54中 初三3月 月考(数学)
上海初三初中数学月考试卷带答案解析

上海初三初中数学月考试卷班级:___________ 姓名:___________ 分数:___________一、选择题1.下列运算正确的是( )A .2x 2-x 2="2" ;B .(x 3)2 = x 5 ;C .x 3·x 6=x 9 ;D .(x +y)2=x 2+y 2.2.下列二次根式中,属于最简二次根式的是( )A .;B .;C .;D ..3.六个数6、2、3、3、5、10的中位数为( )A .3;B .4;C .5;D .6.4.在Rt △ABC 中,∠C =90°,若AB =2AC ,则sinA 的值是( )A .;B .;C .;D ..5.不等式组的解集是( ) A .x >3 ; B .x <6; C .3<x <6 ; D .x>6.6.如图,⊙O 1、⊙O 2内切于点A ,其半径分别是6和3,将⊙O 2沿直线O 1O 2平移至两圆外切时,则点O 2移动的长度是( )A .3;B .6;C .12;D .6或12.二、填空题1.计算:||+=___________.2.因式分解:a 2-4a=_________________.3.方程的根是 .4.若一元二次方程x 2+2x -k =0没有实数根,则k 的取值范围是____________.5.已知反比例函数的图像经过点(m ,3)和(-3,2),则m 的值为 .6.已知二次函数y =3x 2的图像不动,把x 轴向上平移2个单位长度,那么在新的坐标系下此抛物线的解析式是___________________.7.从-2,-1,2这三个数中任取两个不同的数作为点的坐标,该点在第四象限的概率是_______.8.某初中学校的男生、女生以及教师人数的扇形统计图如图所示,若该校男生、女生以及教师的总人数为1200人,则根据图中信息,可知该校教师共有_________人.9.如图,在△ABC 中,AD 是BC 边上的中线,如果,,那么 (用,表示).10.在等腰Rt △ABC 中,∠C =90°,AC =BC ,点D 在AC 边上,DE ⊥AB ,垂足为E ,AD =2DC ,则的值为 . 11.如图,在平面内,两条直线l 1,l 2相交于点O ,对于平面内任意一点M ,若p ,q 分别是点M 到直线l 1,l 2,的距离,则称(p ,q )为点M 的“距离坐标”.根据上述规定,“距离坐标”是(3,2)的点共有 个.三、解答题1.如图,直角三形纸片ABC 中,∠ACB =90°,AC=6,BC =8.折叠该纸片使点B 与点C 重合,折痕与AB 、BC 的交点分别为D 、E . 则sin ∠DAE = .2.(本题满分10分)解方程:3.(本题满分10分,其中每小题各5分)在Rt △ABC 中,∠ABC =90°,∠BAC =60°,D 为BC 中点,连结AD ,过点D 作DE ⊥AD ,交AB 的延长线于E .(1)若AD =,求△ABC 的面积; (2)求的值.4.(本题满分10分,其中第(1)4分、第(2)小题6分)某公司销售一种商品,这种商品一天的销量y (件)与售价x (元/件)之间存在着如图所示的一次函数关系,且40≤x≤70.(1)根据图像,求y与x 之间的函数解析式;(2)设该销售公司一天销售这种商品的收入为w元.①试用含x的代数式表示w;②如果该商品的成本价为每件30元,试问当售价定为每件多少元时,该销售公司一天销售该商品的盈利为1万元?(收入=销量×售价)5.(本题满分12分,其中第(1)小题5分,第(2)小题7分)已知:如图,在矩形ABCD中,点E、F分别在边AD、BC上,EF垂直平分AC,垂足为O,联结AF、CE.(1)求证:四边形AFCE是菱形;(2)点P在线段AC上,满足,求证:CD∥PE.6.(本题满分12分,其中第(1)小题5分,第(2)小题4分,第(3)小题3分)已知抛物线过点A(-1,0),B(4,0),P(5,3),抛物线与y轴交于点C.(1)求二次函数的解析式;(2)求tan∠APC的值;(3)在抛物线上求一点Q,过Q点作x轴的垂线,垂足为H,使得∠BQH=∠APC.7.(本题满分14分,其中第(1)题4分,第(2)题的第 、‚小题分别为4分、6分)如图1,在△ABC中,已知AB=15,cosB=,tanC=.点D为边BC上的动点(点D不与B、C重合),以D为圆心,BD为半径的⊙D交边AB于点E.(1)设BD=x,AE=y,求与的函数关系式,并写出函数定域义;(2)如图2,点F为边AC上的动点,且满足BD=CF,联结DF.①当△ABC和△FDC相似时,求⊙D的半径;②当⊙D与以点F为圆心,FC为半径⊙F外切时,求⊙D的半径.四、计算题(本题满分10分)计算:上海初三初中数学月考试卷答案及解析一、选择题1.下列运算正确的是()A.2x2-x2="2" ;B.(x3)2 = x5;C.x3·x6=x9;D.(x+y)2=x2+y2.【答案】C【解析】解: 2x2-x2=x2 , (x3)2=x6, (x+y)2=x2+2xy+y2, x3·x6=x9. (A)问是整式的减法运算,及系数相减,(B)问为幂的乘方即x3可看做是两个因式的积,所以应该等于x2×3=x6. (C)正确,(D)完全平方公式,此问缺少了2ab的值。
2022-2023年河北省某校初三 (上)月考数学试卷(含答案)104554

2022-2023年河北省某校初三 (上)月考数学试卷试卷考试总分:130 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 16 小题 ,每题 5 分 ,共计80分 )1. 若关于的方程是一元二次方程,则 A.B.C.D.2. 已知二次函数的图象如图所示,下列结论正确的是 A.B.C.D.3. 若,则,的值分别是 A.,B.,C.,D.,4. 用公式法解方程,得到( )A.B.C.D.5. 将抛物线的图象向右平移个单位长度,再向下平移个单位长度,所得的抛物线的函数解析式是 x (m+1)−3x+2=0x 2()m>−1m≠0m≥0m≠−1y =a +bx+c(a ≠0)x 2()abc >0a +b +c >0−4ac <16ab 29a −3b +c <0−6x+11=(x−m +nx 2)2m n ()m=3n =−2m=3n =2m=−3n =−2m=−3n =24=12y+3y 2y =−3±6–√2y =3±6–√2y =3±23–√2y =−3±23–√224()A. B. C. D.6. 若关于的一元二次方程 有两个相等的实数根,则实数的值为 ( )A.B.C.或D.或7. 如图,平面直角坐标系中,在轴上, , ,点与点关于轴对称,则过,,三点的抛物线是( )A.B.C.D. 8. 在同一平面直角坐标系中,一次函数与二次函数的图象可能是( ) A. B.C.D.x x(x+1)+ax =0x −11−22−31OB x ∠ABO =90∘OB =1,OA =5–√A C y A O C y =−2x 2y =2x 2y =x 2y =−x 2y =ax+1y =a −a x 29. 年底我市有绿化面积公顷,为响应“退耕还林”的号召,计划到年底绿化面积增加到公顷.设绿化面积平均每年的增长率为,由题意可列方程为( )A.=B.=C.=D.=10. 抛物线=对称轴为=,与轴的负半轴的交点坐标是,且,它的部分图象如图所示,有下列结论:①;②;③;④.其中正确的结论有( )A.个B.个C.个D.个11. 某学校生物兴趣小组在该校空地上围了一块面积为的矩形试验田,用来种植蔬菜.如图,试验田一面靠墙,墙长,另外三面用长的篱笆围成,其中一边开有一扇宽的铁制小门.设试验田垂直于墙的一边的长为,则下列所列方程正确的是( )A.B.C.D.12.如图所示,赵州桥的桥拱用抛物线的部分表示,其函数的关系式为,当水面宽度为时,此时水面与桥拱顶的高度是( )A.20163002018363x 300(1+x)363300(1+x)2363300(1+2x)363300(1−x)2363y a +bx+c x 2x 1x (,0)x 1−1<<0x 1abc <0−4ac >0b 29a +3b +c <03a +c <01234200m 235m 49m 1m AB xm x(49+1−x)=200x(49−2x)=200x(49+1−2x)=200x(49−1−2x)=200y =−125x 2AB 20m DOB.C.D.13. 三角形两边的长是和,第三边满足方程=,则三角形周长为( )A.B.C.或D.以上都不对14. 关于的一元二次方程的根的情况是 ( )A.有两不相等实数根B.有两相等实数根C.无实数根D.不能确定15.如图可以近似地刻画下述哪个情景( )A.小明匀速步行上学(离学校的距离与时间的关系)B.一个匀速上升的气球(高度与时间的关系)C.小亮妈妈到超市购买苹果(总费用与重量的关系)D.匀速行驶的汽车(速度与时间的关系)16. 关于二次函数的最大值或最小值,下列说法正确的是( )A.有最大值B.有最小值C.有最大值D.有最小值二、 填空题 (本题共计 3 小题 ,每题 5 分 ,共计15分 )17. 若关于的一元二次方程的一次项系数为,则的值为________.4m10m16m68−24x+140x 2024282428x −(k +3)x+k =0x 2y =2+6(x−4)24466x (m−1)+(−3m+1)x+5=0x 2m 2−1m +ax−2=0218. 已知是一元二次方程的一个根,则此方程的另一根为________.19. 如图,已知二次函数=的图象与轴交于,两点,与轴交于点,=,对称轴为直线=,则下列结论:①;②=;③=;④是关于的一元二次方程=的一个根,其中正确的有________个.三、 解答题 (本题共计 7 小题 ,每题 5 分 ,共计35分 )20. 解方程:(1)(2). 21. 用配方法将二次函数化成的形式,并写出顶点坐标和对称轴..22. 解方程:.23. 某商场将原来每件进价元的某种商品按每件元出售,一天可出售件,后来经过市场调查,发现这种商品单价每降低元,其销量可增加件.求商场经营该商品原来一天可获利多少元?若商场经营该商品一天要获得利润元,则每件商品应降价多少元?商场经营一天可能盈利元吗?请说明理由.24. 俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价为元,规定销售单价不低于元,且获利不高于.试销售期间发现,当销售单价定为元时,每天可售出本,销售单价每上涨元,每天销售量减少本,现商店决定提价销售.设每天销售量为本,销售单价为元.请直接写出与之间的函数关系式和自变量的取值范围;将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润最大?最大利润是多少元? 25. 某商品的进价为每件元,售价为每件元,每个月可卖出件:每件商品的售价每上涨元,则每个月少卖件(每件售价不能高于元).设每件商品的售价上涨元(为正整数),每个月的销售利润为元.求与的函数关系式,并直接写出自变量的取值范围;每件商品的售价定为多少元时,每个月可获得最大利润?最大利润是多少元?每件商品的售价定为多少元时,每个月的利润恰为元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于元? 26. 在平面直角坐标系中,两条线段和关于直线对称,(点,分别与点,对应),且,两点的坐标分别为.直接写出,两点的坐标.以直线为对称轴的抛物线经过,,,四点.①求抛物线的函数解析式;②是抛物线上之间的一个动点,过点分别作轴和轴的垂线,与直线分别相交于,两点,记,求关于的函数解析式,并求的最大值.x =1+ax−2=0x 2y a +bx+c x 2x A B y C OA OC x 1abc <0a +b +c 12140ac +b +102+c x a +bx+c x 202+3=7xx 2−4x−3=0x 2y =a(x−h +k)2(1)y =2+6x−12x 2(2)y =−0.5−3x+3x 2(x−1−5(x−1)+4=0)280100100220(1)(2)2160(3)3000404430%44300110y x (1)y x x (2)w 354521011060x y (1)y x x (2)(3)22002200AB CD x =1A B C D C D C(−2,0),D(2,−4)(1)A B (2)x =1l A B C D l P (m,n)l AB P x y AB M N W =PM +PN W m W参考答案与试题解析2022-2023年河北省某校初三 (上)月考数学试卷试卷一、 选择题 (本题共计 16 小题 ,每题 5 分 ,共计80分 )1.【答案】D【考点】一元二次方程的定义【解析】根据一元二次方程的定义得到,然后解不等式即可.【解答】解:∵关于的方程是一元二次方程,∴,∴.故选.2.【答案】D【考点】二次函数y=ax^2+bx+c (a≠0)的图象和性质【解析】此题暂无解析【解答】解:由图象可知,二次函数开口向上,,与轴交于负半轴,,对称轴为,,,故错误;当时,,故错误;二次函数的最小值,,故错误;当时,,故正确.故选.3.