地铁系统列车最高运行速度分析

地铁系统列车最高运行速度分析
地铁系统列车最高运行速度分析

地铁列车控制模式

摘要:随着全国各大城市开始大力建设公共交通系统,尤其是具有大容量、高速度和高效率特点的城市轨道交通系统得到了充分的重视和长足的发展。地铁列车控制系统以安全为核心,以保证和提高列车运行效率为目标。系统在保证列车和乘客安全的前提下,通过调节列车运行间隔和运行时分,实现列车运行的高效和指挥管理的有序。 关键词:地铁列车控制系统;地铁列车控制模式 1.正常控制模式 1.1 列车进路控制 列车进路控制的原则:以联锁表为依据,输出进路控制命令。正常情况下atc系统根据列车运行时刻表进行正线进路的中心ats自动控制或设备集中站车站储存了当日时刻表的车站ats自动控制。必要时中心调度员可介入进行人工控制。在运营需要时中心与设备集中站经过一定的授与权和接受权手续后实现车站人工控制。当车站发现有危及行车安全的情况时,车站值班员可以采取措施,强行进入车站人工控制。运行需要或ats通道设备故障或中心故障时可降级为车站自动控制。 车站ats分机可以根据时刻表或接近列车的车次号及目的地号等信息进行列车进路的车站自动控制。通过联锁设备可以办理列车自动进路和自动折返进路。车辆段值班员人工办理进路因轨道空闲检测设备故障而不能办理进路时,可由车站值班员办理引导进路控制列车运行,此时的列车运行安全由司机来保证。 1.2 列车运行调整 ats子系统根据列车运行状态及车地通信设备提供的信息,实时对在线列车进行车次号更新、加车、减车等操作。列车运行偏离运行图时,应能自动对列车进行运行调整或提示调度员对在线列车实施运行调整,其中自动调整的主要手段为ato站间运行时分及atp/ato模式下的站停时分的调整。当因列车发生故障等原因造成运行大规模紊乱时,ats子系统应能提示调度员进行人工调整。人工调整主要包括:站停时分调整;增、减列车;列车始发、终到站变更等。ats子系统故障后,在恢复行车指挥功能的过程中,系统具有自动或辅助调度员使系统尽快投入运用的能力,包括在线列车检测与恢复、时刻表建立、列车跟踪恢复及进路控制恢复等处理。 1.3 列车站间运行及车站定点停车 系统根据线路条件、道岔状态、前方列车位置,控制列车以系统确定的安全速度运行或在必须停车的地点前方停车。由于系统判断列车在区间运行,因此由atp限制不能打开车门。若车门误打开,则atp报警并强迫列车停车。ato的停车控制功能可保证列车停在区间分界点前方一定位置或在前方列车或目标地点前方的安全防护距离以外停车。区间停车后,在atp 允许列车运行时,ato自动控制列车启动。列车依靠车站定位装置精确测定运行停车位置,ato控制列车制动,使其精确、平稳地停在设定的停车位置。在atc系统控制列车运行的情况下,列车在站台停稳、并进入规定的停车范围、欲开启车门的方位正确时,atp子系统发送开安全门和允许ato子系统向列车发送开左或右侧车门指令,ato子系统控制允许相应的车门自动打开或向司机提示应该开启的车门。无论是区间停车还是进站定点停车,ato均应保证控制的舒适度、停车过程的快速性。 1.4 车站发车 车站停车时间结束时,发车表示器显示0秒,指示司机发车。此时,可由司机控制关闭车门,车门、安全门全部关闭后,ato发车指示灯点亮,司机按压ato启动按钮后,列车自动由车站出发,列车进入区间后,发车表示器熄灭。若车门或安全门没有关闭,按压ato启动按钮动作无效,列车不能启动,发车命令无效。 1.5 行车交路折返站折返

地铁环控系统不同区域能耗分析解析

第 23卷第 5期常莉, 等:地铁环控系统不同区域能耗分析 ·115·文章编号:1671-6612(2009 05-115-04 地铁环控系统不同区域能耗分析 常莉冯炼李鹏 (西南交通大学机械工程学院成都 610031 【摘要】简要介绍了三种地铁环控系统的特点,采用能耗分析方法对不同区域地铁环控系统的能耗进行定 量比较。对地铁公共区分别进行空调季和非空调季节通风能耗计算以及区间隧道能耗计算,通过分析得出屏蔽门系统在寒冷地区、温和地区的节能效果不明显的结论,为以后的地铁车站环控设计提供了参考价值。 【关键词】屏蔽门系统;闭式系统;通风空调;能耗分析;节能中图分类号 TU83 文献标识码 A Energy consumption analysis of different areas on Subway ECS Chang Li Feng Lian Li Peng ( School of Mechanical Engineering of Southwest Jiaotong University, Chengdu, 610031, China 【 Abstract 】 Briefly describes the features in three kinds of Subway Environmental Control System with quantitative comparison to evaluate energy consumption in different areas of Subway ECS. By calculating ventilation energy consumption and interzone tunnel energy consumption in air-condition and non-air-condition seasons in public area in the subway, we can conclude in PSD system energy-saving effect is not obvious in cold area and mild climates area, which provides referential value for future subway station environmental control design.

