大连理工优化方法-增广拉格朗日方法MATLAB程序

大连理工优化方法-增广拉格朗日方法MATLAB程序
大连理工优化方法-增广拉格朗日方法MATLAB程序

上机大作业II

定义目标函数fun

function f=fun(x)

x1=x(1);

x2=x(2);

f=4*x1-x2^2-12;

定义目标函数梯度函数dfun

function f=dfun(x)

x2=x(2);

f=[4;-2*x2];

定义等式约束函数hf

function qua=hf(x)

qua=25-x(1)^2-x(2)^2;

定义等式约束函数梯度函数dhf

function qua=dhf(x)

qua=[-2*x(1);-2*x(2)];

定义不等式约束函数gfun

function inq=gfun(x)

inq=10*x(1)-x(1)^2+10*x(2)-x(2)^2-34;

定义不等式约束梯度数dgf

function inq=dgf(x)

inq=[10-2*x(1);10-2*x(2)];

定义增广拉格朗日函数mpsi

function psi=mpsi(x,fun,hf,gfun,dfun,dhf,dgf,mu,lambda,sigma) f=feval(fun,x);

he=feval(hf,x);

gi=feval(gfun,x);

l=length(he);

m=length(gi);

psi=f;

s1=0;

for i=1:l

psi=psi-he(i)*mu(i);

s1=s1+he(i)^2;

end

psi=psi+0.5*sigma*s1;

s2=0.0;

for i=1:m

s3=max(0.0, lambda(i) - sigma*gi(i));

s2=s2+s3^2-lambda(i)^2;

end

psi=psi+s2/(2.0*sigma);

定义增广拉格朗日函数梯度函数dmpsi

function dpsi=dmpsi(x,fun,hf,gfun,dfun,dhf,dgf,mu,lambda,sigma)

dpsi=feval(dfun,x);

he=feval(hf,x);

gi=feval(gfun,x);

dhe=feval(dhf,x);

dgi=feval(dgf,x);

l=length(he);

m=length(gi);

for i=1:l

dpsi=dpsi+(sigma*he(i)-mu(i))*dhe(:,i);

end

for i=1:m

dpsi=dpsi+(sigma*gi(i)-lambda(i))*dgi(:,i);

end

定义BFGS法函数函数bfgs

function [x,val,k]=bfgs(mpsi,dmpsi,x0,fun,hf,gfun,dfun,dhf,dgf,mu,lambda,sigma) maxk=1000;

rho=0.5;

sigma1=0.4;

epsilon1=1e-4;

k=0;

n=length(x0);

Bk=eye(n);

while(k

gk=feval(dmpsi,x0,fun,hf,gfun,dfun,dhf,dgf,mu,lambda,sigma);

if(norm(gk)

break;

end

dk=-Bk\gk;

m=0;

mk=0;

while(m<20)

newf=feval(mpsi,x0+rho^m*dk,fun,hf,gfun,dfun,dhf,dgf,mu,lambda,sigma); oldf=feval(mpsi,x0,fun,hf,gfun,dfun,dhf,dgf,mu,lambda,sigma);

if(newf

mk=m;

break;

end

m=m+1;

end

x=x0+rho^mk*dk;

sk=x-x0;

yk=feval(dmpsi,x,fun,hf,gfun,dfun,dhf,dgf,mu,lambda,sigma)-gk;

if(yk'*sk>0)

Bk=Bk-((Bk*sk)*sk'*Bk)/(sk'*Bk*sk)+(yk*yk')/(yk'*sk);

end

k=k+1;

x0=x;

end

val=feval(mpsi,x0,fun,hf,gfun,dfun,dhf,dgf,mu,lambda,sigma);

定义增广拉格朗日乘子法函数multphr

function answer=multphr(fun,hf,gfun,dfun,dhf,dgf,x0)

maxk=5000;

sigma=2.0;

eta=2.0;

theta=0.8;

k=0;

ink=0;

epsilon=1e-4;

x=x0;

he=feval(hf,x);

gi=feval(gfun,x);

l=length(he);

m=length(gi);

mu=0.1*ones(l,1);

lambda=0.1*ones(m,1);

btak=10;

btaold=10;

while(btak>epsilon&&k

[x,v,ik]=bfgs('mpsi','dmpsi',x0,fun,hf,gfun,dfun,dhf,dgf,mu,lambda,sigma); ink=ink+ik;

he=feval(hf,x);

gi=feval(gfun,x);

btak=0.0;

for i=1:l

btak=btak+he(i)^2;

end

for i=1:m

temp=min(gi(i),lambda(i)/sigma);

btak=btak+temp^2;

end

btak=sqrt(btak);

if btak>epsilon

if(k>=2&&btak > theta*btaold)

sigma=eta*sigma;

end

for i=1:l

mu(i)=mu(i)-sigma*he(i);

end

for i=1:m

lambda(i)=max(0.0,lambda(i)-sigma*gi(i)); end

end

k=k+1;

btaold=btak;

x0=x;

end

f=feval(fun,x);

x

f

mu

lambda

k

运行求解

>> x0=[0;0]

