北京市朝阳区2016届高三数学第二次(5月)综合练习试题 理
北京市朝阳区2016届高三第二次(5月)综合数学理试题含答案

数学答案(理工类) 2016.5一、选择题:(满分40分) 题号1 2 3 4 5 6 7 8 答案 A B B C D A D C二、填空题:(满分30分) 题号9 10 11 12 13 14 答案 33y x =±,4 3,16 6 (,2][0,1)-∞- 21960n n -+-,5 221+ (注:两空的填空,第一空3分,第二空2分)三、解答题:(满分80分)15.(本小题满分13分)解:(Ⅰ) 因为21cos 212sin 3A A =-=-,且 0A <<π, 所以6sin 3A =. 因为3,sin 6sin c A C ==,由正弦定理sin sin a c A C=,得66332a c =⋅=⨯=.…………………6分 (Ⅱ) 由6sin ,032A A π=<<得3cos 3A =. 由余弦定理2222cos a b c bc A =+-,得22150b b --=.解得5b =或3b =-(舍负).所以152sin 22ABC S bc A ∆==. …………………13分 解: (Ⅰ)由已知可得:上班的40个工作日中早高峰时段中度拥堵的频率为0.25,据此估计此人260个工作日早高峰时段(早晨7点至9点)中度拥堵的天数为260×0.25=65天. ……………………………………………………5分(Ⅱ)由题意可知X 的可能取值为30,35,40,50,70.且(30)0.05P X ==;(35)0.10P X ==;(40)0.45P X ==;(50)0.25P X ==;(70)0.15P X ==;所以300.05+350.1+400.45+500.25+700.15=46EX =⨯⨯⨯⨯⨯.…………………………………13分17.(本小题满分14分)解:(Ⅰ)如图1,在等腰梯形ABCD 中,由//BC AD ,122BC AD ==,60A ∠=︒,E 为AD 中点,所以ABE ∆为等边三角形.如图2,因为O 为BE 的中点,所以1A O BE ⊥.又因为平面1A BE ⊥平面BCDE ,且平面1A BE 平面BCDE BE =,所以1A O ⊥平面BCDE ,所以1A O CE ⊥.………4分(Ⅱ)连结OC ,由已知得CB CE =,又O 为BE 的中点,图2所以OC BE ⊥.由(Ⅰ)知1A O ⊥平面BCDE ,所以11,A O BE A O OC ⊥⊥,所以1,,OA OB OC 两两垂直. 以O 为原点,1,,OB OC OA 分别为,,x y z 轴建立空间直角坐标系(如图). 因为2BC =,易知13OA OC ==. 所以1(003),(100),(030),(100)A B C E -,,,,,,,,, 所以111(103),(033),(103)A B AC A E =-=-=--,,,,,,. 设平面1A CE 的一个法向量为(,,)x y z =n ,E C D B A 图1 A 1x y z F O BC D EPC B F OD A 1 E由 110,0 AC A E ⎧⋅=⎪⎨⋅=⎪⎩n n 得330, 30.y z x z ⎧-=⎪⎨--=⎪⎩ 即0, 30. y z x z -=⎧⎪⎨+=⎪⎩ 取1z =,得(3,1,1)=-n .设直线1A B 与平面1A CE 所成角为θ, 则133315sin cos ,5255A B θ--=〈〉===⨯n . 所以直线1A B 与平面1A CE 所成角的正弦值为155. …………………9分 (Ⅲ)假设在侧棱1A C 上存在点P ,使得//BP 平面1A OF .设11A P AC λ=,[0,1]λ∈.因为1111BP BA A P BA AC λ=+=+, 所以(103)(033)(1,3,33)BP λλλ=-+-=--,,,,. 易证四边形BCDE 为菱形,且CE BD ⊥,又由(Ⅰ)可知,1A O CE ⊥,所以CE ⊥平面1A OF . 所以(1,3,0)CE =--为平面1A OF 的一个法向量. 由(1,3,33)(1,3,0)130BP CE λλλ⋅=--⋅--=-=,得1[0,1]3λ=∈. 所以侧棱1A C 上存在点P ,使得//BP 平面1A OF ,且1113A P A C =. …………14分 18.(本小题满分13分)解:(Ⅰ)当3a =时, 21()42ln 2f x x x x =-+-,0x >. 2()4f x x x'=-+-. 则(1)1421f '=-+-=,而17(1)422f =-+=. 所以曲线C 在点(1,(1)f )处的切线方程为712y x -=-,即2250x y -+=. …………………………………………………………………………4分(Ⅱ)依题意当[]1,2x ∈时,曲线C 上的点(),x y 都在不等式组12,,32x x y y x ⎧⎪≤≤⎪≤⎨⎪⎪≤+⎩所表示的平面区域内,等价于当12x ≤≤时,3()2x f x x ≤≤+恒成立. 设()()g x f x x =-211)ln 2x ax a x (=-++-,[]1,2x ∈. 所以21(1)()=+=a x ax a g x x a+x x ---++-'(1)(1))=x x a x---(-. (1)当11a -≤,即2a ≤时,当[]1,2x ∈时,()0g x '≤,()g x 为单调减函数,所以(2)()(1)g g x g ≤≤. 依题意应有131,222221ln20,()()()g a g a a ⎧=-≤⎪⎨⎪=-++-≥⎩ 解得21a a ,.≤⎧⎨≥⎩所以12a ≤≤. (2)若 112a <-<,即23a <<时,当[)1,1x a ∈-,()0g x '≥,()g x 为单调增函 数,当x ∈(]1,2a -,()0g x '<,()g x 为单调减函数.由于3(1)2g >,所以不合题意. (3)当12a -≥,即3a ≥时,注意到15(1)22g a =-≥,显然不合题意. 综上所述,12a ≤≤. …………………………………………13分19.(本小题满分14分)解:(Ⅰ)依题意可知2a =,211c =-=,所以椭圆C 离心率为1222e ==. …………… 3分 (Ⅱ)因为直线l 与x 轴,y 轴分别相交于,A B 两点,所以000,0x y ≠≠. 令0y =,由0012x x y y +=得02x x =,则02(,0)A x .令0x =,由0012x xy y +=得01y y =,则01(0,)B y .所以OAB ∆的面积0000112122OAB S OA OB x y x y ∆===.因为点00(,)P x y 在椭圆:C 2212x y +=上,所以22012x y +=. 所以2002001222x y x y =+≥.即0022x y ≤,则0012x y ≥. 所以001122OAB S OA OB x y ∆==≥. 当且仅当22002x y =,即0021,2x y =±=±时,OAB ∆面积的最小值为2.…9分 (Ⅲ)①当00x =时,(0,1)P ±.当直线:1l y =时,易得(1,2)Q -,此时21F P k =-,21F Q k =-.因为22F Q F P k k =,所以三点2,,Q P F 共线.同理,当直线:1l y =-时,三点2,,Q P F 共线.②当00x ≠时,设点(,)Q m n ,因为点Q 与点1F 关于直线l 对称,所以000011,22202() 1.1212x m ny n x m y -⎧⋅+⋅=⎪⎪⎪⎨-⎪⋅-=--⎪+⎪⎩整理得000000240,220.x m y n x y m x n y +--=⎧⎨-+=⎩ 解得220002200000220044,448.4x x y m y x x y y n y x ⎧+-=⎪+⎪⎨+⎪=⎪+⎩ 所以点22000000222200004448(,)44x x y x y y Q y x y x +-+++.又因为200(1,)F P x y =-,220000002222200004448(1,)44x x y x y y F Q y x y x +-+=-++, 且 22200000000000002222220000004448(48)(48)(1)(1)(1)444x x y x y y x y x x y x y y x y x y x +-+--+--⋅-⋅-=⋅+++ 2200000220048(448)4x y x x y y x --+-=⋅+ 222200000002222220000008484(2)84280444y x y x y y y y x y x y x --+-++-⨯+=⋅=⋅=⋅=+++. 所以2//F P 2F Q .所以点2,,Q P F 三点共线.综上所述,点2,,Q P F 三点共线. …………………………………14分 20.(本小题满分13分)证明:(Ⅰ)当2n =时,{1,2,3,4}S =,令1{1,4}S =,2{2,3}S =,则12S S S =, 且对,(1,2),i x y S i x y ∀∈=>,都有i x y S -∉,所以S 具有性质P .相应的P 子集为1{1,4}S =,2{2,3}S =. ………… 3分 (Ⅱ)①若31,(1)2n x y T y x -∈≤<≤,由已知x y T -∉, 又31132n n x y --≤-<,所以x y T '-∉.所以'x y T T -∉. ②若,x y T '∈,可设3,3n n x s y r =+=+,,r s T ∈,且3112n r s -≤<≤, 此时31(3)(3)132n n nn x y s r s r --=+-+=-≤-<. 所以'x y T -∉,且x y s r T -=-∉.所以x y TT '-∉.③若y T ∈, 3n x s T '=+∈,s T ∈, 则313331(3)()3(1)3222n n n n nn x y s y s y -+--=+-=-+≥-+=>, 所以x y T -∉.又因为,y T s T ∈∈,所以s y T -∉.所以(3)()3n n x y s y s y T '-=+-=-+∉.所以'x y TT -∉. 综上,对于,'x y T T ∀∈,x y >,都有'x y T T -∉. …………… 8分 (Ⅲ)用数学归纳法证明.(1)由(Ⅰ)可知当2n =时,命题成立,即集合S 具有性质P .