2012-2013学年度第二学期指数函数及其性质教案

合集下载

高中数学《指数函数及其性质》教案

高中数学《指数函数及其性质》教案

高中数学《指数函数及其性质》精品教案一、教学目标1. 让学生理解指数函数的定义,掌握指数函数的性质。

2. 培养学生运用指数函数解决实际问题的能力。

3. 提高学生对数学知识的探究和运用能力。

二、教学内容1. 指数函数的定义与表达式2. 指数函数的单调性3. 指数函数的奇偶性4. 指数函数的图像与性质5. 实际问题中的指数函数应用三、教学重点与难点1. 重点:指数函数的定义、性质及其应用。

2. 难点:指数函数图像的特点,以及如何运用指数函数解决实际问题。

四、教学方法1. 采用问题驱动的教学方法,引导学生探究指数函数的性质。

2. 利用数形结合的方法,让学生直观地理解指数函数的图像与性质。

3. 通过实际问题的引入,培养学生的应用能力。

五、教学过程1. 导入:回顾初中阶段学习的指数知识,引发学生对指数函数的好奇心。

2. 新课讲解:介绍指数函数的定义、表达式,分析指数函数的单调性和奇偶性。

3. 案例分析:分析实际问题中的指数函数应用,让学生体会数学与生活的联系。

4. 课堂练习:设计相关练习题,巩固学生对指数函数的理解。

教案仅供参考,具体实施时可根据学生实际情况进行调整。

六、教学评价1. 通过课堂提问、练习题和课后作业,评估学生对指数函数定义、性质的理解程度。

2. 观察学生在解决问题时的思维过程,评价其运用指数函数解决实际问题的能力。

3. 鼓励学生参与课堂讨论,评价其合作交流和探究能力。

七、教学资源1. 教材:高中数学教材相关章节。

2. 课件:制作精美的课件,辅助讲解指数函数的性质。

3. 练习题:设计具有梯度的练习题,巩固学生对指数函数的理解。

4. 实际问题:收集与生活相关的指数问题,激发学生的学习兴趣。

八、教学进度安排1. 第1-2课时:讲解指数函数的定义与表达式,分析单调性和奇偶性。

2. 第3课时:探讨指数函数的图像与性质。

3. 第4课时:分析实际问题中的指数函数应用。

九、课后作业1. 复习指数函数的定义、性质及其图像。

指数函数及其性质 优秀教案

指数函数及其性质 优秀教案

指数函数及其性质(第一课时)一、概述·指数函数是高中新引进的第一个基本初等函数,它既是函数概念及性质在高中数学的第一次应用,也是今后学习对数函数及其他初等函数的基础,当然指数函数在生活及生产实际中也有着广泛的应用.指数函数及其性质应重点研究.二、教学目标分析1.了解指数函数模型的实际背景,认识数学与现实生活及其他学科的联系.2.理解指数函数的概念和意义,能画出具体指数函数的图象,探索并理解指数函数的单调性和指数函数的图象所过的特殊点.3.在学习的过程中,要体会研究具体函数及其性质的知识展示过程和思考方法,如从具体到抽象、由特殊到一般的思维过程,特别是运用数形结合的思想研究函数的方法等.4.通过对指数函数的研究,认识到数学的应用价值,激发学习兴趣,善于在现实生活中从数学的角度发现问题,解决问题.三、学习者特征分析1.在上一小节,学生学过了有关实数指数幂及其运算性质等知识,将指数幂由整数集推广到了实数集,这为本节学习指数函数的概念打下了学习的基础.2.学生在前面已经学过了有关函数的概念及其性质的知识,并运用函数图象理解和研究函数的性质.在研究指数函数及其性质时,学生可以类比前面讨论函数性质的思路来研究,由于正在形成运用数形结合的思想方法来研究问题,所以利用指数函数的图象获取指数函数的性质还可能会感到有所困难.四、教学策略选择与设计1.把研究抽象函数概念及性质的方法,类比地应用到研究指数函数的概念及性质.23.教学过程中要注意发挥信息技术对学生理解知识的支撑,尽量利用计算器或计算机等创设教学情境,为学生的数学探究与数学思维提供数学实验模型.4.注意渗透和运用一些数学思想方法,如数形结合的数学思想.利用指数函数图象获取指数函数的性质是重点,充分利用函数的图象,让学生发现、概括、记忆函数的性质,提高学生数形结合的能力.五、教学资源与工具设计1.教学环境:网络教室2.教具:课件,动画,投影仪,木三角板,粉笔.3.学具:计算器,铅笔,三角板,直尺.4.课件资料:从或/搜索“指数函数”材料.六、教学过程教学情景设计七、教学评价设计课后练习:1.某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个).经过3个小时,这种细菌由1个可繁殖成().(A)511个(B)512个(C)1023个(D)1024个2.在同一平面直角坐标系中,函数axxf=)(与x axg=)(的图象可能是().3.指数函数①xmxf=)(②x nxg=)(满足不等式01>>>mn,则它们的图象是( ).4.曲线4321,,,CCCC分别是指数函数xx byay==,,x cy=和x dy=的图象,则dcba,,,与1的大小关系是( ).)(A d c b a <<<<1 )(B c d b a <<<<1 )(C d c a b <<<<1 ()D c d a b <<<<15.若01<<-x ,那么下列各不等式成立的是( ). (A )x x x2.022<<- (B )x x x -<<22.02(C )x xx222.0<<- (D )x x x 2.022<<-6.已知)(x f 是指数函数,且25523=⎪⎭⎫⎝⎛-f ,则____)3(=f . 7.求下列函数的定义域(1)122-=xy ; (2)xy -=3)31( ;(3)12+=x y ; (4))1,0(1)(≠>-=a a a x f x .8.请判断下列哪些函数为指数函数:xy ⎪⎭⎫⎝⎛=31,x y 3-=,x y -=π,3x y =,x y 32⋅=,14+=x y ,x y 22=,)3()2(>-=a a y x ,)1,0(≠>=x x x y x ,x y )21(-=,22x y =.9.某种放射性物质不断变化为其他物质,每经过1年这种物质的剩余量是原来的84%,请用计算器或计算机探究,经过多少年后,这种物质的剩余量是原来的一半(结果保留1个有效数字).参考答案:1.B ; 2.B ; 3.C ; 4.D ; 5.D . 6.125;7.(1)R x ∈;(2) }3|{≤x x ;(3)R x ∈;(4)由01≥-xa 得1≤xa ,当1>a 时,}0|{≤x x ;当10<<a 时,}0|{≥x x .8.解:是指数函数的有:)3()2(,2,,312>-===⎪⎭⎫⎝⎛=-a a y y y y x x x xπ;不是指数函数的有:22,)21(),1,0(,4,32,,313x xxx xxy y x x x y y y x y y =-=≠>==⋅==-=+.9.解:设这种物质最初的质量是1,经过x 年,剩留量是y . 经过1年,剩留量184.0%841=⨯=y ; 经过2年,剩留量284.0%841=⨯=y ; ……一般地,经过x 年,剩留量x y 84.0=.由上表,我们可得到:约经过4年,这种物质的剩留量是原来的一半. 另解:我们也可以用计算机画出函数xy 84.0=的图象如下:从图上看出5.0=y ,只需4≈x . 所以,约经过4年,剩留量是原来的一半.。