x0 =

>> multphr('fun','hf','gfun','dfun','dhf','dgf',x0) x =

1.00128148956437

4.89871784708758

f =

-31.9923105871169

mu =

1.01559644571312

lambda =

0.754451167977228

k =

4

约束优化算法拉格朗日乘子法

拉格朗日乘子法 约束优化问题的标准形式为: min (),..()0,1,2,...,()0,1,2,...,n i j f x x R s t g x i m h x j l ∈≤=== ,,:n i j f g h R R →其中 约束优化算法的基本思想是:通过引入效用函数的方法将约束优化问题转换为无约束问题,再利用优化迭代过程不断地更新效用函数,以使得算法收敛。 1. 罚函数法 罚函数法(内点法)的主思想是:在可行域的边界上筑起一道很高的“围墙”,当迭代点靠近边界时,目标函数陡然增大,以示惩罚,阻止迭代点穿越边界,这样就可以将最优解“挡”在可行域之内了。 它只适用于不等式约束: min (),..0,1,2,...,n i f x x R s t g i m ∈≤= 它的可行域为: {|()0,1,2,...,}n i D x R g x i m =∈≤= 对上述约束问题,其其可行域的内点可行集0D ≠?的情况下,引入效用函数: min (,)()()B x r f x rB x =+%、 其中11()()m i i B x g x ==-∑%或1 ()|ln(())|m i i B x g x ==-∑% 算法的具体步骤如下: 给定控制误差0ε>,惩罚因子的缩小系数01c <<。 步骤1:令1k =,选定初始点(0)0x D ∈,给定10r >(一般取10)。 步骤2:以()k x 为初始点,求解无约束 min (,)()()k B x r f x r B x =+% 其中11()()m i i B x g x ==-∑%或1 ()|ln(())|m i i B x g x ==-∑%,得最优解()()k k x x r = 步骤3:若()()k k r B x ε<%,则()k x 为其近似最优解,停;否则,令,1k k r cr k k ==+, 转步骤2.

基于辅助问题原理及内点法的分区并行最优潮流算法

第40卷 第4期2006年4月 西 安 交 通 大 学 学 报 J OU RNAL O F XI′AN J IAO TON G U N IV ERSIT Y Vol.40 №4 Ap r.2006 基于辅助问题原理及内点法的分区并行最优潮流算法 商小乐,李建华,刘 锐,李 夏 (西安交通大学电气工程学院,710049,西安) 摘要:针对大电网在最优化问题计算中存在计算时间长、矩阵维数高等问题,按照电力系统的实际地理分布,在某些联络线处将整个电网分解为多个相对独立的子系统,子系统间通过边界节点产生的约束条件进行协调,建立了一个基于辅助问题原理(A PP)的多分区并行最优潮流计算模型.应用A PP方法,将大电网最优潮流问题转化为多个规模相对较小子系统的并行协调优化问题,在每个子系统中采用跟踪中心轨迹内点法求解子系统的优化问题.测试算例的计算结果表明,该算法减少了整个问题的矩阵维数,降低了问题的求解难度,具有较强的收敛性、快速性和实用性. 关键词:最优潮流;多分区;辅助问题原理;并行计算;内点法 中图分类号:TM744 文献标识码:A 文章编号:0253Ο987X(2006)04Ο0468Ο05 Paralleled Optimal Pow er Flow Algorithm B ased on Auxiliary Problem Principle and Interior Point Algorithm Shang Xiaole,Li Jianhua,Liu Rui,Li Xia (School of Electrical Engineering,Xi′an Jiaotong University,Xi′an710049,China) Abstract:To solve t he difficulties of long comp uting period and huge mat rix dimensions in t he t raditional large scale optimal power flow(O PF)algorit hms,a complex power system is decom2 posed into several logical independent subsystems geograp hically,which are coordinated via re2 st rictions of t he jointed borders.A dist ributed processing model based on subsystem decomposi2 tion and auxiliary problem p rinciple(A PP)met hod is p roposed,where t he large scale system O PF p roblem is decompo sed into several parallel coordinating subsystem optimization ones and solved wit h t he interior point algorit hm.It is demonst rated t hat t he algorit hm rapidly reduces t he dimensions and t he calculation complexity of overall OPF problem wit h higher efficiency and con2 vergence. K eyw ords:optimal power flow;subsystem decompo sition;auxiliary problem p rinciple;parallel comp utation;interior point algorit hm 随着电力系统规模不断扩大和对在线实时分析要求的不断提高,传统算法在计算速度上已经无法满足需求,人工智能算法虽然可以得到较好的优化解,但计算速度缓慢.此外,传统算法和人工智能算法目前都面临着大系统所带来的维数灾难问题,快速、稳定的最优潮流算法已经成为大规模电力系统计算与运行控制的关键.近年来,并行算法正逐渐应用到各种科学计算当中.在电力系统计算方面,并行算法也有了一些应用[1Ο4],这些方法采用服务器/客户端结构,主从进程之间存在大量数据交换,造成了数据收集和发送时的瓶颈.文献[5Ο7]提出了一种新的并行计算方法,它应用辅助问题原理[8],将一个整体的最优化问题分解为多个相对独立的子问题,并采用并行迭代求解子问题的方式来完成对整个问题的求解,为电力系统并行优化计算提供了一种新思路. 本文所讨论的是基于辅助问题原理(A PP)方法及跟踪中心轨迹内点法的分区并行最优潮流算法, 收稿日期:2005Ο09Ο16. 作者简介:商小乐(1982~),男,硕士生;李建华(联系人),女,教授.