(2)假设n k =(2k ≥)时,命题成立.即1231{1,2,3,,}2k k S S S S -==, 且(1,,)i j S S i j n i j =∅≤≤≠,,(1,2,,),i x y S i k x y ∀∈=>,都有i x y S -∉. 那么 当1n k =+时,记{3|}k i i S s s S '=+∈,, 并构造如下 k +1个集合:111S S S '''=,222S S S '''=,,k k kS S S '''=, 1313131{1,2,,21}222k k k k S +---''=++⨯+, 显然()i j S S i j ''''=∅≠. 又因为131313122k k +--=⨯+,所以112131{1,2,3,,}2k k k S S S S ++-''''''''=. 下面证明 ¢¢S i 中任意两个元素之差不等于 ¢¢S i 中的任一元素(1,2,,1)i k =+.①若两个元素13131,22k k k r s S +--''++∈,31112k r s -≤<≤+, 则313131()()222k k k s r s r ---+-+=-≤, 所以13131()()22k k k s r S +--''+-+∉. ②若两个元素都属于i i i S S S '''=(1)i k ≤≤,由(Ⅱ)可知,i S ''中任意两个元素之差不等于i S ''中的任一数(1,2,,1)i k =+. 从而,1n k =+时命题成立.综上所述,对任意正整数2n ≥,集合S 具有性质P .………………………13分。
北京市朝阳区2014届高三下学期5月第二次综合练习数学理试题

北京市朝阳区2014届高三下学期5月第二次综合练习数学理试题2014.5(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.(1)已知集合{230}A x x =∈-≥R ,集合2{320}B x x x =∈-+<R ,则AB =(A )32x x ⎧⎫≥⎨⎬⎩⎭ (B )322x x ⎧⎫≤<⎨⎬⎩⎭(C ){}12x x << (D )322xx ⎧⎫<<⎨⎬⎩⎭(2)如果0a b >>,那么下列不等式一定成立的是(A )33log log a b < (B )11()()44a b>(C )11a b< (D )22a b <(3)执行如右图所示的程序框图.若输出的结果为2,则输入的正整数a 的可能取值的集合是 (A ){}1,2,3,4,5 (B ){}1,2,3,4,5,6 (C ){}2,3,4,5 (D ){}2,3,4,5,6(4)已知函数()π()sin (0,0,)2f x A x A ωϕωϕ=+>><的部分图象如图所示,则ϕ=(A )π6- (B )6π(C )π3- (D )π3(5)已知命题p :复数1iiz +=在复平面内所对应的点位于第四象限;命题q :0x ∃>,cos x x =,则下列命题中为真命题的是(A )()()p q ⌝∧⌝ (B )()p q ⌝∧ (C )()p q ∧⌝ (D )p q ∧(6)若双曲线2221(0)y x b b-=>的一条渐近线与圆22(2)1x y +-=至多有一个交点,则双曲线离心率的取值范围是(A )(1,2] (B )[2,)+∞ (C) (D))+∞ (7)某工厂分别生产甲、乙两种产品1箱时所需要的煤、电以及获得的纯利润如下表所示.若生产甲、乙两种产品可使用的煤不超过120吨,电不超过60千度,则可获得的最大纯利润和是(A )60万元 (B )80万元 (C )90万元 (D )100万元(8)如图放置的边长为1的正△PMN 沿边长为3的正方形ABCD 的各边内侧逆时针方向滚动.当△PMN 沿正方形各边滚动一周后,回到初始位 置时,点P 的轨迹长度是 (A )83π (B )163π(C )4π (D )5π第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.(9)已知平面向量a ,b 满足1=a ,2=b ,a 与b 的夹角为60︒,则2+=a b ____. (10)5(12)x -的展开式中3x 项的系数为___.(用数字表示)(11)如图,AB 为圆O 的直径,2AB =,过圆O 上一点M 作圆O 的切线,交AB 的延长线于点C ,过点M 作MD AB ⊥于点D ,若D 是OB 中点,则AC BC ⋅=_____. (12)由两个四棱锥组合而成的空间几何体的三视图如图所示,则其体积是 ;表面积BA是 .(13)已知数列{}n a 的前n 项和为n S ,且满足24()n n S a n *=-∈N ,则n a = ;数列2{log }n a 的前n 项和为 .(14)若存在正实数M ,对于任意(1,)x ∈+∞,都有()f x M ≤,则称函数()f x 在(1,)+∞上是有界函数.下列函数 ①1()1f x x =-; ②2()1x f x x =+; ③ln ()x f x x=; ④()sin f x x x =, 其中“在(1,)+∞上是有界函数”的序号为 .三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. (15)(本小题满分13分)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且3A 2π=,3b =,△ABC的面积为4. (Ⅰ)求边a 的长; (Ⅱ)求cos 2B 的值.(16)(本小题满分13分)A (第11题图)22俯视图侧视图正视图(第12题图)某市规定,高中学生三年在校期间参加不少于80小时的社区服务才合格.教育部门在全市随机抽取200位学生参加社区服务的数据,按时间段[)75,80,[)80,85,[)85,90,[)90,95,[]95,100(单位:小时)进行统计,其频率分布直方图如图所示.(Ⅰ)求抽取的200位学生中,参加社区服务时间不少于90小时的学生人数,并估计从全市高中学生中任意选取一人,其参 加社区服务时间不少于90小时的概率; (Ⅱ)从全市高中学生(人数很多)中任意选取3位学生,记ξ为3位学生中参加社区服务时间不少于90小时的人数.试求随机变量ξ的分布列和数学期望E ξ.(17)(本小题满分14分)如图,在四棱锥P ABCD -中,底面ABCD 是正方形,侧面PAD ⊥底面ABCD ,E ,F 分别为PA ,BD 中点,2PA PD AD ===.(Ⅰ)求证:EF ∥平面PBC ; (Ⅱ)求二面角E DF A --的余弦值; (Ⅲ)在棱PC 上是否存在一点G ,使GF ⊥平面EDF ?若存在,指出点G 的位置;若不存在,说明理由.(18)(本小题满分13分)已知函数21()e 1x f x ax +=-+,a ∈R .(Ⅰ)若曲线()y f x =在点(0,(0))f 处的切线与直线e 10x y ++=垂直,求a 的值; (Ⅱ)求函数()f x 的单调区间;(Ⅲ)设32e a <,当[0,1]x ∈时,都有()f x ≥1成立,求实数a 的取值范围.(19)(本小题满分14分)服务时间/小时FABCDP E已知椭圆C 的中心在原点O ,焦点在x 轴上,离心率为12,右焦点到右顶点的距离为1.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)是否存在与椭圆C 交于,A B 两点的直线l :()y kx m k =+∈R ,使得22OA OB OA OB +=-成立?若存在,求出实数m 的取值范围,若不存在,请说明理由.(20)(本小题满分13分)已知1x ,2x 是函数2()f x x mx t =++的两个零点,其中常数m ,t ∈Z ,设120()nn r rn r T x x n -*==∈∑N .(Ⅰ)用m ,t 表示1T ,2T ; (Ⅱ)求证:543T mT tT =--; (Ⅲ)求证:对任意的,n n T *∈∈N Z .北京市朝阳区2014届高三下学期5月第二次综合练习数学理试题2014.5一、选择题(满分40分)15.(本小题满分13分)解:(Ⅰ)由1sin 2ABC S bc A ∆=得,13sin 23ABC S c ∆2π=⨯⨯=. 所以5c =.由2222cos a b c bc A =+-得,22235235cos493a 2π=+-⨯⨯⨯=, 所以7a =. ……………7分(Ⅱ)由sin sin a bA B=3sin B =,所以sin B =所以271cos 212sin 98B B =-=. ……………13分 16.(本小题满分13分) 解:(Ⅰ)根据题意,参加社区服务时间在时间段[)90,95小时的学生人数为2000.060560⨯⨯=(人), 参加社区服务时间在时间段[]95,100小时的学生人数为2000.020520⨯⨯=(人). 所以抽取的200位学生中,参加社区服务时间不少于90小时的学生人数为80人. 所以从全市高中学生中任意选取一人,其参加社区服务时间不少于90小时的概率估计为6020802.2002005P +=== ……………5分(Ⅱ)由(Ⅰ)可知,从全市高中生中任意选取1人,其参加社区服务时间不少于90小时的概率为2.5由已知得,随机变量ξ的可能取值为0,1,2,3.所以00332327(0)()()55125P C ξ==⋅=; 11232354(1)()()55125P C ξ==⋅=;22132336(2)()()55125P C ξ==⋅=;3303238(3)()()55125P C ξ==⋅=.随机变量ξ的分布列为因为 ξ~2(3)5B ,,所以26355E ξ=⨯=. ……………13分 17.(本小题满分14分)证明:(Ⅰ)如图,连结AC .因为底面ABCD 是正方形, 所以AC 与BD 互相平分. 又因为F 是BD 中点, 所以F 是AC 中点.在△PAC 中,E 是PA 中点,F 是AC 中点,所以EF ∥PC .又因为EF ⊄平面PBC ,PC ⊂平面PBC ,所以EF ∥平面PBC . ……………4分 (Ⅱ)取AD 中点O .在△PAD 中,因为PA PD =, 所以PO AD ⊥.因为面PAD ⊥底面ABCD , 且面PAD面=ABCD AD ,所以PO ⊥面ABCD .因为OF ⊂平面ABCD 所以PO OF ⊥. 又因为F 是AC 中点,所以OF AD ⊥.如图,以O 为原点,,,OA OF OP 分别为,,x y z 轴建立空间直角坐标系.