高中数学《指数函数及其性质》教案

高中数学《指数函数及其性质》教案

高中数学《指数函数及其性质》精品教案一、教学目标:1. 让学生理解指数函数的定义,掌握指数函数的表达式和基本的运算规则。

2. 让学生理解指数函数的性质,包括单调性、奇偶性、周期性等,并能运用这些性质解决实际问题。

3. 培养学生的逻辑思维能力和数学素养,提高学生解决数学问题的能力。

二、教学内容:1. 指数函数的定义与表达式2. 指数函数的运算规则3. 指数函数的单调性4. 指数函数的奇偶性5. 指数函数的周期性三、教学重点与难点:1. 教学重点:指数函数的定义、表达式、运算规则、单调性、奇偶性和周期性。

2. 教学难点:指数函数的单调性和周期性的证明及应用。

四、教学方法:1. 采用问题驱动的教学方法,引导学生主动探究指数函数的性质。

2. 利用多媒体课件,直观展示指数函数的图像,帮助学生理解指数函数的性质。

3. 运用例题讲解,让学生在实践中掌握指数函数的性质及应用。

4. 组织小组讨论,培养学生团队合作精神和沟通能力。

五、教学过程:1. 导入:通过回顾幂函数的知识,引导学生思考指数函数的定义和表达式。

2. 新课讲解:讲解指数函数的定义、表达式和运算规则,通过示例让学生掌握基本的运算方法。

3. 性质探究:引导学生自主探究指数函数的单调性、奇偶性和周期性,并提供相应的证明。

4. 应用练习:布置一些具有代表性的练习题,让学生运用指数函数的性质解决问题。

5. 课堂小结:对本节课的主要内容进行总结,强调指数函数的性质及其应用。

6. 课后作业:布置一些巩固知识的作业,让学生进一步掌握指数函数的性质。

六、教学目标:1. 让学生理解指数函数的图像特征,包括增长速度和渐近行为。

2. 培养学生运用指数函数模型解决实际问题的能力。

3. 提高学生对数学知识的应用能力和创新思维。

七、教学内容:1. 指数函数的图像特征2. 指数函数的增长速度3. 指数函数的渐近行为4. 实际问题中的指数函数模型八、教学重点与难点:1. 教学重点:指数函数的图像特征、增长速度和渐近行为。

《指数函数》教案

《指数函数》教案

【课题】4.2指数函数【教学目标】知识目标:⑴理解指数函数的图像及性质;⑵了解指数模型,了解指数函数的应用.能力目标:⑴会画出指数函数的简图;⑵会判断指数函数的单调性;⑶了解指数函数在生活生产中的部分应用,从而培养学生分析与解决问题能力.【教学重点】⑴指数函数的概念、图像和性质;⑵指数函数的应用实例.【教学难点】指数函数的应用实例.【教学设计】⑴以实例引入知识,提升学生的求知欲;⑵“描点法”作图与软件的应用相结合,有助于观察得到指数函数的性质;⑶知识的巩固与练习,培养学生的思维能力;⑷实际问题的解决,培养学生分析与解决问题的能力;⑸以小组的形式进行讨论、探究、交流,培养团队精神.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】过 程行为 行为 意图 间别用光滑的曲线依次联结各点,得到函数y =2x 和y =1()2x 的图像,如上图所示.归纳观察函数图像发现:1.函数2x y =和y =1()2x 的图像都在x 轴的上方,向上无限伸展,向下无限接近于x 轴;2.函数图像都经过(0,1)点;3.函数y =x2的图像自左至右呈上升趋势;函数y =1()2x 的图像自左至右呈下降趋势. 推广利用软件可以作出a 取不同值时的指数函数的图像. 展示 引导 分析 说明观察 体会 理解计算 部分 可以 由学 生独 立完 成 引导学生仔细观察函数图象的特点数形结合25*动脑思考 明确新知 一般地,指数函数xy a =()01a a >≠且具有下列性质:(1) 函数的定义域是(),-∞+∞.值域为(0,)+∞;(2) 函数图像经过点(0,1),即当0x =时,函数值1y =; (3) 当>1a 时,函数在(),-∞+∞内是增函数;当0<<1a 时,函数在(),-∞+∞内是减函数.归纳强调体会 记忆结合 图形 由学 生自 我归 纳强 调关 键点30*巩固知识 典型例题通过x.10)年该市国内生产总值为(亿元).年该市国民生产总值为(亿元).。

高中数学《指数函数及其性质》教案

高中数学《指数函数及其性质》教案

高中数学《指数函数及其性质》精品教案一、教学目标1. 让学生理解指数函数的定义,掌握指数函数的基本形式;2. 让学生理解指数函数的单调性,能够判断指数函数的增减性;3. 让学生理解指数函数的奇偶性,能够判断指数函数的奇偶性;4. 让学生掌握指数函数的图像特征,能够绘制出指数函数的图像;5. 培养学生运用指数函数解决实际问题的能力。