【答案】B【考点】解一元二次方程-配方法m−1≠0x (m+1)−3x+2=0x 2m+1≠0m≠−1D a >0y c <0x =−<0b 2a ∴b >0∴abc <0A x =1a +b +c <0B <−44ac −b 24a ∴−4ac >16a b 2C x =−39a −3b +c <0D D已知等式左边配方后即可求出出与的值.【解答】解:,得到,.故选.4.【答案】C【考点】解一元二次方程-公式法【解析】根据题意可得,此题采用公式法解一元二次方程.采用公式法时首先要将方程化简为一般式.【解答】解:∵∴∴,,∴∴.故选.5.【答案】A【考点】二次函数图象的平移规律【解析】根据平移坐标公式可以得到解答.【解答】解:设为抛物线上任一点,经过平移后变为,由题意可得平移坐标公式为:即,代入原抛物线解析式为:…所得的抛物线的函数解析式是故选.6.【答案】A【考点】根的判别式m n −6x+11=−6x+9+2=(x−3+2=(x−m +nx 2x 2)2)2m=3n =2B 4=12y+3y 24−12y−3=0y 2a =4b =−12c =−3−4ac =192b 2y ==12±192−−−√83±23–√2C (xy)(x,y){==x+2x ′=y−4y ′{x =−2x ′y =+4y ′+4=−3+6y ′(−2)x ′2=−3+2y ′(−2)x ′2A【解答】解:将方程化为一般式可得.∵方程有两个相等的实数根,∴,解得.故选.7.【答案】B【考点】待定系数法求二次函数解析式【解析】由题意,得抛物线关于轴对称,定点为原点,设抛物线方程为,由勾股定理得,代入求解.【解答】解:由题意,设抛物线方程为,,,,,,代入抛物线方程得,则抛物线方程为.故选.8.【答案】B【考点】二次函数的图象一次函数的图象【解析】根据的符号分类,时,在、、中判断一次函数的图象是否相符,时,在中进行判断.【解答】解:①当时,二次函数的开口向上,顶点在轴的负半轴上,一次函数的图象经过第一、二、三象限;②当时,二次函数的开口向下,顶点在轴的正半轴上,一次函数的图象经过第一、二、四象限.故选:.9.【答案】B【考点】由实际问题抽象出一元二次方程x(x+1)+ax =0+(a +1)x =0x 2Δ=(a +1−4∗1∗0=0)2a =−1A y y =a (a ≠0)x 2A(1,2)y =a (a ≠0)x 2∵OB =1OA =5–√∠ABO =90∘∴AB ==2O −O A 2B 2−−−−−−−−−−√∴A(1,2)a =2y =2x 2B a a >0A B D a <0C a >0y =a −a x 2y y =ax+1a <0y =a −a x 2y y =ax+a B本题为增长率问题,一般用增长后的量=增长前的量(增长率),如果设绿化面积平均每年的增长率为,根据题意即可列出方程.【解答】设绿化面积平均每年的增长率为,根据题意即可列出方程=.10.【答案】D【考点】抛物线与x 轴的交点二次函数图象与系数的关系【解析】此题暂无解析【解答】此题暂无解答11.【答案】C【考点】一元二次方程的应用——几何图形面积问题【解析】设一边长为时,则另一边的长度为 ,根据花园的面积为,列出方程并解答.【解答】解:由题意得,当试验田垂直于墙的一边长为时,另一边的长度为,依题意得:.故选.12.【答案】B【考点】二次函数的应用【解析】根据题意,把直接代入解析式即可解答.【解答】解:由已知知:×1+x x 300(1+x)2363xm (49+1−2x)m 200m 2xm (49+1−2x)m x(49+1−2x)=200C x =10AB =20m点的横坐标为.把代入,得.即水面离桥顶的高度为.故选.13.【答案】A【考点】三角形三边关系解一元二次方程-因式分解法【解析】此题暂无解析【解答】此题暂无解答14.【答案】A【考点】根的判别式【解析】判断上述方程的根的情况,只要看根的判别式的值的符号就可以了.【解答】解:∵,,,∴,∴方程有两个不相等的实数根.故选.15.【答案】A【考点】函数的图象动点问题【解析】本题考查了函数的图象.【解答】解:该图象是函数值随着自变量的增大而减小.B 10x =10y =−125x 2y =−44m B △=−4ac b 2a =1b =−(k +3)c =k Δ=[−(k +3)−4×1×k ]2=+2k +9k 2=(k +1+8>0)2A.小明离学校的距离与时间的关系是:距离随着时间的增长而减小,符合题意,故本选项正确;匀速行驶的汽车的速度与时间的关系的函数图象是平行于坐标轴的一直线,不符合题意,故本选项错误;小亮妈到超市购买苹果的总费用与重量的关系是:总费用随着重量的增长而增多,不符合题意,故本选项错误;一个匀速上升的气球的高度与时间的关系:高度随着时间的增长而增大,不符合图象,故本选项错误;故选:.16.【答案】D【考点】二次函数的最值【解析】此题暂无解析【解答】解:∵在二次函数中,,顶点坐标为.∴函数有最小值为.故选.二、 填空题 (本题共计 3 小题 ,每题 5 分 ,共计15分 )17.【答案】【考点】一元二次方程的一般形式【解析】根据方程一次项系数为列出方程,求出方程的解即可得到的值.【解答】解:∵一元二次方程的一次项系数为,∴,即,解得:或,经检验不合题意,舍去,则的值为,故答案为:18.【答案】【考点】一元二次方程的解解一元二次方程-因式分解法【解析】将代入原方程找出关于的一元一次方程,解方程得出的值,再将代入方程中解方程即可求出方程的另一根.A B.C.D.A y =2+6(x−4)2a =2>0(4,6)6D 21m (m−1)+(−3m+1)x+5=0x 2m 2−1−3m+1=−1m 2−3m+2=0m 2m=1m=2m=1m 22−2x =1a a a【解答】解:将代入一元二次方程中,得: ,解得: ,当时,原方程为,解得:,,∴方程的另外一个根为.故答案为:.19.【答案】【考点】抛物线与x 轴的交点二次函数图象上点的坐标特征二次函数图象与系数的关系【解析】利用抛物线开口方向得到,利用对称轴方程得到=,利用抛物线与轴的交点位置得到,则可对①进行判断;利用对称性可判断点在的右侧,则当=时,,则可对②进行判断;利用,=得到,把代入抛物线解析式可对③进行判断;利用抛物线的对称性得到,则根据抛物线与轴的交点问题可对④进行判断.【解答】∵抛物线开口向下,∴,∵抛物线的对称轴为直线,∴=,∵抛物线与轴的交点在轴上方,∴,∴,所以①正确;∵点到直线=的距离大于,∴点到直线=的距离大于,即点在的右侧,∴当=时,,即,∴,所以②错误;∵,=,∴,∴=,即=,所以③错误;∵点与点关于直线=对称,∴,∴是关于的一元二次方程=的一个根,所以④正确.三、 解答题 (本题共计 7 小题 ,每题 5 分 ,共计35分 )20.【答案】解:(1)∵,∴,∴,∴或,∴,;(2)∵,x =1+ax−2=0x 21+a −2=0a =1a =1+x−2=0x 2=1x 1=−2x 2−2−22a <0b −2a >0yc >0B (2,0)x 24a +2b +c >0C(0,c)OA OC A(−c,0)A(−c,0)B(2+c,0)x a <0x =−=1b 2a b −2a >0y x c >0abc <0A x 11B x 11B (2,0)x 2y >04a +2b +c >0a +b +c >01214C(0,c)OA OC A(−c,0)a −bc +c c 20ac −b +10A B x 1B(2+c,0)2+c x a +bx+c x 202+3=7x x 22−7x+3=0x 2(2x−1)(x−3)=02x−1=0x−3=0=x 112=3x 2−4x−3=0x 2∴,,,∴,∴,∴,.【考点】解一元二次方程-因式分解法解一元二次方程-公式法【解析】(1)移项后得到,然后分解因式得到,即可得出两个一元一次方程,求出方程的解即可;(2)利用公式法直接求出方程的解.【解答】解:(1)∵,∴,∴,∴或,∴,;(2)∵,∴,,,∴,∴,∴,.21.【答案】解:,则该抛物线的顶点坐标是,对称轴是;,则该抛物线的顶点坐标是,对称轴是.【考点】二次函数的三种形式【解析】①②利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑成完全平方式,可把一般式转化为顶点式,从而得出顶点坐标和对称轴.【解答】解:,则该抛物线的顶点坐标是,对称轴是;,则该抛物线的顶点坐标是,对称轴是.22.【答案】解:原方程可变形为:,a =1b =−4c =−3△=−4ac =16−4×(−3)=28b 2x =4±28−−√2=2+x 17–√=2−x 27–√2−7x+3=0x 2(2x−1)(x−3)=02+3=7x x 22−7x+3=0x 2(2x−1)(x−3)=02x−1=0x−3=0=x 112=3x 2−4x−3=0x 2a =1b =−4c =−3△=−4ac =16−4×(−3)=28b 2x =4±28−−√2=2+x 17–√=2−x 27–√(1)y =2+6x−12=2(x+−x 232)2332(−,−)32332x =−32(2)y =−0.5−3x+3=−(x+3+x 212)2152(−3,)152x =−3(1)y =2+6x−12=2(x+−x 232)2332(−,−)32332x =−32(2)y =−0.5−3x+3=−(x+3+x 212)2152(−3,)152x =−3−7x+10=0x 2解得:.【考点】解一元二次方程-公式法【解析】此题暂无解析【解答】解:原方程可变形为:,解得:.23.【答案】解:商场经营该商品原来一天可获利(元);设每件商品应降价元.,,解得,.答:每件商品应降价元或元.不可能.,化简得,,,此方程无解,故不可能盈利元.【考点】一元二次方程的应用根的判别式【解析】(1)原来天的获利情况件的利润卖出的件数;(2)关系式为:实际件的利润卖出的件数,把相关数值代入计算即可.【解答】解:商场经营该商品原来一天可获利(元);设每件商品应降价元.,,解得,.答:每件商品应降价元或元.不可能.,化简得,,,此方程无解,故不可能盈利元.24.【答案】解:(1)由题意,得(2) .当时,随的增大而增大,=2,=5x 1x 2−7x+10=0x 2=2,=5x 1x 2(1)(100−80)×100=2000(2)x (20−x)(100+10x)=2160(x−2)(x−8)=0=2x 1=8x 228(3)(20−x)(100+10x)=3000−10x+100=0x 2a =1,b =−10,c =100−4ac =100−400<0b 230001=1×1×=2160(1)(100−80)×100=2000(2)x (20−x)(100+10x)=2160(x−2)(x−8)=0=2x 1=8x 228(3)(20−x)(100+10x)=3000−10x+100=0x 2a =1,b =−10,c =100−4ac =100−400<0b 23000y =−10x+740(44≤x ≤52)w =(x−40)(−10x+740)=−10+2890(x−57)2x <57w x又∵,∴当时,有最大值,最大值为.故将足球纪念册销售单价定为元时,商店每天销售纪念册获得的利润最大,最大利润元.【考点】一元二次方程的应用——利润问题二次函数的应用二次函数的最值【解析】此题暂无解析【解答】解:(1)由题意,得(2) .当时,随的增大而增大,又∵,∴当时,有最大值,最大值为.故将足球纪念册销售单价定为元时,商店每天销售纪念册获得的利润最大,最大利润元.25.【答案】解:由题意得:,∴,由题意得:解得,∴且为整数);设每件商品的售价定为元,则,∵,当时,取得最大值,∵售价上涨元(为正整数),故取或时,最大,最大值.答:每件商品的售价定为元或元时,每个月可获得最大利润是元;由题意得:解得:或,即售价为元或元时,每个月的利润恰为元,所以易得售价在元到元时,每个月的利润不低于元.【考点】二次函数的应用根据实际问题列二次函数关系式【解析】此题暂无解析【解答】解:由题意得:,∴,由题意得:解得,∴且为整数);设每件商品的售价定元,则,∵,当时,取得最大值,44≤x ≤52x =52w 264052w 2640y =−10x+740(44≤x ≤52)w =(x−40)(−10x+740)=−10+2890(x−57)2x <57w x 44≤x ≤52x =52w 264052w 2640(1)y =(210−10x)(45−35+x)y =−10+110x+2100x 2 210−10x ≥0,x >0,45+x ≤600<x ≤15y =−10+110x+2100(0<x ≤15x 2x (2)m y =[210−10(m−45)](m−35)=−10(m−66)(m−35)−10<0m=1012y x m 5051y 240050512400(3)y =−10+110x+2100=2200,x 2x =1x =104655220046552200(1)y =(210−10x)(45−35+x)y =−10+110x+2100x 2 210−10x ≥0,x >0,45+x ≤600<x ≤15y =−10+110x+2100(0<x ≤15x 2x (2)m y =[210−10(m−45)](m−35)=−10(m−66)(m−35)−10<0m=1012y∵售价上涨元(为正整数),故取或时,最大,最大值.