Matlab频谱分析程序

Matlab频谱分析程序

Matlab 信号处理工具箱 谱估计专题 频谱分析 Spectral estimation (谱估计)的目标是基于一个有限的数据集合描述一个信号的功率(在频率上的)分布。功率谱估计在很多场合下都是有用的,包括对宽带噪声湮没下的信号的检测。 从数学上看,一个平稳随机过程n x 的power spectrum (功率谱)和correlation sequence (相关序列)通过discrete-time Fourier transform (离散时间傅立叶变换)构成联系。从normalized frequency (归一化角频率)角度看,有下式 ()()j m xx xx m S R m e ωω∞ -=-∞ = ∑ 注:()() 2 xx S X ωω=,其中 ()/2 /2 lim N j n n N N X x e N ωω=-=∑ πωπ -<≤。 其matlab 近似为X=fft(x,N)/sqrt(N),在下文中()L X f 就是指matlab fft 函数的计算结果了 使用关系2/s f f ωπ=可以写成物理频率f 的函数,

其中s f 是采样频率 ()()2/s jfm f xx xx m S f R m e π∞ -=-∞ = ∑ 相关序列可以从功率谱用IDFT 变换求得: ()()()/2 2//2 2s s s f jfm f j m xx xx xx s f S e S f e R m d df f πωππ ωωπ- -= =?? 序列n x 在整个Nyquist 间隔上的平均功率可以 表示为 ()()() /2 /2 02s s f xx xx xx s f S S f R d df f ππ ωωπ- -= =?? 上式中的 ()()2xx xx S P ωωπ = 以及()()xx xx s S f P f f = 被定义为平稳随机信号n x 的power spectral density (PSD)(功率谱密度) 一个信号在频带[]1 2 1 2 ,,0ωωωω π ≤<≤上的平均功率 可以通过对PSD 在频带上积分求出 []()()2 1 121 2 ,xx xx P P d P d ωωωωωω ωωωω-- = +?? 从上式中可以看出()xx P ω是一个信号在一个无 穷小频带上的功率浓度,这也是为什么它叫做功率谱密度。

五种最优化方法

五种最优化方法 1.最优化方法概述 1.1最优化问题的分类 1)无约束和有约束条件; 2)确定性和随机性最优问题(变量是否确定); 3)线性优化与非线性优化(目标函数和约束条件是否线性); 4)静态规划和动态规划(解是否随时间变化)。 1.2最优化问题的一般形式(有约束条件): 式中f(X)称为目标函数(或求它的极小,或求它的极大),si(X)称为不等式约束,hj(X)称为等式约束。化过程就是优选X,使目标函数达到最优值。 2.牛顿法 2.1简介 1)解决的是无约束非线性规划问题; 2)是求解函数极值的一种方法; 3)是一种函数逼近法。 2.2原理和步骤

3.最速下降法(梯度法) 3.1最速下降法简介 1)解决的是无约束非线性规划问题; 2)是求解函数极值的一种方法; 3)沿函数在该点处目标函数下降最快的方向作为搜索方向; 3.2最速下降法算法原理和步骤

4.模式搜索法(步长加速法) 4.1简介 1)解决的是无约束非线性规划问题; 2)不需要求目标函数的导数,所以在解决不可导的函数或者求导异常麻烦的函数的优化问题时非常有效。 3)模式搜索法每一次迭代都是交替进行轴向移动和模式移动。轴向移动的目的是探测有利的下降方向,而模式移动的目的则是沿着有利方向加速移动。 4.2模式搜索法步骤

5.评价函数法 5.1简介 评价函数法是求解多目标优化问题中的一种主要方法。在许多实际问题中,衡量一个方案的好坏标准往往不止一个,多目标最优化的数学描述如下:min (f_1(x),f_2(x),...,f_k(x)) s.t. g(x)<=0 传统的多目标优化方法本质是将多目标优化中的各分目标函数,经处理或数学变换,转变成一个单目标函数,然后采用单目标优化技术求解。常用的方法有“线性加权和法”、“极大极小法”、“理想点法”。选取其中一种线性加权求合法介绍。 5.2线性加权求合法 6.遗传算法 智能优化方法是通过计算机学习和存贮大量的输入-输出模式映射关系,进

增广拉格朗日乘子法及其在约束优化问题的应用

毕业论文 题目增广拉格朗日乘数法及在 其在约束优化问题的应用学院数学科学学院 专业信息与计算科学 班级计算1001班 学生高亚茹 学号 指导教师邢顺来 二〇一四年五月二十五日

摘要 增广拉格朗日乘子法作为求解约束优化问题的一种重要方法,近年来研究增广拉格朗日乘子法的应用显得更加重要。本文首要介绍了增广拉格朗日乘子法的产生,通过解释增广拉格朗日乘子法是罚函数法和拉格朗日乘子法的有机结合,引出了现在对增广拉格朗日法的发展状况,概述了增广拉格朗日乘子法基本理论。然后具体说明了增广拉格朗日法在科学领域上的实际应用,如在供水系统和图像复原的应用,也证明了增广拉格朗日乘子法的实际应用性。 关键词:增广拉格朗日乘子法;罚函数法;供水系统;图像复原