二、教学内容1. 指数函数的定义与基本形式;2. 指数函数的单调性;3. 指数函数的奇偶性;4. 指数函数的图像特征;5. 指数函数在实际问题中的应用。

三、教学重点与难点1. 重点:指数函数的定义、性质及其应用;2. 难点:指数函数图像的特征,指数函数在实际问题中的应用。

四、教学方法1. 采用问题驱动法,引导学生探索指数函数的性质;2. 利用数形结合法,让学生直观地理解指数函数的图像特征;3. 采用案例分析法,培养学生运用指数函数解决实际问题的能力。

五、教学过程1. 导入:通过实际问题引入指数函数的概念,让学生思考指数函数的一般形式;2. 新课:讲解指数函数的定义与基本形式,引导学生掌握指数函数的性质;3. 案例分析:分析实际问题,让学生运用指数函数解决实际问题;4. 图像演示:利用多媒体展示指数函数的图像,让学生直观地理解指数函数的图像特征;5. 练习与拓展:布置练习题,巩固所学知识,引导学生进一步探索指数函数的性质。

教案内容仅供参考,具体实施时可根据学生的实际情况进行调整。

六、教学评价1. 课后作业:布置相关的习题,让学生巩固指数函数的基本性质和图像分析能力。

2. 课堂互动:评估学生在讨论和解决问题时的参与度和理解程度。

3. 知识应用:通过实际问题解决的场景,检验学生将指数函数应用于现实问题的能力。

4. 自我评价:鼓励学生进行自我反思,评估自己在学习指数函数过程中的进步和理解深度。

七、教学反思本节课结束后,教师应反思教学过程中的得与失,包括:1. 学生对指数函数概念的理解程度,是否需要进一步的讲解和澄清。

2.示范教案(1.2 指数函数及其性质 第2课时)

2.示范教案(1.2  指数函数及其性质 第2课时)

