:算术平均数

投影教材提供的中国男子篮球职业联赛 2011—2012 赛季冠亚军球队队员身高、年龄的表格,提出问题: “北京金隅队”和“广东东莞银行队”两支篮球队中,哪支球队队员的身材更为高大?哪支球队队员更为年轻?你是怎样判断的?与同伴交流。 (1)学生先独立思考,计算出平均数,然后在小组交流。 (2)各小组之间竞争回答,答对的打上星,给予鼓励。 答案:北京金隅队队员的平均身高为1.98m,平均年龄为25.4 岁; 广东东莞银行队队员的平均身高为2.00 m,平均年龄为24.1岁。 所以,广东东莞银行队队员的身材更为高大,更为年轻。 教师小结:日常生活中我们常用平均数来表示一组数据的“平均水平”。 一般地,对于n个数x 1,x 2 ,…,x n ,我们把 n 1 (x 1 +x 2 +…+x n ),叫做这n 个数的算术平均数,简称平均数,记为x。 内容2:加权平均数 想一想:小明是这样计算北京金隅队队员的平均年龄的: 1)÷(1+4+2+2+1+2+2+1)﹦25.4(岁) 你能说说小明这样做的道理吗? 学生经过讨论后可知,小明的做法还是根据算术平均数的公式进行计算的,只是在求相同加数的和时用了乘法,因此这是一种求算术平均数的简便方法。 例1:某广告公司欲招聘广告策划人员一名,对A、B、C三名候选人进行了三项素质测试。他们的各项测试成绩如下表所示: (1)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用? (2)根据实际需要,公司将创新、综合知识和语言三项测试得分按4:3:1的

北师大版数学八年级上册6.1 第2课时 加权平均数的应用

第2课时加权平均数的应用 基础题 知识点加权平均数的应用 1.某餐饮公司为一所学校提供午餐,有10元、12元、15元三种价格的盒饭供师生选择,每人选一份,该校师生某一天购买的这三种价格盒饭数依次占50%、30%、20%,那么这一天该校师生购买盒饭费用的平均数为()A.11元B.11.6元 C.12元D.12.6元 2.(湖州中考) 评分(分)80859095 评委人数1252 则这10__________分. 3.洋洋八年级上学期的数学成绩如下表所示: 测验 类别 平时 期中 考试 期末 考试 测验1测验2测验3测验4 成绩106102115109112110 (1)计算洋洋该学期的数学平时平均成绩; (2)如果学期的总评成绩是根据如图所示的权重计算,请计算出洋洋该学期的数学总评成绩. 中档题 4.某次歌咏比赛,最后三位选手的成绩如下:若基本唱功、音乐常识、综合知识按照6∶3∶1的比例计分,则冠军、亚军、季军分别是() 测试项目 测试成绩 王飞李真林杨 基本唱功989580 音乐常识8090100 综合知识8090100 A.王飞、李真、林杨 C.王飞、林杨、李真D.李真、林杨、王飞

5.(无锡中考)某种蔬菜按照品质分为三个等级销售,销售情况如下表: 等级单价(元/千克)销售量(千克) 一等 5.020 二等 4.540 三等 4.040 则售出蔬菜的平均单价为 综合题 6.(甘孜中考)某校学生会决定从三名学生会干事中选拔一名干事,对甲、乙、丙三名候选人进行了笔试和面试,三人的测试成绩如下表所示: 测试项目 测试成绩/分 甲乙丙 笔试758090 面试937068 根据录用程序,学校组织200 示,每得一票记1分(没有弃权,每位同学只推荐1人). (1)分别计算三人民主评议的得分; (2)根据实际需要,学校将笔试、面试、民主评议三项得分按照4∶3∶3的比例确定个人成绩,三人中谁的得分最高? 参考答案 1.B 2.89 3.(1)平时平均成绩为1 4 (106+102+115+109)= 1 4 ×432=108. (2)总评成绩为108×10%+112×30%+110×60%=10.8 +33.6+66=110.4. 4.B 5.4.4 6.(1)甲:200×25%=50(分);乙:200×40%=80(分);丙:200×35%=70(分).(2)甲:(75×4+93×3+50×3)÷(4+3+3)=72.9(分);乙:(80×4+70×3+80×3)÷(4+3+3)=77(分);丙:(90×4+68×3+70×3)÷(4+3+3)=7 7.4(分).所以丙的得分最高.

《加权平均数》教案

《加权平均数》教案 教学目标 理解加权平均数的意义,会进行加权平均数的计算. 过程与方法 初步经历数据的收集、加工整理的过程,能利用加权平均数解决一些实际问题,发展学生的数学应用能力. 情感、态度与价值观 培养学生互相合作与交流的能力,增强学生的数学应用意识. 教学重点 加权平均数的意义与计算方法. 教学难点 加权平均数的计算. 教学设计 一、复习导入 教师讲解:在日常生活中,我们经常会与平均数打交道,但有时发现以前计算平均数的方法并不适用,例如老师在计算学生每学期的总评成绩时,不是简单地将一个学生的平时成绩与考试成绩相加除以2作为该学生的总评成绩,而是按照“平时成绩占40%,考试成绩占6 0%”的比例计算(如P135图20.1.5).考试成绩更为重要.这样如果一个学生的平时成绩为76分,考试成绩为90分,那么他的学期总评成绩应该为70×40%+90×60%=82(分). 二、探究新知 (―)加权概念的引人 教师讲解;一般来说,由于各个指标在总结果中占有不同的重要性,因而会被赋予不同的权重,上例中的40%与60%就是平时成绩与考试成绩在学期总评成绩中的权重,最后计算得到的学期总评成绩82分就是上述两个成绩的加权平均数. 教师要求学生模仿上题计算下面问题:小青在初一年级第二学期的数学成绩分别为:第1次测验得89分,第二次测验得78分,第3次测验得85分,期中考试得90分,期末考试得87分.如果按照上图所显示的平时、期中、期末成绩的权重,那么小青该学期的总评成绩应该为多少分? 学生计算后,教师给出答案.设置此题的目的主要是让学生熟悉按权重计算平均值的方法. (二)例题讲解 教师提出问题:某公司对应聘者A、B、C、D进行面试,并按三个方面给应聘者打分,