因为2PA PD AD ===,所以OP =,则(0,0,0)O ,(1,0,0)A ,(1,2,0)B ,(1,2,0)C -,(1,0,0)D -,P ,1(,0,)22E ,(0,1,0)F .于是(0,2,0)AB =,3(,0,22DE =,(1,1,0)DF =. 因为OP ⊥面ABCD,所以OP =是平面FAD 的一个法向量. 设平面EFD 的一个法向量是000=(,,)x y z n .E P DCBAF因为0,0,DF DE ⎧⋅=⎪⎨⋅=⎪⎩n n所以00000,30,2x y x z +=⎧⎪⎨+=⎪⎩即0000,.y x z =-⎧⎪⎨=⎪⎩ 令01x =则=(1,1,-n .所以cos ,OP OP OP ⋅<>===⋅n n n由图可知,二面角E-DF-A 为锐角,所以二面角E-DF-A …10分 (Ⅲ)假设在棱PC 上存在一点G ,使GF ⊥面EDF .设111(,,)G x y z ,则111=(,1,)FG x y z -. 由(Ⅱ)可知平面EDF 的一个法向量是=(1,1,-n . 因为GF ⊥面EDF ,所以=FG λn .于是,111,1,x y z λλ=-=-=,即111,1,x y z λλ==-=. 又因为点G 在棱PC 上,所以GC 与PC 共线. 因为(1,2,PC =-,111(+1,2,)CGx y z =-, 所以111212x y +--==. 所以1112λλ+---==,无解. 故在棱PC 上不存在一点G ,使GF ⊥面EDF 成立. ……………14分 18.(本小题满分13分)(Ⅰ)由已知得21()2e x f x a +'=-.因为曲线()f x 在点(0,(0))f 处的切线与直线e 10x y ++=垂直, 所以(0)e f '=.所以(0)2e e f a '=-=.所以e a =. ……………3分 (Ⅱ)函数()f x 的定义域是(),-∞+∞,21()2e x f x a +'=-.(1)当0a ≤时,()0f x '>成立,所以)(x f 的单调增区间为(),-∞+∞. (2)当0a >时,令()0f x '>,得11ln 222a x >-,所以()f x 的单调增区间是11(ln ,)222a -+∞; 令()0f x '<,得11ln 222a x <-,所以()f x 的单调减区间是11(,ln )222a -∞-.综上所述,当0a ≤时,)(x f 的单调增区间为(),-∞+∞;当0a >时,()f x 的单调增区间是11(ln,)222a -+∞, ()f x 的单调减区间是11(,ln )222a -∞-. ……………8分(Ⅲ)当0x =时,(0)e 11f =+≥成立,a ∈R . “当(0,1]x ∈时,21()e 11x f x ax +=-+≥恒成立”等价于“当(0,1]x ∈时,21e x a x+≤恒成立.”设21e ()x g x x +=,只要“当(0,1]x ∈时,min ()a g x ≤成立.”212(21)e ()x x g x x +-'=. 令()0g x '<得,12x <且0x ≠,又因为(0,1]x ∈,所以函数()g x 在1(0, )2上为减函数;令()0g x '>得,12x >,又因为(0,1]x ∈,所以函数()g x 在1(,1]2上为增函数.所以函数()g x 在12x =处取得最小值,且21()2e 2g =.所以22e a ≤. 又因为a 32e <, 所以实数a 的取值范围22(,e ]-∞. ……………13分(Ⅲ)另解:(1)当0a ≤时,由(Ⅱ)可知, ()f x 在[0,1]上单调递增,所以()(0)e 1f x f ≥=+.所以当0a ≤时,有()1f x ≥成立.(2)当02e a <≤时, 可得11ln 0222a -≤. 由(Ⅱ)可知当0a >时,()f x 的单调增区间是11(ln,)222a -+∞, 所以()f x 在[0,1]上单调递增,又()(0)e 1f x f ≥=+,所以总有()f x ≥1成立.(3)当32e 2e a <<时,可得110ln 1222a <-<. 由(Ⅱ)可知,函数()f x 在11[0,ln )222a -上为减函数,在11(ln ,1]222a -为增函数,所以函数()f x 在11ln 222a x =-处取最小值,且ln 211(ln )e ln 1ln 122222222a a a a a a af a -=-++=-+.当[0,1]x ∈时,要使()f x ≥1成立,只需ln 1122a aa -+≥, 解得22e a ≤.所以22e 2e a <≤. 综上所述,实数a 的取值范围22(,e ]-∞.19.(本小题满分14分)(Ⅰ)设椭圆C 的方程为22221x y a b +=()0a b >>,半焦距为c .依题意12c e a ==,由右焦点到右顶点的距离为1,得1a c -=. 解得1c =,2a =.所以2223b a c =-=.所以椭圆C 的标准方程是22143x y +=. ……………4分 (Ⅱ)解:存在直线l ,使得22OA OB OA OB +=-成立.理由如下:由22,1,43y kx m x y =+⎧⎪⎨+=⎪⎩得222(34)84120k x kmx m +++-=.222(8)4(34)(412)0km k m ∆=-+->,化简得2234k m +>.设1122(,),(,)A x y B x y ,则122834km x x k +=-+,212241234m x x k-=+. 若22OA OB OA OB +=-成立,即2222OA OB OA OB +=-,等价于0OA OB ⋅=.所以12120x x y y +=.1212()()0x x kx m kx m +++=,221212(1)()0k x x km x x m ++++=,222224128(1)03434m km k km m k k -+⋅-⋅+=++, 化简得,2271212m k =+. 将227112k m =-代入2234k m +>中,22734(1)12m m +->, 解得,234m >. 又由227121212m k =+≥,2127m ≥, 从而2127m ≥,m ≥m ≤ 所以实数m的取值范围是2(,[21,)7-∞+∞. ……………14分 20.(本小题满分13分)解:(Ⅰ)由12x x m +=-,12x x t =.因为120n n r r n r T xx -==∑,所以11112120r r r T x x x x m -===+=-∑. 222222************()r r r T x x x x x x x x x x m t -===++=+-=-∑. …………3分 (Ⅱ)由120k k r r k r T x x -==∑,得 545455512112214200r r r r r r T xx x x x x x T x --====+=+∑∑. 即55142T xT x =+,同理,44132T xT x =+.所以5241232x T x x T x =+.所以5142412312412343()()T x T x T x x T x x T x x T mT tT =+-=+-=--.……………8分 (Ⅲ)用数学归纳法证明.(1)当1,2n =时,由(Ⅰ)问知k T 是整数,结论成立. (2)假设当1,n k =-n k =(2k ≥)时结论成立,即1,k k T T -都是整数.由120k k r r k r T x x -==∑,得111112112200k kk rr k r r k k r r T x x x x x x ++--++====+∑∑.即1112k k k T x T x ++=+.所以112k k k T xT x -=+,121212k k k x T x x T x +-=+.所以11212112121()()k k k k k k T x T x T x x T x x T x x T +--=+-=+-. 即11k k k T mT tT +-=--.由1,k k T T -都是整数,且m ,t ∈Z ,所以1k T +也是整数. 即1n k =+时,结论也成立.由(1)(2)可知,对于一切n *∈N ,120nn r rr x x -=∑的值都是整数.………13分。
最新北京市东城区届高三5月综合练习理科数学试题(二)含答案.doc

北京市东城区2015-2016学年度第二学期高三综合练习(二)数学参考答案及评分标准 (理科)第Ⅰ卷(选择题 共40分)一、选择题(本大题共8小题,每小题5分,共40分)1.B2.C3.A4.D5.A6.C7.A8.D第Ⅱ卷(共110分)二、填空题(本大题共6小题,每小题5分,共30分) 9. 122a -<< 10. 5 11. 52 12. 0.4;13. 13. 31,22⎛⎤+ ⎥⎝⎦14. ①②④ 三、解答题(本大题共6小题,共80分)15.(本小题共13分)解:(Ⅰ)因为()3sin cos 12sin()+16f x x x x πωωω=++=+, 又()f x 的最小正周期为π,所以π2πω=,即ω=2. --------------------------------------------------------------------6分 (Ⅱ)由(Ⅰ)可知()2sin(2)+16f x x π=+, 因为02x π≤≤, 所以72666x πππ≤+≤. 由正弦函数的性质可知,当262x ππ+=,即6x π=时,函数()f x 取得最大值,最大值为f (6π)=3; 当7266x ππ+=时,即2=x π时,函数()f x 取得最小值,最小值为f (2π)=0. ------13分16.(本小题共14分)证明:(Ⅰ)因为ABC ∆是等腰直角三角形90CAB ∠=o ,E F ,分别为AC BC ,的中点, GD F EC 'CB A所以EF AE ⊥,EF C E '⊥.又因为AE C E E '⋂=,所以EF AEC '⊥平面.由于EF AB P ,所以有AB AEC '⊥平面. -------------------------4分 解:(Ⅱ)(i)取AC '中点D ,连接,,,DE EF FG GD ,由于GD 为ABC '∆中位线,以及EF 为ABC ∆中位线,所以四边形DEFG 为平行四边形.直线GF 与AC '所成角就是DE 与AC '所成角.所以四棱锥C ABFE '-体积取最大值时,C E '垂直于底面ABFE .此时AEC '∆为等腰直角三角形,ED 为中线,所以直线ED AC '⊥.