第2课时 指数函数及其性质(2)导入新课思路 1.复习导入:我们前一节课学习了指数函数的概念和性质,下面我们一起回顾一下指数函数的概念、图象和性质.如何利用指数函数的图象和性质来解决一些问题,这就是本堂课要讲的主要内容.教师板书课题.思路2.我们在学习指数函数的性质时,利用了指数函数的图象的特点,并且是用类比和归纳的方法得出,在理论上,我们能否严格的证明特别是指数函数的单调性,以便于我们在解题时应用这些性质,本堂课我们要解决这个问题.教师板书课题:指数函数及其性质(2).应用示例思路1例1已知指数函数f(x)=a x (a >0且a≠1)的图象过点(3,π),求f(0),f(1),f(-3)的值.活动:学生审题,把握题意,教师适时提问,点拨,求值的关键是确定a,一般用待定系数法,构建一个方程来处理,函数图象过已知点,说明点在图象上,意味着已知点的坐标满足曲线的方程,转化为将已知点的坐标代入指数函数f(x)=a x (a >0且a≠1)求a 的值,进而求出f(0),f(1),f(-3)的值,请学生上黑板板书,及时评价.解:因为图象过点(3,π),所以f(3)=a 3=π,即a=π31,f(x)=(π31)x .再把0,1,3分别代入,得f(0)=π0=1,f(1)=π1=π,f(-3)=π-1=π1. 点评:根据待定系数的多少来确定构建方程的个数是解题的关键,这是方程思想的运用. 例2用函数单调性的定义证明指数函数的单调性.活动:教师点拨提示定义法判断函数单调性的步骤,单调性的定义证明函数的单调性,要按规定的格式书写.证法一:设x 1,x 2∈R ,且x 1<x 2,则y 2-y 1=a x 2-a x 1=a x 1(a x 2-x 1-1).因为a >1,x 2-x 1>0,所以a x 2-x 1>1,即a x 2-x 1-1>0.又因为a x 1>0,所以y 2-y 1>0,即y 1<y 2.所以当a >1时,y=a x ,x ∈R 是增函数.同理可证,当0<a <1时,y=a x 是减函数.证法二:设x 1,x 2∈R ,且x 1<x 2,则y 2与y 1都大于0,则12y y =12x x aa =a 12x x -. 因为a >1,x 2-x 1>0,所以a12x x ->1, 即12y y >1,y 1<y 2. 所以当a >1时,y=a x ,x ∈R 是增函数.同理可证,当0<a <1时,y=a x 是减函数.变式训练若指数函数y=(2a -1)x 是减函数,则a 的范围是多少? 答案:21<a <1. 例3截止到1999年底,我国人口约13亿,如果今后能将人口年平均增长率控制在1%,那么经过20年后,我国人口数最多为多少(精确到亿)?活动:师生共同讨论,将实际问题转化为数学表达式,建立目标函数,常采用特殊到一般的方式,教师引导学生注意题目中自变量的取值范围,可以先考虑一年一年增长的情况,再从中发现规律,最后解决问题:1999年底 人口约为13亿;经过1年 人口约为13(1+1%)亿;经过2年 人口约为13(1+1%)(1+1%)=13(1+1%)2亿;经过3年 人口约为13(1+1%)2(1+1%)=13(1+1%)3亿;经过x 年 人口约为13(1+1%)x 亿;经过20年 人口约为13(1+1%)20亿.解:设今后人口年平均增长率为1%,经过x 年后,我国人口数为y 亿,则y=13(1+1%)x ,当x=20时,y=13(1+1%)20≈16(亿).答:经过20年后,我国人口数最多为16亿.点评:类似此题,设原值为N,平均增长率为P,则对于经过时间x 后总量y=N(1+p)x ,像y=N(1+p)x 等形如y=ka x (k ∈R ,a >0且a≠1)的函数称为指数型函数.思路2例1求下列函数的定义域、值域: (1)y=0.411-x ;(2)y=315-x ;(3)y=2x +1;(4)y=1222+-x x . 解:(1)由x-1≠0得x≠1,所以所求函数定义域为{x|x≠1}.由x≠∅得y≠1,即函数值域为{y|y>0且y≠1}.(2)由5x-1≥0得x≥51,所以所求函数定义域为{x|x≥51}.由1-5x ≥0得y≥1, 所以函数值域为{y|y≥1}.(3)所求函数定义域为R ,由2x >0可得2x +1>1.所以函数值域为{y|y>1}.(4)由已知得:函数的定义域是R ,且(2x +1)y=2x -2,即(y-1)2x =-y-2.因为y≠1,所以2x =12---y y .又x ∈R ,所以2x >0,12---y y >0.解之,得-2<y<1. 因此函数的值域为{y|-2<y<1}.点评:通过此例题的训练,学会利用指数函数的定义域、值域去求解指数形式的复合函数的定义域、值域,还应注意书写步骤与格式的规范性.变式训练求函数y=(21)31+x 的定义域和值域.解:要使函数有意义,必须x+3≠0,即x≠-3,即函数的定义域是{x|x≠-3}. 因为31+x ≠0,所以y=(21)31+x ≠(21)0=1. 又因为y>0,所以值域为(0,1)∪(1,+∞).例2 (1)求函数y=(21)x x 22-的单调区间,并证明. (2)设a 是实数,f(x)=a 122+-x (x ∈R ),试证明对于任意a,f(x)为增函数. 活动:(1)这个函数的单调区间由两个函数决定,指数函数y=(21)x 与y=x 2-2x 的复合函数,(2)函数单调性的定义证明函数的单调性,要按规定的格式书写.解法一:设x 1<x 2,则=12y y 11222222)21()21(x x x x --=(21)12212222x x x x ---(21))2)((1212-+-x x x x , 因为x 1<x 2,所以x 2-x 1>0.当x 1,x 2∈(-∞,1]时,x 1+x 2-2<0,这时(x 2-x 1)(x 2+x 1-2)<0, 即12y y >1,所以y 2>y 1,函数单调递增; 当x 1,x 2∈[1,+∞)时,x 1+x 2-2>0,这时(x 2-x 1)(x 2+x 1-2)>0, 即12y y <1,所以y 2<y 1,函数单调递减; 所以函数y 在(-∞,1]上单调递增,在[1,+∞)上单调递减.