相似单元测试

合集下载

相似单元测试题及答案

相似单元测试题及答案

相似单元测试题及答案一、选择题(每题2分,共10分)1. 下列哪项不是相似图形的特点?A. 形状相同B. 面积相等C. 大小相同D. 角度相同2. 相似比的定义是什么?A. 两个图形对应边长的比B. 两个图形对应角的比C. 两个图形对应面积的比D. 两个图形对应周长的比3. 若两个三角形相似,它们的对应角相等,对应边成比例,那么它们的对应高也成比例吗?A. 是B. 否4. 相似图形的面积比与边长比的平方相等,这是根据什么定理得出的?A. 相似定理B. 勾股定理C. 毕达哥拉斯定理D. 面积比定理5. 两个相似多边形的对应边数必须相等吗?A. 是B. 否二、填空题(每题2分,共10分)6. 如果两个三角形的相似比是2:3,那么它们的对应边长之比是________。

7. 相似图形的周长比等于它们的________。

8. 两个相似圆的面积比是25:36,那么它们的半径比是________。

9. 根据相似图形的性质,如果两个图形相似,那么它们的对应角________。

10. 在相似三角形中,如果一个三角形的边长是另一个三角形边长的1.5倍,那么它们的面积比是________。

三、简答题(每题5分,共10分)11. 解释为什么相似三角形的对应角相等。

12. 描述如何判断两个多边形是否相似。

四、计算题(每题10分,共20分)13. 已知三角形ABC与三角形DEF相似,且AB:DE = 2:3,求三角形ABC的面积与三角形DEF的面积之比。

14. 如果一个矩形的长是另一个矩形长的1.5倍,宽是另一个矩形宽的0.8倍,求这两个矩形的面积比。

五、论述题(每题15分,共15分)15. 论述相似图形在建筑设计中的应用及其重要性。

答案:一、选择题1. B2. A3. A4. D5. A二、填空题6. 2:37. 相似比8. 5:69. 相等10. 2.25:1三、简答题11. 相似三角形的对应角相等,因为相似三角形的定义就是它们的对应角相等,这是相似三角形的基本性质之一。

相似三角形单元测试卷带答案

相似三角形单元测试卷带答案

相似三角形单元测试卷一.选择题1.在△ABC中,BC=6,AC=8,AB=10,另一个与它相似的三角形的最短边长是3,则其最长边一定是()A.12 B.5 C. 16 D.202.下列说法正确的是()A.所有的等腰三角形都相似B.所有的直角三角形都相似C.所有的等腰直角三角形都相似D.有一个角相等的两个等腰三角形都相似3.在相同时刻的物高与影长成正比.如果高为1.5m的竹竿的影长为2.5m,那么影长为30m 旗杆的高是A. 15mB. 16mC. 18mD. 20m4.如图,在△ABC中,点D、E分别是AB、AC的中点,则下列四个结论:①BO=2OE;②13DOEADESS∆∆=;③12ADEBCESS∆∆=;④△ADC∽△AEB.其中正确..的结论有()A.3个B.2个C.1个D.0个5.如图,△ABC中,三边互不相等,点P是AB上一点,有过点P的直线将△ABC切出一个小三角形与△ABC相似,这样的直线一共有()APCBA、5条B、4条C、3条D、2条【答案】B6.如图,∠ABD=∠ACD,图中相似三角形的对数是()(A)2 (B)3 (C)4 (D)5【答案】C7.(11·西宁)如图6,在等边△ABC中,D为BC边上一点,E为AC边上一点,且∠ADB +∠EDC=120°,BD=3,CE=2,则△ABC的边长为A.9 B.12 C.16 D.188.如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米,那么路灯A的高度AB 等于()AB C D E FA. 4.5米B. 6米C. 7.2米D. 8米【答案】B9.在平面直角坐标系中,正方形ABCD 的位置如图6所示,点A 的坐标为(1,0),点D 的坐标为(0,2).延长CB 交x 轴于点A 1,作正方形A 1B 1C 1C ;延长C 1B 1交x 轴于点A 2,作正方形A 2B 2C 2C 1,…按这样的规律进行下去,第2012个正方形的面积为 ( )201135()2⨯ B .201195()4⨯ C .201235()2⨯ D .201295()4⨯【答案】B10. 如图所示,小正方形的边长为1,则下列图形中的三角形(阴影部分)与ABC ∆相似的是( )【答案】A二.填空题11.已知32=b a ,则=+b b a ___________。

相似的单元测试题及答案

相似的单元测试题及答案

相似的单元测试题及答案一、选择题(本题共10分,每题1分)1. 下列哪个选项是相似三角形的定义?A. 面积相等的三角形B. 形状相同的三角形C. 边长成比例的三角形D. 角度相同的三角形2. 相似三角形的对应角相等,对应边成比例,这个性质称为:A. 相似性质B. 等角性质C. 比例性质D. 角度比例性质3. 如果两个三角形的对应边长比为2:3,那么它们的面积比是:A. 2:3B. 4:9C. 6:9D. 8:274. 在相似三角形中,如果一个角是30°,那么它的对应角也是:A. 30°B. 60°C. 90°D. 120°5. 相似三角形的判定定理中,SAS相似准则指的是:A. 两边及其夹角相等B. 三边对应成比例C. 两角对应相等D. 一边对应成比例,其余两边及其夹角相等二、填空题(本题共10分,每空1分)6. 相似三角形的判定定理包括AA准则、SAS准则和______准则。

7. 如果三角形ABC与三角形DEF相似,那么AB:DE=______,∠A=______。

8. 相似三角形的面积比等于它们对应边长的______。

9. 根据相似三角形的性质,如果三角形ABC与三角形DEF相似,且AB=2DE,则三角形ABC的面积是三角形DEF面积的______倍。

10. 在相似三角形中,如果∠BAC=45°,那么∠EDF=______。

三、简答题(本题共20分,每题5分)11. 解释什么是相似三角形,并给出两个相似三角形的例子。

12. 描述如何使用AA准则判定两个三角形是否相似。

13. 说明为什么相似三角形的面积比等于它们对应边长的平方比。

14. 如果一个三角形的边长扩大到原来的两倍,它的面积会如何变化?15. 给出一个实际生活中使用相似三角形性质的例子。

四、计算题(本题共30分,每题10分)16. 已知三角形ABC与三角形DEF相似,AB=6cm,DE=9cm,求BC:EF的比值。

北师版九年级数学 第四章 图形的相似(单元综合测试卷)

北师版九年级数学  第四章 图形的相似(单元综合测试卷)