ABSTRACT Augmented lagrange multiplier methods as an important method for solving constrained optimization problems, recent studies in applications of augmented lagrange multiplier methods is even more important. This paper describes the generation of primary augmented lagrange multiplier method. By interpreting the augmented lagrangian multiplier methods is the combination of penalty function methods and Lagrange multiplier methods, It is given to a recent development of augmented lagrangian methods. Then is shown the basic theories of augmented lagrangian multiplier

nesta算法讲座

Nesta 算法以及一些推广 各位老师,各位同学,大家好。今天我给大家讲下Nesta 这个算法。这个讲稿我写的比较啰嗦,有大量的重复语言,这样做呢,是刻意为之,因为我想给大家留足思考缓冲时间,所以故意写的比较啰嗦。压缩感知是一种全新的采样方式,当被采样信号很稀疏时,只需要少量的随机采样即可得到信号的全部信息或者近似全部信息。但是,俗话说,上帝为了打开了一扇门的同时也会关上另一扇门,压缩感知存在的一个重要问题就是如何有效地从压缩后的测量值中恢复出原始信号。关于压缩感知的理论和应用,文章很多,这里就不介绍了,我们直奔主题。 压缩感知的信号恢复,本质上就是求下面这个优化问题 1 2min ..x s t b Ax ε -≤ 这个公式的含义,想必大家都比较清楚了,我就不再赘述。需要说的一点是,实际上,一些二阶算法比如内点法,在求解上述问题时很准确,但是二阶算法计算复杂度很高,难以满足大规模问题。所以一般来说,我们在设计求解上述问题的算法时,只考虑一阶算法,就是最多只求一阶导数。目前比较好的一阶算法比较多,例如TWISA[1],FISTA[2],primal-dual[3]算法,增广拉格朗日法[4],approximate message passing[5]算法,贪婪算法,同伦法,很多很多,大家可以在网上搜索文献看。一般来说,这些算法速度是足够的,但是,一般不够精确,因为拉格朗日乘子λ一般无法精确确定。还有一个比较现实的问题,就是这些算法(不是全部)很难处理大动态范围信号,什么叫大动态范围信号?其实很简单,就是有时候信号幅度是10,有时候又是0.0001,变化极大。再有一个问题就是,现实中的信号一般都不是绝对稀疏的,即便通过正交变换,也都不是绝对稀疏,而是近似稀疏,就是少量元素幅值较大,其余的很接近0,但不是0,这也是一个现实的问题。 Nesta 这个算法呢,它的全名叫Nesterov ’s algorithm ,这里的Nesterov 就是大名鼎鼎的Yuri Nesterov ,这个家伙是优化界非常牛的人,他和Arkadi Nemirovski 一起把线性规划推广为锥规划。Nesta 这个算法,本质上是Nesterov 的一些思想的综合,主要是他三篇论文的综合,第一篇是A method for unconstrained convex minimization problem with the rate of convergence O(1/k 2),这个论文催生了非常著名的FISTA 算法;第二篇是Smooth minimization of non-smooth functions ,这个论文同样非常重要,是讲如何平滑一个不光滑的函数。为什么重要呢?很简单,因为我们压缩感知里的l 1范数就是不光滑的凸函数,它在0点是不可导的,所以应用了光滑技术就可以变成光滑函数,就是处处可导函数,这样就很好处理了;第三篇论文是Gradient methods for minimizing composite objective function ,这个论文开发了一种优化方法,收敛速度很快,而且计算很简单。Nesta 是这三篇论文的综合,后面我们会具体讲。 在上述Nesterov 的第三篇论文里,就是Gradient methods for minimizing composite objective function 这篇论文里,他开发了一种算法,用于求解以下问题 ()min p x Q f x ∈ 这里呢,要求f (x )是一个处处可导的函数,注意,要求f (x )是可导的,不可导就不行。p Q 是一个凸集。此外,还有一个要求,就是f (x )的梯度是有界的,通俗来说,就是f (x )的梯度要满足下面这个不等式 ()() 22 f x f y L x y ?-?≤-对任意的x,y 都成立 L 是个常数。当满足这些条件以后,反复迭代下面的算法,就得到优化问题的解。

信号检测与估值matlab仿真报告

信号检测与估值 仿真报告 题目信号检测与估值的MATLAB仿真学院通信工程学院 专业通信与信息系统 学生姓名 学号 导师姓名

作业1 试编写程序,画出相干移频键控、非相干移频键控(无衰落)和瑞利衰落信道下非相干移频键控的性能曲线。 (1)根据理论分析公式画性能曲线; (2)信噪比范围(0dB-10dB),间隔是1dB; (3)信噪比计算SNR=10lg(Es/N0) 一、脚本文件 1、主程序 %******************************************************** %二元移频信号检测性能曲线(理论分析) %FSK_theo.m %******************************************************** clear all; clc; SNRindB=0:1:20; Pe_CFSK=zeros(1,length(SNRindB)); Pe_NCFSK=zeros(1,length(SNRindB)); Pe_NCFSK_Rayleigh=zeros(1,length(SNRindB)); for i=1:length(SNRindB) EsN0=exp(SNRindB(i)*log(10)/10); Es_aveN0=exp(SNRindB(i)*log(10)/10); Pe_CFSK(i)=Qfunct(sqrt(EsN0));%相干移频键控系统 Pe_NCFSK(i)=0.5*exp(-EsN0/2);%非相干移频键控系统(无衰落) Pe_NCFSK_Rayleigh(i)=1/(2+Es_aveN0);%非相干移频键控系统(瑞利衰落)end semilogy(SNRindB,Pe_CFSK,'-o',SNRindB,Pe_NCFSK,'-*',SNRindB,Pe_NCFSK_Rayleigh ,'-'); xlabel('Es/No或平均Es/No(dB)'); ylabel('最小平均错误概率Pe'); legend('相干移频','非相干移频(无衰落)','非相干移频(瑞利衰落)'); title('二元移频信号检测性能曲线'); axis([0 20 10^-7 1]); grid on; 2、调用子函数 %******************************************************** %Q函数 %Qfunct.m %********************************************************