答:每件商品的售价定为元或元时,每个月可获得最大利润是元;由题意得:解得:或,即售价为元或元时,每个月的利润恰为元,所以易得售价在元到元时,每个月的利润不低于元.26.【答案】解:由题意得,两点的坐标为.①设抛物线的函数解析式为,∵抛物线经过两点,∴解得,即抛物线的函数解析式为或;②易得直线的函数解析式为,设点的坐标为,则点的坐标为,.∵垂直于轴,交直线于点,∴,∴,即,,∴当时,的值最大,且最大值为.【考点】二次函数综合题待定系数法求二次函数解析式二次函数图象上点的坐标特征【解析】此题暂无解析【解答】解:由题意得,两点的坐标为.①设抛物线的函数解析式为,∵抛物线经过两点,∴解得,即抛物线的函数解析式为或;②易得直线的函数解析式为,设点的坐标为,则点的坐标为,.∵垂直于轴,交直线于点,∴,∴,即,,x m 5051y 240050512400(3)y =−10+110x+2100=2200,x 2x =1x =104655220046552200(1)A B A(4,0),B(0,−4)(2)l y =a +c (x−1)2l C(−2,0),D(2,−4){a +c =0,(−2−1)2a +c =−4,(2−1)2a =,c =−1292l y =−12(x−1)292y =−x−412x 2AB y =x−4P (m,−m−4)12m 2M (m,m−4)PM =(m−4)−(−m−4)=−+2m 12m 212m 2PN y y =x−4N PM =PN W =PM +PN =2(−+2m)12m 2W =−+4m(0≤m≤4)m 2W =−+4m=−+4m 2(m−2)2m=2W 4(1)A B A(4,0),B(0,−4)(2)l y =a +c (x−1)2l C(−2,0),D(2,−4){a +c =0,(−2−1)2a +c =−4,(2−1)2a =,c =−1292l y =−12(x−1)292y =−x−412x 2AB y =x−4P (m,−m−4)12m 2M (m,m−4)PM =(m−4)−(−m−4)=−+2m 12m 212m 2PN y y =x−4N PM =PN W =PM +PN =2(−+2m)12m 2W =−+4m(0≤m≤4)m 2W =−+4m=−+4m 2(m−2)2m=2W4∴当时,的值最大,且最大值为.。
2023-2024学年九年级(上)第一次月考数学试卷-(含答案)

2023-2024学年九年级(上)第一次月考数学试卷一.选择题(共10小题,共30分)1.(3分)用配方法解一元二次方程2x 2﹣3x ﹣1=0,配方正确的是()A .(x ﹣)2=B .(x ﹣)2=C .(x ﹣)2=D .(x ﹣)2=2.(3分)下列说法不正确的是()A .一组同旁内角相等的平行四边形是矩形B .一组邻边相等的菱形是正方形C .有三个角是直角的四边形是矩形D .对角线相等的菱形是正方形3.(3分)若关于x 的一元二次方程x 2﹣2x +kb +1=0有两个不相等的实数根,则一次函数y =kx +b 的大致图象可能是()A .B .C .D .4.(3分)如图,在菱形ABCD 中,CE ⊥AB 于点E ,E 点恰好为AB 的中点,则菱形ABCD 的较大内角度数为()A .100°B .120°C .135°D .150°5.(3分)某市“菜篮子工程”蔬菜基地2022年产量为100吨,预计到2024年产量可达121吨.设该基地蔬菜产量的年平均增长率为x ,则可列方程为()A.100(1+x)2=121B.121(1﹣x)2=100C.100(1+2x)=121D.100(1+x2)=1216.(3分)如图,在菱形ABCD中,∠A=60°,点E、F分别为AD、DC上的动点,∠EBF =60°,点E从点A向点D运动的过程中,AE+CF的长度()A.逐渐增加B.逐渐减小C.保持不变且与EF的长度相等D.保持不变且与AB的长度相等7.(3分)四边形ABCD的对角线AC,BD相交于点O,能判定它是矩形的是()A.AO=CO,BO=OD B.AB=BC,AO=COC.AO=CO,BO=DO,AC⊥DB D.AO=CO=BO=DO8.(3分)如图,平行四边形ABCD中,对角线AC,BD相交于点O,下列条件:(1)∠1+∠DBC=90°;(2)OA=OB;(3)∠1=∠2,其中能判定平行四边形ABCD是菱形的条件有()A.0个B.1个C.2个D.3个9.(3分)如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE ⊥AC,交AD于点E,过点E作EF⊥BD,垂足为F,则OE+EF的值为()A.B.C.D.10.(3分)如图,在正方形ABCD中,对角线AC,BD交于点O,AG平分∠BAC交BD于G,DE⊥AG于点H.下列结论:①AD=2AE:②FD=AG;③CF=CD:④四边形FGEA是菱形;⑤OF=BE,正确的有()A.2个B.3个C.4个D.5个二.填空题(共5小题,共15分)11.(3分)一元二次方程x2=5x的根.12.(3分)如图,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,则线段DH 的长为.13.(3分)若关于x的方程(k﹣1)x2+4x+1=0有实数解,则k的取值范围是.14.(3分)如图,在边长为2的正方形ABCD中,点E,F分别是边AB,BC的中点,连接EC,FD,点G,H分别是EC,FD的中点,连接GH,则GH的长度为.15.(3分)如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为.三.解答题(共8小题,共75分)16.(16分)用恰当的方法解下列方程:(1)x2+4x﹣2=0;(2)4x2﹣25=0;(3)(2x+1)2+4(2x+1)+4=0;(4)(x﹣1)(x﹣3)=8.17.(8分)如图,在四边形ABCD中,AD∥BC,对角线BD的垂直平分线与边AD、BC分别相交于点M、N.(1)求证:四边形BNDM是菱形;(2)若BD=24,MN=10,求菱形BNDM的周长.18.(8分)关于x的一元二次方程2﹣3+=0有实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程(﹣1)2++﹣3=0与方程2﹣3+=0有一个相同的根,求此时m的值.19.(8分)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC至F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)若AC=10,∠ABC=60°,则矩形AEFD的面积是.20.(8分)某旅行社的一则广告如下:甲公司想分批组织员工到延安红色旅游学习.(1)如果第一批组织40人去学习,则公司应向旅行社交费元;(2)如果公司计划用29250元组织第一批员工去学习,问这次旅游学习应安排多少人参加?21.(8分)如图,在菱形ABCD中,AB=3,∠DAB=60°,点E是AD边的中点,点M 是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为时,四边形AMDN是矩形;②当AM的值为时,四边形AMDN是菱形.22.(8分)阅读探究:“任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半?”(完成下列空格)(1)当已知矩形A的边长分别为6和1时,小亮同学是这样研究的:设所求矩形的两边分别是x和y,由题意得方程组,消去y化简得:2x2﹣7x+6=0,∵b2﹣4ac=49﹣48>0,∴x1=,x2=,∴满足要求的矩形B存在.(2)如果已知矩形A的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B.(3)如果矩形A的边长为m和n,请你研究满足什么条件时,矩形B存在?23.(11分)四边形ABCD是正方形,△BEF是等腰直角三角形,∠BEF=90°,BE=EF,连接DF,G为DF的中点,连接EG,CG,EC.(1)问题发现如图1,若点E在CB的延长线上,直接写出EG与GC的位置关系及的值;(2)操作探究将图1中的△BEF绕点B顺时针旋转至图2所示位置,请问(1)中所得的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)解决问题将图1中的△BEF绕点B顺时针旋转,若BE=1,AB=,当E,F,D三点共线时,请直接写出CE的长.参考答案与试题解析一.选择题(共10小题,共30分)1.(3分)用配方法解一元二次方程2x2﹣3x﹣1=0,配方正确的是()A.(x﹣)2=B.(x﹣)2=C.(x﹣)2=D.(x﹣)2=【分析】化二次项系数为1后,把常数项﹣右移,应该在左右两边同时加上一次项系数﹣的一半的平方.【解答】解:由原方程,得x2﹣x=,x2﹣x+=+,(x﹣)2=,故选:A.2.(3分)下列说法不正确的是()A.一组同旁内角相等的平行四边形是矩形B.一组邻边相等的菱形是正方形C.有三个角是直角的四边形是矩形D.对角线相等的菱形是正方形【分析】利用正方形的判定、平行四边形的性质,菱形的性质,矩形的判定分别判断后即可确定正确的选项.【解答】解:A、一组同旁内角相等的平行四边形是矩形,正确;B、一组邻边相等的菱形是正方形,错误;C、有三个角是直角的四边形是矩形,正确;D、对角线相等的菱形是正方形,正确.故选:B.3.(3分)若关于x的一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,则一次函数y =kx+b的大致图象可能是()A.B.C.D.【分析】根据一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,得到根的判别式大于0,求出kb的符号,对各个图象进行判断即可.【解答】解:∵x2﹣2x+kb+1=0有两个不相等的实数根,∴△=4﹣4(kb+1)>0,解得kb<0,A.k>0,b=0,即kb=0,故A不正确;B.k>0,b<0,即kb<0,故B正确;C.k>0,b>0,即kb>0,故C不正确;D.k<0,b<0,即kb>0,故D不正确.故选:B.4.(3分)如图,在菱形ABCD中,CE⊥AB于点E,E点恰好为AB的中点,则菱形ABCD 的较大内角度数为()A.100°B.120°C.135°D.150°【分析】连接AC,证明△ABC是等边三角形,得出∠B=60°,则∠D=60°,∠BAD =∠BCD=120°,即可得出答案.【解答】解:连接AC,如图:∵四边形ABCD是菱形,∴AB=BC,∠BAD=∠BCD,∠B=∠D,AD∥BC,∴∠BAD+∠B=180°,∵CE⊥AB,点E是AB中点,∴BC=AC=AB,∴△ABC是等边三角形,∴∠B=60°,∴∠D=60°,∠BAD=∠BCD=120°;即菱形ABCD的较大内角度数为120°;故选:B.5.(3分)某市“菜篮子工程”蔬菜基地2022年产量为100吨,预计到2024年产量可达121吨.设该基地蔬菜产量的年平均增长率为x,则可列方程为()A.100(1+x)2=121B.121(1﹣x)2=100C.100(1+2x)=121D.100(1+x2)=121【分析】利用增长后的量=增长前的量×(1+增长率),设平均每次增长的百分率为x,根据“从100吨增加到121吨”,即可得出方程.【解答】解:由题意知,设该基地蔬菜产量的年平均增长率为x,根据2022年产量为100吨,则2023年蔬菜产量为100(1+x)吨,2024年蔬菜产量为100(1+x)(1+x)吨,预计2024年产量可达121吨,即:100(1+x)(1+x)=121或100(1+x)2=121.故选:A.6.(3分)如图,在菱形ABCD中,∠A=60°,点E、F分别为AD、DC上的动点,∠EBF =60°,点E从点A向点D运动的过程中,AE+CF的长度()A.逐渐增加B.逐渐减小C.保持不变且与EF的长度相等D.保持不变且与AB的长度相等【分析】证明△ABE≌△DBF(AAS),可得AE=DF,根据线段的和可知:AE+CF=AB,是一定值,可作判断.【解答】解:连接BD,∵四边形ABCD是菱形,∴AB=AD=CD,∵∠A=60°,∴△ABD是等边三角形,∴AB=BD,∠ABD=60°,∵DC∥AB,∴∠CDB=∠ABD=60°,∴∠A=∠CDB,∵∠EBF=60°,∴∠ABE+∠EBD=∠EBD+∠DBF,∴∠ABE=∠DBF,在△ABE和△DBF中,∵,∴△ABE≌△DBF(AAS),∴AE=DF,∴AE+CF=DF+CF=CD=AB,故选:D.7.(3分)四边形ABCD的对角线AC,BD相交于点O,能判定它是矩形的是()A.AO=CO,BO=OD B.AB=BC,AO=COC.AO=CO,BO=DO,AC⊥DB D.AO=CO=BO=DO【分析】根据平行四边形的判定,矩形的判定,菱形的判定逐个判断即可.【解答】解:A、∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,不能推出四边形ABCD是矩形,故本选项不符合题意;B、根据AB=BC,AO=CO不能推出四边形ABCD是矩形,故本选项不符合题意;C、∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,∵AC⊥BD,∴平行四边形ABCD是菱形,不能推出四边形ABCD是矩形,故本选项不符合题意;D、∵OA=OB=OC=OD,∴OA=OC,OB=OD,AC=BD,∴四边形ABCD是平行四边形,∵AC=BD,∴四边形ABCD是矩形,故本选项符合题意;故选:D.8.