解法二:(用复合函数的单调性):设u=x 2-2x,则y=(21)u , 对任意的1<x 1<x 2,有u 1<u 2,又因为y=(21)u 是减函数, 所以y 1<y 2,所以y=(21)x x 22-在[1,+∞)是减函数. 对任意的x 1<x 2≤1,有u 1>u 2,又因为y=(21)u 是减函数, 所以y 1<y 2.所以y=(21)x x 22-在(-∞,1]上是增函数. 引申:求函数y=(21)x x 22-的值域(0<y≤2). 点评:(1)求复合函数的单调区间时,利用口诀“同增异减”.(2)此题虽形式较为复杂,但应严格按照单调性的定义进行证明,还应要求学生注意不同题型的解答方法.证明:设x 1,x 2∈R ,且x 1<x 2,则f(x 1)-f(x 2)=)122()122(21+--+-x x a a =12212212+-+x x =)12)(12()22(22121++-x x x x . 由于指数函数y=2x 在R 上是增函数,且x 1<x 2,所以2x 1<2x 2,即2x 1-2x 2<0.又由2x >0得2x 1+1>0,2x 2+1>0,所以f(x 1)-f(x 2)<0,即f(x 1)<f(x 2).因为此结论与a 取值无关,所以对于a 取任意实数,f(x)为增函数.点评:上述证明过程中,在对差式正负判断时,利用了指数函数的值域及单调性.知能训练1.函数y=a |x|(a >1)的图象是( )图2-1-2-8分析:当x≥0时,y=a |x|=a x 的图象过(0,1)点,在第一象限,图象下凸,是增函数.答案:B2.下列函数中,值域为(0,+∞)的函数是( )A.y=(31)2-x B.y=x 4-1 C.y=1-0.5x D.y=22x +1 分析:因为(2-x )∈R ,所以y=(31)2-x ∈(0,+∞);y=x 4-1∈[0,1];y=1-0.5x ∈[0,+∞);y=22x +1∈[2,+∞).答案:A3.已知函数f (x )的定义域是(0,1),那么f (2x )的定义域是( )A.(0,1)B.(21,1) C.(-∞,0) D.(0,+∞) 分析:由题意得0<2x <1,即0<2x <20,所以x <0,即x ∈(-∞,0).答案:C4.若集合A={y|y=2x ,x ∈R },B={y|y=x 2,x ∈R },则( )A.A BB.A BC.A=BD.A∩B=∅分析:A={y|y >0},B={y|y≥0},所以A B.答案:A5.对于函数f(x)定义域中的任意的x 1、x 2(x 1≠x 2),有如下的结论:①f(x 1+x 2)=f(x 1)·f(x 2);②f(x 1·x 2)=f(x 1)+f(x 2);③2121)()(x x x f x f -->0;④)2(21x x f +<2121)()(x x x f x f -+. 当f(x)=10x 时,上述结论中正确的是.分析:因为f(x)=10x ,且x 1≠x 2,所以f(x 1+x 2)=2110x x +=211010x x •=f(x 1)·f(x 2),所以①正确;因为f(x 1·x 2)=2110x x •≠211010xx +=f(x 1)+f(x 2),②不正确; 因为f(x)=10x 是增函数,所以f(x 1)-f(x 2)与x 1-x 2同号,所以2121)()(x x x f x f -->0,所以③正确. 因为函数f(x)=10x 图象如图2-1-2-9所示是上凹下凸的,可解得④正确.图2-1-2-9答案:①③④另解:④∵10x 1>0,10x 2>0,x 1≠x 2,∴2101021x x +>211010x x •∴2101021x x +>2110x x +, 即2101021x x +>22110x x +∴2121)()(x x x f x f -+>)2(21x x f +. 拓展提升在同一坐标系中作出下列函数的图象,讨论它们之间的联系.(1)①y=3x ,②y=3x +1,③y=3x -1;(2)①y=(21)x ,②y=(21)x -1,③y=(21)x +1. 活动:学生动手画函数图象,教师点拨,学生没有思路教师可以提示.学生回忆函数作图的方法与步骤,按规定作出图象,特别是关键点.答案:如图2-1-2-10及图2-1-2-11.图2-1-2-10图2-1-2-11观察图2-1-2-10可以看出,y=3x ,y=3x +1,y=3x -1的图象间有如下关系:y=3x +1的图象由y=3x 的图象左移1个单位得到;y=3x -1的图象由y=3x 的图象右移1个单位得到;y=3x -1的图象由y=3x +1的图象向右移动2个单位得到.观察图2-1-2-11可以看出,y=(21)x ,y=(21)x -1,y=(21)x +1的图象间有如下关系: y=(21)x +1的图象由y=(21)x 的图象左移1个单位得到;y=(21)x -1的图象由y=(21)x 的图象右移1个单位得到; y=(21)x -1的图象由y=(21)x +1的图象向右移动2个单位得到. 你能推广到一般的情形吗?同学们留作思考.课堂小结思考我们本堂课主要学习了哪些知识,你有什么收获?把你的收获写在笔记本上.活动:教师用多媒体显示以下内容,学生互相交流学习心得,看是否与多媒体显示的内容一致. 本节课,在复习旧知识的基础上学习了数形结合的思想、函数与方程的思想,加深了对问题的分析能力,形成了一定的能力与方法.作业课本P 59习题2.1 B 组 1、3、4.设计感想本堂课主要是复习巩固指数函数及其性质,涉及的内容较多,要首先组织学生回顾指数函数的性质,为此,必须利用函数图象,数形结合,通过数与形的相互转化,借助形的直观性解决问题,本节课要训练学生能够恰当地构造函数,根据函数的单调性比较大小,有时要分a>1,0<a<1,这是分类讨论的思想,因此加大了习题和练习的量,目的是让学生在较短的时间内,掌握学习的方法,提高分析问题和解决问题的能力,要加快速度,多运用现代化的教学手段.(设计者:王建波)。