常用最优化方法评价准则

常用无约束最优化方法评价准则 方法算法特点适用条件 最速下降法属于间接法之一。方法简便,但要计算一阶偏导 数,可靠性较好,能稳定地使函数下降,但收敛 速度较慢,尤其在极点值附近更为严重 适用于精度要求不高或用于对 复杂函数寻找一个好的初始 点。 Newton法属于间接法之一。需计算一、二阶偏导数和Hesse 矩阵的逆矩阵,准备工作量大,算法复杂,占用 内存量大。此法具有二次收敛性,在一定条件下 其收敛速度快,要求迭代点的Hesse矩阵必须非 奇异且定型(正定或负定)。对初始点要求较高, 可靠性较差。 目标函数存在一阶\二阶偏导 数,且维数不宜太高。 共轭方向法属于间接法之一。具有可靠性好,占用内存少, 收敛速度快的特点。 适用于维数较高的目标函数。 变尺度法属于间接法之一。具有二次收敛性,收敛速度快。 可靠性较好,只需计算一阶偏导数。对初始点要 求不高,优于Newton法。因此,目前认为此法是 最有效的方法之一,但需内存量大。对维数太高 的问题不太适宜。 适用维数较高的目标函数 (n=10~50)且具有一阶偏导 数。 坐标轮换法最简单的直接法之一。只需计算函数值,无需求 导,使用时准备工作量少。占用内存少。但计算 效率低,可靠性差。 用于维数较低(n<5)或目标函 数不易求导的情况。 单纯形法此法简单,直观,属直接法之一。上机计算过程 中占用内存少,规则单纯形法终止条件简单,而 不规则单纯形法终止条件复杂,应注意选择,才 可能保证计算的可靠性。 可用于维数较高的目标函数。

常用约束最优化方法评价标准 方法算法特点适用条件 外点法将约束优化问题转化为一系列无约束优化问题。 初始点可以任选,罚因子应取为单调递增数列。 初始罚因子及递增系数应取适当较大值。 可用于求解含有等式约束或不等 式约束的中等维数的约束最优化 问题。 内点法将约束优化问题转化为一系列无约束优化问题。 初始点应取为严格满足各个不等式约束的内点, 障碍因子应取为单调递减的正数序列。初始障碍 因子选择恰当与否对收敛速度和求解成败有较大 影响。 可用于求解只含有不等式约束的 中等维数约束优化问题。 混合罚函数法将约束优化问题转化为一系列无约束优化问题, 用内点形式的混合罚函数时,初始点及障碍因子 的取法同上;用外点形式的混合罚函数时,初始 点可任选,罚因子取法同外点法相同。 可用于求解既有等式约束又有不 等式约束的中等维数的约束化问 题。 约束坐标轮换法由可行点出发,分别沿各坐标轴方向以加步探索 法进行搜索,使每个搜索点在可行域内,且使目 标函数值下降。 可用于求解只含有不等式约束, 且维数较低(n<5),目标函数的 二次性较强的优化问题。 复合形法在可行域内构造一个具有n个顶点的复合形,然 后对复合形进行映射变化,逐次去掉目标函数值 最大的顶点。 可用于求解含不等式约束和边界 约束的低维优化问题。

music 方位估计 实验报告三 MATLAB 代码

实验报告三 实验目的: 实现常规波束形成及基于MUSIC 方法的方位估计。 实验内容: 1)若干阵元的接收阵,信号频率为10KHz ,波束主轴12度,仿真给出常规波束形成的波束图。 2)16个阵元的均匀线列阵,信号频率为10KHz ,信号方位为12度,用MUSIC 方法完成目标定向,信噪比-5dB ,0dB ,5dB 。 i) 波束形成时的阵型设计为两种,一种是均匀线列阵,阵元16个;一种是均匀圆阵,阵元数为16个,比较这两种阵型的波束图。 ii )比较不同信噪比下MUSIC 方法估计的性能(统计100次)。 实验原理: i)常规波束形成: 如图所示,基阵的输出),(θt v 。 ∑∑=*=* ==M m i i M m i i w t x t x w t v 1 1 ) ()()()(),(θθθ 采用向量符号则有, )()()()(),(H H θθθw x x w t t t v == 式中,x(t)和w(q )分别为观测数据向量和加权系数向量, ) ,(θt v 图 1 波束形成器基本原理图