地铁车辆概述

第一章车辆总体描述 第一节概述 地铁车辆是地铁用来运输旅客的运输工具,它属于城市快速轨道交通的范畴。现代城市轨道车辆有如下特点: 从构造上:列车采用动力分散布置形式。根据需要由各种非动力车和动力车(或半动力车)组合成相对固定的编组,两头设置操纵台。由于隧道限界的限制,车辆和其各种车载设备的设计要求相当紧凑。 从运用性能上:由于地铁的服务对象是高强度城市活动的人群,并要与公交系统、小汽车形成竞争力,所以对其安全、正点、快速上有很高的要求。同时要提供给乘客适当的空间、安静的环境及空调,使乘客感到舒适、便利。 为了达到这一要求,在车辆的设计、制造上,广州地铁采用了许多世界上的先进技术。广州地铁一号线车辆的主要特点有: 从结构上,车体朝轻量化方向发展,采用了大断面中空挤压铝型材全焊接或模块化车体结构设计,采用整体承载结构;悬挂系统具有良好的减振系统;采用电气(再生制动和电阻制动)和空气的混合制动;车辆连接采用密贴式车钩进行机械、电气、气路的全自动连接;车辆间采用封闭式全贯通通道,通过量大。 在运行方式上,应用列车自动驾驶系统ATO。 在主牵引传动上,采用当今世界先进的调频调压交流传动。在辅助系统中,采用先进的IGBT技术。 列车具有先进的微机控制技术及故障自诊断功能。如:在列车的主要子系统,牵引控制单元(DCU)、辅助逆变器控制单元(DC/AC)、电子制动控制单元(ECU)、空调控制单元(A/C)及二号线车辆的车门控制单元(EDCU)均采用了微机控制技术。 设计上采用了一系列安全保证措施,如:列车自动保护(ATP);采用“警惕按钮”; 自动紧急制动;制动安全电路;高压电气设备安全防护措施;车门“不动”保护;车体具有240kJ大容量的撞击能量吸收功能等。 广州地铁一号线为柔性接触网。供电电压为DC1500V。采用直-交传动,这种传动在国内尚属首次应用。 车辆总体上按以下几个子系统构成: 机械部分:车体电气部分:牵引及电制动 车钩及缓冲器辅助系统 车门系统列车控制技术(SIBAS 32) 转向架列车故障诊断(CFSU) 空气制动通信系统 空调和通风列车自动控制(ATC)车辆是地铁系统中最关键、也是最复杂的设备,他是多专业综合性的产品,涉及机械,电气、控制、材料等多领域。总之,车辆是通过各个相对独立的子系统有机地

地铁列车培训教材

培训教材

一、概述 北京地铁5号线每列车由固定的6辆车编组而成,包括3节动车和3节拖车。 编组形式:+Tc-M-T-M-M-Tc+ (Tc:带驾驶室的拖车)如下图所示。 1节动车和1节拖车构成车辆的一个基本单元(1M1T单元) 每辆车都配备了: a) 1套KBGM型直接作用式和负载控制式电-空(EP)空气制动系统。该制动系统的制动力大小可以调节,由驾驶员通过驾驶室内的主控制器(不在Knorr公司供应范围之内)对该制动系统进行数字式控制。在正常工作时,每节动车都采用摩擦制动和电动(ED)制动相混合的制动方法; b)每节车都用弹簧制动系统作为停放制动。 设计最大速度为80 km/h,制动设备包括动车的电制动(ED) 和在每个轴上的电-空(EP) 摩擦制动(踏面制动)。 用于电-空制动的制动控制设备和用钢框架构成的风源模块被吊装在车下的底架上。每辆车均设有制动控制模块,在M车上另外单独设有风源模块

二、制动设备分类描述 车辆设备由以下系统组成: ●压缩风源(A组); ●带车轮打滑保护控制(B/G组)的空气制动装置; ●转向架装置(C组—选配件); ●空气悬挂装置(L组); ●牵车装置(T组); ●连接装置(W组) 1、风源系统 M车上安装了VV 120型压缩风源装置。 风源系统的供气量足以满足1节动车和1节拖车的需求。 每台地铁列车(6节车厢)共需要两套这样的压缩风源装置,每套装置由两个主要部件构成:1台VV120型往复式空气压缩机和1台LTZ015.1H 型双气室空气干燥装置。 为了便于安装和维护,这两个部件安装在同一个机架上。 1.1空气压缩机 VV120(A01)型空气压缩机是一种风冷两级活塞式压缩机。该压缩机由380V(50Hz)三相交流电动机驱动,其排量约为720升/分钟,转速为1450

简述某地铁辅助供电系统实用版

YF-ED-J7516 可按资料类型定义编号 简述某地铁辅助供电系统 实用版 Management Of Personal, Equipment And Product Safety In Daily Work, So The Labor Process Can Be Carried Out Under Material Conditions And Work Order That Meet Safety Requirements. (示范文稿) 二零XX年XX月XX日

简述某地铁辅助供电系统实用版 提示:该安全管理文档适合使用于日常工作中人身安全、设备和产品安全,以及交通运输安全等方面的管理,使劳动过程在符合安全要求的物质条件和工作秩序下进行,防止伤亡事故、设备事故及各种灾害的发生。下载后可以对文件进行定制修改,请根据实际需要调整使用。 本文分析了某地铁列车辅助供电系统电路结构。列车辅助系统的供电网络分为:辅助逆变器(DC/AC逆变器)、蓄电池充电器、蓄电池、高压母线、中压母线、低压母线、照明设备与其它必需的辅助设备(继电器、接触器、空气开关、控制器等)。并基于ALSTOM的设计,对该辅助控制系统的原理及功能,主要逆变模块绝缘栅双极型晶体管IGBT模块构成,进行了简单介绍。 随着中国社会经济的发展、城市化进程的加快,随着城市轨道交通不断的发展壮大,