指数函数的图象和性质 教案

4.4.2 指数函数的图象与性质教学目标1.掌握指数函数的图象变换.2.熟悉指数函数与其他函数的复合函数的处理方法.3.熟悉指数函数在实际问题中的应用教学重点:1.指数函数的图象与底数的关系.2.指数函数的图象变换与参数的关系,特殊点在图象变换中的作用.3.复合函数的单调性、定义域与值域问题的处理方法.4.指数函数性质的应用.教学难点:1.指数函数的图象与底数关系的直观理解与严格证明.2.参数在图象变换(平移、翻转)中的作用,数形结合方法的进一步渗透.3.复合函数相关问题中各种函数性质的综合应用.教学过程:一、核心概念知识点一、不同底指数函数图象的相对位置指数函数在同一直角坐标系中的图象的相对位置与底数大小的关系如图所示,则0<c<d<1<a<b.在y轴右侧,图象从上到下相应的底数由变;在y轴左侧,图象从下到上相应的底数由变;即无论在y轴的左侧还是右侧,底数按逆时针方向递增.知识点二、函数图象的对称和变换规律一般地,把函数y=f(x)的图象向右平移m个单位得函数y=f(x-m)的图象(m∈R,若m<0就是向左平移|m|个单位);把函数y=f(x)的图象向上平移n个单位,得到函数y=f(x)+n的图象(n∈R,若n<0,就是向下平移|n|个单位).函数y=f(x)的图象与y=f(-x)的图象关于y轴对称,函数y=f(x)的图象与函数y=-f(x)的图象关于x 轴对称,函数y =f (x )的图象与函数y =-f (-x )的图象关于原点对称.函数y =f (|x |)的图象是关于y 轴对称的,所以只要先把y 轴右边的图象保留,y 轴左边的图象删去,再将y 轴右边部分关于y 轴对称得y 轴左边图象,就得到了y =f (|x |)的图象. 知识点三、与指数函数复合的函数单调性(1)关于指数型函数y =a f (x )(a >0,且a ≠1)的单调性由两点决定,一是底数a >1还是0<a <1;二是f (x )的单调性.它由两个函数, 复合而成.(2)若y =f (u ),u =g (x ),则函数y =f [g (x )]的单调性有如下特点:过考查f (u )和g (x )的单调性,求出y =f [g (x )]的单调性.二、评价自测1.判一判(正确的打“√”,错误的打“×”)(1)3-1.8>3-2.5.( ) (2)7-0.5<8-0.5.( )(3)6-0.8<70.7.( )答案:(1)√、(2)×、(3)√2.做一做(请把正确的答案写在横线上) (1)如果57xx aa (a >0,且a ≠1),当a >1时,x 的取值范围是__________;当0<a <1时,x 的取值范围是________.(2)满足31()4x 的x 的取值范围是________.(3)某种细菌在培养的过程中,每15分钟分裂一次(由一个分裂成两个),则这种细菌由一个分裂成4096个需经过________小时.答案:(1)7(,)6,7(,)6、(2)(,1)、(3)3三、典例分析题型一 指数函数的图象变换例1利用函数f (x )=⎝⎛⎭⎫12x 的图象,作出下列各函数的图象:(1)f (x -1);(2)-f (x );(3)f (-x ).【答案】作出f (x )=⎝⎛⎭⎫12x的图象,如图所示:(1)f (x -1)的图象:需将f (x )的图象向右平移1个单位长度得f (x -1)的图象,如下图(1). (2)-f (x )的图象:作f (x )的图象关于x 轴对称的图象得-f (x )的图象,如下图(2). (3)f (-x )的图象:作f (x )的图象关于y 轴对称的图象得f (-x )的图象,如下图(3).金版点睛:作与指数函数有关的图象应注意的问题(1)作与指数函数有关的函数图象,只需利用指数函数的图象作平移变换或对称变换即可,值得注意的是作图前要探究函数的定义域和值域,掌握图象的大致趋势.(2)利用熟悉的函数图象作图,主要运用图象的平移、对称等变换,平移需分清楚向何方向移,要移多少个单位,如本例(1);对称需分清对称轴是什么,如本例(2)(3). 跟踪训练1画出函数y =2|x -1|的图象,并根据图象指出这个函数的一些重要性质. 【答案】y =2|x -1|=⎩⎪⎨⎪⎧2x -1,x ≥1,⎝⎛⎭⎫12x -1,x <1.其图象是由两部分组成的:一是把y =2x 的图象向右平移1个单位长度,取x ≥1的部分;二是把y =⎝⎛⎭⎫12x的图象向右平移1个单位长度,取x <1的部分,如图中实线部分所示.由图象可知,函数有三个重要性质:①对称性:图象的对称轴为直线x =1;②单调性:在(-∞,1]上单调递减,在[1,+∞)上单调递增; ③函数的值域:[1,+∞).题型二 利用指数函数的单调性比较大小 例2比较下列各题中两个值的大小:(1)1.7-2.5,1.7-3;(2)1.70.3,1.50.3;(3)1.70.3,0.83.1.【答案】 (1)∵1.7>1.∴y =1.7x 在(-∞,+∞)上是增函数. ∵-2.5>-3,∴1.7-2.5>1.7-3.(2)解法一:∵1.7>1.5,∴在(0,+∞)上,y =1.7x 的图象位于y =1.5x 的图象的上方.而0.3>0, ∴1.70.3>1.50.3. 解法二:∵1.50.3>0,且1.70.31.50.3=⎝⎛⎭⎫1.71.50.3, 又1.71.5>1,0.3>0,∴⎝⎛⎭⎫1.71.50.3>1, ∴1.70.3>1.50.3.(3)∵1.70.3>1.70=1,0.83.1<0.80=1, ∴1.70.3>0.83.1.金版点睛:比较函数值大小的常用方法(1)利用函数单调性比较,此法用于可化为同底的式子.(2)对于底数不同,指数相同的两个幂值比较大小,可利用指数函数的图象的变化规律来判断.(3)当底数不同,指数也不同时,采用中间值法,即当两个数不易比较时,可找介于两值中间且与两数都能比较大小的一个值,进而利用中间值解决问题.跟踪训练2比较下列各题中的两个值的大小. (1)0.8-0.1,1.250.2;(2)⎝⎛⎭⎫1π-π,1.【答案】 (1)∵0<0.8<1,∴y =0.8x 在R 上是减函数.∵-0.2<-0.1,∴0.8-0.2>0.8-0.1,又∵0.8-0.2=1.250.2∴0.8-0.1<1.250.2.(2)∵0<1π<1,∴函数y =⎝⎛⎭⎫1πx 在R 上是减函数. 又∵-π<0,∴⎝⎛⎭⎫1π-π>⎝⎛⎭⎫1π0=1,即⎝⎛⎭⎫1π-π>1.题型三解简单的指数不等式 例3设0<a <1,解关于x 的不等式22232223x x xx aa .【答案】∵0<a <1,∴y =a x 在R 上是减函数.又∵22232223x x xx aa ,∴2x 2-3x +2<2x 2+2x -3,解得x >1. ∴不等式的解集是(1,+∞).金版点睛:解指数型函数不等式的依据解a f (x )>a g (x )(a >0,且a ≠1)此类不等式主要依据指数函数的单调性,它的一般步骤为:跟踪训练3求满足下列条件的x 的取值范围:(1)139x x ; (2)0.225x0.2x <25; (3)57xx aa (0a ,且1a).【答案】 (1)∵3x -1>9x ,∴3x -1>32x ,又y =3x 在定义域R 上是增函数, ∴x -1>2x ,∴x <-1,即x 的取值范围是(-∞,-1).(2)∵0<0.2<1,∴指数函数f (x )=0.2x 在R 上是减函数.又25=0.2-2,∴0.2x <0.2-2,∴x >-2,即x 的取值范围是(-2,+∞). (3)当a >1时,∵a-5x<a x -7,∴-5x <x -7,解得x >76;当0<a <1时,∵a -5x<a x -7,∴-5x >x -7,解得x <76.综上所述,当a >1时,x 的取值范围是⎝⎛⎭⎫76,+∞;当0<a <1时,x 的取值范围是⎝⎛⎭⎫-∞,76. 题型四 指数函数性质的综合应用 例4已知函数f (x )=a -12x +1(x ∈R ).(1)用定义证明:不论a 为何实数,f (x )在(-∞,+∞)上为增函数; (2)若f (x )为奇函数,求a 的值;(3)在(2)的条件下,求f (x )在区间[1,5]上的最小值. 【答案】 (1)证明:∵()f x 的定义域为R ,任取12x x ,则121212121122()()2121(21)(21)x x x x x x f x f x aa, ∵12x x , ∴1212220,(21)(21)0xx x x , ∴12()()0f x f x ,即12()()f x f x ,∴不论a 为何实数,()f x 总为增函数. (2)∵f (x )在x ∈R 上为奇函数, ∴f (0)=0,即a -120+1=0,解得a =12.(3)由(2)知,f (x )=12-12x +1,由(1)知,f (x )为增函数,∴f (x )在区间[1,5]上的最小值为f (1). ∵f (1)=12-13=16,∴f (x )在区间[1,5]上的最小值为16.金版点睛:复合函数的单调性问题函数y =f (a x )的单调区间既要考虑f (x )的单调区间,又要讨论a 的取值范围:当a >1时,函数y =f (a x )与函数f (x )的单调性相同;当0<a <1时,函数y =f (a x )与函数f (x )的单调性相反.但在证明过程中,仍应严格按照定义证明. 跟踪训练4已知函数f (x )=3x -13x +1.(1)证明:f (x )为奇函数;(2)判断f (x )的单调性,并用定义加以证明. 【答案】 (1)证明:由题知f (x )的定义域为R .f (-x )=3-x -13-x +1=(3-x -1)·3x (3-x +1)·3x =1-3x1+3x =-f (x ),所以f (x )为奇函数. (2)f (x )在定义域上是增函数.证明如下:任取x 1,x 2∈R ,且x 1<x 2, 则2121212112213131222(33)()()(1)(1)31313131(31)(31)x x x x x x x x x x f x f x , ∵12x x , ∴2112330,310,310xx x x ,∴21()()f x f x ,∴()f x 为R 上的增函数.四、随堂练习1.下列判断正确的是( )A .2.52.5>2.53B .0.82<0.83C .22D .0.90.3>0.90.5答案:D解析:因为函数y =0.9x 在R 上为减函数,所以0.90.3>0.90.5.2.若213211()()22aa a,则实数a 的取值范围是( )A .(1,+∞) B.⎝⎛⎭⎫12,+∞ C .(-∞,1) D.⎝⎛⎭⎫-∞,12 答案:B解析:函数y =⎝⎛⎭⎫12x 在R 上为减函数,∴2a +1>3-2a ,∴a >12.3.设13<⎝⎛⎭⎫13b <⎝⎛⎭⎫13a <1,则( )A .a a <a b <b aB .a a <b a <a bC .a b <a a <b aD .a b <b a <a a答案:C解析:由已知条件得0<a <b <1,∴a b <a a ,a a <b a ,∴a b <a a <b a .4.函数11()2x y的单调增区间为( ) A .(-∞,+∞) B .(0,+∞) C .(1,+∞) D .(0,1)答案:A解析:设t =1-x ,则y =⎝⎛⎭⎫12t,则函数t =1-x 的递减区间为(-∞,+∞),即为y =⎝⎛⎭⎫121-x的递增区间.5.已知函数y =a 2x +2a x -1(a >0,且a ≠1),当x ≥0时,求函数f (x )的值域.解:y =a 2x +2a x -1,令t =a x ,则y =g (t )=t 2+2t -1=(t +1)2-2. 当a >1时,∵x ≥0,∴t ≥1, ∴当a >1时,y ≥2.当0<a <1时,∵x ≥0,∴0<t ≤1. ∵g (0)=-1,g (1)=2, ∴当0<a <1时,-1<y ≤2.综上所述,当a >1时,函数的值域是[2,+∞); 当0<a <1时,函数的值域是(-1,2].。