(3分)如图,平行四边形ABCD中,对角线AC,BD相交于点O,下列条件:(1)∠1+∠DBC=90°;(2)OA=OB;(3)∠1=∠2,其中能判定平行四边形ABCD是菱形的条件有()A.0个B.1个C.2个D.3个【分析】由平行四边形的性质、菱形的判定、矩形的判定即可得出结论.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,AD∥BC,∴∠1=∠BCO,若∠1+∠DBC=90°时,则∠BCO+∠DBC=90°,∴∠BOC=90°,∴AC⊥BD,∴四边形ABCD是菱形;(1)能判定平行四边形ABCD是菱形;若OA=OB,则AC=BD,∴四边形ABCD是矩形;(2)不能判定平行四边形ABCD是菱形;若∠1=∠2,则∠2=∠BCO,∴AB=CB,∴四边形ABCD是菱形;(3)能判定平行四边形ABCD是菱形;故选:C.9.(3分)如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE ⊥AC,交AD于点E,过点E作EF⊥BD,垂足为F,则OE+EF的值为()A.B.C.D.=S△AOE+S△DOE,【分析】依据矩形的性质即可得到△AOD的面积为12,再根据S△AOD 即可得到OE+EF的值.【解答】解:∵AB=6,BC=8,∴矩形ABCD的面积为48,AC==10,∴AO=DO=AC=5,∵对角线AC,BD交于点O,∴△AOD的面积为12,∵EO⊥AO,EF⊥DO,=S△AOE+S△DOE,即12=AO×EO+DO×EF,∴S△AOD∴12=×5×EO+×5×EF,∴5(EO+EF)=24,∴EO+EF=,故选:C.10.(3分)如图,在正方形ABCD中,对角线AC,BD交于点O,AG平分∠BAC交BD于G,DE⊥AG于点H.下列结论:①AD=2AE:②FD=AG;③CF=CD:④四边形FGEA是菱形;⑤OF=BE,正确的有()A.2个B.3个C.4个D.5个【分析】①根据正方形的性质和角平分线的定义得:∠BAG=∠CAG=22.5°,由垂直的定义计算∠AED=90°﹣22.5°=67.5°,∠EAD=∠EAD=22.5°,得ED是AG的垂直平分线,则AE=EG,△BEG是等腰直角三角形,则AD=AB>2AE,可作判断;②证明△DAF≌△ABG(ASA),可作判断;③分别计算∠CDF=∠CFD=67.5°,可作判断;④根据对角线互相平分且垂直的四边形是菱形可作判断;⑤设BG=x,则AF=AE=x,表示OF和BE的长,可作判断.【解答】解:①∵四边形ABCD是正方形,∴∠BAD=90°,∠BAC=45°,∵AG平分∠BAC,∴∠BAG=∠CAG=22.5°,∵AG⊥ED,∴∠AHE=∠EHG=90°,∴∠AED=90°﹣22.5°=67.5°,∴∠ADE=22.5°,∵∠ADB=45°,∴∠EDG=22.5°=∠ADE,∵∠AHD=∠GHD=90°,∴∠DAG=∠DGA,∴AD=DG,AH=GH,∴ED是AG的垂直平分线,∴AE=EG,∴∠EAG=∠AGE=22.5°,∴∠BEG=45°=∠ABG,∴∠BGE=90°,∴AE=EG<BE,∴AD=AB>2AE,故①不正确;②∵四边形ABCD是正方形,∴AD=AB,∠DAF=∠ABG=45°,∵∠ADF=∠BAG=22.5°,∴△DAF≌△ABG(ASA),∴DF=AG,故②正确;③∵∠CDF=45°+22.5°=67.5°,∠CFD=∠AFE=90°﹣22.5°=67.5°,∴∠CDF=∠CFD,∴CF=CD,故③正确;④∵∠EAH=∠FAH,∠AHE=∠AHF,∴∠AEF=∠AFE,∴AE=AF,∴EH=FH,∵AH=GH,AG⊥EF,∴四边形FGEA是菱形;故④正确;⑤设BG=x,则AF=AE=x,由①知△BEG是等腰直角三角形,∴BE=x,∴AB=AE+BE=x+x=(+1)x,∴AO==,∴OF=AO﹣AF=﹣x=,∴==,∴OF=BE;故⑤正确;本题正确的结论有:②③④⑤;故选:C.二.填空题(共5小题,共15分)11.(3分)一元二次方程x2=5x的根x1=0,x2=5.【分析】先移项,然后通过提取公因式x对等式的左边进行因式分解.【解答】解:由原方程,得x2﹣5x=0,则x(x﹣5)=0,解得x1=0,x2=5.故答案是:x1=0,x2=5.12.(3分)如图,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,则线段DH的长为.【分析】直接利用菱形的性质得出AO,DO的长,再利用三角形面积以及勾股定理得出答案.【解答】解:∵四边形ABCD是菱形,AC=24,BD=10,=×AC×BD=120,AO=12,OD=5,AC⊥BD,∴S菱形ABCD∴AD=AB==13,∵DH⊥AB,∴AO×BD=DH×AB,∴12×10=13×DH,∴DH=.故答案为:.13.(3分)若关于x的方程(k﹣1)x2+4x+1=0有实数解,则k的取值范围是k≤5.【分析】分k﹣1=0和k﹣1≠0两种情况,其中k﹣1≠0时根据题意列出关于k的不等式求解可得.【解答】解:当k﹣1=0时,方程为4x+1=0,显然有实数根;当k﹣1≠0,即k≠1时,△=42﹣4×(k﹣1)×1≥0,解得k≤5且k≠1;综上,k≤5.故答案为:k≤5.14.(3分)如图,在边长为2的正方形ABCD中,点E,F分别是边AB,BC的中点,连接EC,FD,点G,H分别是EC,FD的中点,连接GH,则GH的长度为1.【分析】方法一:连接CH并延长交AD于P,连接PE,根据正方形的性质得到∠A=90°,AD∥BC,AB=AD=BC=2,根据全等三角形的性质得到PD=CF=,根据勾股定理和三角形的中位线定理即可得到结论.方法二:设DF,CE交于O,根据正方形的性质得到∠B=∠DCF=90°,BC=CD=AB,根据线段中点的定义得到BE=CF,根据全等三角形的性质得到CE=DF,∠BCE=∠CDF,求得DF⊥CE,根据勾股定理得到CE=DF==,点G,H分别是EC,FD的中点,根据相似三角形的判定和性质定理即可得到结论.【解答】解:方法一:连接CH并延长交AD于P,连接PE,∵四边形ABCD是正方形,∴∠A=90°,AD∥BC,AB=AD=BC=2,∵E,F分别是边AB,BC的中点,∴AE=CF=×2=,∵AD∥BC,∴∠DPH=∠FCH,∵∠DHP=∠FHC,∵DH=FH,∴△PDH≌△CFH(AAS),PD=CF=,∴AP=AD﹣PD=,∴PE===2,∵点G,H分别是EC,FD的中点,∴GH=EP=1;方法二:设DF,CE交于O,∵四边形ABCD是正方形,∴∠B=∠DCF=90°,BC=CD=AB,∵点E,F分别是边AB,BC的中点,∴BE=CF,∴△CBE≌△DCF(SAS),∴CE=DF,∠BCE=∠CDF,∵∠CDF+∠CFD=90°,∴∠BCE+∠CFD=90°,∴∠COF=90°,∴DF⊥CE,∴CE=DF==,∵点G,H分别是EC,FD的中点,∴CG=FH=,∵∠DCF=90°,CO⊥DF,∴∠DCO+∠FCO=∠DCO+∠CDO=90°,∴∠FCO=∠CDO,∵∠DCF=∠COF=90°,∴△COF∽△DOC,∴=,∴CF2=OF•DF,∴OF===,∴OH=,OD=,∵∠COF=∠COD=90°,∴△COF∽△DOC,∴,∴OC2=OF•OD,∴OC==,∴OG=CG﹣OC=﹣=,∴HG===1,故答案为:1.15.(3分)如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为16或4.【分析】根据翻折的性质,可得B′E的长,根据勾股定理,可得CE的长,根据等腰三角形的判定,可得答案.【解答】解:(i)当B′D=B′C时,过B′点作GH∥AD,则∠B′GE=90°,当B′C=B′D时,AG=DH=DC=8,由AE=3,AB=16,得BE=13.由翻折的性质,得B′E=BE=13.∴EG=AG﹣AE=8﹣3=5,∴B′G===12,∴B′H=GH﹣B′G=16﹣12=4,∴DB′===4(ii)当DB′=CD时,则DB′=16(易知点F在BC上且不与点C、B重合).(iii)当CB′=CD时,则CB=CB′,由翻折的性质,得EB=EB′,∴点E、C在BB ′的垂直平分线上,∴EC垂直平分BB′,由折叠,得EF也是线段BB′的垂直平分线,∴点F与点C重合,这与已知“点F是边BC上不与点B,C重合的一个动点”不符,故此种情况不存在,应舍去.综上所述,DB′的长为16或4.故答案为:16或4.三.解答题(共8小题,共75分)16.(16分)用恰当的方法解下列方程:(1)x2+4x﹣2=0;(2)4x2﹣25=0;(3)(2x+1)2+4(2x+1)+4=0;(4)(x﹣1)(x﹣3)=8.【分析】(1)利用公式法求解可得;(2)利用直接开平方法求解可得;(3)利用换元法求解可得;(4)整理成一般式,再利用公式法求解可得.【解答】解:(1)∵a=1,b=4,c=﹣2,∴△=42﹣4×1×(﹣2)=24>0,则x==﹣2±,即x1=﹣2+,x2=﹣2﹣;(2)∵4x2=25,∴x2=,解得x1=,x2=﹣;(3)令2x+1=a,则a2+4a+4=0,∴(a+2)2=0,解得a=﹣2,∴2x+1=﹣2,解得x1=x2=﹣1.5;(4)方程整理为一般式,得:x2﹣4x﹣5=0,解得:(x﹣5)(x+1)=0,则x﹣5=0或x+1=0,解得x1=5,x2=﹣1.17.(8分)如图,在四边形ABCD中,AD∥BC,对角线BD的垂直平分线与边AD、BC分别相交于点M、N.(1)求证:四边形BNDM是菱形;(2)若BD=24,MN=10,求菱形BNDM的周长.【分析】(1)证△MOD≌△NOB(AAS),得出OM=ON,由OB=OD,证出四边形BNDM 是平行四边形,进而得出结论;(2)由菱形的性质得出BM=BN=DM=DN,OB=BD=12,OM=MN=5,由勾股定理得BM=13,即可得出答案.【解答】(1)证明:∵AD∥BC,∴∠DMO=∠BNO,∵MN是对角线BD的垂直平分线,∴OB=OD,MN⊥BD,在△MOD和△NOB中,,∴△MOD≌△NOB(AAS),∴OM=ON,∵OB=OD,∴四边形BNDM是平行四边形,∵MN⊥BD,∴四边形BNDM是菱形;(2)解:∵四边形BNDM是菱形,BD=24,MN=10,∴BM=BN=DM=DN,OB=BD=12,OM=MN=5,在Rt△BOM中,由勾股定理得:BM===13,∴菱形BNDM的周长=4BM=4×13=52.18.(8分)关于x的一元二次方程2﹣3+=0有实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程(﹣1)2++﹣3=0与方程2﹣3+=0有一个相同的根,求此时m的值.【分析】(1)利用判别式的意义得到△=(﹣3)2﹣4k≥0,然后解不等式即可;(2)先确定k=2,再解方程2﹣3+2=0,解得x1=1,x2=2,然后分别把x=1和x=2代入元二次方程(﹣1)2++﹣3=0可得到满足条件的m的值.【解答】解:(1)根据题意得△=(﹣3)2﹣4k≥0,解得k≤;(2)满足条件的k的最大整数为2,此时方程2﹣3+=0变形为方程2﹣3+2=0,解得x1=1,x2=2,当相同的解为x=1时,把x=1代入方程(﹣1)2++﹣3=0得m﹣1+1+m﹣3=0,解得m=;当相同的解为x=2时,把x=2代入方程(﹣1)2++﹣3=0得4(m﹣1)+2+m﹣3=0,解得m=1,而m﹣1≠0,不符合题意,舍去,所以m的值为.19.(8分)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC至F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)若AC=10,∠ABC=60°,则矩形AEFD的面积是25.【分析】(1)根据菱形的性质得到AD∥BC且AD=BC,等量代换得到BC=EF,推出四边形AEFD是平行四边形,根据矩形的判定定理即可得到结论;(2)根据全等三角形的判定定理得到Rt△ABE≌Rt△DCF(HL),求得矩形AEFD的面积=菱形ABCD的面积,根据等腰三角形的性质得到结论.【解答】(1)证明:∵四边形ABCD是菱形,∴AD∥BC,AD=BC,∵CF=BE,∴BC=EF,∴AD∥EF,AD=EF,∴四边形AEFD是平行四边形,∵AE⊥BC,∴∠AEF=90°,∴平行四边形AEFD是矩形;(2)解:∵AB=CD,BE=CF,∠AEB=∠DFC=90°,∴Rt△ABE≌Rt△DCF(HL),∴矩形AEFD的面积=菱形ABCD的面积,∵∠ABC=60°,∴△ABC是等边三角形,∵AC=10,∴AE=AC=5,AB=10,BO=5,∵AD=EF=10,∴矩形AEFD的面积=菱形ABCD的面积=×10×10=50,故答案为:50.20.(8分)某旅行社的一则广告如下:甲公司想分批组织员工到延安红色旅游学习.(1)如果第一批组织40人去学习,则公司应向旅行社交费28000元;(2)如果公司计划用29250元组织第一批员工去学习,问这次旅游学习应安排多少人参加?