又因为ED GF P ,所以直线GF 与AC '所成角为π2. -------------------------------------------------------10分 (ii) 因为四棱锥C ABFE '-体积取最大值,分别以EA EF EC '、、所在直线为x 轴、y 轴、z 轴,建立空间直角坐标系如图,则(0,0,)C a ',(,2,0)B a a ,(0,,0)F a ,(,2,)C B a a a '-,(0,,)C F a a '-.设平面C B F '的一个法向量为n =(x,y,z),由0,0C B C F ⎧⎪⎨⎪⎩'⋅='⋅=n n uuu r uuu r 得⎩⎨⎧=-=-+002az ay az ay ax , 取y =1,得x =-1,z =1.由此得到n =(-1,1,1). zy x F E C 'CB A同理,可求得平面C AE '的一个法向量m =(0,1,0). 所以 13cos 33⋅==n m .故平面C'AE 与平面C'BF 的平面角的夹角的余弦值为33.--------------------------------------14分17.(本小题共13分)解:(Ⅰ)根据投篮统计数据,在10场比赛中,甲球员投篮命中率超过0.5的场次有5场, 分别是4,5,6,7,10,所以在随机选择的一场比赛中,甲球员的投篮命中率超过0.5的概率是12. 在10场比赛中,乙球员投篮命中率超过0.5的场次有4场,分别是3,6,8,10, 所以在随机选择的一场比赛中,甲球员的投篮命中率超过0.5的概率是25. ---------------------------------------3分(Ⅱ)设在一场比赛中,甲、乙两名运动员恰有一人命中率超过0.5为事件A ,甲队员命中率超过0.5且乙队员命中率不超过0.5为事件1B ,乙队员命中率超过0.5且甲队员命中率不超过0.5为事件2B .则1213121()()()25252P A P B P B =+=⨯+⨯=.------------------------------------------------7分 (Ⅲ)X 的可能取值为0,1,2,3.00332327(0)()()55125P X C ===; 11232354(1)()()55125P X C ===; 22132336(2)()()55125P X C ===; 33328(3)()5125P X C ===; X 的分布列如下表: X0 1 2 3 P27125 54125 36125 812526355EX np ==⨯=. --------------------------------------------------------13分 18.(本小题共14分)解:(Ⅰ)222(31)()2(1)(2)22x x f x x x x x -++'=-+=>-++ , 当()0f x '>时,所以 2310x x ++<.解得 3522x -+-<<. 当()0f x '>时, 解得 352x -+>. 所以 ()f x 单调增区间为35(2,)2-+-,单调减区间为35(,)2-++∞.------------4分 (Ⅱ) 设2()()()2ln(2)(1)(1)(1)h x f x g x x x k x x =-=+-+-+>-, 当2k =时,由题意,当(1,)x ∈-+∞时,()0h x <恒成立.22(31)2(3)(1)()222x x x x h x x x -++-++'=-=++, ∴ 当1x >-时,()0h x '<恒成立,()h x 单调递减. 又(1)0h -=,∴ 当(1,)x ∈-+∞时,()(1)0h x h <-=恒成立,即()()0f x g x -<. ∴ 对于1x ∀>-,()()f x g x <恒成立. ---------------------------------8分(Ⅲ) 因为 222(31)2(6)22()22x x x k x k h x k x x -++++++'=-=-++.由(II)知,当k = 2时,f (x) < g (x)恒成立, 即对于∀x > –1,2 ln (x + 2) – (x + 1)2 < 2 (x + 1),不存在满足条件的x 0;当k > 2时,对于∀x > –1,x + 1 > 0,此时2 (x + 1) < k (x + 1).∴ 2 ln (x + 2) – (x + 1)2 < 2 (x + 1) < k (x + 1),即f (x) < g (x)恒成立, 不存在满足条件的x 0;当k < 2时,令t (x) = –2x 2 – (k + 6)x – (2k + 2),可知t (x)与h ' (x)符号相同,当x ∈ (x 0 , +∞)时,t (x) < 0,h ' (x) < 0,h (x)单调递减.∴ 当x ∈ (–1 , x 0)时,h (x) > h (–1) = 0,即f (x) – g (x) > 0恒成立.综上,k 的取值范围为(–∞ , 2). -------------------------------------------------------14分19.(本小题共13分)解:(Ⅰ)由题意,以椭圆短轴的两个端点和一个焦点为顶点的三角形是等腰直角三角形,所以 b c =, 222b a =, 则椭圆C 的方程为122222=+b y b x . 又因为椭圆C:过点A(2,1),所以112222=+bb ,故a=2,b=.2 所以 椭圆的的标准方程为12422=+y x . --------------------------------------------------------4分 (Ⅱ)222)(y p x MP +-=.因为 M(x,y)是椭圆C 上的动点,所以12422=+y x , 故 22)41(2222x x y -=-=. 所以 222222211()222(2) 2.222x MP x p x px p x p p =-+-=-++=--+ 因为M(x,y)是椭圆C 上的动点,所以 2≤x .(1) 若22≤p 即1≤p ,则当2x p =时MP 取最小值22p -,此时M 2(2,22)p p ±-.(2)若1p >,则当2x =时,MP 取最小值2-p ,此时M )0,2(.(3)若1p <-,则当2x =-时,MP 取最小值2+p ,此时M )0,2(-. -------13分20.(本小题共13分)(Ⅰ)由212(1)n n n n d a a a n ++=+-≥以及n n d a =可得:2120(1)n n a a n ++-=≥所以从第二项起为等比数列. 经过验证{}n a 为等比数列12n n a -=. -------------------2分(Ⅱ)由于1n d ≥所以有2121n n n a a a +++-≥.令1n n n c a a +=-则有11n n c c +-≥叠加得:4n c n ≥-所以有14n n a a n +-≥-,叠加可得:29102n n n a -+≥, 所以最小值为-5. --------------------------------------------------------6分(Ⅲ)由于1n d =,11a =, 21a =若11d =可得32a =,若11d =-可得30a =同理,若21d =可得44a =或42a =,若21d =-可得40a =或42a =-具体如下表所示7452321111010325⎧⎧⎧⎪⎨⎪⎪⎩⎪⎨⎪⎧⎪⎪⎨⎪⎪⎩⎪⎩⎨⎧⎧⎪⎨⎪⎪-⎪⎩⎪⎨⎪-⎧⎪-⎪⎨⎪-⎩⎪⎩⎩所以{}n a 可以为112211221122L L或110011001100L L此时相应的{}n d 为 11111111----L L或11111111----L L------------------------------------------------------13分。
北京市东城区2016届高三5月综合练习理科数学试题(二)含答案

北京市东城区2015-2016学年度第二学期高三综合练习(二)数学参考答案及评分标准 (理科)第Ⅰ卷(选择题 共40分)一、选择题(本大题共8小题,每小题5分,共40分)1.B2.C3.A4.D5.A6.C7.A8.D第Ⅱ卷(共110分)二、填空题(本大题共6小题,每小题5分,共30分) 9. 122a -<< 10. 5 11. 52 12. 0.4;13. 13. 31,22⎛⎤+ ⎥⎝⎦14. ①②④ 三、解答题(本大题共6小题,共80分)15.(本小题共13分)解:(Ⅰ)因为()3sin cos 12sin()+16f x x x x πωωω=++=+, 又()f x 的最小正周期为π,所以π2πω=,即ω=2. --------------------------------------------------------------------6分(Ⅱ)由(Ⅰ)可知()2sin(2)+16f x x π=+, 因为02x π≤≤, 所以72666x πππ≤+≤. 由正弦函数的性质可知,当262x ππ+=,即6x π=时,函数()f x 取得最大值,最大值为f (6π)=3; 当7266x ππ+=时,即2=x π时,函数()f x 取得最小值,最小值为f (2π)=0. ------13分16.(本小题共14分)证明:(Ⅰ)因为ABC ∆是等腰直角三角形90CAB ∠=o ,E F ,分别为AC BC ,的中点, GD F EC 'CB A所以EF AE ⊥,EF C E '⊥.又因为AE C E E '⋂=,所以EF AEC '⊥平面.由于EF AB P ,所以有AB AEC '⊥平面. -------------------------4分 解:(Ⅱ)(i)取AC '中点D ,连接,,,DE EF FG GD ,由于GD 为ABC '∆中位线,以及EF 为ABC ∆中位线,所以四边形DEFG 为平行四边形.直线GF 与AC '所成角就是DE 与AC '所成角.所以四棱锥C ABFE '-体积取最大值时,C E '垂直于底面ABFE .此时AEC '∆为等腰直角三角形,ED 为中线,所以直线ED AC '⊥.