平均数、加权平均数

《平均数》教案 教学目标: 1、掌握算术平均数和加权平均数的,会求一组数据的算术平均数和加权平均数 。 2、 初步经历数据的收集和处理的过程,发展学生初步的统计意识和数据处理能力 。 3、根据有关平均数的问题的解决,培养学生的判断能力 。 教学重难点 难点:准确理解和掌握加权平均数中的“权”,并能正确运用。 重点:掌握算术平均数和加权平均数的概念 ,会求一组数据的算术平均数和加权平均数 。 教具准备 PPT 课件。 教学时间 1课时 教学设计 一、 引入课题、激发兴趣 今天我们来学习小学四年级我们曾学过的知识点----平均数,你会计算平均数吗?例如一组数1、3、4、5.的平均数是?首先我要告 诉大家平均数有一个符号“ ”,读作X 拔。接下来大家先自学课本内容。 二、 自主探究、归纳新知 x x

1、 学生自学课本内容。 2、 学生板演,归纳自学所得。 (1) 算术平均数公式 (2) 加权平均数公式 = 三、加深练习、巩固提高 1、 有五盒火柴,每盒火柴的根数如下:71、73、76、77、78则每盒火柴的平均根数是 2、有一组数据,各个数据之和为505,如果它们的平均数为101,那么这组数据的个数是 3、如果X ,X ,X ,X ,X ,的平均数是20,那么5X ,5X ,5X ,5X ,5X ,的平均数是 4、若4、X 、5的平均数是7,则3、4、 5、X 、6这五个数的平均数是 5、5个数据的和为405,期中一个数据为85,那么另外4个数据的平均数是 四、总结巩固、能力突破 总结算数平均数、加权平均数 五、重点练习,能力提升 六、课堂小结 七、布置作业 n x x x x x n +++= 321n n n w w w w x w x w x ............212211+++++x

平均数与加权平均数

23.1 平均数与加权平均数(2) 第课时 1.理解加权平均数的意义,了解“权”的含义. 2.会计算一组数据的加权平均数. 3.能说出算术平均数和加权平均数的联系和区别,并能利用它们解决一些现实问题. 1.在实际问题情境中理解加权平均数的意义,体会数学与生活之间的密切联系. 2.通过利用平均数解决实际问题,发展数学应用能力. 3.通过探索算术平均数和加权平均数的联系和区别,发展求同和求异思维. 1.通过解决实际问题,体会数学与自然及人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心. 2.通过小组合作活动,培养学生的合作意识,激发学生学习兴趣,体验成功的快乐. 【重点】加权平均数的计算及算术平均数与加权平均数的区别和联系. 【难点】探索算术平均数和加权平均数的联系和区别. 【教师准备】多媒体课件. 【学生准备】预习教材P6~8.

导入一: 复习提问: 1.什么叫算术平均数? 2.如何求一组数据的平均数? 3.当一组数据中同一个数据出现多次时常采用什么简便方法计算? 【师生活动】学生思考回答,教师点评. 导入二: 【课件展示】在一次数学考试中,八年级(1)班和(2)班的考生人数和平均成绩如下表: 【问题】 1.表格中“86分”所反映的实际意义是什么? 2.求这两个班的平均成绩. 【师生活动】学生思考后小组合作交流,小组代表发言,教师展示学生可能出现的两种解法,引导学生对比、思考,得出正确的解法,教师导出新课. [设计意图]通过复习算术平均数的概念,做好新旧知识的衔接,以贴近学生实际生活的实例导入新课,渗透“权”的意义,激发学生的学习兴趣,体会数学与生活之间的密切联系,迈上从“算术平均数”到“加权平均数”的一个台阶,让学生顺利完成新知识的构建,为本节课的学习做好铺垫.

九年级数学平均数与加权平均数练习题

九年级数学平均数与加权平均数练习题 同学们在九年级数学平均数与加权平均数的学习上要相互促进,相互竞争,在竞争中不断学习,才能提升自己。下面是小编为大家带来的关于九年级数学平均数与加权平均数的练习题,希望会给大家带来帮助。 九年级数学平均数与加权平均数练习题目【基础知识训练】 1.如果一组数据5,x,3,4的平均数是5,那么x=_______. 2.某班共有学生50人,平均身高为168cm,其中30名男生平均身高为170cm,?则20名女生的平均身高为________. 3.某校八年级(一)班一次数学考试的成绩为:100分的3分,90分的13人,80?分的17人,70分的12人,60分的2人,50分的3人,全班数学考试的平均成绩是_______.(? 结果保留到个位) 4.某中学举行歌咏比赛,六位评委对某位选手打分如表:77、82、78、95、83、75去掉一个最高分和一个最低分后的平均分是________分. 5.(2005,宁波市)在航天知识竞赛中,包括甲同学在内的6?名同学的平均分为74分,其中甲同学考了89分,则除甲以外的5名同学的平均分为_______分. 【创新能力应用】 6.如果一组数据x1,x2,x3,x4的平均数是,那么另一组数据x1,x2+1,x3+2,x4+3的平均数是( )