【分析】(1)首先表示出40人是平均每人的费用,进而得出总费用;(2)表示出每人平均费用为:800﹣10(x﹣30),进而得出等式求出答案.【解答】解:(1)∵人数多于30人,那么每增加1人,人均收费降低10元,∴第一批组织40人去学习,则公司应向旅行社交费:40×[800﹣(40﹣30)×10]=28000(元);故答案为:28000;(2)设这次旅游应安排x人参加,∵30×800=24000<29250,∴x>30,根据题意得:x[800﹣10(x﹣30)]=29250,整理得,x2﹣110x+2925=0,解得:x1=45,x2=65∵800﹣10(x﹣30)≥500,∴x≤60.∴x=45.答:这次旅游应安排45人参加.21.(8分)如图,在菱形ABCD中,AB=3,∠DAB=60°,点E是AD边的中点,点M 是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为 1.5时,四边形AMDN是矩形;②当AM的值为3时,四边形AMDN是菱形.【分析】(1)求出△DNE≌△AME,根据全等及时向的性质得出NE=ME,根据平行四边形的判定得出即可;(2)①根据等边三角形的判定得出△ABD是等边三角形,根据等边三角形的性质求出DM⊥AB,根据矩形的判定得出即可;②求出△ABD是等边三角形,求出M和B重合,根据菱形的判定得出即可..【解答】(1)证明:∵点E是AD边的中点,∴AE=DE,∵四边形ABCD是菱形,∴DC∥AB,∴∠DNE=∠AME,在△DNE和△AME中,∴△DNE≌△AME(AAS),∴NE=ME,∵AE=DE,∴四边形AMDN是平行四边形;(2)解:①当AM=1.5时,四边形AMDN是矩形,理由是:连接BD,∵四边形ABCD是菱形,∴AD=AB=3,∵∠DAB=60°,∴△ADB是等边三角形,∴AD=BD=3,∵AM=1.5,AB=3,∴AM=BM,∴DM⊥AB,即∠DMA=90°,∵四边形AMDN是平行四边形,∴四边形AMDN是矩形,即当AM=1.5时,四边形AMDN是矩形,故答案为:1.5;②当AM=3时,四边形AMDN是菱形,理由是,此时AM=AB=3,即M和B重合,∵由①知:△ABD是等边三角形,∴AM=MD,∵四边形AMDN是平行四边形,∴四边形AMDN是菱形,故答案为:3.22.(8分)阅读探究:“任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半?”(完成下列空格)(1)当已知矩形A的边长分别为6和1时,小亮同学是这样研究的:设所求矩形的两边分别是x和y,由题意得方程组,消去y化简得:2x2﹣7x+6=0,∵b2﹣4ac=49﹣48>0,∴x1=,x2=2,∴满足要求的矩形B存在.(2)如果已知矩形A的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B.(3)如果矩形A的边长为m和n,请你研究满足什么条件时,矩形B存在?【分析】(1)利用求根公式即可求出方程的两根;(2)仿照(1)找准关于x的一元二次方程,由根的判别式△=﹣7<0,可得出方程无解,即不存在满足要求的矩形B;(3)仿照(1)找准关于x的一元二次方程,由根的判别式△≥0,可找出m、n之间的关系.【解答】解:(1)利用求根公式可知:x1==,x2==2.故答案为:;2.(2)设所求矩形的两边分别是x和y,根据题意得:,消去y化简得:2x2﹣3x+2=0.∵b2﹣4ac=(﹣3)2﹣4×2×2=﹣7<0,∴该方程无解,∴不存在满足要求的矩形B.(3)设所求矩形的两边分别是x和y,根据题意得:,消去y化简得:2x2﹣(m+n)x+mn=0.∵矩形B存在,∴b2﹣4ac=[﹣(m+n)]2﹣4×2mn≥0,∴(m﹣n)2≥4mn.故当m、n满足(m﹣n)2≥4mn时,矩形B存在.23.(11分)四边形ABCD是正方形,△BEF是等腰直角三角形,∠BEF=90°,BE=EF,连接DF,G为DF的中点,连接EG,CG,EC.(1)问题发现如图1,若点E在CB的延长线上,直接写出EG与GC的位置关系及的值;(2)操作探究将图1中的△BEF绕点B顺时针旋转至图2所示位置,请问(1)中所得的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)解决问题将图1中的△BEF绕点B顺时针旋转,若BE=1,AB=,当E,F,D三点共线时,请直接写出CE的长.【分析】(1)过G作GH⊥EC于H,推出EF∥GH∥DC,求出H为EC中点,根据梯形的中位线求出EG=GC,GH=(EF+DC)=(EB+BC),推出GH=EH=BC,根据直角三角形的判定推出△EGC是等腰直角三角形即可;(2)延长EG到H,使EG=GH,连接CH,过E作BC的垂线EQ,证△EFG≌△HDG,推出DH=EF=BE,∠FEG=∠DHG,求出∠EBC=∠HDC,证出△EBC≌△HDC,推出CE=CH,∠BCE=∠DCH,求出△ECH是等腰直角三角形,即可得出答案;(3)分两种情况:①CE在BC的上方,如图3,作辅助线,构建等腰直角三角形,求出cos∠DBE=,推出∠DBE=60°,证明△GDC≌△EBC(ASA),则EC=CG,DG=EB=1,从而得结论;②CE在BC的下方,如图4,同理可得结论.【解答】解:(1)EG⊥CG,;理由是:如图1,过G作GH⊥EC于H,∵∠FEB=∠DCB=90°,∴EF∥GH∥DC,∵G为DF中点,∴H为EC中点,∴EG=GC,GH=(EF+DC)=(EB+BC)=CE,即GH=EH=HC,∴∠EGC=90°,即△EGC是等腰直角三角形,;(2)结论还成立,理由是:如图2,延长EG到H,使EG=GH,连接CH,过E作BC的垂线EQ,延长CB交EQ于R,延长CD,交EH于N,在△EFG和△HDG中,,∴△EFG≌△HDG(SAS),∴DH=EF=BE,∠FEG=∠DHG,∴EF∥DH,同理得ER∥CD,∴∠1=∠2,∴∠1=∠2=90°﹣∠3=∠4,∴∠EBC=180°﹣∠4=180°﹣∠1=∠HDC,在△EBC和△HDC中,,∴△EBC≌△HDC(SAS).∴CE=CH,∠BCE=∠DCH,∴∠ECH=∠DCH+∠ECD=∠BCE+∠ECD=∠BCD=90°,∴△ECH是等腰直角三角形,∵G为EH的中点,∴EG⊥GC,,即(1)中的结论仍然成立;(3)分两种情况:①如图3,连接BD,过C作CG⊥EC,交ED的延长线于G,∵AB=,正方形ABCD,∴BD=2,Rt△BED中,cos∠DBE=,∴∠DBE=60°,∠BDF=30°∵tan∠BDE==,∴DE=BE=,∵∠ABD=45°,∴∠ABE=60°﹣45°=15°,∴∠EBC=90°+15°=105°,∵∠EDC=∠BDE+∠CDB=30°+45°=75°,∴∠CDG=180°﹣75°=105°,∴∠CDG=∠CBE,∵∠ECG=∠BCD=90°,∴∠DCG=∠BCE,∵BC=CD,∴△GDC≌△EBC(ASA),∴EC=CG,DG=EB=1,∴△ECG是等腰直角三角形,∴EG=CE,∵EG=ED+DG=+1,∴CE==;②如图4,连接BD,过C作CH⊥EC,交ED于H,同理得△DHC≌△BEC(ASA),∴EC=CH,DH=EB=1,同理可知:DE=,∴EH=DE﹣DH=﹣1,∵△ECH是等腰直角三角形,∴EH=CE,∴CE==;综上,CE的长为.。
上海第五十四中学九年级数学上册第五单元《概率初步》检测(含答案解析)

一、选择题1.从1,2,3,4,5这5个数字任取两个数字,使其乘积为偶数的概率为()A.45B.710C.35D.122.做重复试验:抛掷一枚啤酒瓶盖1 000次,经过统计得“凸面向上”的次数为420次,则可以由此估计抛掷这枚啤酒瓶盖出现“凸面向上”的概率约为( )A.0.50 B.0.21 C.0.42 D.0.583.下列说法中正确的是()A.通过多次试验得到某事件发生的频率等于这一事件发生的概率B.某人前9次掷出的硬币都是正面朝上,那么第10次掷出的硬币反面朝上的概率一定大于正面朝上的概率C.不确定事件的概率可能等于1D.试验估计结果与理论概率不一定一致4.如图,转盘中8个扇形的面积都相等,任意转动转盘1次,当转盘停止转动时,估计下列4个事件发生的可能性大小,其中事件发生的可能性最大的是()A.指针落在标有5的区域内B.指针落在标有10的区域内C.指针落在标有偶数或奇数的区域内D.指针落在标有奇数的区域内5.小明在一次用频率估计概率的实验中,统计了某一结果出现的频率,并绘制了如图所示的统计图,则符合这一结果的实验可能是()A.掷一枚质地均匀的硬币,正面朝上的概率B.任意买一张电影票,座位号是2的倍数的概率C.从一个装有4个黑球和2个白球的不透明袋子中任意摸出一球(小球除颜色外,完全相同),摸到白球的概率D.从一副去掉大小王的扑克牌,任意抽取一张,抽到黑桃的概率6.设口袋中有5个完全相同的小球,它们的标号分别为1,2,3,4,5.现从中随机摸出(同时摸出)两个小球并记下标号,则标号之和大于5的概率是()A.310B.35C.45D.7107.如图,在4×4的正方形网格中,黑色部分的图形构成了一个轴对称图形,现在任意取一个白色小正方形涂黑,使黑色部分仍然是一个轴对称图形的概率是()A.613B.513C.413D.3138.小王掷一枚质地均匀的硬币,连续抛3次,硬币均正面朝上落地,如果他再抛第4次,那么硬币正面朝上的概率为()A.1 B.12C.14D.159.下列事件发生的可能性为0的是( )A.掷两枚骰子,同时出现数字“6”朝上B.小明从家里到学校用了10分钟,从学校回到家里却用了15分钟C.今天是星期天,昨天必定是星期六D.小明步行的速度是每小时50千米10.下列说法正确的是()A.“穿十条马路连遇十次红灯”是不可能事件B.任意画一个三角形,其内角和是180°是必然事件C.某彩票中奖概率为1%,那么买100张彩票一定会中奖D.“福山福地福人居”这句话中任选一个汉字,这个字是“福”字的概率是1 211.数字“”中,数字“”出现的频率是()A.38B.12C.13D.4912.下列事件:①篮球队员在罚球线上投篮一次,未投中;②翻开八年级数学课本,恰好翻到第28页;③任取两个正整数,其和大于1;④长为3,5,9的三条线段能围成一个三角形.其中确定事件有()A.1个B.2个C.3个D.4个二、填空题13.从﹣8,﹣2,1,4这四个数中任取两个数分别作为二次函数y=ax2+bx+1中a、b的值,恰好使得该二次函数当x>2时,y随x的增大而增大的概率是_____.14.汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为2:3,现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为__________.15.同时掷两枚质地均匀的骰子,两枚骰子点数之和小于5的概率是____________16.为了解某校九年级学生每周的零花钱情况,随机抽取了该校100名九年级学生,他们每周的零花钱x (元)统计如下: 组别(元) 40x <4060x ≤<6080x ≤<80100x ≤<人数6374017根据以上结果,随机抽查该校一名九年级学生,估计他每周的零花钱不低于80元的概率是_________.17.在一个不透明的袋中装有若干个红球,为了估计袋中红球的个数,小明在袋中放入3个黑球(每个球除颜色外其余都与红球相同),摇匀后每次随机从袋中摸出一个球,记下颜色后放回袋中,通过大量重复摸球试验后发现,摸到红球的频率稳定在0.85左右,则袋中红球约有_____个.18.在一个不透明的盒子中,装有红、黄、绿三种只有颜色不同、其余均相同的小球各2个,从中任取一个球,取出的球为红色的概率为_____.19.我市倡导垃圾分类投放,将日常垃圾分成四类,分别投放四种不同颜色的垃圾桶中,在“垃圾分类”模拟活动中,某同学把两个不同类的垃圾随意放入两个不同颜色的垃圾筒中,则这个同学正确分类投放垃圾的概率是______. 20.某种油菜籽在相同条件下的发芽试验结果如下表: 每批粒数n 5 10 70 130 310 700 1500 2000 3000 发芽粒数m4960116282639133918062715请用频率估计概率的方法来估计这批油菜籽在相同条件下的发芽概率是_______(精确到0.01).三、解答题21.先后两次抛掷一枚质地均匀的骰子,第一次抛掷正面朝上的点数记为a ,第二次掷正面朝上的点数记为b .(1)求先后两次抛掷的点数之和为6的概率;(2)求以(a,b)为点在直线y=-x+5上的概率;22.为了解某校九年级全体女生“仰卧起坐”项目的成绩,随机抽取了部分女生进行测试,并将测试成缋分为A、B、C、D四个等级,绘制成如图不完整的统计图、表.成绩等级人数分布表成绩等级人数A aB24C4D2合计b(1)a=,b=,表示A等级扇形的圆心角的度数为度;(2)甲、乙2名学生的成绩都是C等级,如果要从C等级学生中随机选取2名加强“仰卧起坐”训练,试求同时选中甲、乙2人的概率,并画出树状图或列出表格.23.