又因为ED GF P ,所以直线GF 与AC '所成角为π2. -------------------------------------------------------10分 (ii) 因为四棱锥C ABFE '-体积取最大值,分别以EA EF EC '、、所在直线为x 轴、y 轴、z 轴,建立空间直角坐标系如图,则(0,0,)C a ',(,2,0)B a a ,(0,,0)F a ,(,2,)C B a a a '-,(0,,)C F a a '-.设平面C B F '的一个法向量为n =(x,y,z),由0,0C B C F ⎧⎪⎨⎪⎩'⋅='⋅=n n uuu r uuu r 得⎩⎨⎧=-=-+002az ay az ay ax , 取y =1,得x =-1,z =1.由此得到n =(-1,1,1). zy x F E C 'CB A同理,可求得平面C AE '的一个法向量m =(0,1,0). 所以 13cos 33⋅==n m .故平面C'AE 与平面C'BF 的平面角的夹角的余弦值为33.--------------------------------------14分17.(本小题共13分)解:(Ⅰ)根据投篮统计数据,在10场比赛中,甲球员投篮命中率超过0.5的场次有5场, 分别是4,5,6,7,10,所以在随机选择的一场比赛中,甲球员的投篮命中率超过0.5的概率是12. 在10场比赛中,乙球员投篮命中率超过0.5的场次有4场,分别是3,6,8,10, 所以在随机选择的一场比赛中,甲球员的投篮命中率超过0.5的概率是25. ---------------------------------------3分(Ⅱ)设在一场比赛中,甲、乙两名运动员恰有一人命中率超过0.5为事件A ,甲队员命中率超过0.5且乙队员命中率不超过0.5为事件1B ,乙队员命中率超过0.5且甲队员命中率不超过0.5为事件2B .则1213121()()()25252P A P B P B =+=⨯+⨯=.------------------------------------------------7分 (Ⅲ)X 的可能取值为0,1,2,3.00332327(0)()()55125P X C ===; 11232354(1)()()55125P X C ===; 22132336(2)()()55125P X C ===; 33328(3)()5125P X C ===; X 的分布列如下表: X0 1 2 3 P27125 54125 36125 812526355EX np ==⨯=. --------------------------------------------------------13分 18.(本小题共14分)解:(Ⅰ)222(31)()2(1)(2)22x x f x x x x x -++'=-+=>-++ , 当()0f x '>时,所以 2310x x ++<.解得 3522x -+-<<. 当()0f x '>时, 解得 352x -+>. 所以 ()f x 单调增区间为35(2,)2-+-,单调减区间为35(,)2-++∞.------------4分 (Ⅱ) 设2()()()2ln(2)(1)(1)(1)h x f x g x x x k x x =-=+-+-+>-, 当2k =时,由题意,当(1,)x ∈-+∞时,()0h x <恒成立.22(31)2(3)(1)()222x x x x h x x x -++-++'=-=++, ∴ 当1x >-时,()0h x '<恒成立,()h x 单调递减. 又(1)0h -=,∴ 当(1,)x ∈-+∞时,()(1)0h x h <-=恒成立,即()()0f x g x -<. ∴ 对于1x ∀>-,()()f x g x <恒成立. ---------------------------------8分(Ⅲ) 因为 222(31)2(6)22()22x x x k x k h x k x x -++++++'=-=-++.由(II)知,当k = 2时,f (x) < g (x)恒成立, 即对于∀x > –1,2 ln (x + 2) – (x + 1)2 < 2 (x + 1),不存在满足条件的x 0;当k > 2时,对于∀x > –1,x + 1 > 0,此时2 (x + 1) < k (x + 1).∴ 2 ln (x + 2) – (x + 1)2 < 2 (x + 1) < k (x + 1),即f (x) < g (x)恒成立, 不存在满足条件的x 0;当k < 2时,令t (x) = –2x 2 – (k + 6)x – (2k + 2),可知t (x)与h ' (x)符号相同,当x ∈ (x 0 , +∞)时,t (x) < 0,h ' (x) < 0,h (x)单调递减.∴ 当x ∈ (–1 , x 0)时,h (x) > h (–1) = 0,即f (x) – g (x) > 0恒成立.综上,k 的取值范围为(–∞ , 2). -------------------------------------------------------14分19.(本小题共13分)解:(Ⅰ)由题意,以椭圆短轴的两个端点和一个焦点为顶点的三角形是等腰直角三角形,所以 b c =, 222b a =, 则椭圆C 的方程为122222=+b y b x . 又因为椭圆C:过点A(2,1),所以112222=+bb ,故a=2,b=.2 所以 椭圆的的标准方程为12422=+y x . --------------------------------------------------------4分 (Ⅱ)222)(y p x MP +-=. 因为 M(x,y)是椭圆C 上的动点,所以12422=+y x , 故 22)41(2222x x y -=-=. 所以 222222211()222(2) 2.222x MP x p x px p x p p =-+-=-++=--+ 因为M(x,y)是椭圆C 上的动点,所以 2≤x .(1) 若22≤p 即1≤p ,则当2x p =时MP 取最小值22p -,此时M 2(2,22)p p ±-.(2)若1p >,则当2x =时,MP 取最小值2-p ,此时M )0,2(.(3)若1p <-,则当2x =-时,MP 取最小值2+p ,此时M )0,2(-. -------13分20.(本小题共13分)(Ⅰ)由212(1)n n n n d a a a n ++=+-≥以及n n d a =可得: 2120(1)n n a a n ++-=≥所以从第二项起为等比数列. 经过验证{}n a 为等比数列12n n a -=. -------------------2分(Ⅱ)由于1n d ≥所以有2121n n n a a a +++-≥.令1n n n c a a +=-则有11n n c c +-≥叠加得:4n c n ≥-所以有14n n a a n +-≥-,叠加可得:29102n n n a -+≥,所以最小值为-5. --------------------------------------------------------6分(Ⅲ)由于1n d =,11a =, 21a =若11d =可得32a =,若11d =-可得30a =同理,若21d =可得44a =或42a =,若21d =-可得40a =或42a =-具体如下表所示7452321111010325⎧⎧⎧⎪⎨⎪⎪⎩⎪⎨⎪⎧⎪⎪⎨⎪⎪⎩⎪⎩⎨⎧⎧⎪⎨⎪⎪-⎪⎩⎪⎨⎪-⎧⎪-⎪⎨⎪-⎩⎪⎩⎩所以{}n a 可以为112211221122L L或110011001100L L此时相应的{}n d 为 11111111----L L或11111111----L L------------------------------------------------------13分。
2016届北京市东城区高三5月综合练习(二模)数学(理科)

2016届北京市东城区高三5月综合练习(二模)数学(理科)一、选择题(共8小题;共40分)1. 已知集合,,则A. B. C. D.2. 已知命题有,则为A. ,B. ,C. ,D. ,3. 如图,为正三角形,,底面,若,,则多面体在平面上的投影的面积为A. B. C. D.4. 若向量,,满足条件与共线,则的值A. B. C. D.5. 成等差数列的三个正数的和等于,并且这三个数分别加上、、后成为等比数列中的、、,则数列的通项公式为A. B. C. D.6. 一名顾客计划到商场购物,他有三张优惠劵,每张优惠券只能购买一件商品.根据购买商品的标价,三张优惠券的优惠方式不同,具体如下:优惠劵:若标价超过元,则付款时减免标价的;优惠劵:若标价超过元,则付款时减免元;优惠劵:若标价超过元,则超过元的部分减免.若顾客购买某商品后,使用优惠劵比优惠劵、优惠劵减免的都多,则他购买的商品的标价可能为A. 元B. 元C. 元D. 元7. 已知函数则的值为A. B. C. D.8. 集合,若,已知定义集合A中元素间的运算,称为“”运算,此运算满足以下运算规律:任意有任意有其中任意有任意有,且成立的充分必要条件是为向量.如果,那么下列运算属于“”正确运算的是A. B.C. D.二、填空题(共6小题;共30分)9. 设是虚数单位,复数所对应的点在第一象限,则实数的取值范围为______.10. 设变量,满足约束条件则目标函数的最大值为______.11. 已知直线(为参数)与直线相交于点,又点,则______.12. 为了调查某厂工人生产某种产品的能力,随机抽查了位工人某天生产该产品的数量.产品数量的分组区间为,,,,由此得到频率分布直方图如图.则产品数量位于范围内的频率为______;这名工人中一天生产该产品数量在的人数是______.13. 若点和点分别为双曲线的中心和左焦点,点为双曲线右支上的任意一点,则的取值范围为______.14. 已知函数,关于此函数的说法正确的序号是______.为周期函数;有对称轴;为的对称中心;.三、解答题(共6小题;共78分)15. 已知函数,且函数的最小正周期为.(1)求的值;(2)求在区间上的最大值和最小值.16. 如图,是等腰直角三角形,,,,分别为,的中点,沿将折起,得到如图所示的四棱锥.(1)求证:平面;(2)当四棱锥体积取最大值时,(i)若为中点,求异面直线与所成角;(ii)在中交于,求二面角的余弦值.17. 在2015-2016赛季CBA联赛中,某队甲、乙两名球员在前场比赛中投篮命中情况统计如下表(注:表中分数,表示投篮次数,表示命中次数),假设各场比赛相互独立.