第四章图形的相似(单元重点综合测试)班级___________姓名___________学号____________分数____________考试范围:全章的内容;考试时间:120分钟;总分:120分一、单选题(本大题共10小题,每小题3分,共30分)1.若23a b =,则a a b +等于()A .15B .25C .35D .452.如果两个相似三角形的面积之比为9:4,那么这两个三角形的周长之比为()A .81:16B .27:12C .9:4D .3:23.已知,点P 是线段AB 的黄金分割点(AP PB >),若线段2AB cm =,则线段AP 的长是()Acm B .1)cm C .(3cm D .(2cm4.如图,直线123l l l ∥∥,直线AC 和DF 被1l ,2l ,3l 所截,4AB =,9AC =,4EF =,则DE 的长为()A .165B .169C .5D .95.如图,下列条件不能判定BDC ABC ∽ 的是()A .∠=∠BDC ABCB .DBC BAC ∠=∠C .2D C A B C C =⋅D .AD AB AB BC=6.如图,在ABCD Y 中,E 是AB 的中点,EC 交BD 于点F ,那么EF 与CF 的比是()A .21:B .13:C .12:D .31:7.如图,BE 为驾驶员的盲区,驾驶员的眼睛点P 处与地面BE 的距离为1.6米,车头FACD 近似看成一个矩形,且满足32FD FA =,若盲区BE 的长度是6米,则车宽FA 的长度为()米.A .117B .127C .137D .28.如图,在平面直角坐标中,已知()()1030A D ,,,,ABC 与DEF 位似,原点O 是位似中心.若 1.5AB =,则DE 长为()A .4.5B .6C .7.5D .99.如图,ABC 是等边三角形,点D 、E 分别在BC 、AC 上,且60ADE ∠=︒,6AB =,2BD =,则CE 的长等于()A .1B .43C .53D .210.如图,在正方形ABCD 的对角线AC 上取一点E .使得15CDE ∠=︒,连接BE 并延长BE 到F ,使CF CB =,BF 与CD 相交于点H ,若1AB =,有下列结论:①BE DE =;②CE DE EF +=;③13412DEC S =-△;④12DH HC =.则其中正确的结论有()A .①②③B .①②③④C .①②④D .①③④二、填空题(本大题共8小题,每小题3分,共24分)11.如图,四边形ABCD ∽四边形A B C D '''',则a ∠的度数是.12.如图,在ABC 中,DE CB ∥,DE 分别与AC AB 、相交于点D 、E ,若4=AD ,8DC =,则:AE EB 的值为.13.如图,在ABC ∆中,点P 为AB 上一点,连接CP .若再添加一个条件,使APC ACB ∆∆∽,则需添加的一个条件是.14.如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上,已知纸板的两条直角边0.6=DE 米,0.3EF =米,测得边DF 离地面的高度 1.5AC =米,10CD =米,则树高AB 为米.15.如图,已知ABC 和A B C ''△是以点()1,0C -为位似中心,位似比为1:2的位似图形,若点B 的对应点B '的横坐标为a ,则点B 的横坐标为.16.如图,AD 是ABC 的中线,E 是AD 的中点,BE 的延长线交AC 于点F ,那么AF AC =.17.如图,菱形ABCD 的边长为5,对角线AC 、BD 相交于点O ,E 为BC 边的中点,连接DE 交AC 于点F .若6AC =,则EF 的长为.18.如图,在矩形ABCD 中,6AB =,10BC =,点E 是AB 的中点,点M 是BC 的动点.将BEM △沿EM 翻折至PEM △.再将CFM △沿MF 翻折至QFM △,使点M ,P ,Q 在同一直线上,折痕MF 交射线CD 于点F .则:(1)EMF ∠=°;(2)当点M 是BC 的中点时,DF 的长为.三、解答题(本大题共9小题,共66分)19.(1)若234x y z ==,且328x y z -+=,求234x y z -+的值;(2)若23a eb f ==,则a e b f +=+______.20.如图,已知直线1l ,2l ,3l 分别截直线4l 于点A ,B ,C ,截直线5l 于点D ,E ,F ,且123l l l ∥∥.若4AB =,8BC =,10EF =,求DF 的长.21.如图,在ABC ∆中,点D ,E 在AB 上,点G 在AC 上,连接,,DG CE EG ,DG EC EG BC ∥∥,.求证:AE AD AB AE=22.如图,线段BD 、CE 是ABC 的两条高.(1)求证:ACE ABD ∽;(2)若6AD =,5DE =,10AB =,求BC 的长.23.小琛周末去检查视力,发现该店老板利用平面镜来解决房间小的问题.已知正常情况下,人与视力表之间的距离应为5米,而测得该店两面墙的距离为3米,如图,根据平面镜成像原理作出光路图,视力表AB 的上下边沿A ,B 上发出的光线经平面镜'MM 的上下边反射后射入人眼C 处.已知视力表AB 的全长为0.8米,要使墙面上的镜子能呈现完整的视力表,请计算出镜长至少为多少米?24.图①、图②、图③均是55⨯的正方形网格,其顶点称为格点,ABC 的顶点均在格点上,只用无刻度的直尺,在给定的网格中按下列要求作图,并保留作图痕迹.(1)在图①中,在ABC 的边BC 上找一点D ,连结AD ,使BAD BCA △∽△;(2)在图②中,在ABC 的边AB 上找一点P ,在边BC 上找一点Q ,连结PQ ,使BPQ BAC ∽,且相似比为1:2;(3)在图③中,在ABC 的边BC 上找一点E ,连结AE ,使2ABE ACE S S = .25.在正方形网格中,OBC △的顶点分别为()00O ,,()31B -,,()21C ,.(1)以点()00O ,为位似中心,以位似比21:在位似中心的异侧将OBC △放大为OB C ''△,放大后点B ,C 两点的对应点分别为B ',C ',请画出OB C ''△;(2)在(1)中,若点()M a b ,为线段BC 上任一点,直接写出变化后点M 的对应点M '的坐标.(用含a ,b 的代数式表示)26.已知四边形ABCD 的一组对边AD DC ,的延长线相交于点E .(1)如图1,若90ABC ADC ∠=∠=︒,求证:••ED EA EC EB =;(2)如图2.若12060510ABC ADC CD AB ∠=︒∠=︒==,,,,CDE 的面积为6,求四边形ABCD 的面积.27.如图1,在等腰直角三角形ABC 中,以BC 为边在ABC 右侧作正方形DEFG .(1)问题提出:图I 中线段AF 与线段BE 的数量关系为(直接写出答案);(2)深入探究:如图2,将正方形DEFG 绕点D 在平面内旋转,连接AF BE ,.判断线段AF 与线段BE 的数量关系并说明理由;(3)拓展延伸:若2AC =,正方形DEFG 绕点D 在平面内旋转的过程中,当点A ,E ,请直接写出线段BE 的长.28.如图,在菱形ABCD 中,=60B ∠︒,点E 为边BC 上一点,将CDE 沿DE 翻折得到C DE ' ,连接AC '并延长交DE 于点F ,交BC 于点G .(1)设2ADC α'∠=,探究AFD ∠的大小是否为定值,请说明理由;(2)在DF 上截取FH FA =,连接AH ,求证:DH C F '=;(3)若54AC FG '=,5BE =,求菱形的边长.第四章图形的相似(单元重点综合测试)班级___________姓名___________学号____________分数____________考试范围:全章的内容;考试时间:120分钟;总分:120分一、单选题1.若23a b =,则a a b +等于()A .15B .25C .35D .452.如果两个相似三角形的面积之比为9:4,那么这两个三角形的周长之比为()A .81:16B .27:12C .9:4D .3:2【答案】D【分析】本题考查了相似三角形的性质,直接根据相似三角形的性质即可得出答案,熟练掌握相似三角形的面积的比等于相似比的平方是解此题的关键.【解析】解:∵两个相似三角形的面积之比为9:4,∴两个相似三角形的相似比为3:2,∵相似三角形的周长比等于相似比,∴这两个三角形的周长之比为3:2,故选:D .3.已知,点P 是线段AB 的黄金分割点(AP PB >),若线段2AB cm =,则线段AP 的长是()Acm B .1)cm C .(3cm D .(2cm4.如图,直线123l l l ∥∥,直线AC 和DF 被1l ,2l ,3l 所截,4AB =,9AC =,4EF =,则DE 的长为()A .165B .169C .5D .95.如图,下列条件不能判定BDC ABC ∽ 的是()A .∠=∠BDC ABCB .DBC BAC ∠=∠C .2D C A B C C=⋅D .AD AB AB BC=【答案】D 【分析】根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可.【解析】解:A 、∵∠=∠BDC ABC ,C C ∠=∠,∴BDC ABC ∽ ,故此选项不合题意;B 、∵DBC BAC ∠=∠,C C ∠=∠,∴BDC ABC ∽ ,故此选项不合题意;C 、∵2D C A B C C =⋅,∴BC AC DC BC=,又∵C C ∠=∠,∴BDC ABC ∽ ,故此选项不合题意;D 、AD AB AB BC=不能判定BDC ABC ∽ ,故此选项符合题意.故选:D .【点睛】本题考查了相似三角形的判定,熟悉相似三角形的判定定理是解题的关键.6.如图,在ABCD Y 中,E 是AB 的中点,EC 交BD 于点F ,那么EF 与CF 的比是()A .21:B .13:C .12:D .31:【答案】C 【分析】本题考查了平行四边形的性质,相似三角形的判定与性质,熟练掌握平行四边形的性质及相似三角形的判定与性质是解答本题的关键.根据平行四边形的性质得到AB CD =,进而推得12BE CD =,再证明BEF DCF ∽△△,根据相似三角形的性质,即得答案.7.如图,BE 为驾驶员的盲区,驾驶员的眼睛点P 处与地面BE 的距离为1.6米,车头FACD 近似看成一个矩形,且满足32FD FA =,若盲区BE 的长度是6米,则车宽FA 的长度为()米.A .117B .127C .137D .2则 1.6PM =,设FA x =米,由32FD FA =得,8.如图,在平面直角坐标中,已知()()1030A D ,,,,ABC 与DEF 位似,原点O 是位似中心.若 1.5AB =,则DE 长为()A .4.5B .6C .7.5D .99.如图,ABC 是等边三角形,点D 、E 分别在BC 、AC 上,且60ADE ∠=︒,6AB =,2BD =,则CE 的长等于()A .1B .43C .53D .210.如图,在正方形ABCD 的对角线AC 上取一点E .使得15CDE ∠=︒,连接BE 并延长BE 到F ,使CF CB =,BF 与CD 相交于点H ,若1AB =,有下列结论:①BE DE =;②CE DE EF +=;③14DEC S =-△;④12DH HC =.则其中正确的结论有()A.①②③B.①②③④C.①②④D.①③④ ≌,ABE ADE(SAS)∴.∠=∠ABE ADE∴∠=∠,CBE CDE,BC CF=在Rt ADC 中,根据勾股定理求出由面积公式得:1122AD DC AC ⨯=22DM ∴=,45DCA ∠=︒ ,二、填空题11.如图,四边形ABCD ∽四边形A B C D '''',则a ∠的度数是.【答案】100︒/100度【分析】利用相似多边形对应角相等、对应边成比例即可求解.【解析】解: 四边形ABCD ∽四边形A B C D '''',70B B '∴∠=∠=︒,3601306070100C '∴∠=︒-︒-︒-︒=︒100C α'∴∠=∠=︒,故答案为:100︒.【点睛】本题考查了相似多边形的性质,解题的关键是知道相似多边形的对应边的比相等,对应角相等.12.如图,在ABC 中,DE CB ∥,DE 分别与AC AB 、相交于点D 、E ,若4=AD ,8DC =,则:AE EB 的值为.【答案】1:2【分析】本题主要考查了平行线分线段成比例定理,熟练掌握该定理是解题的关键,根据DE CB ∥,由平行线分线段成比例定理可得::AE EB AD CD =,将已知条件代入即可求解.【解析】解:∵DE CB ∥,4=AD ,8DC =,∴::4:81:2AE EB AD CD ===.故答案为1:2.13.如图,在ABC ∆中,点P 为AB 上一点,连接CP .若再添加一个条件,使APC ACB ∆∆∽,则需添加的一个条件是.【答案】∠ACP =∠B 或∠APC =∠ACB 或AP :AC =AC :AB【分析】利用相似三角形的判定可求解.