指数函数及其性质教案 (1)

指数函数及其性质教案教学目标知识目标:理解指数函数的定义,掌握指数函数的图象、性质及其简单应用.水平目标:通过自主探索,经历“特殊→一般→特殊”的认知过程,完善认知结构,领会数形结合、分类讨论、归纳推理等数学思想方法,增强识图用图的水平.情感目标:感受数学问题探索的乐趣和成功的喜悦,体会数学的理性、严谨及数与形的和谐统一美,体现数学实用价值及其在社会进步、人类文明发展中的重要作用。

教学重点、难点重点:指数函数的图象、性质及其简单使用.难点:指数函数图象和性质的发现过程,及指数函数图象与底数的关系. 教学方法与手段教学方法:启发式、探究式教学法.教学手段:采用多媒体辅助教学.教学过程1.创设情境,建构概念〖学生活动1〗:将一页白纸连续对折,完成表格并写出:(2)设这页纸的面积单位为1,则对折后每页纸的面积s与对折次数x的关系式:______________________〖问题情境1〗某细胞分裂时,由一个分裂成2个,2个分裂成4个,4个分裂成8个,……如果细胞分裂x次,相对应的细胞个数为y,则细胞个数y 与分裂次数x的表达式:____________________〖问题情境2〗一尺之棰,日取其半,万世不竭.出自《庄子●天下篇》求剩余长度y关于截取次数x的表达式为: ____________________〖问题1〗类似的函数,你能再举出一些例子吗?这些函数有什么共同特点?能否写成一般形式?_____________________________________________________________________〖建构概念〗一般地,形如______________________的函数称为指数函数.它的定义域是R.2.实验探索,汇报交流(1)构建研究方法〖问题2〗我们定义了一个新的函数,你能类比前面讨论函数的思路,提出研究指数函数的方法和内容吗?研究方法:____________________________________研究内容:_____________________________________________〖问题3〗如何来画指数函数的图象呢?_________________________________________________________________ (2)自主探究,汇报交流〖学生活动2〗选择数据,画出图象,观察特点,归纳性质.(在坐标纸上画)x(>0且≠1)具有以下性质:〖学生活动3〗指数函数3.新知使用,巩固深化【例1】比较下列各组数中两个值的大小:①1.52.5,1.53.2;②0.5_1.2,0.5_1.5;③1.50.3,0.81.2.变式探究:①比较a0.3与a3.1的大小(a>0,a≠1)②根据不等式确定x的取值范围.1.5x<1.53.2【例2】①已知3x≥9,求实数x的取值范围;②已知0.2x<25,求实数x的取值范围.4.课堂检测:课本第67页,练习第4题:(2),(4),(6)5.概括知识,总结方法〖问题4〗本节课我们的收获➢1.学习了哪些知识:➢2.实践了一种研究函数的探究模式:➢ 3. 渗透了三种数学思想:5.分层作业,因材施教A组(1)感受理解:课本第70页,习题3.1(2):1,2,3,4;B组(2)思考使用:使用今天的研究方法,你还能得到指数函数的其它性质吗?6、知识扩展〈一〉考古中的指数函数14C是具有放射性的碳同位素,能够自发地实行 衰变,变成氮,半衰期为5730年,活的植物通过光合作用和呼吸作用与环境交换碳元素,体内14C 的比例与大气中的相同。

指数函数教案

指数函数教案指数函数教案(通用3篇)指数函数教案1教材分析(一)本课时在教材中的地位及作用:指数函数的教学共分两个课时完成。

第一课时为指数函数的定义,图像及性质;第二课时为指数函数的应用。

指数函数第一课时是在学习指数概念的基础上学习指数函数的概念和性质,通过学习指数函数的定义,图像及性质,可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,并且为学习对数函数作好准备。

(二)教学目标:1、知识目标:掌握指数函数的概念,图像和性质。

2、能力目标:通过数形结合,利用图像来认识,掌握函数的性质,增强学生分析问题,解决问题的能力。

3、德育目标:对学生进行辩证唯物主义思想的教育,使学生学会认识事物的特殊性与一般性之间的关系,培养学生善于探索的思维品质。

(三)教学重点,难点和关键:1、重点:指数函数的定义、性质和图象。

2、难点:指数函数的定义理解,指数函数的图象特征及指数函数的性质。

3、关键:能正确描绘指数函数的图象。

教学基本思路:在讲解指数函数的定义前,复习有关指数知识及简单运算,然后由实例引入指数函数的概念,因为手工绘图复杂且不够精确,并且是本节课的教学关键,教学中,我借助电脑手段,通过描点作图,观察图像,引导学生说出图像特征及变化规律,并从而得出指数函数的性质,提高学生的形数结合的能力。