根据统计表的信息:(1)从上述比赛中等可能随机选择一场,求甲球员在该场比赛中投篮命中率大于的概率;(2)试估计甲、乙两名运动员在下一场比赛中恰有一人命中率超过的概率;(3)在接下来的场比赛中,用表示这场比赛中乙球员命中率超过的场次,试写出的分布列,并求的数学期望.18. 已知.(1)求的单调区间;(2)当时,求证:对于,恒成立;(3)若存在,使得当时,恒有成立,试求的取值范围.19. 已知椭圆过点,且以椭圆短轴的两个端点和一个焦点为顶点的三角形是等腰直角三角形.(1)求椭圆的标准方程;(2)设是椭圆上的动点,是轴上的定点,求的最小值及取最小值时点的坐标.20. 数列中,定义:,.(1)若,,求;(2)若,,求证此数列满足;(3)若,且数列的周期为,即,写出所有符合条件的.答案第一部分1. C2. C3. A4. D5. A6. C7. A8. D第二部分9.10.11.12. ;13.14.第三部分15. (1)因为,又的最小正周期为,所以,即.(2)由⑴可知,因为,所以.由正弦函数的性质可知,当,即时,函数取得最大值,最大值为;当时,即时,函数取得最小值,最小值为.16. (1)因为是等腰直角三角形,,,分别为,的中点,所以,.又因为所以平面.由于所以有平面.(2)(i)取中点,中点,连接,,,为中位线,以及为中位线,所以四边形为平行四边形.直线与所成角就是与所成角.所以四棱锥体积取最大值时,垂直于底面.此时为等腰直角三角形,为中线,所以直线.又因为所以直线与所成角为.(ii)因为四棱锥体积取最大值,分别以,,所在直线为轴、轴、轴,建立空间直角坐标系如图,,,,,.设平面的一个法向量为由得取,得,.由此得到.同理,可求得平面的一个法向量.所以.故平面与平面二面角的平面角的余弦值为.17. (1)根据投篮统计数据,在场比赛中,甲球员投篮命中率超过的场次有场,分别是,,,,,所以在随机选择的一场比赛中,甲球员的投篮命中率超过的概率是.在场比赛中,乙球员投篮命中率超过的场次有场,分别是,,,,所以在随机选择的一场比赛中,乙球员的投篮命中率超过的概率是.(2)设在一场比赛中,甲、乙两名运动员恰有一人命中率超过为事件,甲队员命中率超过且乙队员命中率不超过为事件,乙队员命中率超过且甲队员命中率不超过为事件.则.(3)的可能取值为,,,.;;;;的分布列如下表:.18. (1)当时,所以.解得.当时,解得.所以单调增区间为,单调减区间为.(2)设当时,由题意,当时,恒成立.所以当时,恒成立,单调递减.又所以当时,恒成立,即.所以对于,恒成立.(3)因为.由⑵知,当时,恒成立,即对于,,不存在满足条件的;当时,对于,,此时.所以,即恒成立,不存在满足条件的;当时,令,可知与符号相同,为一开口向下的抛物线,且当时, .又,所以必存在,使得 .当时,,,单调递增;当时,,,单调递减.当时,,即恒成立.综上,的取值范围为.19. (1)由题意,以椭圆短轴的两个端点和一个焦点为顶点的三角形是等腰直角三角形,所以,则椭圆的方程为.又因为椭圆过点,所以,故,.所以椭圆的的标准方程为.(2).因为是椭圆上的动点,所以,故.所以.因为是椭圆上的动点,所以.⑴若即,则当时取最小值,此时.⑵若,则当时,取最小值,此时.⑶若,则当时,取最小值,此时.20. (1)由以及可得:,所以从第二项起为等比数列.经过验证为等比数列.(2)由于所以有.令则有叠加得:,所以有,叠加可得:,所以最小值为.(3)由于,,,若可得,若可得,同理,若可得或,若可得或,具体如下表所示:所以可以为或此时相应的为或。
北京市东城区2016届高三数学5月综合练习试题(二)理

北京市东城区2015-2016学年度第二学期高三综合练习(二)数学 (理科)学校_____________班级_______________姓名______________考号___________ 本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷1至2页,第Ⅱ卷3至5页,共150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题 共40分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)1.集合{1234}A =,,,,{|3}B x R x =∈≤,则=A B I A.{1234},,, B. {123},, C. {23}, D.{14}, 2.已知命题p :∃x ∈R 有sinx ≥1,则﹁p 为A. sin 1x R x ∀∈≤,B.sin 1x R x ∃∈<,C. sin 1x R x ∀∈<,D.,sin 1x R x ∃∈≤3.如图,ABC V 为正三角形,111////AA BB CC ,1CC ⊥底面ABC V ,若1122BB AA ==,113AB CC AA ==,则多面体111ABC A B C -在平面11A ABB 上的投影的面积为A.274 B. 92 C. 9 D. 2724.若向量=(1,0)a ,=(2,1)b ,=(,1)x c 满足条件3a -b 与c 共线,则x 的值A. 1B. -3C. -2D. -15.成等差数列的三个正数的和等于6,并且这三个数分别加上3、6、13后 成 为等比数列{}n b 中的b 、b 、b ,则数列{}n b 的通项公式为A. 12n n b -= B. 13n n b -= C. 22n n b -=D. 23n n b -=6.一名顾客计划到商场购物,他有三张优惠劵,每张优惠券只能购买一件商品。
2016年北京市朝阳区高考数学二模试卷(理科)(解析版)
2016年北京市朝阳区高考数学二模试卷(理科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.(5分)已知集合A={x|1<2x<4},B={x|x﹣1≥0},则A∩B=()A.{x|1≤x<2}B.{x|0<x≤1}C.{x|0<x<1}D.{x|1<x<2} 2.(5分)已知复数z=(i是虚数单位),则z在复平面上对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)执行如图所示的程序框图,输出的S值为()A.6B.10C.14D.154.(5分)已知非零向量,,“∥”是“∥(+)”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件5.(5分)同时具有性质:①最小正周期是π;②图象关于直线x=对称;③在区间上是单调递增函数”的一个函数可以是()A.B.C.D.6.(5分)已知函数f(x)=(a>0且a≠1)的最大值为1,则a的取值范围是()A.B.(0,1)C.D.(1,+∞)7.(5分)某学校高三年级有两个文科班,四个理科班,现每个班指定1人,对各班的卫生进行检查,若每班只安排一人检查,且文科班学生不检查文科班,理科班学生不检查自己所在的班,则不同安排方法的种数是()A.48B.72C.84D.1688.(5分)已知正方体ABCD﹣A1B1C1D1的棱长为2,E是棱D1C1的中点,点F 在正方体内部或正方体的表面上,且EF∥平面A1BC1,则动点F的轨迹所形成的区域面积是()A.B.2C.3D.4二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9.(5分)双曲线C:=1的渐近线方程是;若抛物线y2=2px(p >0)的焦点与双曲线C的一个焦点重合,则p=.10.(5分)如图,P为⊙O外一点,P A是⊙O的切线,A为切点,割线PBC与⊙O相交于B,C两点,且PC=3P A,D为线段BC的中点,AD的延长线交⊙O于点E.若PB=1,则P A的长为;AD•DE的值是.11.(5分)已知等边△ABC的边长为3,D是BC边上一点,若BD=1,则的值是.12.(5分)已知关于x,y的不等式组所表示的平面区域D为三角形区域,则实数k的取值范围是.13.(5分)为了响应政府推进“菜篮子”工程建设的号召,某经销商投资60万元建了一个蔬菜生产基地.第一年支出各种费用8万元,以后每年支出的费用比上一年多2万元.每年销售蔬菜的收入为26万元.设f(n)表示前n年的纯利润(f(n)=前n年的总收入﹣前n年的总费用支出﹣投资额),则f (n)=(用n表示);从第年开始盈利.14.(5分)在平面直角坐标系xOy中,以点A(2,0),曲线y=上的动点B,第一象限内的点C,构成等腰直角三角形ABC,且∠A=90°,则线段OC长的最大值是.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13分)在△ABC中,角A,B,C的对边分别是a,b,c,已知cos2A=﹣,c=,sin A=sin C.(Ⅰ)求a的值;(Ⅱ)若角A为锐角,求b的值及△ABC的面积.16.(13分)交通指数是交通拥堵指数的简称,是综合反映某区域道路网在某特定时段内畅通或拥堵实际情况的概念性指数值.交通指数范围为(0,10),五个级别规定如下:某人在工作日上班出行每次经过的路段都在同一个区域内,他随机记录了上班的40个工作日早高峰时段(早晨7点至9点)的交通指数(平均值),其统计结果如直方图所示.(Ⅰ)据此估计此人260个工作日中早高峰时段(早晨7点至9点)中度拥堵的天数;(Ⅱ)若此人早晨上班路上所用时间近似为:畅通时30分钟,基本畅通时35分钟,轻度拥堵时40分钟,中度拥堵时50分钟,严重拥堵时70分钟,以直方图中各种路况的频率作为每天遇到此种路况的概率,求此人上班路上所用时间X的数学期望.17.(14分)如图1,在等腰梯形ABCD中,BC∥AD,BC=AD=2,∠A=60°,E为AD中点,点O,F分别为BE,DE的中点.将△ABE沿BE折起到△A1BE 的位置,使得平面A1BE⊥平面BCDE(如图2).(Ⅰ)求证:A1O⊥CE;(Ⅱ)求直线A1B与平面A1CE所成角的正弦值;(Ⅲ)侧棱A1C上是否存在点P,使得BP∥平面A1OF?若存在,求出的值;若不存在,请说明理由.18.(13分)已知函数f(x)=﹣+(a+1)x+(1﹣a)lnx,a∈R.(Ⅰ)当a=3时,求曲线C:y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)当x∈[1,2]时,若曲线C:y=f(x)上的点(x,y)都在不等式组所表示的平面区域内,试求a的取值范围.19.(14分)在平面直角坐标系xOy中,点P(x0,y0)(y0≠0)在椭圆C:=1上,过点P的直线l的方程为y=1.