【解析】解:①当∠ACP =∠B ,∠A =∠A ,可得△APC ∽△ACB ,故可添加∠ACP =∠B ;②当∠APC =∠ACB ,∠A =∠A ,可得△APC ∽△ACB ,故可添加∠APC =∠ACB ;③当AP :AC =AC :AB ,∠A =∠A ,可得△APC ∽△ACB ,故可添加AP :AC =AC :AB ;故答案为∠ACP =∠B 或∠APC =∠ACB 或AP :AC =AC :AB .【点睛】本题考查了相似三角形的判定方法,相似三角形的判定方法有:①对应角相等,对应边成比例的两个三角形叫做相似三角形;②平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似;③两角相等的两个三角形相似;④两边对应成比例,且夹角相等的两个三角形相似判定即可;⑤三边对应成比例的两个三角形相似.14.如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上,已知纸板的两条直角边0.6=DE 米,0.3EF =米,测得边DF 离地面的高度 1.5AC =米,10CD =米,则树高AB 为米.15.如图,已知ABC 和A B C ''△是以点()1,0C -为位似中心,位似比为1:2的位似图形,若点B 的对应点B '的横坐标为a ,则点B 的横坐标为.【答案】32a +-【分析】本题考查了位似变换的性质、相似三角形的性质,根据相似三角形的性质求出1112x a --=+是解题的关键.设B 点横坐标为x ,过B 作BM x ⊥轴于点M ,过B '作B N x '⊥轴于点N ,根据平行线分线段成比例定理得到CM BC CN B C =',根据相似三角形的性质求出1112x a --=+,计算即可.【解析】设B 点横坐标为x ,如图,过B 作BM x ⊥轴于点M ,过B '作B N x '⊥轴于点NBM B N '∴∥,BCM B CN ∴'△∽△,CM BC CN B C∴'=,∵ABC 和A B C ''△是位似比为1:2的位似图形,即1112x a --=+,解得32a x +=-,B ∴点横坐标为32a +-.16.如图,AD 是ABC 的中线,E 是AD 的中点,BE 的延长线交AC 于点F ,那么AC =.∵D为BC中点,DG BF∥∴12CG CDCF CB==,即:CG又E为AD的中点,BE的延长线交∴12AE AFAD AG==,即:AF17.如图,菱形ABCD的边长为5,对角线AC、BD相交于点O,E为BC边的中点,连接DE交AC于点F.若6AC=,则EF的长为.18.如图,在矩形ABCD 中,6AB =,10BC =,点E 是AB 的中点,点M 是BC 的动点.将BEM △沿EM 翻折至PEM △.再将CFM △沿MF 翻折至QFM △,使点M ,P ,Q 在同一直线上,折痕MF 交射线CD 于点F .则:(1)EMF ∠=°;(2)当点M 是BC 的中点时,DF 的长为.(2)如图,点M 是BC 的中点时,由折叠知,,MB MP MC =∴MP MQ =,即,P Q 两点重合.△MPE 中,MPE B ∠=∠=【点睛】本题考查矩形的性质,折叠的性质,相似三角形的判定和性质;由折叠得到角相等,线段相等是解题的关键.三、解答题19.(1)若234x y z ==,且328x y z -+=,求234x y z -+的值;(2)若23a eb f ==,则a e b f +=+______.20.如图,已知直线1l ,2l ,3l 分别截直线4l 于点A ,B ,C ,截直线5l 于点D ,E ,F ,且123l l l ∥∥.若4AB =,8BC =,10EF =,求DF 的长.【答案】15DF =【分析】本题考查了平行线分线段成比例;根据平行线分线段成比例列式求出DE ,再根据DF DE EF =+计算即可.【解析】解:∵123l l l ∥∥,∴AB DE BC EF =,即4810DE =,∴5DE =,∴51015DF DE EF =+=+=.21.如图,在ABC ∆中,点D ,E 在AB 上,点G 在AC 上,连接,,DG CE EG ,DG EC EG BC ∥∥,.求证:AE AD AB AE=【答案】证明见解析【分析】根据平行线分线段成比例可得=AG AE AC AB 和AG AD AC AE=,即得AE AD AB AE =【解析】证明:∵EG BC ∥,∴=AG AE AC AB ,∵DG EC ∥,∴AG AD AC AE =,∴AE AD AB AE=.【点睛】本题考查比例线段,解题的关键是掌握平行线分线段成比例.22.如图,线段BD 、CE 是ABC 的两条高.(1)求证:ACE ABD ∽;(2)若6AD =,5DE =,10AB =,求BC 的长.【答案】(1)见解析(2)253【分析】(1)根据高线的定义,得到90ADB CEA ∠=∠=︒,再根据A A ∠=∠,即可得证;(2)证明ADE ABC △△∽,列出比例式进行求解即可.【解析】(1)解:∵线段BD 、CE 是ABC 的两条高,∴90ADB CEA ∠=∠=︒,∵A A ∠=∠,∴ACE ABD ∽;(2)∵ACE ABD ∽,∴AD AB AE AC =,∴AD AE AB AC=,∵A A ∠=∠,∴ADE ABC △△∽,∴AD DE AB BC =,即:6510BC=,∴253BC =.【点睛】本题考查相似三角形的判定和性质.熟练掌握相似三角形的判定方法,证明三角形相似,是解题的关键.23.小琛周末去检查视力,发现该店老板利用平面镜来解决房间小的问题.已知正常情况下,人与视力表之间的距离应为5米,而测得该店两面墙的距离为3米,如图,根据平面镜成像原理作出光路图,视力表AB 的上下边沿A ,B 上发出的光线经平面镜'MM 的上下边反射后射入人眼C 处.已知视力表AB 的全长为0.8米,要使墙面上的镜子能呈现完整的视力表,请计算出镜长至少为多少米?∵AB MM A B '''∥∥,CE A B ∴⊥'',CMM CA B ''' ∽,MM CD '24.图①、图②、图③均是55⨯的正方形网格,其顶点称为格点,ABC 的顶点均在格点上,只用无刻度的直尺,在给定的网格中按下列要求作图,并保留作图痕迹.(1)在图①中,在ABC 的边BC 上找一点D ,连结AD ,使BAD BCA △∽△;(2)在图②中,在ABC 的边AB 上找一点P ,在边BC 上找一点Q ,连结PQ ,使BPQ BAC ∽,且相似比为1:2;(3)在图③中,在ABC 的边BC 上找一点E ,连结AE ,使2ABE ACE S S = .【答案】(1)详见解析(2)详见解析(3)详见解析【分析】(1)在BC 上取一点D ,使得AD BC ⊥即可;(2)取AB 的中点P ,取格点T ,连接PT 交BC 于点Q ,线段PQ 即为所求;(3)取格点P ,Q ,连接PQ 交BC 于点E ,连接AE 即可,本题考查作图,相似三角形的判定和性质等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.【解析】(1)解:如图①中,线段AD 即为所求;(2)解:如图2中,线段PQ 即为所求;(3)解:如图③中,点E 即为所求.25.在正方形网格中,OBC △的顶点分别为()00O ,,()31B -,,()21C ,.(1)以点()00O ,为位似中心,以位似比21:在位似中心的异侧将OBC △放大为OB C ''△,放大后点B ,C 两点的对应点分别为B ',C ',请画出OB C ''△;(2)在(1)中,若点()M a b ,为线段BC 上任一点,直接写出变化后点M 的对应点M '的坐标.(用含a ,b 的代数式表示)【答案】(1)见详解(2)()22M a b '--,【分析】(1)利用位似变换的性质,2OC OC '=,2OB OB '=,再结合()00O ,,()31B -,,()21C ,,即可分别作出B ,C 的对应点B ',C ',再连接即可作答;(2)探究坐标变化规律,可得结论.【解析】(1)解:如图,OB C ''△即为所求:(2)解:因为()31B -,,()21C ,,且由(1)的图可知()62B '-,,()42C '--,,所以变化后点()M a b ,的对应点M '的坐标为()22a b --,.【点睛】本题考查作图−位似变换,解题的关键是掌握位似变换的性质,属于中考常考题型.26.已知四边形ABCD 的一组对边AD DC ,的延长线相交于点E .(1)如图1,若90ABC ADC ∠=∠=︒,求证:••ED EA EC EB =;(2)如图2.若12060510ABC ADC CD AB ∠=︒∠=︒==,,,,CDE 的面积为6,求四边形ABCD 的面积.【答案】(1)证明见解析(2)18【分析】本题考查了相似三角形的判定与性质,含30度角的直角三角形以及勾股定理等知识点,熟记相关定理内容是解题关键.(1)证EDC EBA ∽ 即可;(2)过C 作CF AD ⊥于F ,AG EB ⊥于G .可求出,,EF CF AG ;证EFC EGA ∽V V 得::EF EG CF AG =,即可求解;【解析】(1)证明:∵90ADC ∠=︒,180EDC ADC ∠+∠=︒,∴90EDC ∠=︒,∵90ABC ∠=︒,∴EDC ABC ∠=∠,∵E E ∠=∠,∴EDC EBA∽,V V ∴::ED EB EC EA =,∴··ED EA EC EB =;(2)解:如图2中,过C 作CF AD ⊥于F ,AG EB ⊥于G .在Rt CDF △中,60ADC ∠=∴30DCF ∠=°,∵5CD =,∴15,22DF CD ==CD CF =27.如图1,在等腰直角三角形ABC 中,以BC 为边在ABC 右侧作正方形DEFG .(1)问题提出:图I 中线段AF 与线段BE 的数量关系为(直接写出答案);(2)深入探究:如图2,将正方形DEFG 绕点D 在平面内旋转,连接AF BE ,.判断线段AF 与线段BE 的数量关系并说明理由;(3)拓展延伸:若2AC =,正方形DEFG 绕点D 在平面内旋转的过程中,当点A ,E ,请直接写出线段BE 的长.【答案】(1)2AF BE=(2)2AF BE =,理由见解答过程(3)62-或62+【分析】(1)根据ABC 是等腰直角三角形,得2AF BC =,再由正方形的性质即可解答;(2)连接BD CD ,,根据ABD △和DEF 都是等腰直角三角形,可证明BDE ADF ∽,然后根据线段比例即可解答;(3)分当点F 在线段AE 上或点F 在线段AE 的延长线两种情形,分别画出图形,利用勾股定理求得AF ,再由(2)得出BE 的长度即可.【解析】(1)解:∵ABC 是等腰直角三角形,∴2AF BC =,∵四边形DEFG 是正方形,∴BC GF BE ==,∴2AF BE =.故答案为:2AF BE =.(2)解:2AF BE =,理由如下:如图2,连接BD ,在Rt BAC 中,45BAC ∠=∴2sin 2BD BAC AD ∠==,在正方形DEFG 中,sin ∠∴BD DE AD DF=,∴45EDF BDA ∠=∠=︒,∴EDF BDF BDA ∠-∠=∠∴BDE ADF ∽,∴2AF AD ==,即AF 由(1)知,DE FE DG ==在Rt ADE △中,2,DE =∴222AE AD DE =-=∴23AF AE FE =-=-由(2)知,2AF BE =由(1)知,2DE FE DG ===,在Rt ADE △中,2DE =,∴2223AE AD DE =-=,∴232AF AE FE =-=+,由(2)知,2AF BE =,∴()223223226222222BE +++====⨯∴当正方形DEFG 旋转到A 、E 、F 三点共线时【点睛】本题主要考查四边形的综合题,主要考查了相似三角形的判定和性质、等腰直角三角形的性质、正方形的性质等知识点,灵活运用相关判定和性质定理是解题的关键.28.如图,在菱形ABCD 中,=60B ∠︒,点E 为边BC 上一点,将CDE 沿DE 翻折得到C DE ' ,连接AC '并延长交DE 于点F ,交BC 于点G .(1)设2ADC α'∠=,探究AFD ∠的大小是否为定值,请说明理由;(2)在DF 上截取FH FA =,连接AH ,求证:DH C F '=;(3)若54AC FG '=,5BE =,求菱形的边长.【答案】(1)AFD ∠的大小为定值,理由见解析(2)见解析∵AD DC =,60ADC ∠=∴ADC △为等边三角形,∴AC AD =,60CAD ∠=︒∵FH FA =,60AFD ∠=︒∴AFH 为等边三角形,∴AF AH =,60FAH ∠=∵CAF CAH CAH ∠+∠=∠∴CAF DAH ∠=∠,∴AFC AHD ≌,∴DH CF =,∵CD C D ¢=,CDF C ∠=∠∴CDF C DF ' ≌,∴C F CF '=,∴DH C F '=;(3)解:如图:由54AC FG '=,可设5AC a ='则4FG a =,DH C F CF '==∵AFH 为等边三角形,∴60AHF AFH ∠=∠=︒,∴120AHD ∠=︒由(2)AFC AHD ≌,。