城市轨道车辆的研制与开发也逐渐各方面所关注。某地铁列车是由南车集团南京浦镇车辆公司与法国阿尔斯通公司合作生产的地铁车辆,是地铁车辆家族中载客量最大的一种。也是目前世界先进的A型(M系列)宽体列车,目前正被南京、上海、新加坡等地多家地铁所采用。 以下就某地铁辅助供电系统进行简单分析介绍。 系统总体信息 某地铁列车整车分为两个车辆单元共有6辆车编组,其中每个单元由一辆带驾驶室的拖车与两辆动车组成。通常6节车编组排列为 A –B – C –C–B –A。某地铁列车辅助系统的供电网络分为:辅助逆变器(DC/AC 逆变器)、蓄电池充电器、蓄电池、高压母

地铁列车门控系统动作原理

门控系统动作原理2011 预备知识 信号设备: ATC设备 轨旁ATC设备 1.STIB信标Static Train Initial Beaconing 静态列车初始化信标: 位于线路中间,长4米,黄色,位于每个站台正方向的头部 和折返信号机前方以及自出入库线上从停车场进入正线的信号 机前方,STIB信标主要用来对车载SACEM系统进行初始化。 2.MTIB信标Mobile Train Initial Beaconing 动态列车初始化信标:是由两个RB组成,相隔21米, 只有区间有。MTIB信标有三个作用: 对车载SACEM系统进行初始化;定 位列车;标准编码里程器。 3.S-BOND: 安装在区间内,用于向列车发送轨旁信息。 4.RB信标Relocate Beaconing 重定位信标: 位于线路中间,长53厘米,黄色,站台和区间都有。

RB信标主要为车载SACEM系统进行定位所用。 5.PEP紧急停车按钮Platform Emergency Pushbutton 站台紧急 (停车)按钮: 位于车站站台上,每侧站台都有2个:头部和尾部各一个。 当发生危及行车安全时,由车站站务员敲碎玻璃,将按钮按下, 列车紧急停车,确保行车安全。(切除ATC状态下列车不停车) 车载ATC初始化 在STIB信标上的初始化: 当列车停在STIB上方,列车会自动读取STIB信息,此时DDU上的ATP,RMO,ATO三灯会同时闪烁,提示司机等待,2到3秒后,一旦STIB上的初始化步骤完成,DDU上的ATP 灯、ATO灯稳定绿色。这时如果信号机开放,司机可以根据速度表上的目标速度以ATO模式驾驶列车。但如果在车站STIB上初始化时ATO方式发车无效,此时司机须以ATP手动方式驾驶到下站后才能将模式开关拨到ATO档,按压启动控制按钮,列车自动驾驶。 在MTIB信标上的初始化: 列车的初始化还可以在MTIB信标上进行。列车以RMO模式越过第一个MTIB信标。几秒后,一旦初始化步骤完成,DDU上的ATP灯亮稳定绿色,ATO灯绿闪,这时候司机继续以RMO方式运行,当列车越过前方的S-Bond后,DDU上的ATO灯亮稳定绿色,RMO灯灭灯。司机可以ATP模式继续驾驶列车。到下一站后将模式开关拨到ATO档,按压启动控制按钮,列车自动驾驶。 开关门作业及发车 当列车对准位后(其精度为士0.5m)相对应站台侧的开左门或开右门灯点亮,此时司机可以按下该侧的开门按钮开门。如允许开左/右门灯不亮司机可以使用洗车模式开门。 当车站发车表示器白色灯光闪烁时,司机可以关门,同时DDU面板发车灯也绿色闪烁。当列车门关好后,DDU面板发车灯变成绿色稳定,此时司机可以以ATO或ATP手动发车。 当车站发车表示器不亮,同时DDU面板发车灯也红色,则代表列车扣车,此时司机不能发车,须等到车站发车表示器白色灯光闪烁时,司机才可以关门动车。

广州地铁五号线能耗装置运行分析

龙源期刊网 https://www.360docs.net/doc/bd16028.html, 广州地铁五号线能耗装置运行分析 作者:黄德晖方刚 来源:《科技创新与应用》2013年第20期 摘要:文章根据在广州地铁5号线车辆在调试中出现列车制动不平稳的情况,分析了该 地铁车辆制动系统的作用原理,对能耗制动作了较为详尽的分析。同时多次进行不同速度下紧急制动测试,通过吸收参数优化,明显改善了VVVF网压过高的问题,确保列车安全稳定运行。 关键词:直流;牵引;热过负荷 1 前言 五号线全线共设13座牵引降压混合变电所。每个牵引所设置制动能量消耗装置一套,当处于再生制动状况的列车回馈出去的电流不能完全被其他车辆和本车的用电设备所吸收时,能量消耗装置立即投入工作,吸收掉多余的回馈电流,使车辆再生电流持续稳定,最大限度的 发挥电制动功能。 制动能量消耗装置的投入和撤出采用电压相对判断和电流判断方式,电压判断采用交流侧电压与直流侧电压进行比较判断,电网电压DC1670V以下,车辆进行再生电制动时,吸收设备不进行判断,外部具备吸收能力时,由外部吸收;如果外部没有吸收能力,则电网电压将抬高,抬高到电网电压大于DC1670V时,吸收设备投入工作,根据吸收电流的大小,进行恒压控制使电压保持在1800v左右。 五号线列车VVVF工作情况如下:VVVF箱内有两个VVVF逆变器,每个VVVF逆变器驱动2个直线电机。当VVVF接受到牵引手柄给出的牵引指令后,充电接触器CHB闭合,滤波电容器充电,当滤波电容电压达到一定值时,线路接触器LB闭合,接着CHB分离,逆变 器的门极开始工作。逆变器由IGBT模块组成,能够实现变频变压控制,将1500V直流电压转换为驱动三相直线感应电机所需的三相交流电压。如果DCPT12,22(滤波电容电压传感器)检测到的电压高于1980V,门极将停止工作,同时LB分离,OVCR F1,2(过压保护晶闸管)导通,通过OVCR FR1,2(过压保护电阻)放电。 另外利用车辆VVVF监测软件检测到的部分数据样本分析可得以下一些参数:牵引工况时,DCPT11检测到的网压大于滤波电容电压30~100V左右,电制动工况时,滤波电容电压大于DCPT11检测到的网压0~100V左右。 2 发现问题 2009年9月份车辆调试以来,列车常出现制动不平稳,电制动消失。检查列车故障记 录,发现故障为VVVF滤波电容过电压。