一、学法指导:1、学情分析:大部分学生数学基础较差,理解能力,运算能力,思维能力等方面参差不齐;同时学生学好数学的自信心不强,学习积极性不高。

2、学法指导:针对这种情况,在教学中,我注意面向全体,发挥学生的主体性,引导学生积极地观察问题,分析问题,激发学生的求知欲和学习积极性,指导学生积极思维、主动获取知识,养成良好的学习方法。

并逐步学会独立提出问题、解决问题。

总之,调动学生的非智力因素来促进智力因素的发展,引导学生积极开动脑筋,思考问题和解决问题,从而发扬钻研精神、勇于探索创新。

指数函数教案2教学目标:1、进一步理解指数函数的性质。

2.1.2指数函数及其性质教案doc

2.1.2指数函数及其性质一、教学目标知识与技能:理解指数函数的概念、意义和性质,会画具体指数函数的图象。

过程与方法:利用实际背景,通过自主探索,培养学生观察、分析、归纳等抽象思维能力,通过具体的函数图象归纳出指数函数的性质,体会数形结合和分类讨论思想以及从特殊到一般的抽象概括的方法 。

情感、态度与价值观:通过学习,使学生学会认识事物的特殊性与一般性之间的关系,构建和谐的课堂氛围,充分发挥学生的主观能动性,培养他们勇于提问、善于探索的数学思维品质。

认识到数学来源于生活,并且服务于生活。

二、教学重点和难点重点:指数函数的概念和性质。

难点:用数形结合的方法,从具体到一般的探索、概括指数函数的性质。

三、教学过程(一) 创设情境、导入新课老师:在本章的开始,给出了两个问题:问题一:据国务院发展研究中心2000年发表的《未来20年我国前景分析》判断,未来20年,我国GDP(国内生产总值)年平均增长率可望达到7.3%,那么,在2001--2020年,各年的GDP 可望为2000年的多少倍?问题二:当生物死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”。

根据此规律,人们获得了碳14含量P 和死亡年数t 的之间对应关系.关系,为引出指数函数的模型 xa y =(a>0,a ≠1)做准备,以利于学生体会指数函数的概念来自于生活,并且服务于生活。

(二) 师生互动、探究新知1.指数函数的定义老师:提出探究问题1:上述问题中的两个对应关系能否构成函数关系? 提出探究问题2:上述两个函数有什么样的共同特征?学生:通过思考讨论不难得出探究1的结论:能够构成函数关系。

引导学生通过观察得出两个函数的共同特征:(1)幂的形式都一样;(2)幂的底数都是一个正常数; (3)幂的指数都是一个变量。

老师:如果可以用字母a 代替其中的底数,那么上述两式就可以表示成x a y =的形式,自变量在指数位置,我们把具有这种形式的函数叫做指数函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.1.2指数函数及其性质教学设计
赫章县民族中学:项维
一、教学目标:
知识与技能:理解指数函数的概念,掌握指数函数的图象和性质,
培养学生实际应用函数的能力。

过程与方法:通过观察图象,分析、归纳、总结、自主建构指数
函数的性质。领会数形结合的数学思想方法,培养学生发现、分析、
解决问题的能力。

情感态度与价值观:在指数函数的学习过程中,体验数学的科学价
值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科
学态度。

二、教学重点、难点:
教学重点:指数函数的概念、图象和性质。
教学难点:对底数的分类,如何由图象、解析式归纳指数函数的
性质。

三、教学过程:
(一)创设情景
问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……一
个这样的细胞分裂 x次后,得到的细胞分裂的个数 y与 x之间,构成
一个函数关系,能写出 x与 y之间的函数关系式吗?
学生回答: y与 x之间的关系式,可以表示为y=2x。
问题2: 一种放射性物质不断衰变为其他物质,每经过一年剩留的
质量约是原来的84%.求出这种物质的剩留量随时间(单位:年)变化的
函数关系.设最初的质量为1,时间变量用x表示,剩留量用y表示。

学生回答: y与 x之间的关系式,可以表示为y=0.84x 。
引导学生观察,两个函数中,底数是常数,指数是自变量。
1.指数函数的定义
一般地,函数10aaayx且叫做指数函数,其中x是自变量,
函数的定义域是R.
问题:指数函数定义中,为什么规定“10aa且”如果不这样规
定会出现什么情况?
(1)若a<0会有什么问题?(如21,2xa则在实数范围内相应的
函数值不存在)
(2)若a=0会有什么问题?(对于0x,xa无意义)
(3)若 a=1又会怎么样?(1x无论x取何值,它总是1,对它没有研究
的必要.)
师:为了避免上述各种情况的发生,所以规定0a且 1a.
练1:指出下列函数那些是指数函数:

x
xxxxyyyyxyy1)6()5(4)4(4)3()2(4)1(4

练2:若函数是指数函数,则a=------
2.指数函数的图像及性质

在同一平面直角坐标系内画出指数函数xy2与xy21的图象(画
图步骤:列表、描点、连线)。由学生自己画出xy3与xy31的函数
图象
然后,通过两组图象教师组织学生结合图像讨论指数函数的性
质。

特别地,函数值的分布情况如下:
(四)巩固与练习
例1: 比较下列各题中两值的大小

教师引导学生观察这些指数值的特征,思考比较大小的方法。
(1)(2)两题底相同,指数不同,(3)(4)两题可化为同底的,
可以利用函数的单调性比较大小。
(5)题底不同,指数相同,可以利用函数的图像比较大小。
(6)题底不同,指数也不同,可以借助中介值比较大小。
例2:已知下列不等式 , 比较m,n的大小 :


设计意图:这是指数函数性质的简单应用,使学生在解题过程中
加深对指数函数的图像及性质的理解和记忆。

(五)课堂小结
(六)布置作业
板书设计:

相关文档
最新文档