T M 21])()()([)(t x t x t x t Λ=x T M 21])()()([)(θθθθw w w Λ =w 基阵输出端的空间功率谱表示为: ) ()( )()]()([)( )]()()()([ )],(),([ ] ),([)(H H H H H *2 θθθθθθθθθθRw w w x x w w x x w =====t t E t t E t v t v E t v E P 式中,R 为观测数据的协方差矩阵。 ii )基于MUSIC 方法的方位估计: )()()()(1 t n t s a t x i d i +=∑=θ T M 21])()()([)(t x t x t x t Λ =x )()()()(t n t s A t x +=θ 假设: (1 ) 信号源的数目d 是已知的, 且d < M ; (2 ) 各信号的方向矢量是相互独立的, 即)(θA 是一个列满秩矩阵; (3 ) 噪声)(t n 是空间平稳随机过程, 为具有各态历经性的均值为零、方差为σ2n 的高斯过程; (4 ) 噪声各取样间是统计独立的。 在上述假设条件下, 基阵输出的协方差矩阵可表示为: I A AR t x t x E R H s H 2])()([α+== 其中, R s 为信号的协方差矩阵;I 为单位矩阵。对R 进行特征分解, 并以特 征值降值排列可得 H m m M d m m H m m d m m e e e e R ∑∑+==+ =1 1λ λ 信号子空间与噪声子空间正交。 若噪声子空间记为E N , 即 ∑+== M d m H m m N e e E 1

最优化方法及其应用 - 更多gbj149 相关pdf电子书下载

最优化方法及其应用 作者:郭科 出版社:高等教育出版社 类别:不限 出版日期:20070701 最优化方法及其应用 的图书简介 系统地介绍了最优化的理论和计算方法,由浅入深,突出方法的原则,对最优化技术的理论作丁适当深度的讨论,着重强调方法与应用的有机结合,包括最优化问题总论,线性规划及其对偶问题,常用无约束最优化方法,动态规划,现代优化算法简介,其中前八章为传统优化算法,最后一章还给出了部分优化问题的设计实例,也可供一般工科研究生以及数学建模竞赛参赛人员和工程技术人员参考, 最优化方法及其应用 的pdf电子书下载 最优化方法及其应用 的电子版预览 第一章 最优化问题总论1.1 最优化问题数学模型1.2 最优化问题的算法1.3 最优化算法分类1.4

组合优化问題简卉习题一第二章 最优化问题的数学基础2.1 二次型与正定矩阵2.2 方向导数与梯度2.3 Hesse矩阵及泰勒展式2.4 极小点的判定条件2.5 锥、凸集、凸锥2.6 凸函数2.7 约束问题的最优性条件习题二第三章 线性规划及其对偶问题3.1线性规划数学模型基本原理3.2 线性规划迭代算法3.3 对偶问题的基本原理3.4 线性规划问题的灵敏度习题三第四章 一维搜索法4.1 搜索区间及其确定方法4.2 对分法4.3 Newton切线法4.4 黄金分割法4.5 抛物线插值法习题四第五章 常用无约束最优化方法5.1 最速下降法5.2 Newton法5.3 修正Newton法5.4 共轭方向法5.5 共轭梯度法5.6 变尺度法5.7 坐标轮换法5.8 单纯形法习題五第六章 常用约束最优化方法6.1外点罚函数法6.2 內点罚函数法6.3 混合罚函数法6.4 约束坐标轮换法6.5 复合形法习题六第七章 动态规划7.1 动态规划基本原理7.2 动态规划迭代算法7.3 动态规划有关说明习题七第八章 多目标优化8.1 多目标最优化问题的基本原理8.2 评价函数法8.3 分层求解法8.4目标规划法习题八第九章 现代优化算法简介9.1 模拟退火算法9.2遗传算法9.3 禁忌搜索算法9.4 人工神经网络第十章 最优化问题程序设计方法10.1 最优化问题建模的一般步骤10.2 常用最优化方法的特点及选用标准10.3 最优化问题编程的一般过程10.4 优化问题设计实例参考文献 更多 最优化方法及其应用 相关pdf电子书下载

常用无约束最优化方法(一)

项目三 常用无约束最优化方法(一) [实验目的] 编写最速下降法、Newton 法(修正Newton 法)的程序。 [实验学时] 2学时 [实验准备] 1.掌握最速下降法的思想及迭代步骤。 2.掌握Newton 法的思想及迭代步骤; 3.掌握修正Newton 法的思想及迭代步骤。 [实验内容及步骤] 编程解决以下问题:【选作一个】 1.用最速下降法求 22120min ()25[22]0.01T f X x x X ε=+==,,,. 2.用Newton 法求 22121212min ()60104f X x x x x x x =--++-, 初始点 0[00]0.01T X ε==,,. 最速下降法 Matlab 程序: clc;clear; syms x1 x2; X=[x1,x2]; fx=X(1)^2+X(2)^2-4*X(1)-6*X(2)+17; fxd1=[diff(fx,x1) diff(fx,x2)]; x=[2 3]; g=0; e=0.0005; a=1; fan=subs(fxd1,[x1 x2],[x(1) x(2)]); g=0; for i=1:length(fan) g=g+fan(i)^2; end g=sqrt(g); step=0; while g>e step=step+1; dk=-fan; %点x(k)处的搜索步长