《相似》单元测试题及参考答案(精编)

《相似》单元测试题及参考答案(精编)

《相似》单元测试题及参考答案(精编)一、选择题1.如图,点P 是AB 的黄金分割点,即P 点满足BP AP =AP AB ,若AB=2,则AP 的长为( )A.√5-1B.√5+1C.√5+2D.0.618 2.若3a=4b(ab ≠0),则下列比例式正确的是( )A.a 3=b 4B.4a =3bC.a b =34D.a 3=4b3.如图,已知AB//CD//EF,BD:DF =1:2,那么下列结论中,正确的是( )A.AC:AE=1:3B.CE:EA=1:3C.CD:EF=1:2D.AB:EF=1:2 第3题 第4题 第5题 第6题4.如图,在△ABC 中,如果DE 与BC 不平行,那么下列条件中,不能判断△ADE ∽△ACB 的是 ( )A.∠ADE=∠CB.∠AED=∠BC.AD AB =DE BCD.AD AC =AEAB5.如图,在Rt △ABC 中,∠BAC=90°,AD ⊥BC 于点D.若AC=3,AB=4,则BD 的长为( )A.125B.165C.203D.154 6.如图,在梯形ABCD 中,AD//BC,对角线AC,BD 相交于点O.若AD=1,BC=3,则AOCO 的值为( )A.12B.13C.14D.19 第7题 第8题 第9题 第10题7.如图,⊙O 是△ABC 的外接圆,AD 平分∠BAC 交⊙O 于点D,交边BC 于点E,连接BD.若AD=5,BD=2,则DE 的长为( )A.35B.425C.225D.45 8.如图,已知在△ABC 中,点D,E,F 分别是边AB,AC,BC 上的点,DE//BC, EF//AB,且AD:DB=3:5,那么CF:CB 等于( )A.5:8B.3:8C.3:5D.2:59.如图,△ABC ∽△ADE,且BC=2DE,则S 四边形BEDC :S △ABC 的值为( )A.1:4B.3:4C.2:3D.1: 210.如图,D,E 分别是△ABC 的边AB,BC 上的点,DE//AC,AE,CD 相交于点O,若S △DOE :S △COA =1:25,则S △BDE 与S △CDE 的比是( )A.1.3B.1:4C.1.5D.1:2511.已知△ABC ∽△DEF,其对应中线的比为1:3,若△ABC 的周长为3,则△DEF 的周长为( )A.1B.3C.9D.2712.如图,在平行四边形ABCD 中,F 为BC 的中点,延长AD 至点E,使DE:AD=1:3,连接 EF 交DC 于点G,则S △DEG :S △CFG 等于( )A. 2:3B.3:2C.9:4D.4:9第12题 第13题 第14题 第15题13.如图,在△ABC 中,DE//BC,过点A 作AM ⊥BC 于点M,交DE 于点N.若S △ADE :S △ABC =4:9,则AN 与NM 的长度比是( )A.4:9B.3:2C.9:4D.2:114.如图,在△ABC 中,点D,E 分别在AB 和AC 上,DE//BC,M 为BC 边上一点,连接AM 交DE 于点N,若DN NE =13,DN BM =23,则下列选项不成立的是( )A.S △AD NS △AD E =14 B.BM MC =13 C.S △ANE <S 四边形DBMN D.S 四边形DBMN S 四边形NMCE =1315.如图,点E,F,M 在矩形ABCD 的边上,四边形EFMN 是正方形,B,M,N 三点共线.若AB=3,AD=7,则BN MN 的值为()A.2B.178C.√5+12 D.158二、填空题16.若nm =23,则m−nm=____.17.线段a,b,c,d是成比例线段a=9cm,b=6cm,c=3cm,则d的长为____cm.18.如图,利用标杆BE测量建筑物的高度.若标杆BE的高为1.2m,测AB=1.6m,BC=12.4m,则楼高CD为____m.第 18题第19题第20题第21题19.小孔成像的示意图如图所示,光线经过小孔O,物体AB在幕布上形成倒立的实像CD(点A,B的对应点分别是C,D).若物体AB的高度为6cm,实像CD的高度为3cm,则小孔O到BC的距离OE为______cm.20.如图,学生用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上,已知纸板的两条直角边DE=60cm,EF=30cm,测得边DF离地面的高度AC=1.5m,CD=10m,则树高AB___m.21.如图,△ABC是一块锐角三角形的材料,边BC=60mm,高AD=40mm,要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是_____mm.22.如图,已知△ABC和△DEF为位似图形,点O是位似中心,且△ABC和△DEF的周长之比是4:3,则下列结论:①AB//ED②BOOD =43③△AOC∽△DOF④S△A BC S△DEF =2√33.其中错误的是_____(填序号).三、解答题23.如图,O是△ABC外的一点,分别在射线OA,OB,OC上取点A',B',C’,使O A′OA =O B′OB=O C’OC=3,连接A'B’,B'C’,C'A',判断△A'B'C’与△ABC是否相似,并说明理由.24.如图,在△ABC中,AD平分∠BAC,E是AB边上一点,CE交AD于点F,且CF=CD.(1)求证:△ACE∽△ABC;(2)若EF=2,BD=4,求AB的值.AC25.如图,⊙O是△ABC的外接圆,点O在BC上,∠BAC的平分线交⊙O于点D,连接BD,CD,过点D作BC的平行线与AC的延长线相交于点P.(1)求证:PD是⊙O的切线;(2)求证:△ABD∽△DCP;(3)若AB=6,AC=8,求点O到AD的距离.26(1)问题:如图①,在四边形ABCD中,点P为AB上一点,∠DPC=∠A=∠B=90°,求证:AD·BC=AP·BP; (2)探究:如图②,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=θ时,上述结是否依然成立?请说明理由;(3)应用:请利用(1)(2)获得的经验解决问题:如图③,在△ABD中,AB=6,AD=BD=5.点P以每秒1个单位长度的速度,由点A出发,沿边AB向点B运动,且满足∠DPC=∠A.设点P的运动时间为t(秒),当以点D为圆心,以DC长为半径的圆与AB相切时,求t的值.参考答案一、选择题1-5 ABACB 6-10 BDABB 11-15 CDDCA二、填空题16.1317. 218. 10.519. 220. 6.521. 2422.②④三、解答题23.略24(1)略(2)√225(1)略(2)略(3)√2226(1)略(2)略(3)1s或5s。

相似的单元测试题及答案

相似的单元测试题及答案

相似的单元测试题及答案一、选择题(每题2分,共20分)1. 下列哪个选项是“相似”的英文表达?A. SimilarB. DifferentC. SameD. Like2. 在数学中,相似图形指的是什么?A. 面积相同的图形B. 形状相同但大小不同的图形C. 周长相等的图形D. 边长相同的图形3. 以下哪个选项不是相似图形的特点?A. 对应角相等B. 对应边成比例C. 面积相等D. 形状相同4. 相似比是相似图形对应边的什么?A. 差B. 积C. 比D. 和5. 相似三角形的判定定理中,以下哪个是错误的?A. 两角对应相等B. 三边对应成比例C. 两边对应成比例,夹角相等D. 一边对应成比例,其余两边不相等二、填空题(每题2分,共20分)6. 相似图形的面积比等于相似比的________次方。