(Ⅰ)求椭圆C的离心率;(Ⅱ)若直线l与x轴、y轴分别相交于A,B两点,试求△OAB面积的最小值;(Ⅲ)设椭圆C的左、右焦点分别为F1,F2,点Q与点F1关于直线l对称,求证:点Q,P,F2三点共线.20.(13分)已知集合S=(n≥2,且n∈N*).若存在非空集合S1,S2,…,S n,使得S=S1∪S2∪…∪S n,且S i∩S j=∅(1≤i,j≤n,i≠j),并∀x,y∈S i(i=1,2,…,n),x>y,都有x﹣y∉S i,则称集合S具有性质P,S i(i=1,2,…,n)称为集合S的P子集.(Ⅰ)当n=2时,试说明集合S具有性质P,并写出相应的P子集S1,S2;(Ⅱ)若集合S具有性质P,集合T是集合S的一个P子集,设T′={s+3n|s∈T},求证:∀x,y∈T∪T′,x>y,都有x﹣y∉T∪T′;(Ⅲ)求证:对任意正整数n≥2,集合S具有性质P.2016年北京市朝阳区高考数学二模试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.(5分)已知集合A={x|1<2x<4},B={x|x﹣1≥0},则A∩B=()A.{x|1≤x<2}B.{x|0<x≤1}C.{x|0<x<1}D.{x|1<x<2}【考点】1E:交集及其运算.【解答】解:由A中不等式变形得:20=1<2x<4=22,解得:0<x<2,即A={x|0<x<2},由B中不等式解得:x≥1,即B={x|x≥1},则A∩B={x|1≤x<2},故选:A.2.(5分)已知复数z=(i是虚数单位),则z在复平面上对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】A4:复数的代数表示法及其几何意义.【解答】解:复数z====﹣+i,在复平面内对应点为(﹣,),此点位于第二象限,故选:B.3.(5分)执行如图所示的程序框图,输出的S值为()A.6B.10C.14D.15【考点】EF:程序框图.【解答】解:模拟执行程序,可得k=2,S=1满足条件k<5,执行循环体,S=3,k=3满足条件k<5,执行循环体,S=6,k=4满足条件k<5,执行循环体,S=10,k=5不满足条件k<5,退出循环,输出S的值为10.故选:B.4.(5分)已知非零向量,,“∥”是“∥(+)”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【考点】29:充分条件、必要条件、充要条件.【解答】解:非零向量,,由∥,可得存在非0实数k使得,∴==,∴∥(+),反之:由∥(+),可得存在非0实数k使得=k,化为=(k﹣1),∴.∴“∥”是“∥(+)”的充要条件,故选:C.5.(5分)同时具有性质:①最小正周期是π;②图象关于直线x=对称;③在区间上是单调递增函数”的一个函数可以是()A.B.C.D.【考点】H2:正弦函数的图象.【解答】解:对于y=cos(+),它的周期为=4π,故不满足条件.对于y=sin(2x+),在区间上,2x+∈[,],故该函数在区间上不是单调递增函数,故不满足条件.对于y=cos(2x﹣),当x=时,函数y=,不是最值,故不满足②它的图象关于直线x=对称,故不满足条件.对于y=sin(2x﹣),它的周期为=π,当x=时,函数y=1,是函数的最大值,满足它的图象关于直线x=对称;且在区间上,2x﹣∈[,],故该函数在区间上是单调递增函数,满足条件.故选:D.6.(5分)已知函数f(x)=(a>0且a≠1)的最大值为1,则a的取值范围是()A.B.(0,1)C.D.(1,+∞)【考点】3H:函数的最值及其几何意义.【解答】解:∵当x≤2时,f(x)=x﹣1,∴f(x)max=f(2)=1∵函数f(x)=(a>0且a≠1)的最大值为1∴当x>2时,2+log a x≤1.∴,解得a∈[,1)故选:A.7.(5分)某学校高三年级有两个文科班,四个理科班,现每个班指定1人,对各班的卫生进行检查,若每班只安排一人检查,且文科班学生不检查文科班,理科班学生不检查自己所在的班,则不同安排方法的种数是()A.48B.72C.84D.168【考点】D3:计数原理的应用.【解答】解:第一步选2名理科班的学生检查文科班,有A42=12种,第二步,分三类,第1类,2名文科生检查剩下的2名理科生所在的班级,2名理科生检查另2名理科生所在的班级,有A22A22=4种,第2类,2名文科生检查去文科班检查的2名理科生所在的班级,剩下的2名理科生互查所在的班级,有A22A11=2种,第3类,2名文科生一人去检查去文科班检查的2名理科生所在的班级的一个和一人去查剩下的2名理科生其中一个所在的班级,有A21A21A21=8种,根据分类分步计数原理可得,共有12×(4+2+8)=168种不同安排方法故选:D.8.(5分)已知正方体ABCD﹣A1B1C1D1的棱长为2,E是棱D1C1的中点,点F 在正方体内部或正方体的表面上,且EF∥平面A1BC1,则动点F的轨迹所形成的区域面积是()A.B.2C.3D.4【考点】L2:棱柱的结构特征.【解答】解:如图所示:分别取CC1、BC、AB、AA1、A1D1的中点G、H、M、N、K,并连同点E顺次链接,根据EG为△C1CD1的中位线,可得EG∥CD1,而CD1∥A1B,∴EG∥A1B.∵A1B⊂平面A1BC1,EG⊄平面A1BC1,∴EG∥平面A1BC1 .同理可证,GH、HM、MN、NK、KE都平行于平面A1BC1,由题意可得,点F的轨迹为正六边形EGHMNK,该该正六边形EGHMNK的边长为,故该正六边形EGHMNK的面积为6•()=3,故选:C.二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9.(5分)双曲线C:=1的渐近线方程是;若抛物线y2=2px(p>0)的焦点与双曲线C的一个焦点重合,则p=4.【考点】KC:双曲线的性质.【解答】解:在双曲线中,令1为0得,=0,即双曲线的渐近线为,在双曲线中c2=3+1=4,即c=2,则双曲线的焦点坐标为(2,0)或(﹣2,0),则抛物线的焦点坐标为(2,0),即=2,则p=4,故答案为:,410.(5分)如图,P为⊙O外一点,P A是⊙O的切线,A为切点,割线PBC与⊙O相交于B,C两点,且PC=3P A,D为线段BC的中点,AD的延长线交⊙O于点E.若PB=1,则P A的长为3;AD•DE的值是16.【考点】NC:与圆有关的比例线段.【解答】解:∵P A是切线,A为切点,割线PBC与⊙O相交于点B,C,∴P A2=PB•PC,∵PC=3P A,PB=1,∴P A2=1•3P A,∴P A=3;∵P A2=PB•PC,PC=3P A,∴P A=3PB,∴4PB=BD,∴BD=4,∴AD•DE=BD•DC=BD2=16.故答案为:3,16.11.(5分)已知等边△ABC的边长为3,D是BC边上一点,若BD=1,则的值是6.【考点】9O:平面向量数量积的性质及其运算.【解答】解:=3×3×cos60°=.=.∴=,∴=()=+==6.故答案为6.12.(5分)已知关于x,y的不等式组所表示的平面区域D为三角形区域,则实数k的取值范围是k≤﹣2或﹣1≤k≤0.【考点】7C:简单线性规划.【解答】解:关于x,y不等式组表示的平面区域为如图三角形ABO:可知A(1,21),B(2,0)而不等式2x﹣y≥k表示直线2x﹣y﹣k=0的左下方,直线2x﹣y﹣k=0与y轴交点坐标为(0,﹣k),若直线2x﹣y﹣k=0与y轴交点在线段OB上(不包括B点,不包括O点),直线2x﹣y﹣k=0在l的左上方,或夹在l1与l2之间.或直线2x﹣y﹣k=0与直线x+y=2的交点在AB内,关于x,y的不等式组所表示的平面区域D不为三角形区域.﹣k≥2,0≤﹣k≤2﹣1,解得:k≤﹣2或﹣1≤k≤0.故答案为:k≤﹣2或﹣1≤k≤0.13.(5分)为了响应政府推进“菜篮子”工程建设的号召,某经销商投资60万元建了一个蔬菜生产基地.第一年支出各种费用8万元,以后每年支出的费用比上一年多2万元.每年销售蔬菜的收入为26万元.设f(n)表示前n年的纯利润(f(n)=前n年的总收入﹣前n年的总费用支出﹣投资额),则f (n)=﹣n2+19n﹣60(用n表示);从第5年开始盈利.【考点】36:函数解析式的求解及常用方法;8I:数列与函数的综合.【解答】解:每年支出的费用构成以8为首项,d=2为公差的等差数列,则f(n)=26n﹣(8n+×2)﹣60=﹣n2+19n﹣60,由f(n)=﹣n2+19n﹣60>0得n2﹣19n+60<0,即(n﹣4)(n﹣15)<0,得4<n<15,故当n=5时,开始盈利,故答案为:﹣n2+19n﹣60,514.(5分)在平面直角坐标系xOy中,以点A(2,0),曲线y=上的动点B,第一象限内的点C,构成等腰直角三角形ABC,且∠A=90°,则线段OC长的最大值是1+2.【考点】IR:两点间的距离公式.【解答】解:曲线y=是以O为圆心,1为半径的上半圆,可设B(cosθ,sinθ),0≤θ≤π,C(m,n)(m,n>0),由等腰直角三角形ABC,可得AB⊥AC,即有•=﹣1,①|AB|=|AC|,即有=,即为(m﹣2)2+n2=(cosθ﹣2)2+sin2θ,②由①②解得m=2+sinθ,n=2﹣cosθ,或m=2﹣sinθ,n=cosθ﹣2(舍去).则|OC|===,当θ﹣=,即θ=∈[0,π],取得最大值=1+2.故答案为:1+2.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13分)在△ABC中,角A,B,C的对边分别是a,b,c,已知cos2A=﹣,c=,sin A=sin C.(Ⅰ)求a的值;(Ⅱ)若角A为锐角,求b的值及△ABC的面积.【考点】HP:正弦定理;HR:余弦定理.【解答】解:(Ⅰ)在△ABC中,因为,由正弦定理,得.…(6分)(Ⅱ)由得,,由得,,则,由余弦定理a2=b2+c2﹣2bc cos A,化简得,b2﹣2b﹣15=0,解得b=5或b=﹣3(舍负).所以.…(13分)16.(13分)交通指数是交通拥堵指数的简称,是综合反映某区域道路网在某特定时段内畅通或拥堵实际情况的概念性指数值.交通指数范围为(0,10),五个级别规定如下:某人在工作日上班出行每次经过的路段都在同一个区域内,他随机记录了上班的40个工作日早高峰时段(早晨7点至9点)的交通指数(平均值),其统计结果如直方图所示.(Ⅰ)据此估计此人260个工作日中早高峰时段(早晨7点至9点)中度拥堵的天数;(Ⅱ)若此人早晨上班路上所用时间近似为:畅通时30分钟,基本畅通时35分钟,轻度拥堵时40分钟,中度拥堵时50分钟,严重拥堵时70分钟,以直方图中各种路况的频率作为每天遇到此种路况的概率,求此人上班路上所用时间X的数学期望.