ak=((2*x(1)-4)*dk(1)+(2*x(2)-6)*dk(2))/(dk(1)*dk(2)-2*dk(1)^2-2*dk(2)^2); xu=x+ak*dk; x=xu; %输出结果 optim_fx=subs(fx,[x1 x2],[x(1) x(2)]); fprintf(' x=[ %d %d ] optim_fx=%d\n',x(1),x(2),optim_fx); %计算目标函数点x(k+1)处一阶导数值 fan=subs(fxd1,[x1 x2],[x(1) x(2)]); g=0; for i=1:length(fan) g=g+fan(i)^2; end g=sqrt(g); end %输出结果 optim_fx=subs(fx,[x1 x2],[x(1) x(2)]); fprintf('\n最速下降法\n结果:\n x=[ %d %d ] optim_fx=%d\n',x(1),x(2),optim_fx); c++程序 #include #include #include #include float goldena(float x[2],float p[2]) {float a; a=-1*(x[0]*p[0]+4*x[1]*p[1])/(p[0]*p[0]+4*p[1]*p[1]); return a; } void main() {float a=0,x[2],p[2],g[2]={0,0},e=0.001,t; int i=0; x[0]=1.0; x[1]=1.0;

Matlab频谱分析程序

Matlab 信号处理工具箱 谱估计专题 频谱分析 Spectral estimation (谱估计)的目标是基于一个有限的数据集合描述一个信号的功率(在频率上的)分布。功率谱估计在很多场合下都是有用的,包括对宽带噪声湮没下的信号的检测。 从数学上看,一个平稳随机过程n x 的power spectrum (功率谱)和correlation sequence (相关序列)通过discrete-time Fourier transform (离散时间傅立叶变换)构成联系。从normalized frequency (归一化角频率)角度看,有下式 ()()j m xx xx m S R m e ωω∞ -=-∞ = ∑ 注:()() 2 xx S X ωω=,其中( )/2 /2 lim N j n n N n N X x e ωω=-=∑ πωπ-<≤。其matlab 近似为X=fft(x,N)/sqrt(N),在下文中()L X f 就是指matlab fft 函数的计算结果了 使用关系2/s f f ωπ=可以写成物理频率f 的函数,其中s f 是采样频率 ()()2/s jfm f xx xx m S f R m e π∞ -=-∞ = ∑ 相关序列可以从功率谱用IDFT 变换求得: ()()()/2 2//2 2s s s f jfm f j m xx xx xx s f S e S f e R m d df f πωπ π ωωπ--= =? ? 序列n x 在整个Nyquist 间隔上的平均功率可以表示为 ()()() /2 /2 02s s f xx xx xx s f S S f R d df f π π ωωπ--= =? ?

《最优化方法与应用》实验指导书

《最优化方法与应用》 实验指导书 信息与计算科学系编制

1 实验目的 基于单纯形法求解线性规划问题,编写算法步骤,绘制算法流程图,编写单纯形法程序,并针对实例完成计算求解。 2实验要求 程序设计语言:C++ 输入:线性规划模型(包括线性规划模型的价值系数、系数矩阵、右侧常数等) 输出:线性规划问题的最优解及目标函数值 备注:可将线性规划模型先转化成标准形式,也可以在程序中将线性规划模型从一般形式转化成标准形式。 3实验数据 123()-5-4-6=Min f x x x x 121231212320 324423230,,03-+≤??++≤??+≤??≥? x x x x x x st x x x x x

1 实验目的 基于线性搜索的对分法、Newton 切线法、黄金分割法、抛物线法等的原理及方法,编写算法步骤和算法流程图,编写程序求解一维最优化问题,并针对实例具体计算。 2实验要求 程序设计语言:C++ 输入:线性搜索模型(目标函数系数,搜索区间,误差限等) 输出:最优解及对应目标函数值 备注:可从对分法、Newton 切线法、黄金分割法、抛物线法中选择2种具体的算法进行算法编程。 3实验数据 2211 ()+-6(0.3)0.01(0.9)0.04 = -+-+Min f x x x 区间[0.3,1],ε=10-4

实验三 无约束最优化方法 1实验目的 了解最速下降法、牛顿法、共轭梯度法、DFP 法和BFGS 法等的基本原理及方法,掌握其迭代步骤和算法流程图,运用Matlab 软件求解无约束非线性多元函数的最小值问题。 2实验要求 程序设计语言:Matlab 针对实验数据,对比最速下降法、牛顿法、共轭梯度法、DFP 法和BFGS 法等算法,比较不同算法的计算速度和收敛特性。 3实验数据 Rosenbrock's function 222211()(100)+(1-)=-Min f x x x x 初始点x=[-1.9, 2],,ε=10-4