7. 如果两个三角形的相似比为2:3,那么它们的面积比为________。

8. 相似图形的周长比等于它们的________。

9. 在相似三角形中,对应高的长度比等于________。

10. 根据相似三角形的判定定理,如果两个三角形的两组角分别相等,那么这两个三角形是________的。

三、简答题(每题10分,共30分)11. 简述相似三角形的性质。

12. 举例说明如何判断两个图形是否相似。

13. 解释相似比的概念及其在实际问题中的应用。

四、计算题(每题15分,共30分)14. 已知三角形ABC与三角形DEF相似,且AB:DE = 2:3,求三角形ABC与三角形DEF的面积比。

15. 若三角形ABC的周长为24cm,三角形DEF的周长为36cm,且三角形ABC与三角形DEF相似,求三角形ABC的边长。

答案一、选择题1. A2. B3. C4. C5. D二、填空题6. 二7. 4:98. 相似比9. 相似比10. 相似三、简答题11. 相似三角形的性质包括:对应角相等,对应边成比例,对应高的长度比等于相似比,周长比等于相似比,面积比等于相似比的平方。

相似三角形【单元卷-测试卷】(解析版)—2024-2025学年九年级数学上册单元速记巧练(沪教版)

相似三角形班级___________ 姓名___________ 学号____________ 分数____________考试范围:全章的内容; 考试时间:90分钟; 总分:100分一、选择题(本大题共6小题,每小题2分,共12分)1.(2024八年级下·上海·专题练习)下列各式错误的是( )A .|0|0=r B .()0m m +-=r r C .m n n m +=+r r r r D .()m n m n -=+-r r r r 【答案】B 【分析】本题主要考查了平面向量,注意:平面向量既有大小又有方向,且实数的运算法则同样能应用于平面向量的计算过程中.根据平面向量的意义和性质进行分析作答.【详解】解:A 、|0|0=r ,原选项正确,不符合题意.B 、()0m m +-=r r r ,原选项错误,符合题意.C 、m n n m +=+r r r r ,原选项正确,不符合题意.D 、()m n m n -=+-r r r r ,原选项正确,不符合题意.故选:B .2.(23-24九年级上·上海·期中)下列各组中的四条线段(单位:厘米)成比例线段的是( )A .1、2、3、4;B .1、2、4、8;C .2、3、4、5;D .5、10、15、20.【答案】B【分析】本题主要考查了成比例线段的定义,熟练掌握对于给定的四条线段,如果其中两条线段的长度之比等于另外两条线段的长度之比,则这四条线段叫做成比例线段是解题的关键.根据比例线段的概念,让最小的和最大的相乘,另外两条相乘,看它们的积是否相等即可得出答案.【详解】解:A 、4123´¹´,故本选项不符合题意;B 、1824´=´,故本选项符合题意;C 、2534´¹´,故本选项不符合题意;D 、5201015´¹´,故本选项不符合题意;故选:B .3.(23-24九年级上·上海松江·阶段练习)如图,已知AB CD EF ∥∥,那么下列结论成立的是( )A .CD BCEF BE =B .BE AF CE DF =C .AB AD CD BC =D .DF BE AD BC=4.(23-24九年级上·上海松江·期末)某同学对“两个相似的四边形”进行探究.四边形ABCD 和四边形1111D C B A 是相似的图形,点A 与点1A 、点B 与点1B 、点C 与点1C 、点D 与点1D 分别是对应顶点,已知11AB k A B =.该和四边形1111D C B A 的面积比等于2k ;②四边形ABCD 和四边形1111D C B A 的两条对角线的和之比等于k .对于结论①和②,下列说法正确的是()A .①正确,②错误B .①错误,②正确C .①和②都错误D .①和②都正确5.(23-24九年级上·上海松江·期末)如图,在Rt ABC △中,90BAC Ð=°,斜边BC 上的高3AH =,矩形DEFG的边DE 在边BC 上,顶点G 、F 分别在边AB 、AC 上,如果GF 正好经过ABC V 的重心,那么BD EC ×的积等于( )A .4B .1C .1625D .9252AO OM \=,Q 四边形DEFG 是矩形,GF DE \∥,GDE FED Ð=Ð::AK KH AO OM \=,BDG FEC \∽△△,::BD FE GD EC \=,BD CE FE DG \×=×,FG BC ∥Q ,GD BC ^,KH BC ^,FE BC ^,1DG FE KH \===,111BD CE \×=´=.故选:B .6.(2024·上海青浦·二模)如图,在平行四边形ABCD 中,对角线AC BD 、相交于点O ,过O 作AC 的垂线交AD 于点,E EC 与BD 相交于点F ,且ECD DBC Ð=Ð,那么下列结论&&错误的是( )A .EA EC=B .DOC DCO Ð=ÐC .4BD DF =D .BC CDCE BF=二、填空题(本大题共12小题,每小题2分,共24分)7.(23-24九年级上·上海松江·阶段练习)已知25ab=,那么22a ba b+=+.8.(23-24九年级上·上海嘉定·期末)已知点P 是线段AB 的一个黄金分割点,且4cm AB =,AP BP <,那么BP = cm .9.(23-24九年级上·上海嘉定·期末)在ABC V 中,点D 、E 分别在边BA 、CA 的延长线上,:1:2AD AB =,4AC =,那么当AE = 时,DE BC ∥.故答案为:2.10.(2024·上海静安·三模)化简:()123933a b a b +--= .【答案】ˆˆ4a b -+/4ˆb 【分析】本题考查向量的加减运算,根据向量加减运算法则求解即可r11.(2024·上海长宁·二模)如图,正方形ABCD 中,点E 在对角线BD 上,点F 在边CD 上(点F 不与点C 重合),且45EAF Ð=°,那么CF BE 的值为 .12.(2024·上海浦东新·二模)如图,已知ABC V 中,中线AM 、BN 相交于点G ,设=AG a ,=BG b ,那么向量BC uuu r 用向量a r 、b r 表示为 .【答案】ˆ2ˆa b +/2b a+r r 【分析】本题考查了三角形的重心,三角形法则等知识.解题的关键在于对知识的熟练掌握与灵活运用.根据重心的性质可得2AG GM =,2BC BM =,利用三角形法则求出BM uuuu r ,进而可得结果.【详解】解:∵中线AM 、BN 交于点G ,13.(2024九年级下·上海·专题练习)清朝《数理精蕴》里有一首小诗《古色古香方城池》:今有一座古方城,四面正中都开门,南门直行八里止,脚下有座塔耸立.又出西门二里停,切城角恰见塔形,请问诸君能算者,方城每边长是几?如图所示,诗的意思是:有正方形的城池一座,四面城墙的正中有门,从南门口(点D )直行8里有一塔(点A ),自西门(点E )直行2里至点B ,切城角(点C )也可以看见塔,问这座方城每面城墙的长是 里.14.(2024·上海静安·二模)如图,在平面直角坐标系中,已知直线1l 与直线2l 交于点()0,1C ,它们的夹角为90°.直线1l 交x 负半轴于点A ,直线2l 与x 正半轴交于点()2,0B ,那么点A 的坐标是 .15.(23-24九年级上·上海奉贤·期末)如图,已知AD BE CF ∥∥,它们依次交直线1l 于点A B C 、、,交直线2l 于点D E F 、、,已知:3:510AB AC DF ==,,那么EF 的长为 .16.(2024八年级下·上海·专题练习)如图,在四边形ABCD 中,90A B Ð=Ð=°,AD BC ∥,且AD BC >,10AB BC ==,点P 在BC 边上,点B 关于直线AP 的对称点为Q ,CQ 的延长线交边AD 于点R ,如果AR CP =,那么线段AP 的长为 .AD 与y 轴交于点E ,若ABE V 与四边形BCDE 的面积比为1:5,则k 的值为 .【答案】12【分析】本题考查了反比例函数k 值的几何意义,作DG x ^轴,垂足为G ,CF x ^轴,垂足为F ,∵四边形ABCD 是平行四边形,∴ABC CDA Ð=Ð,又∵GBE HED EDG Ð=Ð=Ð,∴ABO QDC Ð=Ð,在ABO V 和CDQ V 中,ABO AOB AB CD Ð=ÐìïÐ=Ðíï=î∴()AAS ABO CDQ V V ≌,∴()232m m =-,解得6m =,∴()26D ,,∵点D 在反比例函数图象上,∴12k =.故答案为:12.18.(2024·上海黄浦·三模)如图,在Rt ABC △中,90BAC Ð=°,将ABC V 绕点C 旋转得到A B C ¢¢△,点A 的对应点A ¢恰好与ABC V 的重心重合,A B ¢¢与BC 相交于点E ,那么:BE CE 的值为 .D 为BC 的中点,A ¢为ABC V 的重心,∵在Rt ABC △中,90BAC Ð=°,∴12AD BC CD ==∴DAC DCAÐ=Ð∵旋转,三、解答题(本大题共7小题,共64分)19.(22-23九年级上·上海杨浦·期中)已知:如图,在ABC V 中,BD 平分ABC Ð交AC 于D .(1)求证:AD AB CD BC=;(2)延长BD 至点E ,联结CE 、AE ,如果ACE EBC Ð=Ð,求证:AE CE =.∵BD 平分ABC Ð,∴ABD DBC Ð=Ð,∵CH AB ∥,∴ABD H Ð=Ð,∵ABD DBC Ð=Ð,ACE EBC Ð=Ð∴ABD ACE Ð=Ð,∵ADB EDC Ð=Ð,∴ABD △∽ECD V ,AD BD∴AE CE =.【点睛】本题考查平行线的性质、相似三角形的判定与性质、等腰三角形的性质,解题的关键是熟练掌握相似三角形的判定与性质.20.(23-24九年级上·上海·期中)如图,已知:在ABC V 中,点D 、E 分别在边AB 、BC 上,且BDE BCA Ð=Ð.(1)求证:ABE BDC V V ∽;(2)如果AE AC =,求证:2AC AD AB =×.21.(23-24八年级下·上海普陀·期中)如图,已知点E 在四边形ABCD 的边AB 上,设AE a =,AD b =,DC c =.(1)试用向量a b c r r r 、、表示向量DE =uuu r _______,EC =uuu r ______.(2)在图中求作:DE CE AD -+uuu r uuu r uuu r.(不要求写出作法,只需写出结论即可)22.(23-24九年级上·上海·期中)如图,花丛中有一盏路灯E ,为了测量路灯E 离地面的高度,小明在点D 处竖立标杆CD ,小明站立在点B 处,从点A 处看到标杆顶D 、路灯顶E 在一直线上(点F 、D 、B 也在一直线上).已知2BD =米,3FD =米,标杆 2.5CD =米,人的眼睛离地面的距离 1.5AB =米.求路灯E 离地面的高度.由题意, 1.5AB GD HF ===米,BD =∴0.5CG CD GD =-=米,∵CD EF ∥,∴CG AG EH AH =,23.(23-24九年级上·上海松江·阶段练习)如图,有一块面积等于21200cm的三角形纸片ABC,已知底边BC 与底边上的高的和为100cm(底边BC大于底边上的高),要把它加工成一个正方形纸片,使正方形的一边EF 在边BC上,顶点D、G分别在边AB、AC上.Array(1)求BC和底边上的高;(2)求加工成的正方形纸片DEFG的边长.24.(2024九年级下·上海·专题练习)如图1,在平面直角坐标系中,直线203y kx =+过点()5,0A ,()2,C a ,与y 轴交于点B .点D ,E 分别为线段OB ,OA 上的一点(不含端点),且CD DE ^.(1)求k 和a 的值;(2)当AEC Ð与CDE V 中的一个角相等时,求线段OD 的长.Q 2OE CF \==,4OF =,CD DE ^Q ,CFD =∠∠∴90ODE FDC +=°∠∠FDC OED \Ð=Ð,∴DCF EDO △∽△,C F O D则4CD CG ==,Q 222DF CD CF =-=\42O D O F D F =-=-综上,线段OD 的长为225.(23-24八年级下·上海奉贤·期末)如图,矩形ABCD 中,3,AB BC AB =>,将矩形ABCD 绕着点B 逆时针旋转后得到矩形BEFG ,点C 恰好落在边AD 上,点C 的对应点是点E ,点D 的对应点是点F ,点A 的对应点是点G .(1)如图1,当5BC =时,求DE 的长;(2)如图2,延长FE 交边DC 于点H ,设CH m =,用m 的代数式表示线段BC 的长;(3)连结AF ,当AEF △是以AE 为腰的等腰三角形时,请直接写出此时BC 的长.∵AE AF=,AH EF^,∴1322 EH EF==,∵90AEH AEBÐ+Ð=°,ABE AEBÐ+Ð∴AEH ABEÐ=Ð,∵90AHE BAEÐ=Ð=°,。