A. B. +1 C. +1.5 D. +6 7.有m个数的平均数是x,n个数的平均数是y,则这(m+n)个数的平均数为( ) A. 8.x1,x2,x3,,x10的平均数是5,x11,x12,x13,,x20的平均数是3,则x1,x2,x3,,x20的平均数是( ) A.5 B.4 C.3 D.8 9.某居民院内月底统计用电情况,其中3户用电45度,5户用电50度,6户用电42度,则平均每户用电( ) A.41度 B.42度 C.45.5度 D.46度 10.甲、乙、丙三种糖果售价分别为每千克6元,7元,8元,若将甲种8千克,?乙种10千克,丙种3千克混在一起,则售价应定为每千克( ) A.6.7元 B.6.8元 C.7.5元 D.8.6元 11.为了增强市民的环保意识,某初中八年级(二)班的50名学生在今年6月5日(?世界环境日)这一天调查了各自家庭丢弃旧塑料袋的情况.统计数据如下表: 每户丢弃旧 塑料袋的个数2 3 4 5 户数6 16 15 13 请根据以上数据回答:(1)50户居民每天丢弃废旧塑料袋的平均个数是______个.

加权平均数教案

加权平均数 课型:新授课 教学目标 知识与技能: 体会“权”的差异对于平均数的影响,算术平均数和加权平均数的联系与区别, 能 应用加权平均数解释现实生活中的一些简单现象,并能用它解决一些实际问题. 过程与方法: 通过独立思考和小组讨论获得基本数学活动经验和交流合作的能力。 情感态度与价值观: 进一步增强统计意识和数学应用能力,体会数学与自然及人类社会的密切联系, 了解数学的价值,加深数学的理解和学好数学的信心。 教学重难点:“权”的意义和加权平均数的计算。 教学过程: 一.回顾旧知 设置问题: 1. 数据2、3、4、1、5的平均数是________,这个平均数叫做________平均数. 2.一次数学测验,3名同学的数学成绩分别是60,80和100分,则他们的平均成绩是 多少?你怎样列式计算?算式中的分子分母分别表示什么含义? 设计意图:通过回顾旧知让学生对将要学习的知识心理上产生亲近感,并做好接受新知识 的准备。 二.探究新知 设置问题: 问题 : 计算意大利队队员的平均年龄: 小A 求得意大利队员的平均年龄为 你认为小A 的做法正确吗?为什么? 设计意图:通过此问题让学生意识到以前学的简单的算术平均数已经解决不了现在的问题, 从而需要学习新的知识来解决此问题。 问题:“权”的意义是什么?“权”可以是百分数或者分数吗? 设计意图:通过此问题,让学生先独立思考从课本中寻求答案,之后小组讨论交流自 己的思考结果。从而突破本节课的难点。理解权的意义在于反应各个数据的相对“重要程度”。 三。推进新课 加权平均数:一般地,若n 个数 的权 分别是 ,我们把 叫做这n 个数的加权平均数。 5.28431262928=+++=x n x x x ,...,,21n ωωω...,21,,n n n x x x ωωωωωω++++++ (212211)

初二数学平均数与加权平均数练习题

初二数学平均数与加权平均数练习题 初二数学平均数与加权平均数同步练习题 初二数学平均数1.一般地,如果有n个数,那么 _______________,叫做这几个数的平均数。 2.如果数据2,3,x,4的平均数是3,那么x等于____________。 3.数据5,3,2,1,4,的平均数是____________。 4.1,2,3,,,的平均数是8,那么,,的平均数是 ____________。 5.某次考试,5名学生的平均分是83,除学生甲外,其余4名学生的平均分是80,那么学生甲的得分是__________。 6.某校几名学生参加今年全国初中数学竞赛,其中8名男同学的平均成绩为85分,4名女同学的平均成绩为76分,那么该校12名同学的平均成绩为___________。 7.一跳高运动员在1次大型运动会上成绩的平均数为2.35米,假设选派参加亚运会,可以预料,他的成绩大约为______米。 8.经随机调查某校初三30名学生每天完成家庭作业时间为3小时,由可估计该校家庭作业约为___________小时。 9.数据a,a,b,c,a,c,d的平均数是 ( ) A. B. C. D. 10.某次考试,5名学生的平均分是82,除学生甲外,其余4名学生的平均分是80,那么学生甲的得分是( )

A.84 B.86 C.88 D.90 11.数据的平均数是,那么的平均数是 ( ) A. B.2 C.2 +1 D. 12.假设m个数的平均数为x,n个数的平均数为y,那么这(m+n)个数的平均数是 ( ) A. B. C. D. 13.一组数据23.02,22.99,22.98,23.01,a的平均数为23.01。求a的值。 14.数据,,的平均数是10,求数据的平均数。 15.一组数1,2,3,x,y,z的平均数是4 (1)求x,y,z三数的平均数。 (2)求4x+5,4y+6,4z+7的平均数。 16.从甲、乙、丙三个厂家生产的同一产品中,各抽出8件产品,对其使用寿命进行跟踪调查,结果如下:(单位:年) 甲:3,4,5,6,8,8,8,10 乙:4,6,6,6,8,9,12,13 丙:3,3,4,7,9,10,11,12 试计算三个厂这三批灯泡的平均寿命并比较哪个厂生产的产品寿命最长。 17.某地区前两周从星期一到星期五各天的最低气温依次是(单位:℃):,,,,和,,,,,假设第一周这五天的