(整理)地铁制动系统论文

设计(论文)任务与要求: 在规定的时间内独立或合作完成毕业论文,打印并装订成册,论文格式符合要求,论文内容应包含如下内容: 1、列车制动系统概述(制动的定义、专业名词、制动的类型) 2、制动系统的组成及工作原理 3、制动系统部件及功能说明 1)供风单元的组成及功能说明2)EBCU的组成及功能说明3)BCU的组成及功能说明 4)踏面制动单元的组成及功能说明 4、制动模式及气路分析

设计(论文)依据的原始资料: 1、《庞巴迪车辆维修手册》 2、《深圳地铁车辆大修作业指导书》

设计(论文)文件的组成和要求: 1、论文内容必须符合毕业设计(设计)任务书的要求。 2、论文字数不低于8000字。 3、论文选材要科学严谨,材料的组织要突出层次和条理性。 4、论文安下列顺序装订:论文封面-任务书-目录-摘要(关键词)-正文-感言-参考文献-评定书。 参考资料: 1、《庞巴迪车辆维修手册》 2、《深圳地铁车辆大修作业指导书》 3、《城市轨道交通车辆运行与维修》何宗华主编中国建筑工业出版社 4、《地铁车辆构造》杨晓林主编校本教材

任务下达时间: 年月日毕业设计开始与完成任务日期: 年月日至年月日系部专业教学指导委员会 系部主任审批意见 签字年月日

目录 一.地铁车辆制动系统的概述 1.1制动的概念 1.2列车制动系统 1.3城市轨道车辆的的制动模式 二.地铁车辆制动系统的组成及其功能说明 2.1制动控制部分 2.2制动执行部分 四.地铁车辆制动系统的故障与维护 五.感言 参考文献 评定书 摘要 随着城市化进程的加快,越来越多的人们都在寻求更快捷、更环保的出行方

地铁车辆辅助供电系统浅析

地铁车辆辅助供电系统浅析 摘要:概述地铁车辆辅助系统,介绍地铁车辆静止辅助系统的基本结构、供电模式、基本方案及原理,结合目前国内外情况,指出辅助系统的发展趋势。 关键词:地铁车辆;辅助供电;静止逆变;蓄电池 1 概述 辅助系统是地铁或轻轨车辆上的一个必不可少的关键的电气部分,它主要功能是为空调、通风机、空压机、蓄电池、照明等低压辅助设备提供供电电源。输出的电源类型一般包括三相AC380V交流电(含单相220V)和直流DC110V、DC24V。 目前,静止辅助系统中采用的电力电子器件普遍采用绝缘栅双极型晶体管(IGBT或IPM),IGBT器件属于电压驱动的全控型开关器件,脉冲开关频率高,性能好,损耗小,且自保护能力也强,使用效果好,如将驱动与保护功能电封装在模块内,便构成智能功率模块IPM。随着电子器件的飞速发展,IGBT或IPM 器件的电压等级的提升,应用技术的成熟,完全可以满足城轨交通供电网压提升的需求。故辅助系统全控型开关器件控制已经进入了成熟的阶段。 2 车辆辅助供电模式 2.1交叉供电 两路AC380V供电线路贯穿整列车,分别与2个辅助逆变器相连接。将每节车厢的交流负载根据功率平均分为两组,分别由两个辅助逆变器供电。对于牵引和辅助逆变器的冷却风机等重要设备,两个辅助逆变器均为其供电,以便在一个逆变器故障时起到冗余的作用。 2.2扩展供电 一路AC380V供电主干线贯穿整列车,2个辅助逆变器均连接到该线路上,但在其中的一个C车上安装有一个接触器,称为扩展接触器,将两个辅助逆变器分断,以使其不会并网运行。当2个逆变器都工作正常时,则扩展接触器处于断开状态,每个逆变器为本单元3节车的所有交流负载供电。当其中一个逆变器故障时,扩展接触器闭合,由状态良好的逆变器为整列车的交流负载供电,考虑到逆变器的容量限制,这时每节车的空调负载要减载[1]。 2.3方案对比 (1)从控制的角度来讲,交叉供电要比扩展供电容易。在交叉供电时,因为每节车的负载连接在供电线路不同的逆变器上,所以当一个辅助逆变器SIV