相似三角形单元测试(难)

《相似》单元测试卷宇文皓月一、选择题(共10小题,每小题3分,共30分)1.已知2x=5y(y≠0),则下列比例式成立的是()A2.)A.8B.9C.10D.113.下列各组条件中,一定能推得△ABC与△DEF相似的是()A.∠A=∠E且∠D=∠FB.∠A=∠B且∠D=∠FC.∠A=∠E.∠A=∠E4.如图,正方形ABCD的边长为2,BE=CE,MN=1,线段MN的两端点在CD、AD上滑动,当DM为()时,△ABE与以D、M、N 为顶点的三角形相似.A5.如图所示,△ABC中若DE∥BC,EF∥AB,则下列比例式正确的是()A D6.如图,在△ABC中,DE∥BC DE=4,则BC的长是()A.8B.10C.11D.127.如图,四边形ABCD∽四边形A1B1C1D1,AB=12,CD=15,A1B1=9,则边C1D1的长是()A.10B.12C8.已知△ABC S△ABC:S△A'B'C′为()A.1:2B.2:1C.1:4D.4:19.如图,铁路道口的栏杆短臂长1m,长臂长16m.当短臂端点下降0.5m时,长臂端点升高(杆的宽度忽略不计)()A.4mB.6mC.8mD.12m10.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,如果AC=3,AB=6,那么AD的值为()A.二、填空题(共6小题,每小题3分,共18分)11.在直角△ABC中,AD是斜边BC上的高,BD=4,CD=9,则AD=.12.如图,直线AD∥BE∥CF,,DE=4,那么EF的值是.13.已知△ABC∽△DEF,且它们的面积之比为4:9,则它们的相似比为.14.如图,以点O为位似中心,将△ABC放大得到△DEF,若AD=OA,则△ABC与△DEF的面积之比为.15.如图是小明设计用手电来丈量都匀南沙州古城墙高度的示意图,点P处放一水平的平面镜,光线从点A出发经过平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是米(平面镜的厚度忽略不计).16.如图,在△ABC中,AB=9,AC=6,BC=12,点M在AB边上,且AM=3,过点M作直线MN与AC边交于点N,使截得的三角形与原三角形相似,则MN=.三、解答题(共8题,共72分)17.(本题8分)如图,在△ABC中,点D,E分别在边AB,AC上,若DE∥BC,AD=3,AB=518.(本题8分)已知:平行四边形ABCD,E是BA延长线上一点,CE与AD、BD交于G、F.求证:CF2=GF•EF.19.(本题8分)如图,在△ABC中,AB=AC,∠A=36°,BD为角平分线,DE⊥AB,垂足为E.(1)写出图中一对全等三角形和一对相似比不为1的相似三角形;(2)选择(1)中一对加以证明.20.(本题8分)如图,已知A(﹣4,2),B(﹣2,6),C (0,4)是直角坐标系平面上三点.(1)把△ABC向右平移4个单位再向下平移1个单位,得到△A1B1C1.画出平移后的图形,并写出点A的对应点A1的坐标;(2)以原点O为位似中心,将△ABC缩小为原来的一半,得到△A2B2C2,请在所给的坐标系中作出所有满足条件的图形.21.(本题8分)在△ABC中,点D为BC上一点,连接AD,点E 在BD上,且DE=CD,过点E作AB的平行线交AD于F,且EF=AC.如图,求证:∠BAD=∠CAD;22.(本题10分)如图,在梯形ABCD中,已知AD∥BC,∠B=90°,AB=7,AD=9,BC=12,在线段BC上任取一点E,连接DE,作EF⊥DE,交直线AB于点F.(1)若点F与B重合,求CE的长;(2)若点F在线段AB上,且AF=CE,求CE的长.23.(本题10分)如图,已知△ABC∽△ADE,AB=30cm,AD=18cm,BC=20cm,∠BAC=75°,∠ABC=40°.(1)求∠ADE和∠AED的度数;(2)求DE的长.24.(本题12分)在Rt△ABC中,∠C=90°,AC=20cm,BC=15cm,现有动点P从点A出发,沿AC向点C方向运动,动点Q从点C出发,沿线段CB也向点B方向运动,如果点P的速度是4cm/秒,点Q的速度是2cm/秒,它们同时出发,当有一点到达所在线段的端点时,就停止运动.设运动时间为t秒.求:(1)当t=3秒时,这时,P,Q两点之间的距离是多少?(2)若△CPQ的面积为S,求S关于t的函数关系式.(3)当t为多少秒时,以点C,P,Q为顶点的三角形与△ABC相似?第27章《相似》单元测试卷解析一、选择题1.【答案】∵2x=5y B.2.【答案】,则a=2k,b=3k,c=4k,,故选C.3.【答案】A、∠D和∠F不是两个三角形的对应角,故不克不及判定两三角形相似,故此选项错误;B、∠A=∠B,∠D=∠F不是两个三角形的对应角,故不克不及判定两三角形相似,故此选项错误;C个三角形相似可以判断出△ABC与△DEF相似,故此选项正确;D、∠A=∠E个角不是夹角,故此选项错误;故选:C.4.【答案】∵四边形ABCD是正方形,∴AB=BC,∵BE=CE,∴AB=2BE,又∵△ABE与以D、M、N为顶点的三角形相似,∴①DM与AB是对应边时,DM=2DN∴DM2+DN2=MN2=1∴DM22=1,解得②DM与BE是对应边时,,∴DM2+DN2=MN2=1,即DM2+4DM2=1,解得DM ABE与以D、M、N为顶点的三角形相似.故选C.5.【答案】∵DE∥BC,EF∥AB,∴四边形DEFB是平行四边形,∴DE=BF,BD=EF;∵DE∥BC∵EF∥AB故选C.6.【答案】∵在△ABC中,DE∥BC∵DE=4,∴BC=3DE=12.故选D.7.【答案】∵四边形ABCD∽四边形A1B1C1D1∵AB=12,CD=15,A1B1=9,∴C1D1故选C.8.【答案】∵△ABC S△ABC:S△A'B'C′==2C.9.【答案】设长臂端点升高x米,则0.5:x=1:16,∴解得:x=8.故选;C.10.【答案】∵在Rt△ABC中,∠ACB=90°,CD⊥AB,∴AC2=AD•AB,又∵AC=3,AB=6,∴32=6AD,则故选:A.二、填空题11.【答案】∵△ABC是直角三角形,AD是斜边BC上的高,∴AD2=BD•CD(射影定理),∵BD=4,CD=9,∴AD=6.12.【答案】∵AD∥BE∥CFDE=4,∴EF=2.故答案为:2.13.【答案】因为△ABC∽△DEF,所以△ABC与△DEF的面积比等于相似比的平方,因为S△ABC:S△DEF=2:9=(2:3)2,所以△ABC与△DEF的相似比为2:3,故答案为:2:3.14.【答案】∵以点O为位似中心,将△ABC放大得到△DEF,AD=OA,∴AB:DE=OA:OD=1:2,∴△ABC与△DEF的面积之比为:1:4.故答案为:1:4.15.【答案】由题意知:光线AP与光线PC,∠APB=∠CPD,∴Rt △ABP∽Rt△CDP,∴AB:BP=CD:PD,,∴CD=1.2×12÷1.8=8(米).故答案为:8.16.【答案】如图1,当MN∥BC时,则△AMN∽△ABC,故AM:AB=AN:AC=MN:BC,则3:9=MN:12,解得:MN=4,如图2所示:当∠ANM=∠B时,又∵∠A=∠A,∴△ANM∽△ABC,∴AM:AC=MN:BC,即3:6=MN:12,解得:MN=6,故答案为:4或6.三、解答题17.【解答】∵DE∥BC,∴AD:AB=DE:BC,∵AD=3,AB=5,∴18.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB ∥CD,∴GF:CF=DF:BF,CF:EF=DF:BF,∴GF:CF=CF:EF,即CF2=GF•EF.19.【解答】(1)△ADE≌△BDE,△ABC∽△BCD;(2)证明:∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD为角平分线,∴∠A,在△ADE和△BDE中,∠A=∠DBA,∠AED=∠BED,ED=ED,∴△ADE≌△BDE(AAS);∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD为角平分线,∴∠A,∵∠C=∠C,∴△ABC∽△BCD.20.【解答】(1)△A1B1C1如图所示,其中A1的坐标为:(0,1);(2)符合条件△A2B2C2有两个,如图所示.【知识讲解】(1)直接利用平移的性质,可分别求得△A1B1C1各点的坐标,继而画出图形;(2)利用位似的性质,可求得△A2B2C2各点的坐标,继而画出图形.21.【解答】延长FD到点G,过C作CG∥AB交FD的延长线于点M,则EF∥MC,∴∠BAD=∠EFD=∠M,在△EDF和△CMD中,∠EFD=∠M,∠EDF=∠MDC,ED=DC,∴△EDF≌△CMD(AAS),∴MC=EF=AC,∴∠M=∠CAD,∴∠BAD=∠CAD;22.【解答】(1)当F和B重合时,∵EF⊥DE,∵DE⊥BC,∵∠B=90°,∴AB⊥BC,∴AB∥DE,∵AD∥BC,∴四边形ABED是平行四边形,∴AD=EF=9,∴CE=BC﹣EF=12﹣9=3;(2)过D作DM⊥BC于M,∵∠B=90°,∴AB⊥BC,∴DM∥AB,∵AD∥BC,∴四边形ABMD是矩形,∴AD=BM=9,AB=DM=7,CM=12﹣9=3,设AF=CE=a,则BF=7﹣a,EM=a﹣3,BE=12﹣a,∵∠FEC=∠B=∠DMB=90°,∴∠FEB+∠DEM=90°,∠BFE+∠FEB=90°,∴∠BFE=∠DEM,∵∠B=∠DME,∴△FBE∽△EMD,∴BF:EM=BE:DM,∴(7-a):(a-3)=(12-a):7,a=5,a=17,∵点F在线段AB上,AB=7,∴AF=CE=17(舍去),即CE=5.23.【解答】解:(1)∵∠BAC=75°,∠ABC=40°,∴∠C=180°﹣∠BAC﹣∠ABC=180°﹣75°﹣40°=65°,∵△ABC∽△ADE,∴∠ADE=∠ABC=40°,∠AED=∠C=65°;(2)∵△ABC∽△ADE,∴AB:AD=BC:DE,即30:18=20:DE,解得DE=12cm.24.【解答】由题意得AP=4t,CQ=2t,则CP=20﹣4t,(1)当t=3秒时,CP=20﹣4t=8cm,CQ=2t=6cm,由勾股定理得PQ=10cm;(2)由题意得AP=4t,CQ=2t,则CP=20﹣4t,因此Rt△CPQ的面积为20-4t)×2t=((3)分两种情况:①当Rt△CPQ∽Rt△CAB时,CP:CA=CQ:CB,即(20-4t):20=2t:15,解得t=3秒;②当Rt△CPQ∽Rt△CBA时,CP:CB=CQ:CA,即(20-4t):15=2t:20,解得因此t=3秒或C、P、Q为顶点的三角形与△ABC 相似.。