已知一个不透明布袋中装有形状、大小、材质完全相同的红球和白球共5个,小明进行多次摸球实验,并将数据记录如下表:摸球次数10204060100150200红球出现次数591826416181红球出现的频率0.50.450.450.4330.410.4070.405)从这个布袋中随机摸出一个球,这个球恰好是红球的概率为;(2)从这个布袋中随机摸出两个球,请用树形图或列表法求摸出的两个球恰好“一红一白”的概率.24.某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,对某小区居民进行了抽样调查,并将调查情况绘制成图1、图2两幅统计图(尚不完整).请根据统计图解答下列问题:(1)将两幅不完整的统计图补充完整;(2)若居民区有8000人,请估计爱吃D粽的人数;(3)若有外形完全相同的A、B、C、D粽各一个,煮熟后,小韦吃了两个,用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.25.某校团委在“五·四”青年节举办了一次“我的中国梦”作文大赛,广三批对全校20个班的作品进行评比在第一批评比中,随机抽取A、B、C、D四个班的征集作品,对其数量进行统计后,绘制如下两幅不完整的统计图,(1)第一批所抽取的4个班共征集到作品件;在扇形统计图中表示C班的扇形的圆心角的度数为;(2)补全条形统计图;(3)第一批评比中,A班D班各有一件、B班C班各有两件作品获得一等奖.现要在获得一等奖的作品中随机抽取两件在全校展出,用树状图或列表法求抽取的作品在两个不同班级的概率.26.某种油菜籽在相同条件下的发芽实验结果如表:(1)a=,b=;(2)这种油菜籽发芽的概率估计值是多少?请简要说明理由;(3)如果该种油菜籽发芽后的成秧率为90%,则在相同条件下用10000粒该种油菜籽可得到油菜秧苗多少棵?参考答案【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与其乘积为偶数的情况,再利用概率公式即可求得答案.【详解】解:画树状图得:∵共有20种等可能的结果,其乘积为偶数的有14种情况,∴其乘积为偶数的概率为:147,2010故选:B.【点睛】本题考查了树状图法与列表法求概率,用到的知识点为:概率=所求情况数与总情况数之比.2.C解析:C【分析】根据多次重复试验中事件发生的频率估计事件发生的概率即可.【详解】解:∵抛掷同一枚啤酒瓶盖1000次.经过统计得“凸面向上”的次数约为420次,∴抛掷这枚啤酒瓶盖出现“凸面向上”的概率约为420=0.42,1000故选:C.【点睛】本题主要考查概率的意义、等可能事件的概率,大量重复试验事件发生的频率约等于概率.3.D解析:D【分析】大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值,而不是一种必然的结果,故选D.【详解】A. 错,应为:多次试验得到某事件发生的频率可以估计这一事件发生的概率;B. 错,反面朝上的概率仍为0.5;C. 错,概率等于1即为必然事件;D. 正确.故答案选D.【点睛】本题考查了概率的意义,解题的关键是熟练的掌握概率的意义.4.C解析:C【分析】根据可能性等于所求情况数与总情况数之比分别求出每种情况的可能性,再按发生的可能性从小到大的顺序排列即可,从而确定正确的选项即可.【详解】解:A、指针落在标有5的区域内的概率是18;B、指针落在标有10的区域内的概率是0;C、指针落在标有偶数或奇数的区域内的概率是1;D、指针落在标有奇数的区域内的概率是12;故选:C.【点睛】此题考查了可能性大小,用到的知识点是可能性等于所求情况数与总情况数之比,关键是求出每种情况的可能性.5.C解析:C【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【详解】A、掷一枚硬币,出现正面朝上的概率为12,故此选项错误;B、任意买一张电影票,座位号是2的倍数的概率不确定,但不一定是0.33,故此选项错误;C、从一个装有4个黑球和2个白球的不透明袋子中任意摸出一球(小球除颜色外,完全相同),摸到白球的概率221==0.334+263,故此选项正确;D、从一副去掉大小王的扑克牌,任意抽取一张,抽到黑桃的概率14;故此选项错误;故选:C.【点睛】考查了利用频率估计概率的知识,解题的关键是能够分别求得每个选项的概率,然后求解,难度不大.6.B解析:B【分析】根据列表或画树状图方法列出所有可能性,根据概率公式计算即可.【详解】解:列表得于5的概率是123= 205.故选:B【点睛】本题考查了列表法或画树状图求概率,解题关键是根据列表法或画柱状图确定出所有可能性,注意本题同时摸出两个小球这一条件.7.B解析:B【分析】由在4×4正方形网格中,任选取一个白色的小正方形并涂黑,共有16种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有5种情况,直接利用概率公式求解即可求得答案.【详解】解:∵由题意,共16-3=13种等可能情况,其中构成轴对称图形的有如下5个图所示的5种情况,∴概率为:513P ;故选:B.【点睛】本题考查了求概率的方法:先列表展示所有等可能的结果数n,再找出某事件发生的结果数m,然后根据概率的定义计算出这个事件的概率=mn.8.B解析:B【分析】大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值,而不是一种必然的结果,可得答案.【详解】因为一枚质地均匀的硬币只有正反两面,所以不管抛多少次,硬币正面朝上的概率都是12,故选:B.【点睛】本题考查利用频率估计概率.大量反复试验下频率稳定值即概率.注意随机事件发生的概率在0和1之间.9.D解析:D【分析】事件发生的可能性是0,说明这件事情不可能发生.据此解答即可.【详解】解:A、掷两枚骰子,同时出现数字“6”朝上,是可能事件;B、小明从家里到学校用了10分钟,从学校回到家里却用了15分钟,是可能事件;C、今天是星期天,昨天必定是星期六,是必然事件,概率为1;D、小明步行的速度是每小时50千米,是不可能事件,概率为0.故选:D.【点睛】此题主要考查可能性的判断.解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件发生的可能性为1,即P(必然事件)=1;不可能事件发生的可能性为0,即P(不可能事件)=0;如果A为不确定事件,那么0<P(A)<1.10.B解析:B【分析】直接利用随机事件的定义以及确定事件的定义分别分析得出答案.【详解】A、“穿十条马路连遇十次红灯”是随机事件,错误;B、三角形内角和是180°,所以任意画一个三角形,其内角和是180°,是必然事件,是正确的;C、“彩票中奖概率为1%,那么买100张彩票不一定会中奖”是随机事件,故原选项错误;D、“福山福地福人居”这句话中任选一个汉字,这个字是“福”字的概率是37,故原选项错误.故选:B.【点睛】此题主要考查了随机事件以及确定事件,正确把握定义是解题关键.11.A解析:A【分析】首先计算数字的总数,以及2出现的频数,根据频率公式:频率=频数÷总数即可求解.【详解】数字的总数是8,有3个数字“”,因而“”出现的频率是:38.故选:A.【点睛】本题考查了频数的计算公式,理解公式是关键.12.B解析:B【分析】根据随机事件的定义对各选项进行逐一分析即可得到答案;【详解】①篮球队员在罚球线上投篮一次,未投中是随机事件,不是确定事件,故错误;②翻开八年级数学课本,恰好翻到第28页是随机事件,不是确定事件,故错误;③任取两个正整数,其和大于1是必然事件,即是确定事件,故正确;④长为3,5,9的三条线段因为3+5<9,故不能能围成一个三角形,是必然不可能发生的,故确定不发生事件,故正确故选B【点睛】本题考查的是随机事件,即在一定条件下,可能发生也可能不发生的事件,称为随机事件,一定会发生的事件或者一定不发生的事件称为确定事件.二、填空题13.0【分析】先画出树状图共有12个等可能的结果恰好使得该二次函数当x >2时y随x的增大而增大的结果有0个再由概率公式即可得出答案【详解】解:画树状图如图:共有12个等可能的结果恰好使得该二次函数当x>解析:0【分析】先画出树状图,共有12个等可能的结果,恰好使得该二次函数当x>2时,y随x的增大而增大的结果有0个,再由概率公式即可得出答案.【详解】解:画树状图如图:共有12个等可能的结果,恰好使得该二次函数当x>2时,y随x的增大而增大的结果有0个,∴恰好使得该二次函数当x>2时,y随x的增大而增大的概率为:012=0,故答案为:0.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了二次函数的性质.14.【解析】分析:设勾为2k则股为3k弦为k由此求出大正方形面积和阴影区域面积由此能求出针尖落在阴影区域的概率详解:设勾为2k则股为3k弦为k∴大正方形面积S=k×k=13k2中间小正方形的面积S′=(解析:12 13【解析】分析:设勾为2k,则股为3k13,由此求出大正方形面积和阴影区域面积,由此能求出针尖落在阴影区域的概率.详解:设勾为2k,则股为3k13,∴大正方形面积S=13k×13k=13k 2, 中间小正方形的面积S′=(3−2)k•(3−2)k=k 2, 故阴影部分的面积为:13 k 2-k 2=12 k 2∴针尖落在阴影区域的概率为:2212121313k k .故答案为1213. 点睛:此题主要考查了几何概率问题,用到的知识点为:概率=相应的面积与总面积之比.15.【分析】画树状图展示所有36种等可能的结果数再找出两枚骰子点数之和小于5的结果数然后根据概率公式求解【详解】解:画树状图为:共有36种等可能的结果数其中两枚骰子点数的和是小于5的结果数为6∴两枚骰子解析:16【分析】画树状图展示所有36种等可能的结果数,再找出“两枚骰子点数之和小于5”的结果数,然后根据概率公式求解. 【详解】 解:画树状图为:共有36种等可能的结果数,其中两枚骰子点数的和是小于5的结果数为6, ∴两枚骰子点数之和小于5的概率是16, 故答案为16. 【点睛】此题考查列表法与树状图法求概率,解题关键在于画出树状图.16.【分析】先计算出样本中零花钱不低于80元的频率然后根据利用频率估计概率求解【详解】解:每周的零花钱不低于80元的概率是:故答案为:【点睛】本题考查了利用频率估计概率:大量重复实验时事件发生的频率在某解析:17100【分析】先计算出样本中零花钱不低于80元的频率,然后根据利用频率估计概率求解.【详解】解:每周的零花钱不低于80元的概率是:17176374017100=+++,故答案为:17100. 【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.17.17【分析】根据口袋中有3个黑球利用小球在总数中所占比例得出与实验比例应该相等求出即可【详解】解:通过大量重复摸球试验后发现摸到红球的频率稳定在085左右口袋中有3个黑球∵假设有x 个红球∴=085解解析:17 【分析】根据口袋中有3个黑球,利用小球在总数中所占比例得出与实验比例应该相等求出即可. 【详解】解:通过大量重复摸球试验后发现,摸到红球的频率稳定在0.85左右,口袋中有3个黑球,∵假设有x 个红球,∴3xx +=0.85, 解得:x =17,经检验x =17是分式方程的解, ∴口袋中有红球约有17个. 故答案为:17. 【点睛】此题主要考查了用样本估计总体,根据已知得出小球在总数中所占比例得出与实验比例应该相等是解决问题的关键.18.【分析】直接利用概率公式求解【详解】摸出的一个球是红球的概率==故答案为:【点睛】此题考查了概率公式的应用用到的知识点为:概率=所求情况数与总情况数之比解析:13【分析】直接利用概率公式求解. 【详解】摸出的一个球是红球的概率=223=13.故答案为:13.【点睛】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.19.【分析】记四种不同颜色的垃圾桶为ABCD再列表得出所有等可能结果从中找到符合条件的结果数继而利用概率公式计算可得【详解】解:记四种不同颜色的垃圾桶为ABCD这位同学正确的分类投放是AB随意放入两个不解析:1 12【分析】记四种不同颜色的垃圾桶为A、 B、 C、 D,再列表得出所有等可能结果,从中找到符合条件的结果数,继而利用概率公式计算可得.【详解】解:记四种不同颜色的垃圾桶为A、 B、 C、 D,这位同学正确的分类投放是A、B,随意放入两个不同颜色的垃圾筒中所有情况列表如下:1种结果,∴两袋垃圾都投放正确的概率为112.【点睛】此题考查了树状图法与列表法求概率.注意树状图法与列表法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比.20.090【分析】对于不同批次的某种菜籽的发芽率往往误差会比较大为了减少误差我们经常采用多批次计算求平均数的方法【详解】解:=(4+9+60+116+282+639+1339+1806+2715)÷(5解析:0.90【分析】对于不同批次的某种菜籽的发芽率往往误差会比较大,为了减少误差,我们经常采用多批次计算求平均数的方法.【详解】解:x =(4+9+60+116+282+639+1339+1806+2715)÷(5+10+70+130+310+700+1500+2000+3000)=6970÷7725≈0.90.当n足够大时,发芽的频率逐渐稳定于0.90,故用频率估计概率,这批油菜籽在相同条件下的发芽概率是0.90.