地铁列车自动驾驶系统分析与设计

文章编号:100021506(2002)0320036204 地铁列车自动驾驶系统分析与设计 黄良骥,唐 涛 (北方交通大学电子信息工程学院,北京100044) 摘 要:对地铁列车自动驾驶系统进行分析,并对列车自动驾驶系统的车载设备进行设计. 关键词:列车自动控制系统;列车自动驾驶系统;自动控制 中图分类号:U284.48 文献标识码:B System Analysis and Design of Autom atic T rain Operation on Metro HUA N G L iang-ji ,TA N G Tao (College of Electronics and Information Engineering ,Northern Jiaotong University ,Beijing 100044,China ) Abstract :In this paper ,the existing metro Automatic Train Operation (A TO )systems have been analyzed in China and the design of an onboard A TO system is proposed. K ey w ords :Automatic Train Control (A TC );Automatic Train Operation (A TO );Automatic Con 2 trol 对于城市轨道交通系统高效率高密度的要求来说,列车自动控制系统(A TC )是必不可少的.A TC 系统包括:列车超速防护子系统(A TP :Automatic Train Protection )、列车自动驾驶子系统(A TO :Automatic Train Operation )、列车自动监控子系统(A TS :Automatic Train Supervision ). A TS 子系统可以实现对列车运行的监督和控制,辅助行车调度人员对全线列车运行进行管理.A TP 子系统则根据地面传递的信息计算出列车运行的允许安全速度,保证列车间隔,实现超速防护.A TO 子系统根据A TS 提供的信息,在A TP 正常工作的基础上,实现最优驾驶,提高舒适度、降低能耗、减少磨损. 国外已研制了适用于高密度城市轨道交通的列车自动驾驶系统,并在城市轨道交通系统中广泛应用.我国在此项技术上研究较少,20世纪80年代以来,北京地铁、上海地铁、广州地铁均以巨额代价引进了国外的设备,近年来,为缓解市内交通紧张、减少空气污染发挥巨大作用.地铁的发展建设受到国家及各大中城市的普遍重视,许多城市的地铁正在设计建设,为降低地铁投资,迫切需要国内研究具有自主产权的适于城市轨道交通的列车自动驾驶设备. 1 ATO 系统分析 1.1 AT O 工作原理[1,2] A TO 子系统能保证运行时间与定点停车,还能提高运行效率,提高舒适度,减少能耗.但作为A TC 的一个子系统,它的功能是要依靠A TC 各子系统协调工作共同完成的,缺少A TP 与A TS 子系统,A TO 将无法正常工作. 从运行中所起作用来说,A TO 主要实现驾驶列车的功能,能进行车速的正常调整,给旅客传送信息,进行车门的开关作业,但这只是执行操作命令,不能确保安全,这就需要A TP 来进行防护.A TP 起监督功 收稿日期:2001209218作者简介:黄良骥(1978— ),男,广东普宁人,硕士生.em ail :hliangji @https://www.360docs.net/doc/bd16028.html, 第26卷第3期2002年6月 北 方 交 通 大 学 学 报JOURNAL OF NORTHERN J IAO TON G UN IV ERSIT Y Vol.26No.3J un.2002

地铁车辆制动系统工作原理

地铁车辆制动系统工作原理 摘要:随着城市规模的快速发展和城市人口的不断增多,所面临的交通问题也越来越严重。本文对地铁车辆的制动功能设计进行了说明,并介绍了制动指令的相关设计,最后介绍了混合制动控制系统设计及相关控制策略,以供读者参考 关键词:地铁车辆;制动系统 随着我国经济建设的不断推进,近年来城市轨道交通快速发展,国内许多大型城市都已有了地铁或者轻轨,随着大量的轨道交通项目投入运营,人们的日常出行变得更加方便,可随之而来的担忧也困扰着人们:“我们经常乘坐的地铁会不会刹车失灵呢、会不会追尾呢?” 1.地铁车辆的制动功能设计 地铁车辆采用减速度控制模式,制动指令为电气指令,即制动系统根据电气减速度指令施加制动力。乘客通过站台固定区域上下车,因而地铁车辆每次停站位置要求准确无误,为满足此要求,ATO系统或司机根据停车距离给定列车减速度电气指令,地铁车辆制动过程中必须能够根据减速度指令快速施加相应制动力,即制动响应准确、迅速。 制动系统设有载荷补偿功能。由于城市轨道交通车辆载客量大,乘客上下频繁,因此要求制动过程中能够根据车辆载荷变化自动调整制动力,称之为载荷调整功能。 常用制动具有防冲动限制功能。制动指令是电气信号,制动指令变化瞬间可以完成,如果制动力跟随制动指令迅速变化,就可能造成冲动,引起乘客不适,而且常用制动需频繁施加,为减少制动时的冲动以避免制动力变化过快引起乘客不适,常用制动过程中需限制制动力的变化速率,称之为冲动限制功能。 2.制动系统功能 2.1常用制动 常用制动采用模拟电气指令方式,是由微处理器控制的直通式电空制动,它采用减速度控制模式,其制动力随输入指令大小无级控制,制动控制单元根据减速度指令和车辆实际载重来计算目标制动力,产生相应的减速度。常用制动具有冲击率限制功能,以改善乘坐的舒适性;常用制动采用空电混合制动并优先使用电制动,不足部分由空气制动补足,以尽可能减少空气制动的负荷。 2.2快速制动 当司机操作主控制器手柄使其处于快速制动位时快速制动被触发。快速制动是一种特殊的制动模式。快速制动与紧急制动的制动率相同。快速制动优先使用