图形的相似单元测试(含答案)

图形的相似单元测试一、选择题1、【基础题】在比例尺为1:5000的地图上,量得甲,乙两地的距离为25 cm ,则甲、乙两地的实际距离是 ( ) A. 1250千米 B. 125千米 C. 12.5千米 D. 1.25千米2、【基础题】已知135=ab ,则ba b a +-的值是( ) ★ A. 32 B. 23 C. 49 D. 943、【基础题】如右图,在△ABC 中,看DE ∥BC ,12AD BD =,DE =4 cm ,则BC 的长为 ( ) A .8 cm B .12 cm C .11 cm D .10 cm4、【基础题】如右图,DE 是ΔABC 的中位线,则ΔADE 与ΔABC 的面积之比是( ) A .1:1B .1:2C .1:3D .1:45、【基础题】如下图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC 相似的是( ) ★★★6、【基础题】下列结论不正确的是( ) ★ A. 所有的矩形都相似 B. 所有的正方形都相似 C. 所有的等腰直角三角形都相似 D. 所有的正八边形都相似7、【基础题】下列说法中正确的是( ) ★A. 位似图形可以通过平移而相互得到;B. 位似图形的对应边平行且相等C. 位似图形的位似中心不只有一个D. 位似中心到对应点的距离之比都相等8、【综合题Ⅰ】如右上图,ABCD 是正方形,E 是CD 的中点,P 是BC 边上的一点,下列条件中,不能推出△ABP 与△ECP 相似的是( ) ★★★A. ∠APB =∠EPC ;B. ∠APE =90°C. P 是BC 的中点D. BP ︰BC =2︰3 9、【综合题Ⅱ】如右上图,Rt △ABC 中,AB ⊥AC ,AB =3, AC =4,P 是BC 边上一点,作PE ⊥AB 于E ,PD ⊥AC 于D ,设BP =x ,则PD+PE =( ) A.35x + B. 45x -C.72D.21212525x x -10、【综合题Ⅲ】如图,在Rt ABC △内有边长分别为a ,b ,c 的三个正方形.则a 、b 、c 满足的关系式是( )AB CA. b a c =+B. b ac =C. 222b a c =+D. 22b a c == 二、填空题11、【基础题】在同一时刻,高为1.5m 的标杆的影长为2.5m ,一古塔在地面上影长为50m ,那么古塔的高为 .12、【基础题】两个相似三角形面积比是9∶25,其中一个三角形的周长为36cm ,则另一个三角形的周长是 . 13、【综合题Ⅰ】如左下图,在△ABC 中,AB =5,D 、E 分别是边AC 和AB 上的点,且∠ADE =∠B ,DE =2,那么AD·BC = .14、【基础题】如右上图,在△ABC 和△DEF 中,G 、H 分别是边BC 和EF 的中点,已知AB =2DE ,AC =2DF ,∠BAC =∠EDF . 那么AG :DH = ,△ABC 与△DEF 的面积比是 .15、【基础题】把一个三角形改做成和它相似的三角形,如果面积缩小到原来的21倍,边长应缩小到原来的____倍. 16、【综合Ⅱ】如左下图在Rt △ABC 中, ∠ACB =90°,CD ⊥AB 于D ,若AD =1,BD =4,则CD = .17、【基础题】如右上图,一人拿着一支厘米小尺,站在距电线杆约30米的地方,把手臂向前伸直,小尺竖直,看到尺上12厘米的长度恰好遮住电线杆,已知手臂长约60厘米,则电线杆的高为 .18、【基础题】已知一本书的宽与长之比为黄金比,且这本书的长是20 cm ,则它的宽为_____cm.(结果保留根号) 19、【综合Ⅲ】顶角为36°的等腰三角形称为黄金三角形,如图,在△ABC 中,AB =AC =1,∠A =36°,BD 是三角形ABC 的角平分线,那么AD =__ 20、【提高题】如图,点1234A A A A ,,,在射线OA 上,点123B B B ,,在射线OB 上,且112233A B A B A B ∥∥,213243A B A B A B ∥∥.若212A B B △、323A B B △的面积分别为1、4,则图中三个阴影三角形面积之和为 .(第20题图)OA 1 A 2A 3A 4 AB B 1 B 2 B 3 14三、解答题21、【基础题】(2008无锡)如图,已知点E 是矩形ABCD 的边CD 上一点,BF ⊥AE 于点F ,求证△ABF ∽△EAD .22、【综合Ⅰ】如图27-106所示,已知E 为ABCD 的边CD 延长线上的一点,连接BE 交AC 于O ,交AD 于F .求证BO 2=OF ·OE .23、如图,在平面直角坐标系中,已知OA=12 cm ,OB=6 cm ,点P 从O 点开始沿OA 边向点A 以1cm/s 的速度移动,点Q 从点B 开始沿BO 边向点O 以1cm/s 的速度移动,如果P 、Q 同时出发,用t (单位:秒) 表示移动的时间(06t ≤≤),那么: (1)当t 为何值时, △POQ 与△AOB 相似?(2)设△POQ 的面积为y ,求y 关于t 的函数解析式。

图形相似单元测试题及答案

图形相似单元测试题及答案# 图形相似单元测试题及答案一、选择题1. 两个图形相似的条件是什么?A. 面积相等B. 周长相等C. 对应角相等,对应边成比例D. 形状相同答案:C2. 如果两个三角形的对应边长比为2:3,那么它们的面积比是多少?A. 2:3B. 4:9C. 3:2D. 9:4答案:B3. 在相似图形中,对应角的大小关系是什么?A. 相等B. 互为补角C. 互为余角D. 不确定答案:A二、填空题4. 如果一个图形放大到原来的两倍,则其面积变为原来的________倍。