(完整版)MATLAB模拟2ASK调制误码率与信噪比关系曲线的程序

%模拟2ASK % Pe=zeros(1,26); jishu=1; for snr=-10:0.5:15 max = 10000; s=round(rand(1,max));%长度为max的随机二进制序列 f=100;%载波频率 nsamp = 1000;每个载波的取样点数 tc=0:2*pi/999:2*pi;tc的个数应与nsamp相同 cm=zeros(1,nsamp*max); cp=zeros(1,nsamp*max); mod=zeros(1,nsamp*max); for n=1:max; if s(n)==0; m=zeros(1,nsamp); b=zeros(1,nsamp); else if s(n)==1; m=ones(1,nsamp); b=ones(1,nsamp); end end c = sin(f*tc); cm((n-1)*nsamp+1:n*nsamp)=m; cp((n-1)*nsamp+1:n*nsamp)=b; mod((n-1)*nsamp+1:n*nsamp)=c; end tiaoz=cm.*mod;%2ASK调制 t = linspace(0,length(s),length(s)*nsamp); tz=awgn(tiaoz,snr);%信号tiaoz中加入白噪声,信噪比为SNR=10dB jiet = 2*mod.*tz; %相干解调 [N,Wn]=buttord(0.2,0.3,1,15); [b,a]=butter(N,Wn); dpsk=filter(b,a,jiet);%低通滤波 % 抽样判决,判决门限为0.5 depsk = zeros(1,nsamp*max); for m = nsamp/2:nsamp:nsamp*max; if dpsk(m) < 0.5; for i = 1:nsamp depsk((m-500)+i) = 0; end

最优化方法及应用

陆吾生教授是加拿大维多利亚大学电气与计算机工程系 (Dept. of Elect. and Comp. Eng. University of Victoria) 的正教授, 且为我校兼职教授,曾多次来我校数学系电子系讲学。陆吾生教授的研究方向是:最优化理论和小波理论及其在1维和2维的数字信号处理、数字图像处理、控制系统优化方面的应用。 现陆吾生教授计划在 2007 年 10-11 月来校开设一门为期一个月的短期课程“最优化理论及其应用”(每周两次,每次两节课),对象是数学系、计算机系、电子系的教师、高年级本科生及研究生,以他在2006年出版的最优化理论的专著作为教材。欢迎数学系、计算机系、电子系的研究生及高年级本科生选修该短期课程,修毕的研究生及本科生可给学分。 上课地点及时间:每周二及周四下午2:00开始,在闵行新校区第三教学楼326教室。(自10月11日至11月8日) 下面是此课程的内容介绍。 ----------------------------------- 最优化方法及应用 I. 函数的最优化及应用 1.1 无约束和有约束的函数优化问题 1.2 有约束优化问题的Karush-Kuhn-Tucker条件 1.3 凸集、凸函数和凸规划 1.4 Wolfe对偶 1.5 线性规划与二次规划 1.6 半正定规划 1.7 二次凸锥规划 1.8 多项式规划 1.9解最优化问题的计算机软件 II 泛函的最优化及应用 2.1 有界变差函数 2.2 泛函的变分与泛函的极值问题 2.3 Euler-Lagrange方程 2.4 二维图像的Osher模型 2.5 泛函最优化方法在图像处理中的应用 2.5.1 噪声的消减 2.5.2 De-Blurring 2.5.3 Segmentation ----------------------------------------------- 注:这是一门约二十学时左右的短期课程,旨在介绍函数及泛函的最优化理论和方法,及其在信息处理中的应用。只要学过一元及多元微积分和线性代数的学生就能修读并听懂本课程。课程中涉及到的算法实现和应用举例都使用数学软件MATLAB 华东师大数学系

大连理工优化方法 增广拉格朗日方法MATLAB程序

上机大作业II 定义目标函数fun function f=fun(x) x1=x(1); x2=x(2); f=4*x1-x2^2-12; 定义目标函数梯度函数dfun function f=dfun(x) x2=x(2); f=[4;-2*x2]; 定义等式约束函数hf function qua=hf(x) qua=25-x(1)^2-x(2)^2; 定义等式约束函数梯度函数dhf function qua=dhf(x) qua=[-2*x(1);-2*x(2)]; 定义不等式约束函数gfun function inq=gfun(x) inq=10*x(1)-x(1)^2+10*x(2)-x(2)^2-34; 定义不等式约束梯度数dgf function inq=dgf(x) inq=[10-2*x(1);10-2*x(2)]; 定义增广拉格朗日函数mpsi function psi=mpsi(x,fun,hf,gfun,dfun,dhf,dgf,mu,lambda,sigma) f=feval(fun,x); he=feval(hf,x); gi=feval(gfun,x); l=length(he); m=length(gi); psi=f; s1=0; for i=1:l psi=psi-he(i)*mu(i); s1=s1+he(i)^2; end

psi=psi+0.5*sigma*s1; s2=0.0; for i=1:m s3=max(0.0, lambda(i) - sigma*gi(i)); s2=s2+s3^2-lambda(i)^2; end psi=psi+s2/(2.0*sigma); 定义增广拉格朗日函数梯度函数dmpsi function dpsi=dmpsi(x,fun,hf,gfun,dfun,dhf,dgf,mu,lambda,sigma) dpsi=feval(dfun,x); he=feval(hf,x); gi=feval(gfun,x); dhe=feval(dhf,x); dgi=feval(dgf,x); l=length(he); m=length(gi); for i=1:l dpsi=dpsi+(sigma*he(i)-mu(i))*dhe(:,i); end for i=1:m dpsi=dpsi+(sigma*gi(i)-lambda(i))*dgi(:,i); end 定义BFGS法函数函数bfgs function [x,val,k]=bfgs(mpsi,dmpsi,x0,fun,hf,gfun,dfun,dhf,dgf,mu,lambda,sigma) maxk=1000; rho=0.5; sigma1=0.4; epsilon1=1e-4; k=0; n=length(x0); Bk=eye(n); while(k

相关文档
最新文档