基于大数据的地铁列车能耗仿真和节能操纵.doc

基于大数据的地铁列车能耗仿真和节能操 纵- 0 引言 近年来,我国城市轨道交通步入快速发展阶段,成为了公共设施中最大的能量消耗系统之一,给城市的供电系统带来极大的负载压力。在地铁列车运行的基础设施(包括线路环境、线路站间距、线路坡道弯道、牵引供电系统等硬件设施)建成且列车运行图等运营管理确定的情况下,利用计算机仿真技术可优化列车操纵方法,即在满足列车安全、准点和舒适性要求的同时,通过合理运用节能运行原理并优化列车的操纵模型,可达到列车节能操纵的目的。与此同时,如何准确测量计算列车单位能耗的问题,也越来越受到各车辆运营公司的关注。 计算单位能耗时,需要有高精度的列车质量(包括列车自重和载荷)数据。由于列车质量、行驶距离和存储计算能耗的实际测量值存在着绝对误差,若以此进行单位能耗的计算,必然会存在着较大的误差。若仿真的运行曲线能与实际的运行曲线基本一致,那么在相同列车运行速度下,仿真计算结果更贴近真实值。本文提出了一种基于大数据分析下的列车单位能耗仿真计算方法,并基于某一条实际线路对提出的方法进行解算验证,将仿真计算结果与实测的数据进行对比,计算出该线路上列车的单位能耗。同时,依据线路的实际情况,在符合列车运营情况的条件下,提出了该线路节能操纵的方法,并对采用节能操纵后的仿真结果进行分析比较。 1 地铁列车大数据特性

地铁列车中的大数据是海量数据中具有挖掘和分析价值的有效数据信息的集合,包含了针对数据的处理行为,且各数据之间存在一定的关联,需要应用特定的数据管理和分析技术对其进行处理。 虽然地铁列车中的网络系统数据记录模块记录了列车每天运行过程中各节车辆的电压、电流、速度及力矩等所有与耗电量和列车运行相关的变量数据,但由于列车在运行过程中的工况复杂多变,若要整理出一条完整的列车运行曲线,需要在列车多天运行的海量数据中,对线路上的每一个数据点进行详细的分析与整理。 2 地铁列车能耗的仿真计算 2.1 城轨地铁列车能耗模型的建立 2.1.1 单质点和多质点地铁列车运动学模型 首先,建立描述列车随时间运动变化规律的方法。根据标准TB/T 1407-1998《列车牵引计算规程》,视列车为一个整体;在列车运动学模型中,列车被视为线路上的一个运动质点。 2.1.2 地铁列车能耗模型 基于列车运行数据,使用采集分析整理后的列车牵引力和制动力进行列车能耗计算。 2.2 仿真模型的实现 若要建立基于列车运行大数据的列车能耗模型,首先需从大数据中分析整理出能耗计算所需数据。 列车能耗计算数据的挖掘步骤具体如下: (1)跟车数据记录。即在列车正线运营的过程中,随车记录整个运营线路的列车到达各站点的时间,运营线路包括上下行全程和折返。

浅析地铁列车制动系统失效

浅析地铁列车制动系统失效 摘要:制动系统是列车重要的系统,它能使列车迅速的减速或停车,地铁列车由于站距较短,会频繁的使用制动,所以制动系统必须有很高的可靠性,应有效避免整车制动系统失效,造成不能停车。本文从制动系统的执行机构、制动系统的控制机构以及列车主控制系统对制动系统的控制等方面着手,通过对各系统可能出现的引起制动失效故障进行分析,说明列车整车制动系统失效的可能性。 关键词:制动控制;故障风险;失效 Analyzing the subway train braking system failure DENG Pei-jin (Guangzhou Metro Corporation , Guangzhou 510310,China) Abstract: The braking system is important for the train, which enables slow down or stops the train rapidly. The braking system must have high reliability, which due to the shorter distance between each subway station that we should use the brake frequently to avoid the whole brake system invalided resulting not stop. This article describes the possibility of train vehicle brake system failure, which commencing from the actuator braking system, the braking system control mechanism and the control of the train braking system master, and also analyzing each system that may be caused by brake failure fault. Key words:Brake control;Failure risk;Failure 2011年7月23甬温线浙江省温州市境内出现高速列车追尾事故,造成重大的人员伤亡和财产损失,作为同高速动车类似的城市轨道列车,我们经常有疑问,高速行驶的多编组地铁车会不会在紧急情况下有停不住车的可能,列车制动系统的可靠性到底如何,失效的风险有多大,对于这些问题,本文将进行探讨。 制动系统遇有紧急情况应能使电动车组在规定距离内安全停车,一旦出现故障就会有制动失效的可能性,制动失效会使列车不能停车或停不住车,因此就会有列车追尾的危险。作为地铁列车,其设计在这些方面都是有考虑的,下文是引起制动失效的常用故障,以及对这些故障的风险性分析,分析该故障引起制动系统失效的可能性,最后得出结论从车辆本身设计来说出现制动系统失效的可能性很小,是可以有效避免出现安全事故的。 1.制动的实现 地铁电客车通常配备有两套制动系统:一个电制动系统(ED制动);一个气