故答案为0.90.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.三、解答题21.(1)536;(2)19.【分析】(1)根据列举法列出所有的可能性,求出概率即可.(2)根据(1)中的可能性求出概率即可.【详解】解:当a=1时,b=1,2,3,4,5,6;当a=2时b=1,2,3,4,5,6;当a=3时b=1,2,3,4,5,6;当a=4时b=1,2,3,4,5,6;当a=5时b=1,2,3,4,5,6;当a=6时b=1,2,3,4,5,6;共36种等可能结果,其中符合题意的有5种所以两次抛掷点数之和为6的概率为5 36.(2)点在y=-x+5上记作B事件,共36种等可能结果,其中符合题意的有4种则()41 369p B==.【点睛】此题考查列举法求概率,涉及到一次函数,难度一般.22.(1)10,40,90;(2)概率为16,图表见解析【分析】(1)先由C等级人数及其所占百分比求出总人数,再根据各等级人数之和等于总人数求出a的值,最后用360度乘以所占比例,即可得出结论;(2)根据题意画出树状图,即可得到结论.【详解】解:(1)∵被调查的人数b=4÷10%=40(人),∴a=40﹣(24+4+2)=10,则表示A等级扇形的圆心角的度数为360°×1040=90°,故答案为:10、40、90;(2)设C等级中的4名同学分别为甲、乙、丙、丁,画树状图如图所示,∵共有12种等可能的结果,恰好同时选中甲、乙两位同学的有2种情况,∴恰好同时选中甲、乙两位同学的概率为=212=16.【点睛】本题考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.23.(1)0.4;(2)35.【分析】(1)通过表格中的数据,随着次数的增多,摸到白球的频率越稳定在0.40左右,进而得出答案;利用频率估计概率,摸到白球的概率0.40,(2)先利用概率的计算公式即可得出红球与白的个数;根据题意画出树状图,然后由树状图求得所有等可能的结果与摸到一个白球一个红球的情况,再利用概率公式即可求得答案.【详解】(1)随着摸球次数的越来越多,频率越来越靠近0.40,因此接近的常数就是0.4,从这个布袋中随机摸出一个球,这个球恰好是红球的概率为0.4;(2)红球有0.4×5=2个,白球有5-2=3个,摸出一红一白的情况有3+3+2+2+2=12种,所有的等可能情况有5×4=20种,P一红一白=123= 205.【点睛】本题考查了利用频率估计概率的方法,理解频率、概率的意义以及频率估计概率的方法是解决问题的关键;还考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A的结果数目m,然后根据概率公式求出事件A的概率.24.(1)见解析;(2)3200人;(3)1 4【分析】(1)条形图补C,扇形图补A、C,由A知180人,只要知总数,用D来求总数,总人数=D类人数÷D类占的百分比即可,(2)用部分估计总体,用D类在样本中百分比×8000即可,(3)外形完全相同的A、B、C、D粽各一个,小韦吃了一个,有四种可能选取,剩下三个时再吃一个,有三种可能,把各种情况用树状图表示,共12种情况,第二个吃到的恰好是C粽,只有第一次吃A、B、D三种情况,用概率公式计算即可.【详解】解:(1)总人数=240÷40%=600(人),A类百分比:180÷600×100%=30%,C类百分比1-40%-10%-30%=20%,C类人数=600×20%=120(人),补全统计图如下:(2)爱吃D粽的人数有:800040%3200⨯=(人),(3)根据题意,画树状图为:由图可知,一共有12种等可能的结果,其中第二个吃到的恰好是C粽的有3种结果,P∴(第二个吃到C粽)31 124 ==.【点睛】本题考查补全图形,爱吃人数,概率等知识,掌握公式:各类中人数=总人数×各部分占的比例,用样本估计总体,概率公式是关键.25.(1)24;150°(2)见解析(3)13 15【分析】(1)根据B班的作品数量及占比即可求出第一批所抽取的4个班共征集的作品件数,再求出C班的作品数量,求出其占比即可得到扇形的圆心角的度数;(2)根据C班的作品数量即可补全统计图;(3)根据题意画出树状图,根据概率公式即可求解.【详解】(1)第一批所抽取的4个班共征集到作品为6÷25%=24套,∴C班的作品数量为24-4-6-4=10套,故C班的扇形的圆心角的度数为150°故答案为24;150°;(2)∵C班的作品数量为10套,故补全条形统计图如下:。
湖北部分学校2024-2025学年九年级第一次月考卷数学试题

2024-2025学年九年级数学上学期第一次月考卷(考试时间:120分钟 满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:人教版九上第21~22章(一元二次方程+二次函数)。
5.难度系数:0.65。
第一部分(选择题 共30分)一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.一元二次方程2430x x +−=中一次项系数、常数项分别是( ) A .2,3−B .0,3−C .1,3−D .1,02.解方程(x+1)2=3(1+x )的最佳方法是( ) A .直接开平方法B .配方法C .公式法D .因式分解法3.抛物线2321y x x =−+−与y 轴的交点坐标为( ) A .()0,1B .()0,1−C .()1,0−D .()1,04.若关于的一元二次方程()2110k x x −++=有实数根,则的取值范围是( ) A .54k ≥B .54k >C .54k >且1k ≠ D .54k ≤且1k ≠ 5.若关于的方程230x kx −−=的一个根是3x =,则的值是( ) A .2−B .2C .12−D .126.关于x 的方程|x 2﹣2x ﹣3|=a 有且仅有两个实数根,则实数a 的取值范围是( ) A .a =0B .a =0 或a =4C .a >4D .a =0 或a >47.在手拉手学校联谊活动中,参加活动的每个同学都要给其他同学发一条励志短信,总共发了110条,设参加活动的同学有x 个,根据题意,下面列出的方程正确的是( ) A .1(1)1102x x +=B .1(1)1102x x −=C .(1)110x x +=D .(1)110x x −=8.已知函数2y ax bx c ++图象如图所示,则关于x 的方程220ax bx c +++=根的情况是( )A .无实数根B .有两个相等实数根C .有两个异号实数根D .有两个同号不等实数根9.二次函数2y ax bx c ++,若0ab <,20a b −>,点()11,A x y ,()22,B x y 在该二次函数的图象上,其中12x x <,120x x +=,则( ) A .12y y =−B .12y y >C .12y y <D .1y 、2y 的大小无法确定10.已知二次函数y=ax 2+bx+c (a≠0)的图象如图所示,有下列4个结论: ①abc <0;②b >a+c ;③2a-b=0;④b 2-4ac <0.其中正确的结论个数是( )A .1个B .2个C .3个D .4个第二部分(非选择题 共90分)二、填空题:本题共5小题,每小题3分,共15分。
山东省泰安市肥城市汶阳镇初级中学2022-2023学年九年级下学期3月月考数学试题(含答案)

山东省泰安市肥城市汶阳镇初级中学2022-2023学年九年级下学期3月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,ABC 中,点D 在线段BC 上,且ABC DBA ∽,则下列结论一定正确的是( )A .2AB BC BD =⋅B .2AB AC CD =⋅ C .AB AD BD BC ⋅=⋅D .AB AD AD CD ⋅=⋅ ∵ABC DBA ∽,AD AC , ,AC ,2.如图,AD 是ABC 的高,若26BD CD ==,tan 2C =,则sin B =( )A .12B 2C .13D .33.如图,已知O 的半径为5,弦6AB =,点M 在弦AB 上,且2AM =,则线段OM 的长是( )A B .4 C D .5∵O 的半径为在Rt AON △2AM =,NM AN =在Rt MON △4.数学中余弦定理是这样描述的:在ABC 中,A ∠、B ∠、C ∠所对的边分别为a 、b 、c ,则三角形中任意一边的平方等于另外两边的平方和减去这两边及这两边的夹角的余弦值的乘积的2倍,用公式可描述为:2222cos a b c bc A =+-,2222cos b a c ac B =+-,2222cos c a b ab C =+-.在ABC 中,3AB =,4AC =,60A ∠=︒,则BC 的值是( )A .5B C D .25.如图,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,AE EF ⊥,2CF =,则AF 的长为( )A.6B.8C.10D.12Rt ADF中,2=+AF AD故选:C.【点睛】本题考查正方形的性质、相似三角形的判定与性质、勾股定理、等角的余角相熟练掌握相关知识的联系与运用,6.如图,多边形ABCDE为圆内接正五边形,PA与圆相切于点A,则∠PAB的大小为()A .18°B .36°C .54°D .72°OA OB =OAB ∴∠PA 为圆OA AP ∴⊥OAP ∴∠PAB ∴∠故选:B 7.圆锥的底面直径是20cm ,母线长60cm ,则它的侧面积是( ).A .2600cm πB .2600cmC .21200cm πD .21200cm【答案】A【分析】根据圆锥的侧面积=底面周长×母线长÷2进行求解即可.【详解】解: 220602600cm ππ⨯⨯÷=,∵圆锥的底面直径是20cm ,母线长60cm ,则它的侧面积是2600cm π,故选A .【点睛】本题主要考查了圆锥的侧面积计算,掌握圆锥侧面积的计算方法是解题的关键.8.下列事件是随机事件的是( )A .画一个三角形,其内角和是180︒;B .在只装了红球的不透明袋子里摸出一个球,这个球是红球;C .投掷一枚正六面体骰子,朝上一面的点数为5;D .关于x 的一元二次方程290x kx +-=(k 为常数)有两个不相等的实数根. 【答案】C【分析】ABC 直接根据生活常识判断即可,D 通过根的判别式计算即可.【详解】A .任意三角形内角和必为180︒,画一个三角形,其内角和是180︒是必然事件;B .在只装了红球的不透明袋子里摸出一个球,这个球是红球是必然事件;C .投掷一枚正六面体骰子,朝上一面的点数为5是随机事件;D .∵()2249360k k -⨯-=+>,∵关于x 的一元二次方程290x kx +-=(k 为常数)有两个不相等的实数根是必然事件. 故选C .【点睛】本题考查了随机事件的判断和根的判别式,解题的关键是熟练掌握生活常识. 9.如图,边长为3的正方形ABCD ,以A 为圆心,AB 为半径作弧交DA 的延长线于E ,连接CE ,则图中阴影部分面积为( )A .34π B .32π C .92π D .94π 【答案】D 【分析】先证BCF AEF ≌,由此得=BAE S S 阴影扇形,根据扇形的面积公式计算即可【详解】如图,设AB 、CE 的交点为FAB AE =BC AE ∴=BC ∵DE BCE ∴∠=BCF AEF ∴≌1=4BAE S S π∴=⨯阴影扇形故选:D【点睛】本题主要考查了求阴影部分面积,化为规则的扇形部分面积10.一个等腰三角形的两条边长分别是方程210210x x -+=的两根,则该等腰三角形的周长是( )A .13B .17C .21D .13或17 【答案】B【分析】先用因式分解法求解该方程,再根据三角形三边之间的关系和等腰三角形的性质即可进行解答.【详解】解:210210x x -+=, ()()370x x --=,30x -=或70x -=,13x =,27x =,当等腰三角形的腰为3时,337+<,不能构成三角形,不符合题意,舍去; 当等腰三角形的腰为7时,77377-<<+,可以构成三角形,∵该等腰三角形的周长是37717++=,故选:B .【点睛】本题主要考查了解一元二次方程,三角形三边之间的关系以及等腰三角形的性质,解题的关键是熟练掌握解一元二次方程的方法步骤,以及三角形两边之和大于第三边,两边之差小于第三边.11.已知点()11,x y ,()22,x y 在二次函数22(0)y ax ax b a =-+>的图像上,若12y y >,则必有( )A .121x x >>B .121x x <<C .1211x x -<-D .1211x x ->-12.已知抛物线25y ax bx =++(a ,b 为常数,0a ≠,且5b a =+,其对称轴在y 轴右侧.有下列结论:∵该抛物线经过定点()1,0-和()0,5;∵50a -<<;∵方程232ax bx ++=有两个不相等的实数根.其中,正确结论的个数为( )A .0B .1C .2D .3 255y ax a x ,15y x ax ,15=0x ax ,1251,x a, ()1,0-,,得:5y =,∵52aa,解得:0a>,无解;251=0a x,22 222454=102546253160b ac a a a a a a a a∵方程232ax bx++=有两个不相等的实数根;故∵正确;二、填空题13.