加权平均数

平均数(1)——加权平均数 一、教学目标 1.知识与技能:理解“权”及“加权平均数”的意义;掌握加权平均数的计算公式,并能利用其解决不同情境的实际问题; 2.过程与方法:经历情境探求过程,感悟提出“加权平均数”概念的必要性及“加权平均数”与“算术平均数”的联系与区别;经历问题解决过程,深化对“权”的各种形式的认识及对“加权平均数”的本质认识; 3.情感、态度、价值观:认识“各数据重要性有所不同”的客观事实,体会“根据不同数据的权来计算其平均数”的合理性。 二、教学重点、难点 1.教学重点:权及加权平均数的概念理解,计算公式及其应用; 2.教学难点:加权平均数概念的形成 三、教学方法与教学手段 1.教学方法:问题导学,即用问题串来驱动教学,让学生在解决问题的过程中获得感悟,形成知识技能,深化认识。 2.教学手段:多媒体 四、教学过程 (一)激活旧知,巧设伏笔 【问题一】: (1)已知数据:3,5,6:则他们的平均数为____________。 (2)已知数据:3,3,5,5,5,6,6,6,6‘则他们的平均数为______________。 (第一个问题复习了算术平均数,第二个问题复习了带频数的算术平均数,突出仅有数据是不够的,因为重复出现的次数不同,地位不同,而该题中计算的方法又为后面的加权平均数公式做了铺垫。) (二)问题导航,呈现新知 【问题二】: 问题1:某市三个郊县的人均耕地面积如下表:

n f x f x f x f x k k ++++ 332211郊县 人数/万 人均耕地面积/公顷 A 15 B 7 C 10 这个市郊县的人均耕地面积如下表示正确吗 ++ 3 思考1:这个市郊县的 人均耕地面积与哪些因素有关?它们之间有何关系? 人均耕地面积 人口总数 0.15×150.21×70.18×10+ +15+7+10 ≈ 0.17(公顷) 解答:这个市郊县的人均耕地面积是:思考2:总耕地面积三个郊县耕地面积之和思考3:人口总数 三个郊县人数之和 在上面的问题中,三个数据、、的权分别是15、7、10,说明三个数据在计算这个市郊县人均耕地面积时的相对重要程度不同.“权” :当一组数据中各个数据的重要程度不相同时,我们可以分别给每个数据一个“权”。 4 32463523++?+?+?2 3 4 10 71510 18.0721.01515.0++++××× 你能否将上述两个具有共同特征的式子用一般的模式进行描述 一般地,设x 1,x 2,x 3,…,x k 为k 个数据,f 1,f 2,f 3, …,f k 依次为这k 个数据的权,其中 f 1+f 2+f 3+…+f k =n,则称 为这组数据的加权平均数。 【问题三】:

加权平均数的实际应用

加权平均数的实际应用 实际问题中,一组数据中的各个数据的“重要程度”未必相同.因而,在计算这组数据的平均数时,往往给每个数据一个“权”,反应数据的相对“重要程度”,即通过选用不同的权重计算出平均数,来评价某一具体问题.请看以下几例. 例1小林在八年级第一学期的数学书面测验成绩分别为:平时考 试第一单元得84分,第二单元得76分,第三单元得92分;期中考 试得82分;期末考试得90分.如果按照平时、期中、期末的权重 分别为10%、30%、60%计算,那么小林该学期数学书面测验的总 评成绩应为多少分? 分析:这个问题可以看成是求平时、期中、期末成绩的加权平均 数,10%、30%、60%说明三项成绩在总评中的重要程度,是三项成 绩的权.计算总评成绩,首先要计算出三次单元测试的平均 成绩. 解:平时单元测试的平均成绩(分), 所以总评成绩为 (分),所以小林该学期数学书面测验的总评成绩应为87分. 例2某校规定:学生期末总评成绩由卷面成绩、研究性学习成绩、平时成绩三部分构成,各部分所占比例如右图所示.小明本学期数学学科三部分成绩分别是90分、80分、85分,则小明的期末数学总评成绩为_________分. 分析:本题通过扇形统计图的形式给出了卷面成绩、研究性学习成绩、平时成绩所占的权重比为60%∶20%∶20%,根据加权平均数的计算公式可得小明的期末数学的总评成绩. 解:小明的期末数学总评成绩为(分). 例3某公司对应聘者进行面试,按专业知识、工作经验、仪表形象给应聘者打分,这三个方面的重要性之比为6∶3∶1.对应聘的王丽、张瑛两人的打分如下表: 如果两人中只录取一人,若你是人事主管,你会录用________. 分析:这家公司按照6∶3∶1的比例确定专业知识、工作经验、仪表形象的成绩,说明各项成绩的“重要程度”不同,专业知识的成绩比工作经验、仪表形象更加“重要”.计算王丽和张瑛的平均成绩,实际上是求专业知识、工作经验、仪表形象这三项成绩的加权平均数. 解:王丽的成绩为:(分),张瑛的成绩为: (分),由于张瑛的分数比王丽的高,所以应录用张瑛. 例4老王的鱼塘里年初养了某种鱼2 000条,到年底捕捞出售,年底为了估计鱼塘里这种鱼的总产量,从鱼塘里捕捞了三次,得到如下表的数据:

平均数和加权平均数-人教版八年级数学下册优秀教案设计

20.1数据的集中趋势 20.1.1平均数 第1课时平均数和加权平均数 1.知道算术平均数和加权平均数的意义,会求一组数据的算术平均数和加权平均数;(重点) 2.理解“权”的差异对平均数的影响,算术平均数与加权平均数的联系与区别,并能利用它们解决实际问题.(难点) 一、情境导入 在日常生活中,我们经常会与平均数打交道,但有时发现以前计算平均数的方法并不适用.你知道为什么要这样计算吗?例如老师在计算学生每学期的总评成绩时,不是简单地将一个学生的平时成绩与考试成绩相加除以2,作为该学生的总评成绩,而是按照“平时成绩占40%,考试成绩占60%”的比例计算(如图). 二、合作探究 探究点一:平均数 【类型一】已知一组数据的平均数,求某一个数据 如果一组数据3,7,2,a,4,6的平均数是5,则a的值是() A.8B.5C.4D.3 解析:∵数据3,7,2,a,4,6的平均数是5,∴(3+7+2+a+4+6)÷6=5,解得a=8.故选A. 方法总结:关键是根据算术平均数的计算公式和已知条件列出方程求解. 【类型二】已知一组数据的平均数,求新数据的平均数 已知一组数据x1、x2、x3、x4、x5的平均数是5,则另一组新数据x1+1、x2+2、x3+3、x4+4、x5+5的平均数是() A.6B.8C.10 D.无法计算 解析:∵x1、x2、x3、x4、x5的平均数为5,∴x1+x2+x3+x4+x5=5×5,∴x1+1、x2+2、x3+3、x4+4、x5+5的平均数为(x1+1+x2+2+x3+3+x4+4+x5+5)÷5=(5×5+15)÷5=8.故选B. 方法总结:解决本题的关键是用一组数据的平均数表示另一组数据的平均数. 探究点二:加权平均数 【类型一】以频数分布表提供的信息计算加权平均数 某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如 锻炼时间是() A.6.2小时B.6.4小时 C.6.5小时D.7小时 解析:根据题意得(5×10+6×15+

平均数 —加权平均数

第二十章数据的分析 20.1.1平均数(第一课时)教案 一、教学目标: 知识与技能:1、使学生掌握加权平均数的概念和加权平均数的计算方法。 2、使学生理解数据的权,了解权的意义。 过程与方法:通过复习平均数定义引导学生理解加权平均数的意义,再通过不同形式的练习 加深学生对权的理解。 情感态度与价值观:通过平均数的学习让学生进一步认识到数学在生活中实际应用,从而加强学习数学的信心。并通过练习渗透培养学生的集体荣誉感。 二、重点、难点和难点突破的方法: 1、重点:会求加权平均数 2、难点:对“权”的理解 三、教材分析 1、教材P124的问题及讨论栏目在教学中起到的作用。 (1)、这个问题的设计和讨论栏目在此处安排最直接和最重要的目的是想引出权的概念和加权平均数的计算公式。 (2)、这个讨论栏目中的错误解法是初学者常见的思维方式,也是已学者易犯的错误。在这里安排讨论很得当,起揭示思维误区,警示学生、加深认识的作用。 (3)、客观上,教材P124的问题是一个实际问题,它照应了本节的前言——将在实际问题情境中,进一步探讨它们的统计意义,体会它们在解决实际问题中的作用,揭示了统计知识在解决实际问题中的重要作用。 (4)、P125的云朵其实是复习平均数定义,小方块则强调了权意义。 2、教材P125例1的作用如下: (1)、解决例1要用到加权平均数公式,所以说它最直接、最重要的目的是及时复习巩固公式,并且举例说明了公式用法和解题书写格式,给学生以示范和模仿。 (2)、这里的权没有直接给出数量,而是以比的形式出现,为加深学生对权的意义的理解。 (3)、两个问题中的权数各不相同,直接导致结果有所不同,这既体现了权数在求加权平均数的作用,又反映了应用统计知识解决实际问题时要灵活、体现知识要活学活用。 3、教材P126例2的作用如下: (1)、这个例题再次将加权平均数的计算公式得以及时巩固,让学生熟悉公式的使用和书写步骤。 (2)、例2与例1的区别主要在于权的形式又有变化,以百分数的形式出现,升华了学生对权的意义的理解。 (3)、它也充分体现了统计知识在实际生活中的广泛应用。 四、教学过程: 引课练习: 1、数据 23、14、33、40、15 的平均数为 。 2、若15、16、x 的平均数为18,x= 复习方法: 数据的个数 数据的总数平均数= (数据的个数平均数数据的总数?=)

算术平均数与加权平均数

https://www.360docs.net/doc/bc1386259.html, 21.1 算术平均数与加权平均数 同步练习 【基础知识训练】 1.如果一组数据5,x ,3,4的平均数是5,那么x=_______. 2.某班共有学生50人,平均身高为168cm ,其中30名男生平均身高为170cm ,?则20名女生的平均身高为________. 3.某校八年级(一)班一次数学考试的成绩为:100分的3分,90分的13人,80?分的17人,70分的12人,60分的2人,50分的3人,全班数学考试的平均成绩是_______.(? 结果保留到个位) 4一个最高分和一个最低分后的平均分是________分. 5.(2005,宁波市)在航天知识竞赛中,包括甲同学在内的6?名同学的平均分为74分,其中甲同学考了89分,则除甲以外的5名同学的平均分为_______分. 【创新能力应用】 6.如果一组数据x 1,x 2,x 3,x 4的平均数是x ,那么另一组数据x 1,x 2+1,x 3+2,x 4+3的平均数是( ) A .x B .x +1 C .x +1.5 D .x +6 7.有m 个数的平均数是x ,n 个数的平均数是y ,则这(m+n )个数的平均数为( ) A . . . . 2 2 x y x y mx ny mx ny B C D m n m n ++++++ 8.x 1,x 2,x 3,……,x 10的平均数是5,x 11,x 12,x 13,……,x 20的平均数是3,则x 1,x 2,x 3,……,x 20的平均数是( ) A .5 B .4 C .3 D .8 9.某居民院内月底统计用电情况,其中3户用电45度,5户用电50度,6户用电42度,则平均每户用电( ) A .41度 B .42度 C .45.5度 D .46度 10.甲、乙、丙三种糖果售价分别为每千克6元,7元,8元,若将甲种8千克,?乙种10千克,丙种3千克混在一起,则售价应定为每千克( ) A .6.7元 B .6.8元 C .7.5元 D .8.6元 11.为了增强市民的环保意识,某初中八年级(二)班的50名学生在今年6月5日(?世