地铁列车辅助供电系统介绍

地铁列车辅助供电系统介绍 一、地铁列车辅助供电系统概要目前从我国地铁列车的供电系 统来看,我国大部分地铁列车辅助供电系统都是以输入电路、逆变器、输出电路、控制模块以及电池组成。 (一)输入电路辅助供电输入电路主要包括电路熔断器、输入虑波器等构成,其中荣电器负责当地铁列车后极电路产生过载或者出现短路的情况下及时断电的一种装置。虑波器其主要作用在于控制以及过滤前极电路产生的共模高频干扰信号。 (二)逆变器逆变器中包括一个具有转变电压的受控三项电桥,通过该电桥将电压转地铁列车接触网电压转变成为列车工作需要的三项交流380V并且运用并联的方式进行电流输出,逆变器通常情况下一固定的频率进行工作。受控三项电桥安装在一个具有散热功能的散热器上,散热器中装有开关、二极管以及驱动板等相应设备。主控制器产生的驱动信号接入到驱动板,从而通过控制设备进行逆变器380V输出。二极管用来关断瞬间输出变压器自感电动势反加到直流环节造成电源污染。 (三)输出电路在地铁列车的辅助输出电路中,辅助输出电路包括辅助输出变压器、正弦滤波器以及熔断器等相应设备组成。 其供电的过程是,列车接触网电压经过输出变压器后,将接触网电压转变成为列车使用电压,将输出电压经由正弦滤波器后,在经由输出接触器以及熔电器进行供电。通常情况下,地铁列

车通常都是将滤波器固定在变频器与电机之间,。当系统检测到逆变器的输出电压同列车所用的380V 电压在同一频率之后,那么输出电路中的接触器将会闭合。而熔断器主要负责电压过高以及过流等保护工作。 (四)控制模块地铁列车的辅助供电系统的控制模块主要包含 主控制器、模块控制器以及输入输出节点等设备注重。控制模块在辅助供电系统中负责对供电系统进行全方位控制,同时也负责上级控制通讯以及对不同变流器进行电压以及电流的控制与调节。当控制模块检测到地铁列车发生辅助供电系统故障时,那么控制模块将下达关闭辅助逆变器的命令。 主模块控制器通常情况下配备两个微处理器。其中一个微处理器负责对辅助逆变器进行控制以及对逆变器的运行状态进行诊断,包括传感器信号评估以及顺序控制等功能功能。另外一个微处理器主要任务是进行特殊独立检测,例如对辅助供电系统的干扰电流进行监控。 (五)蓄电池在地铁列车的电池中,一般都是将蓄电池安置在 车头部位,其关键作用就是当列车出现供电事故时,向逆变器提供必要的启动能量。另外,蓄电池也需要对地铁列车的其他用电设备进行供电,例如列车照明设备等。当地铁列车处于正 常行进过程中,它都是以浮充电的形式而存在。只有当列车供电设备出现故障以及辅助电源出现无法供电情形时,蓄电池才 会进行相应的供电活动,同时蓄电池也是一种应急电源,当出

城市轨道交通列车驾驶模式

城市轨道交通列车驾驶模式 一、全自动驾驶模式——ATO模式 1、司机将模式开关1转换至“ATO”位置,在此模式下,列车的起动、加速、巡航、惰行、制动、精确停车、开门及折返等由车载信号设备自动控制,不需要司机操作。 2、列车在站台停稳,车载信号设备给出门允许信号后,车门及安全门自动打开。 3、停站时间结束后,需要人工关闭车门,门关好后,按下ATO发车按钮,列车启动。 4、车载信号设备连续监控列车的速度,并在超过规定速度时自动实施常用制动,在超过最大允许速度时自动实施紧急制动。 5、所有必要的驾驶信息将在司机室TOD屏上显示。 二、速度监控下的人工驾驶模式——ATP模式 1、司机将模式开关1转换至“ATP”位置,在此模式下,列车的速度、监控、运行及制动在车载信号设备限制下由司机操作。 2、开关车门由司机人工控制,但开车门仅在车载信号设备给出门允许信号时才允许操作。 3、车载信号设备连续监控列车速度,并在超过规定速度时实施常用制动。在超过最大允许速度时实施紧急制动。 4、所有必要的驾驶信息将在司机室TOD屏上显示。 三、限速人工驾驶模式——RM模式 1、司机将模式开关1转换至“RM”位置,在此模式下,列车的速度、监控、运行及制动由司机人工控制。 2、车载信号设备不提供门允许信号,开关车门时需转至NRM模式。 3、车载信号设备仅对列车特定速度(25 km/h)进行超速防护,列车超速(大于25 km/h)时自动施加紧急制动。 4、所有必要的驾驶信息将在司机室TOD屏上显示。

四、点式ATP模式——IATP模式 点式ATP模式作为最常用的后备模式在CBTC系统无法启用的条件下使用,此时车载通信系统不能实现连续数据传输,依靠固定点式设备进行车地间的点式通信。 1、司机将模式开关1转换至“IATP”位置,司机得到行车调度员可以动车的指令后,按下驾驶台上的IATP释放按钮。在此模式下,列车的速度、监控、运行及制动由司机人工控制。 2、开关车门由司机人工控制,但开车门仅在车载信号设备给出门允许信号时才允许操作。 3、司机应根据操作规程注意控制进站对位时间及出站速度,防止出现紧急制动。 4、所有必要的驾驶信息将在司机室TOD屏上显示。 五、非限制人工驾驶模式——NRM模式 1、司机将电气柜内模式开关转换到“NRM”位置,司机操纵台模式开关处于“OFF”模式位置。此模式下信号被切除,列车的速度、监控、运行及制动由司机人工控制,列车没有信号防护。 2、此模式在车载信号设备故障或有特殊运行需要时使用。列车安全完全由司机人工控制。 六、无人自动折返模式——ATB模式 1、司机将模式开关1转换至“ATB”位置,车载信号系统设备处于上电等待状态,不再接收司机室内的驾驶操作命令。 2、当列车两端模式开关处于该模式时,两端车载信号设备处于工作状态;当一端车载信号设备完成自动折返时,它发送一个安全信息给另一端的车载信号设备以实现换端功能;另一端车载信号设备被激活后与轨旁通信,之前的车载信号设备断开。一旦所有条件都满足CBTC系统运行条件,CBTC驾驶模式将被授权允许新的车载信号设备控车。 3、列车无人自动折返时,司机须按压自动折返按钮,将驾驶模式转换为ATB,拔出钥匙锁好车门下车。