答案:45. 相似三角形的判定定理包括SSS(边边边)、SAS(边角边)、_______。

答案:AAA(角角角)三、简答题6. 请解释什么是相似比,并给出一个例子。

答案:相似比是指两个相似图形对应边长的比值。

例如,如果三角形ABC与三角形DEF相似,且AB:DE=2:3,那么2:3就是它们的相似比。

7. 描述如何判断两个多边形是否相似。

答案:要判断两个多边形是否相似,需要满足以下条件:对应角相等,且对应边成比例。

如果一个多边形的每个角和每条边都与另一个多边形的相应角和边成相同的比例,那么这两个多边形就是相似的。

四、计算题8. 已知三角形ABC与三角形DEF相似,AB=6cm,DE=9cm,BC=8cm,求EF的长度。

答案:由于三角形ABC与三角形DEF相似,根据相似比,我们有AB:DE = BC:EF。

将已知数值代入,得到6:9 = 8:EF。

解这个比例,我们得到EF = (8 * 9) / 6 = 12cm。

结束语本单元测试题涵盖了图形相似的基本概念、判定方法和实际应用。

通过这些题目的练习,可以帮助学生加深对图形相似概念的理解和应用能力。

希望同学们能够认真完成这些题目,并在解答过程中发现问题、解决问题,从而提高自己的数学素养。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第27章相似单元测试一、相信自己的判断!(每小题3分,共30分) 1.下列命题不正确的是( )A .两个位似图形一定相似B .位似图形的对应边若不在同一条直线上,那么一定平行C .两个位似图形的位似比就是相似比D .两个相似图形一定是位似图形 2.如果三角形的三条边都扩大为原来的5倍,那么三角形的每个角( ) A.都扩大为原来的5倍 B.都扩大为原来的10倍 C.都扩大为原来的25倍 D.都与原来相等3.已知0432≠==c b a ,则c b a +的值为( )A. 45B. 54C.2D.21 4.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是( )5.如图△ABC ∽△AED ,其中∠ADE=∠ACB ,则下列各式成立的是( )A.BC EDAB AD = B. BC 2=BD·DE C.AD AE AC AB = D.BCDEAC AB =6.两相似三角形的最短边分别是5cm 和3cm ,它们的面积之差为322cm ,那么小三角形的面积为( )A .102cmB .142cmC .162cmD .182cm7.如图,在平行四边形ABCD 中,EF ∥AB ,DE ︰EA=2︰3,EF=4,则CD 的长为( ) A.163B.8C.10D.168.如图,把△ ABC 沿AB 边平移到△A'B'C'的位置,它们的重叠部分(即图中阴影部分)的面积是空白部分面积的一半,若AB=1,则此三角形移动的距离AA'是( )AB .12-C .2D .129.如图,P 是Rt △ABC 的斜边BC 上异于B 、C 的一点,过点P 作直线截△ABC ,使截得的三角形与△ABC 相似,满足这样条件的直线共有( ) A.1条 B.2条 C.3条 D.4条 10.如图,DE 是△ABC 的中位线,M 是DE 的中点,CM 的延长线交AB 于点N ,则S △DMN ∶S 四边形ANME 等于( )A .1∶5 B.1∶4 C.2∶5 D.2∶7二、仔细填一填!(每小题3分,共18分)11.已知两数4和8,试写出第三个数,使这三个数中,其中一个数是其余两个数的比例中项,第三个数是______________(只需写出一个). 12.如图,AD ∥EF ∥BC ,则图的相似三角形共有_____对.13.把一矩形纸片对折,如果对折后的矩形与原矩形相似,则原矩形纸片的长与宽之比为 .14.如图,在△ABC 中,BC=12cm ,点D 、F 是AB 的三等分点,点E 、G 是AC 的三等分点,则DE+FG+BC= ;15.已知△ABC 周长为1,连结△ABC 三边中点构成第二个三角形,再连结第二个三角形三边中点构成第三个三角形,以此类推,第2010个三角形的周长为 16.如图,正方形ABCD 的边长为2,AE=EB ,MN=1,线段MN 的两端在BC ,CD 上滑动,当CM=__________时,△AED 与以M ,N ,C 为顶点的三角形相似. 三、相信你的能力!(共40分) 17.(6分)我们已经越过了相似三角形,也知道,如果两个几何图形形状相同而大小不一定相同,我们就把它们叫做相似图形,比如两个正方形,它们的边长,对角线等所有元素都对应成比例,就可以称它们为相似图形. 现在给出下列4对几何图形:①两个圆;②两个菱形;③两个长方形; ④两个正六边形,请指出其中哪几对是相似图形,哪几对不是相似图形,并简单第说明理由.第8题第12题图第9题 第10题 第14题图A B C D F G E 第15题 第16题A D F E BC 第12题18.( 09郴州,8分)如图,在△ABC 中,已知DE ∥BC ,AD =4,DB =8,DE =3, (1)求ADAB的值;(2)求BC 的长.19.( 09庆阳,8分)如图,网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ACB 和△DCE 的顶点都在格点上,ED 的延长线交AB 于点F . (1)求证:△ACB ∽△DCE ;(2)求证:EF ⊥AB .20.(8分)如图,晚上,小亮在广场上乘凉.图中线段AB 表示站在广场上的小亮,线段PO 表示直立在广场上的灯杆,点P 表示照明灯.(1)请你在图中画出小亮在照明灯(P )照射下的影子.(2)如果灯杆高PO=12m ,小亮的身高AB=1.6m ,小亮与灯杆的距离BO=13m , 请求出小亮影子的长度.21.(09陕西,10分)小明想利用太阳光测量楼高,他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下: 如示意图(图21),小明边移动边观察,发现站到点E 处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得小明落在墙上的影子高度CD =1.2m ,CE =0.8m ,CA =30m (点A 、E 、C 在同一直线上). 已知小明的身高EF 是1.7m ,请你帮小明求出楼高AB (结果精确到0.1m ).四、能力提高题22.(12分)如图,平面直角坐标系中,直线AB 与x 轴,y 轴分别交于A(3,0),B(0,3)两点, ,点C 为线段AB 上的一动点,过点C 作CD ⊥x 轴于点D. (1)求直线AB 的解析式;(2)若.S 梯形OBCD=3,求点C 的坐标;(3)在第一象限内是否存在点P,使得以P,O,B 为顶点的三角形与△OBA 相似.若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.【参考答案】图21一、选择题:1.D2. D3. A4. B5. C6.D7. C8. B9. C 10.A 二、填空题:2或8;12. 3 ;13.2 ; 14. 24cm ; 15.200921 ;16.5或5; 三、解答题:17. 解:圆和正六边形为相似图形,因为它们的对应元素都成比例;菱形和长方形不是相似图形,因为它们的对应元素不一定都成比例.18. 解:(1)因为AD =4,DB =8,所以AB =AD +DB =4+8=12,所以41123AD AB == (2)因为DE ∥BC ,所以△ADE ∽△ABC ,所以ABADBC DE = 因为DE =3,所以313=BC 所以BC =919.证明:(1)∵23=DC AC ,2346==CE BC ∴ CFBCDC AC = 又 ∠ACB =∠DCE =90°,∴ △ACB ∽△DCE . (2)∵ △ACB ∽△DCE ,∴ ∠ABC =∠DEC .又 ∠ABC +∠A =90°,∴ ∠DEC +∠A =90°. ∴ ∠EF A =90°. ∴ EF ⊥AB .20.(1)如图所示:(2)由题意得,△ABD ∽△POD(米),即2BD 13BD BD121.6OB BD BDOP AB =∴+=∴+==DO DB OP AB 所以小亮影子的长度为2米.21.解:过点D 作DG ⊥AB ,分别交AB 、EF 于点G 、H ,(如图)则EH =AG =CD =1.2,DH =CE =0.8,DG =CA =30.∵ EF ∥AB , ∴ DGDHBG FH =. 由题意,知:FH =EF -EH =1.7-1.2=0.5. ∴308.05.0=BG ,解之,得BG =18.75. ∴ AB =BG +AG =18.75+1.2=19.95≈20.0. ∴ 楼高AB 约为20.0米.四、拓展提高22.解:(1)直线AB 解析式为:y=33-x+3.(2)∵23321=⨯=∆OB OA S AOB ,OBCD S 梯形=334,∴63=∆ACD S由OA=3OB ,得∠BAO =30°,AD=3CD .∴ ACD S ∆=21CD ×AD =223CD =63.可得CD =33.∴ AD=1,OD =2.∴C (2,33).(3)当∠OBP =Rt ∠时,如图①若△BOP ∽△OBA ,则∠BOP =∠BAO=30°,BP=3OB=3,∴1P (3,3).②若△BPO ∽△OBA ,则∠BPO =∠BAO=30°,OP=33OB=1.∴2P (1,3).当∠OPB =Rt ∠时③ 过点P 作OP ⊥BC 于点P(如图),此时△PBO ∽△OBA ,∠BOP =∠BAO =30° 过点P 作PM ⊥OA 于点M .在Rt △PBO 中,BP =21OB =23,OP =3BP =23.∵ 在Rt △P MO 中,∠OPM =30°,∴ OM =21OP =43;PM =3OM =433.∴3P (43,433).④若△POB ∽△OBA(如图),则∠OBP=∠BAO =30°,∠POM =30°.∴ PM =33OM =43.∴ 4P (43,43)(由对称性也可得到点4P 的坐标).当∠OPB =Rt ∠时,点P 在x轴上,不符合要求.综合得,符合条件的点有四个,分别是:1P (3,3),2P (1,3),3P (43,433),4P (43,43).。

相关文档
最新文档