加权平均数

生活教育行知学案 重庆市育才中学校初2020级科目数学执笔张莉审阅曾中君审核课题课型课时使用者§20.1.1平均数合作探究课1课时初二19班 四维目标知识与技能 1.理解加权平均数的概念; 2.理解权的三种表现形式; 3.掌握加权平均数的一般表达式,并 能解决简单的实际问题,体会权的差异对结果的影响;4.体会平均数是一个基本统计量 . 数学思考 1.体会权的意义;2.理解算术平均数和加权平均数的区别和联系 . 解决问题能力 1.体验自主设计权的过程,熟练运用加权平均数的一般表达式解决题目. 情感与态度 1.培养爱校精神;2.通过小组合作学习,培养学生的合作意识. 课中学习一、问题导学 为迎接80周年校庆,学校将排练话剧——《陶行知在重庆》,需要选择一名“小陶行知”,以下是两名演员经过海选后得到的分数. 同学们,你认为适合当选小陶行知. 二、合作探究 1.通过计算,10位评委们打的平均分是:. 2.算术平均数 = ???x x x x n n : , , , 2 1 的算术平均数,记为 个数 一般地,对于 . 3.权反映数据的. 三、展示交流 何宝祯老师给“诗歌朗诵”三项打分表 (1)诗歌朗诵的得分由三部分组成,精神面貌占20%、艺术效果占30%、思想内涵占50%,则何老师打的最终得分是多少? (2)诗歌朗诵的得分由三部分组成,精神面貌、艺术效果、思想内涵按1:2:2确定最终得分,则何老师打的最终得分是多少? 四、精讲点拨

(1)?? ? ??权的表现形式: (2)加权平均数: = ??????x w w w x x x n n n 则的权分别是个数若,,,,,,,2121 . (3)两种平均数的区别与联系: 算术平均数 加权平均数 五、达标拓展 小组合作,寻找“小陶行知”. 为迎接80周年校庆,学校将排练话剧——《陶行知在重庆》,需要选择一名“小陶行知”,以下是三名演员经过海选后得到的分数. ①一个小组设计一个方案,哪项对评选你心中的“小陶行知”最重要?请设计合适的权; ②根据不同权重列出表达式,算出结果,找到你心中的最优秀演员. (1)我们组设计的权: . 理由是: . (2)=甲x =乙x (3) 因为: . 所以:我心目中的最优秀演员是: 演员. 六、盘点收获 (1)在知识上,我收获了: ① . ② . ③ . (2)在思想方法上,我收获了: . 作业 七、作业布置 1.课本:113页练习1、2,115页练习1、 2. 2.选做题:以小组为单位,对评选“小陶行知”设计尽可能多的评分方案.

《算术平均数与加权平均数》

6.1.1平均数 北师大版八年级上册第六章《数据的分析》 教学目标: (一)知识目标:1、掌握算术平均数,加权平均数的概念。 2、会求一组数据的算术平均数和加权平均数。 (二)能力目标:1、通过对数据的处理,发展学生初步的统计意识和数据处理的能力。 2、根据有关平均数的问题的解决,培养学生的判断能力。 (三)情感目标:1、通过小组合作的活动,培养学生的合作意识和能力。 2、通过解决实际问题,让学生体会数学与生活的密切联系。 教学重点:算术平均数,加权平均数的概念及计算。 教学难点:加权平均数的概念及计算。 教学方法:讨论与启发性。 教学设计 一、课堂引入 师:在信息技术不断发展的社会里,人们面临着更多的机会,常常需要对大量的信息作出恰当的选择和判断,随着计算机等技术的飞速发展,数据日益成为重要的信息,为了更好地适应社会,人们不仅要收集数据,还要对收集到的数据进行加工处理,进而作出判断。 现在我们就来学习数据的整理与分析的基础——平均数。(黑板写课题,ppt展示出) 二、新知讲解 师:每年NBA扣篮大赛都十分精彩,运动员的弹跳、力量、创新都是评分的标准。现在你们就是评委,对2位运动员的综合表现进行打分,满分为100分。 (观看视频,让3个同学对一号打分,4个同学对2号打分) 师:如何比较谁的成绩更好? 生:比较平均分数。 教学说明:通过对两位选手的打分评委数不一样多,让学生排除通过总分比较运动员的成绩,转为比较平均分数确定运动员的成绩,这样才公平。同时让学生体会到平均数的作用,自然中运用平均数解决实际问题。 师:怎么算? 生:全部分数相加,再除以人数。 (女生算一号成绩,男生算二号成绩,进行比较。师口头表达快速算法) 师:用这种方法算得的平均数叫做算术平均数 师:若3名同学对一号的打分分别是x1,x2,x3,则一号的平均分数是?若n名同学对一号的打分分别是x1,x2,x3…xn,,则一号的平均分数是?(板书公式) 教学设计:利用从特殊到一般的数学方法,让学生归纳出算术平均数的一般公式。 师:我还统计了几位同学对一号的打分,它们分别是… 小明整理后的数据: 师:此时求平均分数可以如何列式?