上海轨道交通二号线列车运行能耗分析_图文(精)

上海轨道交通二号线列车运行能耗分析 杨俭 , 黄厚明 , 方宇 , 尧辉明 , 陈晓丽 (上海工程技术大学城市轨道交通学院 , 上海 201620 摘要 :通过对上海轨道交通二号线列车在正常运行时牵引和制动系统参数及能量消耗的测试分析 , 研究了再生制动与电阻制动间的作用关系 ; 尽管采用再生制动方式 , 但是列车通过制动电阻消耗的能量仍然较大 , 因此对地铁列车制动能量进行回收很有必要。 关键词 :轨道交通 ; 能耗 ; 再生制动 ; 电阻制动 中图分类号 :U260. 13+8 文献标识码 :A 文章编号 :1003-1820(2009 04-0023-03 收稿日期 :2008-10-08 基金项目 :国家教育部科学技术研究重点项目 (208039 ; 上海市自然科学基金 (08ZR1409000 ; 上海市科委科技攻关项目 (061111033 作者简介 :杨俭 (1962 , 男 , 黑龙江哈尔滨人 , 教授。 1 引言 近年来 , 随着我国经济实力的提高 , 各主要城市地铁事业正在迅速发展 , 在未来的几年我国将 会有更多的地铁线路和地铁列车投入运营。便利的城市轨道交通为市民的出行带来极大便利的同时 , 也带来了电能消耗的迅速增加。众所周知 , 现代经济的迅速发展必须依靠能源 , 而我国又是一个能源相对比较缺乏的国家。因此 , 分析地铁列车的能源消耗情况 , 研究地铁列车节能途径是一项迫在眉睫的工作。 2 城市轨道列车制动原理分析

城市轨道交通列车的供电牵引变电所大多每隔一个车站设置一个 , 如图 1所示。列车的制动分 3种情况 :再生制动、电阻制动、机械制动。下面就该 3种情况进行论述分析。 2. 1 列车再生制动 当列车进站前开始制动时 (制动时初速度在 80km/h 左右 , 列车停止从接触网受电 , 电动机改为发电机工况 , 将列车运行的机械能转换为电能 , 产生的制动力使列车减速 , 此时列车向接触网反馈电 能 (如图 1中的列车 1 。如果接触网电压过高或两 个牵引变电所区间无其他列车吸收反馈能量时 , 则不能实现再生制动 , 自动切换为电阻制动。因此实施再生制动必须满足两个条件 :1再生 (反馈电压必须大于接触网电压 ; o再生电能必须要由其他列车吸收 (此条件由外界因素所决定 , 图 1中处于牵引工况的列车 2刚好吸收列车 1所产生的反馈电能。目前再生制动能量回收是在接触网电压在 1500~1800V(理论值范围内 , 当接触网电压超过 1800V 时 , 通过列车的牵引控制单元 (TCU 切断向接触网反馈的电能 , 列车转变为电阻制动 ; 当接触网电压小于 1500V 时 , 此时因欠压也不能向接触网反馈电能 ,

地铁车辆制动系统浅析

毕业论文(设计)任务书题目城轨车辆制动系统浅析 学生姓名李星燃学号 11022315 班级: 110223 专业:城市轨道交通车辆 分院:工程技术分院 指导教师:王洋 2013 年 11 月 1 日

城轨车辆制动系统浅析 0、引言 为适应车辆运行速度高、站间距离短、起动制动频繁等要求,轻轨车辆采用了Knorr公司的微机控制电空制动系统,该系统具有反应迅速、制动距离短、部件集成化程度高、可以实现平稳停车等特点。 车辆在制动过程中电制动优先,然后施加空气摩擦制动。车辆正常状态下使用的空气制动是常用制动,紧急制动是在紧急情况下由司机触发或列车紧急制动环线失电而自动施加的,停放制动是制动系统自动施加的弹簧制动。 列车在运行过程中,当速度在电制动零速点( v=3km/h)与淡出点之间时,通过编码器输出“电制动力达到多大值”信号,使得电制动和空气摩擦制动混合施加。当列车运行在恒电制动力最高速度和电制动淡出点之间时,仅使用电制动,当列车运行速度超过恒电制动力最高速度时,电制动和空气摩擦制动又混合施加(图1)。

下面分别介绍这几种制动方式的制动原理及应用方式。 1、电制动 城市轨道车辆电制动采用再生制动与电阻制动。当“制动列车线”激活发出制动指令时,优先采用电制动。如果“运行系统网络”允许,使用的主要制动模式是再生制动,当接触网网压高于750 V时,不能够吸收再生制动反馈回来的能量,则采用牵引控制单元控制的电阻制动。 (1)再生制动。 在变频调速系统中,电机降速和停机是通过逐渐减小定子给定频率来实现的,由于惯性原因,电机的转子仍旧处于被动的运行状态,当同步转速ω1小于转子ω时,转子电流相位几乎改变了180°,电机从电动机状态变为发电机状态;与此同时,电机轴上的转矩变成制动转矩 T e,电机处于再生制动状态。电机再生的电能经续流二极管全波整流后反馈到直流电路,再生循环使用。

相关文档
最新文档