在ABC 中,)22cos 1tan 0A B -+=,则ABC 的形状是______. 则ABC 一定是等边三角形,故答案为:等边三角形.【点睛】本题考查了非负数的性质,三角函数,等边三角形的判定,数量掌握特殊角的三角函数值是解题的关键.14.如图,ABC 中,8AB =,6AC =,点E 在AB 上且3AE =,点F 在AC 上,连接EF ,若AEF △与ABC 相似,则AF =______.AE AB 389【点睛】本题考查相似三角形的性质应用.利用相似三角形的性质时,要注意相似比的顺序.分类讨论时,要注意对应关系的变化,防止遗漏.15.若关于x 的一元二次方程2410kx x ++=有实数根,则k 的取值范围是_______. 【答案】4k ≤且0k ≠【分析】根据二次项系数非零结合根的判别式∵0,即可得出关于k 的一元一次不等式,解之即可得出结论.【详解】解:关于x 的一元二次方程2410kx x ++=有实数根,0k ∴≠且∵2440k =-≥,解得:4k ≤且0k ≠,故答案为:4k ≤且0k ≠.【点睛】本题考查了根的判别式以及一元二次方程的定义,牢记“当∵0时,方程有实数根”是解题的关键.16.已知圆锥底面半径为5cm ,高为12cm ,则它的侧面展开图的面积是___cm 2.17.已知点A (a ,b )和B (c ,d )是反比例函数1k y x+=的图象上两点,并且0<<a c ,b d >,则k 的取值范围是___________.【答案】1k -<【分析】先利用图象上的点的坐标特征,判定图象所在象限,得到比例系数的正负即可求解.【详解】解:∵0a c <<时,b d >,∵图象位于二、四象限,∵10k +<,∵1k -<,故答案为:1k -<.【点睛】本题考查了反比例函数的图象与性质,掌握反比例函数的图象与性质是解题的关键.18.如图,在54⨯的网格图中,每个小正方形的边长均为1.设经过格点A 、B 、E 三点的圆弧与线段BC 交于点D ,则弧AD 的弧长为________.∵ABC 是等腰直角三角形,90AEB ∠=AB 是圆的直径,90ADB ∠=AD BD ⊥17.【点睛】本题主要考查的是弧长的计算、等腰直角三角形的判定,掌握本题的辅助线的作法是解题的关键.三、解答题19.解答题(1)04cos30(3.14)|1︒+-π+-.(2)先化简,再求值23111x x x x -⎛⎫÷+- ⎪--⎝⎭,其中4x =. (3)求不等式组3202513(1)x x x x +⎧-≤⎪⎨⎪+>-⎩①②的整数解.22x x +-4(x x ∴-+43x x ∴--33x ∴≤解得:x ≤513(x +>51x ∴+>24x ∴->解得:x ∴原不等式组的解集为:20.为了加快推进我国全民新冠病毒疫苗接种,在全国范围内构筑最大免疫屏障,各级政府积极开展接种新冠病毒疫苗的宣传工作.某社区印刷了多套宣传海报,每套海报四张,海报内容分别是:A .疫情防控要科学,接种疫苗我先行;B .预防接种漏一针,新冠风险增十分;C .防疫道路千万条,接种疫苗第一条;D .一针疫苗一份心,预防接种献爱心 志愿者小赵和小李利用休息时间到某小区张贴海报.(1)小赵从一套海报中随机抽取一张,抽到A 海报的概率是________.(2)小赵和小李从同一套海报中各随机抽取一张,用列表法或画树状图法,求他们两个人中有一个人抽到C 海报的概率.)解:每套海报四张21.如图,四边形ABCD 为菱形,点E 在AC 的延长线上,ACD ABE ∠=∠.(1)求证:ABC AEB ∽;(2)当6,4AB AC ==时,求AE 的长.a.22.现有可建筑60m围墙的材料,准备依靠原有旧墙围成如图所示的仓库,墙长为ma=,能否围成总面积为225m的仓库?若能,求AB的长为多少?(1)若50(2)能否围成总面积为2400m的仓库?请说说你的理由.整理得:26012000x x -+=,∵()2246041120012000b ac =--⨯⨯=-∆-<=,∵此方程无实数根,即不能围成面积为2400m 的仓库.【点睛】本题主要考查了一元二次方程与几何图形的应用,正确理解题意找到等量关系建立方程是解题的关键.23.如图,在ABC 中,AC AB =,以AB 为直径的O 交BC 于点D ,过点D 作ED AC ⊥点E ,交AB 延长线于点F .(1)求证:EF 是O 的切线;(2)若4DF =,1tan 2BDF ∠=,求AC 的长.在O上,是O的切线;⊥)解:∵OD EF+∠= BDF ODB为直径,BC,+∠ADO ODB24.如图,一次函数112y x=+的图象与反比例函数()0ky xx=>的图象交于点(),3A a,与y轴交于点B.(1)求a,k的值;(2)直线CD过点A,与反比例函数图象交于点C,与x轴交于点D,AC=AD,连接C B.∵求∵ABC的面积;∵点P在反比例函数的图象上,点Q在x轴上,若以点A,B,P,Q为顶点的四边形是平行四边形,请求出所有符合条件的点P坐标.25.如图,已知抛物线2y x bx c =-++经过(0,3)A 和79,24B ⎛⎫- ⎪⎝⎭两点,直线AB 与x 轴相交于点C ,P 是直线AB 上方的抛物线上的一个动点,PD x ⊥轴交AB 于点D .(1)求该抛物线的表达式;(2)若PE x ∥轴交AB 于点E ,求PD PE +的最大值;(3)若以A ,P ,D 为顶点的三角形与AOC 相似,请直接写出所有满足条件的点P ,点D的坐标.PE x轴,△,AOC,25+=PD3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
北京五十四中学2011-2012学年第二学期初三年级三月月考
数 学 试 卷 2012.3
班级_________ 姓名__________ 成绩_________
一、选择题(每小题4分,共32分)(将选项写在题号左侧)
1、16的平方根是
A.4 B. -2 C. ± 2 D. 4
2、根据全国第六次人口普查统计,湖州市常住人口约为2890000人,近似数2890000用科学记数
法可表示为
A.2.89×104 B.2.89×105 C.2.89×106 D.2.89×10
7
3、如果a>b,c<0,那么下列不等式成立的是( ).
(A) a+c>b+c; (B) c-a>c-b; (C) ac>bc; (D) abcc
4、下列各式计算正确的
A. 2532aaa B. 632aaa C.222)( D. 201120111
5、在一个口袋中有4个完全相同的小球,把它们分别标号为 1,2,3,4,随机地摸出一个
小球然后放回,再随机地摸出一个小球。则两次摸出的小球的标号的和等于6的概率为
A、161 B、81 C、163 D、41
6、已知圆锥的左视图是边长为6cm的等边三角形,则该圆锥的侧面积为
A. 16 B. 12 C. 16 D.18
7、 规定:用m表示大于m的最小整数,例如{25}=3,{5}=6,{-1.3}=-1等;用m表示不大
于m的最大整数,例如[27]=3,[4]=4,[-1.5]= -2,
如果整数x满足关系式:1232xx,则x
A.12 B.1 C.2 D.3
8、如图,已知A、B是反比例函数kyx(k>0,x>0)图象上的两点,BC∥x
轴,交y轴于点C。动点P从坐标原点O出发,沿O→A→B→C(图中“→”
所示路线)匀速运动,终点为C。过P作PM⊥x轴,PN⊥y轴,垂足分别为M、N。设四边形
OMPN的面积为S,P点运动时间为t,则S关于t的函数图象大致为
二、填空题(本题共16分,每小题4分)
9、分解因式:a8a8a223 .
10、二次函数10822xxy化为顶点式为____________________.
11、在函数y=3x中, 自变量x的取值范围是 .
12、将除去零以外的自然数按以下规律排列,根据第一列的奇数行的数的规律,写出第一列第17
行的数为 ,再结合第一行的偶数列的数的规律,判断2011所在的位置是第 行
第 列.
三、解答题(共30分)
13、计算: 14、解分式方程:
2
1
)2011(60tan3201
. xxx3331.
A. B. O t S O t S O t S O t S C. D.
2
C
A
B
D
E
y
-5
2x13-4123-1-2-3-1-2
O
15、已知0122aa,求)2)(2()1(3)2(2aaaa的值.
16、解不等式组245(2),3(1)3,xxxx 请用数轴表示出不等式组的解集,并求它的正整数解.
17、 已知:如图,在RtABC△中,∠BAC=90°,AB=AC,D是BC边上一点,
45ADE
,AD=DE. 求证:BD=EC
18、(列方程解应用题)
根据城市规划设计,某市工程队准备为该城市修建一条长4800米的公路. 铺设600 m后,为
了尽量减少施工对城市交通造成的影响,该工程队增加人力,实际每天修建公路的长度是原计划
的2倍,结果9天完成任务,该工程队原计划每天铺设公路多少米?
四、解答题(共20分)
19、已知反比例函数y= k x的图象与二次函数y=ax2+x-1的图象相交于点A(2,2)
(1)求反比例函数与二次函数的解析式;
(2)设二次函数图象的顶点为B,判断点B是否在反比例函数的图象上,并 说明理由;
(3)若反比例函数图象上有一点P,点P的横坐标为1,求△AOP的面积.
解:
20、2011年6月5日是第39个世界环境日,世界环境日的主题为“多个物种、一颗星球、一个未
来”。为了响应节能减排的号召,某品牌汽车4S店准备购进A型(电动汽车)和B型(太阳能汽
车)两种不同型号的汽车共16辆,以满足广大支持环保的购车者的需求。市场营销人员经过市场
调查得到如下信息:
成本价(万元/辆) 售价(万元/辆)
A型 30 32
B型 42 45
(1)若经营者的购买资金不少于576万元且不多于600万元,则有哪几种进车方案?
(2)在(1)的前提下,如果你是经营者,并且所进的汽车能全部售出,你会选择哪种进车方案
才能使获得的利润最大?最大利润是多少?
(3)假设每台电动汽车每公里的用电费用为0.65元,且两种汽车最大行驶里程均为30万公里,
那么从节约资金的角度,你做为一名购车者,将会选购哪一种型号的汽车?并说明理由。
3
O
D
CB
A
21、已知:如图,在ABC△中,D是AB边上一点,O⊙过DBC、、三点,290DOCACD.
(1)求证:直线AC是O⊙的切线;
(2)如果75ACB,O⊙的半径为2,求BD的长.
22.小明想把一个三角形拼接成面积与它相等的矩形.
他先进行了如下部分操作,如图1所示:
①取△ABC的边AB、AC的中点D、E,联结DE;
②过点A作AF⊥DE于点F;
(1)请你帮小明完成图1的操作,把△ABC拼接成面积与它相等的矩形.
(2)若把一个三角形通过类似的操作拼接成一个与原三角形面积相等的正方形,那么原三角形
的一边与这边上的高之间的数量关系是________________.
(3)在下面所给的网格中画出符合(2)中条件的三角形,并将其拼接成面积与它相等的正方
形.
五、解答题(本大题22分,其中第23小题7分,第24小题8分,第25小题7分):
23、已知:二次函数y=22(2)xnmxmmn.
(1)求证:此二次函数与x轴有交点;
(2)若m-1=0,求证方程22(2)0xnmxmmn有一个实数根为1;
(3)在(2)的条件下,设方程22(2)0xnmxmmn的另一根为a,当x=2时,关于n 的
函数1ynxam与222(2)yxnmaxmmn的图象交于点A、B(点A在点B的左侧),
平行于y轴的直线L与1ynxam、222(2)yxnmaxmmn的图象分别交于点C、D,
若CD=6,求点C、D的坐标.
A
B
C
D
E
F
(图1)
4
24 .在平面直角坐标系中,将直线l:2343xy沿x轴翻折,得到一条新直线与x轴交于点A,
与y轴交于点B,将抛物线1C:232xy沿x轴平移,得到一条新抛物线2C与y轴交于点
D,与直线AB交于点E、点F.
(1)求直线AB的解析式;
(2)若线段DF∥x轴,求抛物线2C的解析式;
(3)在(2)的条件下,若点F在y轴右侧,过F作FH⊥x轴于点G,与直线l交于点H,
一条直线m(m不过△AFH的顶点)与AF交于点M,与FH交于点N,如果直线m
既平分△AFH的面积又平分△AFH的周长,求直线m的解析式.
25.现场学习:我们知道,若锐角α的三角函数值为sinα = m,则可通过计算器得到角α的大小,
这时我们用arc sin m来表示α,记作:α=arc sin m;若cos α = m,则记α = arc cos m;若
tan α = m,则记α = arc tan m.
解决问题:如图,已知正方形ABCD,点E是边AB上一动点,点F在AB边或其延长线上,
点G在边AD上.连结ED,FG,交点为H.
(1)如图1,若AE=BF=GD,请直接写出∠EHF= °;
(2)如图2,若EF =25CD,GD=25AE,设∠EHF=α.请判断当点E在AB上运动时, ∠EHF
的大小是否发生变化?若发生变化,请说明理由;若不发生变化,请求出α.
图1
H
F
G
E
D
C
B
A
图2
A
B
C
D
E
G
F
H