平均数与加权平均数 (2)

算术平均数与加权平均数 一. 教学内容: §21.1 算术平均数与加权平均数 [学习目标] ⑴理解平均数的概念和意义,会计算一组数据的算术平均数和加权平均数. ⑵能利用计算器计算一组数据的平均数. ⑶在具体情境中理解加权平均数的概念,体会“权”的意义,知道算术平均数与加权平均数的联系与区别. 二. 重点、难点: 1. 重点: 加权平均数的计算方法. 2. 难点: ⑴加权平均的原理. ⑵选择恰当的数据代表对数据做出判断. 三. 知识梳理: 1. 算术平均数的意义 如果有n个数 : ,, …,那么这组数据的平均 数 = ,这个平均数叫做算术平均数. 平均数是我们日常生活中经常用到的、比较熟悉的的概念,如平均分、 平均身高、平均体重、平均产量等等,由公式可知,平均数与给出的一组 数据中的每一个数的大小都有关系,所以平均数是这组数据的“重心”, 反映了这组数据的平均状态,是描述一组数据集中趋势的特征数字中最重 要的数据,也是衡量一组数据波动大小的基准. 2. 加权平均数 一般地,对于f1个x1,f2个x2,…,f n个x n,共f1+f2+…+f n个数组 成的一组数据的平均数为. 这个平均数叫做加权平均数,其中f1,f2,…,f n叫做权,这个“权”, 含有权衡所占份量的轻重之意,即(i=1,2,…k )越大,表明的个 数越多,“权”就越重. 加权平均数的计算公式与算术平均数的计算公式,实际上是一回 事.一般情况下,当一组数据中有很多数据多次重复出现时,加权平均数 的计算公式是算术平均数计算公式的另一种表现形式,用加权平均数公式 计算更简便. 四.【典型例题】 例1:某班第一小组有12人,一次数学测验成绩如下:85、96、74、100、 96、85、79、65、74、85、65、80,试计算这12人的数学平均分. 分析:最简单的方法就是把12个数据全部加起来,再除以12即可.但 是面对这样一组数字相对比较大的数组时,可以想办法,把数字的大小先 降下来,这里可以以80为基准,每个数都减去80组成一个新数组,计算 出平均数后,再加上80就得到原数组的平均数. 解:(解法一) 利用平均数公式得: 平均分 ==82 (分); (解法二)每个数都减去80后建立新数组为:5、16、-6、20、16、 5、-1、-15、- 6、5、-15、0,则新数组的平均数为: =2. 所以原数组的平均分=80+2=82(分). 例2:我校举行文艺演出,由参加演出的10个班各派一名同学担任评 委,每个节目演出后的得分取各个评委所给分的平均数,下面是各评委给 评委编 号 1 2 3 4 5 6 7 8 9 10 评分7.20 7.25 7.00 7.10 10.00 7.30 7.20 7.10 6.20 7.15 ⑵你对5号和9号评委的给分有什么看法? ⑶你认为怎样计算该节目的分数比较合理?为什么? 分析:本题涉及到关于样本的选取要具有代表性的问题,因为有些数 据对样本平均数的影响很大(如5号和9号的数据),因此,为了公正、 合理应去掉一个最高分和一个最低分,以减少它们对平均数的负面影响, 保证评判的公正性. 解:⑴平均分为: =7.35 (分). 此得分不能反映该节目的水平; ⑵5号评委的给分偏高,9号评委的给分偏低,他们都脱离实际,不 能公正地代表节目的实际水平; ⑶去掉一个最高分和一个最低分,这样可以避免某些特殊数据带来的 负面影响,保持评判的公正性. 例3:若一组数据的平均数是12,那么另一组数据 的平均数是多少? 分析:平均数是将各个数据的和除以数据的个数求得的,因此,我们 可以先求出已知数据的总数,再找出另一组数据与它的联系,从而求解. 解:因为=12. 所以=60. 所以 ===15. 例4:某人事部经理按下表所示的五个方面给应聘者记分,每一方面 均以10分为满分,如果各方面的权数及四个应征者得分如下(单位:分), 条件权数张三李四何五白六 学历15 7 9 8 8 经验15 8 7 7 8 社交7 6 8 5 4 效率8 6 5 6 7 外貌 5 5 6 7 8 分析:谁受聘就应看谁的分数高,只要应用加权平均数分别计算各人 的平均分,比较大小就可以了. 解:张三的平均分==6.8(分); 李四的平均分==7.32(分); 何五的平均分==6.86(分); 白六的平均分=7.28(分). 平均分结果显示李四的分数最高,所以李四受聘的可能性最大. 成绩(分)50 60 70 80 90 人数(人) 2 3 x y 2 分析:这里有两个未知量,就应得到关于它们的两个等量关系,不难 发现,一个是从总人数方面,另一个是从平均数方面得到两个等量关系, 从而列方程组进行求解. 解:由题意得: 解得 五.全课小结: 六.布置作业:

《加权平均数》详案

《加权平均数》导学稿 学习目标: 1、理解数据的权数和加权平均数的概念,会求加权平均数; 2、根据加权平均数的实际意义展开分析讨论,为合理决策提供理论依据; 3、在实际情境中,体验数学与生活的关系。 一、温故知新,预习导学 1、数据 2、 3、 4、1、2的平均数是____,这个平均数叫做____平均数. 2、你会计算一组数据x 1,x 2 ,…,x n 的平均数吗?学习课本P96内容写 出x= 生口答1、2.4,算术平均数;2、x=(X1+X2+...+Xn)/n 生总结点评:刚才xx同学计算的算术平均数,先对这组数据求和,再除以数据个数,平均数的计算我们经常用来干什么?—测验后计算平均分。 么?x=1 (80+81+81+82+83+81+81+79)=81 三组同学展示讨论的结果,不同的见解。。。 二、创设情境,引入新知 问题1:八(1)班王欣同学上学期数学期中成绩为70分,期末考试成绩为90分,他的学期总评成绩为多少分? 1、若该同学的总评成绩是按照“平时成绩占40%,期末成绩占60%”的百分比来计算,你能算出他的总评成绩吗?列式结果为: 2、分析比较,引出课题: 这两种计算平均数的方法,得到的结果怎样?为什么不同呢? 主要原因是两个成绩分别赋予了百分“比”,出现了前者与后者数值的变化。 三、探究新知,理解意义 1、自主学习:课本P 96-97 ,理解并归纳“频数”和“加权”的含义。

一般说来,如果在n个数中,x1出现f1次,x2,……,xk出现fk次(这里f1+f2+……+fk=n),那么根据平均数公式,这n个数的平均数可以表示为x= 2、尝试体验: 例1 在学校的田径运动会上,参加男子跳高的23名运动员成绩如下:求它们的平均数。(精确到0.01米) 1,2,4,5,7,2,1,1构成了一组数据对应的权数,并板演展示解答步骤如下,发动学生点评。 解:由题意,数据1.50,1.60,……,1.90的频数分别为: 由加权平均数公式,得x= 3、联系生活:你能举出一些生活中的计算平均数要考虑到各个指标的权重的例子吗? 4、当堂训练: 1)、在一组数据66,65,67,69,66,64,66,64,65,68中,数据65与66的频数分别为和2和3 2)、某中学八年级(3)班有47人,身高1.70米的有10人,1.66米有5人,1.60米有15人,1.58米的有10人,1.55米的有5人,1.50米的有2人,该班学生平均身高约为米。 1.61米 第1题(注意解题步骤哦!)8.4环 3)、课本P 99 并指出本题的权数是:,小组讨论总结:求加权平均数的关键是什么? 四、交流讨论,解决问题 例2:学校小记者团在八年级招聘一名小记者,办法是:每人提供上学期期末各科成绩,并进行现场作文比赛及口头表达能力测试,下表是3位应聘者的各项成绩,1、请分别计算他们测试的个人三项平均分是多

平均数与加权平均数

平均数与加权平均数 1.数据2、3、4、1、5的平均数是____,这个平均数叫做__________平均数. 2.一次数学测验中,有三位同学的成绩分别是75分,80分,85分,那么在这次测验中这三个同学的平均分是多少? 3.八年级某班共有4个学习小组,在一次英语考试中参考人数和成绩如下:求该班在这次英语考试中的平均成绩?下述计算方法是否合理?若不合理,请写出正确的计算方法。x =0.25(80+81+75+83)=79.75 4.如果数据2,3,x ,5的平均数是4,那么x 等于( ).A. 3 B. 4 C. 5 D. 6 5.某中学举行歌咏比赛,六位评委对某位选手的打分为:77、82、78、95、83、75,去掉一个最高分和一个最低分后的平均分是 分 6.若10名学生平均身高为1.65米,其中2名学生平均身高为1.75米,则余下8名学生的平均身高是______米 7.有m 个数的平均数是x ,n 个数的平均数是y ,则这(m+n )个数的平均数为( ) A . (22) x y x y mx ny mx ny B C D m n m n ++++++ 8.x 1,x 2,x 3,……,x 10的平均数是5,x 11,x 12,x 13,……,x 20的平均数是3,则x 1,x 2,x 3,……,x 20的平均数是( ) A .5 B .4 C .3 D .8 9.小亮同学上学期数学期中成绩为70分,期末成绩为90分,他的学期总评成绩为 分;若总评成绩是按照“期中成绩占40%,期末成绩占60%”的百分比来计算,他的总评成绩为 分;可以看出,两项成绩中 成绩对学期成绩的影响大. 10.在某个班的学生中,14岁的有5人,15岁的有30人,16岁的有5人,问:这个班学生的平均年龄是多少岁? 11.小明和小颖本学期数学平时成绩、期中成绩、期末成绩分别如下:假如学期总评按平时成绩、期中成绩、期末成绩各占1∶3∶6的比例来计算,那么小明和小颖的学期总评成绩谁较高? 12.一家公司打算招聘一名部门经理,现对甲、乙两名应聘者从笔试、面试、实习成绩三个方面的表现进行评分,笔试占总成绩20%、面试占30%、实习成绩占50%,各项成绩如下表所示:试判断谁会被公司录取,为什么? 13.在一次英语口试中,已知50分1人、60分2人、70分5人、90分5人、100分1人,其余为84分。已知该班平均成绩为80分,问:该班有多少人? 14.某班同学为支援甘肃舟曲特大泥石流中失去家园的中学生,将平时积攒的零花钱捐献给灾区的同学,其中捐10元的9人,捐12元的5人,捐15元的8人,捐20元的15人,还有部分同学捐了30元,全班平均每人捐款18.75元,求有多少人捐了30元?

相关文档
最新文档