【考点】B8:频率分布直方图;CG:离散型随机变量及其分布列;CH:离散型随机变量的期望与方差.【解答】解:(Ⅰ)由已知可得:上班的40个工作日中早高峰时段中度拥堵的频率为0.25,据此估计此人260个工作日早高峰时段(早晨7点至9点)中度拥堵的天数为260×0.25=65天.…5分(Ⅱ)由题意可知X的可能取值为30,35,40,50,70.且P(X=30)=0.05,P(X=35)=0.10,P(X=40)=0.45,P(X=50)=0.25,P(X=70)=0.15,∴X的分布列为:∴EX=30×0.05+35×0.1+40×0.45+50×0.25+70×0.15=46.…13分17.(14分)如图1,在等腰梯形ABCD中,BC∥AD,BC=AD=2,∠A=60°,E为AD中点,点O,F分别为BE,DE的中点.将△ABE沿BE折起到△A1BE 的位置,使得平面A1BE⊥平面BCDE(如图2).(Ⅰ)求证:A1O⊥CE;(Ⅱ)求直线A1B与平面A1CE所成角的正弦值;(Ⅲ)侧棱A1C上是否存在点P,使得BP∥平面A1OF?若存在,求出的值;若不存在,请说明理由.【考点】LO:空间中直线与直线之间的位置关系;LS:直线与平面平行;MI:直线与平面所成的角.【解答】解:(Ⅰ)如图1,在等腰梯形ABCD中,∵BC∥AD,,∠A=60°,E为AD中点,∴△ABE为等边三角形.如图2,∵O为BE的中点,∴A1O⊥BE.又∵平面A1BE⊥平面BCDE,且平面A1BE∩平面BCDE=BE,所以A1O⊥平面BCDE,所以A1O⊥CE;(Ⅱ)如图2,连结OC,由已知得CB=CE,又O为BE的中点,∴OC⊥BE.由(Ⅰ)知A1O⊥平面BCDE,∴A1O⊥BE,A1O⊥OC,∴OA1,OB,OC两两垂直.以O为原点,OB,OC,OA1分别为x,y,z轴建立空间直角坐标系(如图2).∵BC=2,易知.∴,∴.设平面A1CE的一个法向量为n=(x,y,z),由得即取z=1,得.设直线A1B与平面A1CE所成角为θ,则.所以直线A1B与平面A1CE所成角的正弦值为.(Ⅲ)如图3,假设在侧棱A1C上存在点P,使得BP∥平面A1OF.设,λ∈[0,1].∵,∴.易证四边形BCDE为菱形,且CE⊥BD,又由(Ⅰ)可知,A1O⊥CE,所以CE⊥平面A1OF.所以为平面A 1OF的一个法向量.由,得.所以侧棱A1C上存在点P,使得BP∥平面A1OF,且.18.(13分)已知函数f(x)=﹣+(a+1)x+(1﹣a)lnx,a∈R.(Ⅰ)当a=3时,求曲线C:y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)当x∈[1,2]时,若曲线C:y=f(x)上的点(x,y)都在不等式组所表示的平面区域内,试求a的取值范围.【考点】6H:利用导数研究曲线上某点切线方程.【解答】解:(Ⅰ)当a=3时,,x>0.导数为f′(x)=﹣x+4﹣,则f'(1)=﹣1+4﹣2=1,而.所以曲线C在点(1,f(1))处的切线方程为,即2x﹣2y+5=0.(Ⅱ)依题意当x∈[1,2]时,曲线C上的点(x,y)都在不等式组所表示的平面区域内,等价于当1≤x≤2时,恒成立.设g(x)=f(x)﹣x=,x∈[1,2].所以=.(1)当a﹣1≤1,即a≤2时,当x∈[1,2]时,g'(x)≤0,g(x)为单调减函数,所以g(2)≤g(x)≤g(1).依题意应有,解得,即1≤a≤2;(2)若1<a﹣1<2,即2<a<3时,当x∈[1,a﹣1),g'(x)≥0,g(x)为单调增函数,当x∈(a﹣1,2],g'(x)<0,g(x)为单调减函数.由于,所以不合题意.(3)当a﹣1≥2,即a≥3时,注意到,显然不合题意.综上所述,1≤a≤2.19.(14分)在平面直角坐标系xOy中,点P(x0,y0)(y0≠0)在椭圆C:=1上,过点P的直线l的方程为y=1.(Ⅰ)求椭圆C的离心率;(Ⅱ)若直线l与x轴、y轴分别相交于A,B两点,试求△OAB面积的最小值;(Ⅲ)设椭圆C的左、右焦点分别为F1,F2,点Q与点F1关于直线l对称,求证:点Q,P,F2三点共线.【考点】K4:椭圆的性质.【解答】解:(Ⅰ)依题意可知,,所以椭圆C离心率为;(Ⅱ)因为直线l与x轴,y轴分别相交于A,B两点,所以x0≠0,y0≠0.令y=0,由得,则.令x=0,由得,则.=|OA|•OB|=||=.所以△OAB的面积S△OAB因为点P(x0,y0)在椭圆C:上,所以.所以1=+y02≥2•,即,则.所以S≥,△OAB当且仅当,即时,△OAB面积的最小值为.(Ⅲ)证明:①当x0=0时,P(0,±1).当直线l:y=1时,易得Q(﹣1,2),此时,.因为,所以三点Q,P,F 2共线.同理,当直线l:y=﹣1时,三点Q,P,F2共线.②当x0≠0时,设点Q(m,n),因为点Q与点F1关于直线l对称,所以整理得解得,所以点.又因为,,且==.所以.所以点Q,P,F2三点共线.综上所述,点Q,P,F2三点共线.20.(13分)已知集合S=(n≥2,且n∈N*).若存在非空集合S1,S2,…,S n,使得S=S1∪S2∪…∪S n,且S i∩S j=∅(1≤i,j≤n,i≠j),并∀x,y∈S i(i=1,2,…,n),x>y,都有x﹣y∉S i,则称集合S具有性质P,S i(i=1,2,…,n)称为集合S的P子集.(Ⅰ)当n=2时,试说明集合S具有性质P,并写出相应的P子集S1,S2;(Ⅱ)若集合S具有性质P,集合T是集合S的一个P子集,设T′={s+3n|s∈T},求证:∀x,y∈T∪T′,x>y,都有x﹣y∉T∪T′;(Ⅲ)求证:对任意正整数n≥2,集合S具有性质P.【考点】12:元素与集合关系的判断;RG:数学归纳法.【解答】证明:(Ⅰ)当n=2时,S={1,2,3,4},令S1={1,4},S2={2,3},则S=S1∪S2,且对∀x,y∈S i(i=1,2),x>y,都有x﹣y∉S i,所以S具有性质P.相应的P子集为S1={1,4},S2={2,3}.(Ⅱ)①若,由已知x﹣y∉T,又,所以x﹣y∉T'.所以x﹣y∉T∪T'.②若x,y∈T',可设x=s+3n,y=r+3n,r,s∈T,且,此时.所以x﹣y∉T',且x﹣y=s﹣r∉T.所以x﹣y∉T∪T'.③若y∈T,x=s+3n∈T',s∈T,则,所以x﹣y∉T.又因为y∈T,s∈T,所以s﹣y∉T.所以x﹣y=(s+3n)﹣y=(s﹣y)+3n∉T'.所以x﹣y∉T∪T'.综上,对于∀x,y∈T∪T',x>y,都有x﹣y∉T∪T'.(Ⅲ)用数学归纳法证明.(1)由(Ⅰ)可知当n=2时,命题成立,即集合S具有性质P.(2)假设n=k(k≥2)时,命题成立.即,且S i∩S j=∅(1≤i,j≤n,i≠j),∀x,y∈S i(i=1,2,…,k),x>y,都有x﹣y∉S i.那么当n=k+1时,记,i=1,2,…k,并构造如下k+1个集合:S''1=S1∪S'1,S''2=S2∪S'2,…,S''k=S k∪S'k,,显然S''i∩S''j=∅(i≠j).又因为,所以.下面证明S i″中任意两个元素之差不等于S i″中的任一元素(i=1,2,…,k+1).①若两个元素,,则,所以.②若两个元素都属于S''i=S i∪S'i(1≤i≤k),由(Ⅱ)可知,S''i中任意两个元素之差不等于S''i中的任一数(i=1,2,…,k+1).从而,n=k+1时命题成立.综上所述,对任意正整数n≥2,集合S具有性质P.。
北京市朝阳区2016届高三二模数学理科试题
开始输出S 的值2,1k S ==5?k <1k k =+S S k =+结束 是否 北京市朝阳区2015-2016学年度高三年级第二学期统一考试数学试卷(理工类) 2016.5(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知集合{}124xA x =<<,{}10B x x =-≥,则A B I =A .{}12x x ≤<B .{}01x x <≤C .{}01x x <<D .{}12x x << 2.复数i1iz =-(i 为虚数单位)在复平面内对应的点位于 A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.执行如图所示的程序框图,输出的S 值为 A .6 B .10 C .14 D .15 4.已知非零向量a ,b ,“a ∥b ”是 “a ∥()+a b ”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件5.同时具有性质:“①最小正周期是π; ②图象关于直线3x π=对称; ③在区间5,6π⎡⎤π⎢⎥⎣⎦上是单调递增函数”的一个函数可以是 A .cos()26x y π=+ B .sin(2)6y x 5π=+C .cos(2)3y x π=-D .sin(2)6y x π=-6.已知函数1,2,()2log ,2a x x f x x x -≤⎧=⎨+>⎩(0a >且1)a ≠的最大值为1,则a 的取值范围是A .112[,) B .01(,) C .102(,] D .1(,)+∞7.某学校高三年级有两个文科班,四个理科班,现每个班指定1人,对各班的卫生进行检 查.若每班只安排一人检查,且文科班学生不检查文科班,理科班学生不检查自己所在的班,则不同安排方法的种数是A .48B .72C .84D .1688.已知正方体1111A B C D A B C D -的棱长为2,E 是棱11D C 的中点,点F 在正方体内部或正方体的表面上,且EF ∥平面11A BC ,则动点F 的轨迹所形成的区域面积是 A .92B .23C .33D .42第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9.双曲线22:13x C y -=的渐近线方程是 ;若抛物线22(0)y px p =>的焦点与 双曲线C 的一个焦点重合,则p = .10.如图,P 为⊙O 外一点,PA 是⊙O 的切线,A 为切点,割线PBC与⊙O 相交于,B C 两点,且3PC PA =,D 为线段BC 的中点, AD 的延长线交⊙O 于点E .若1PB =,则PA 的长为______;AD DE ⋅的值是 .11.已知等边ABC ∆的边长为3,D 是BC 边上一点,若1BD =,则AC AD ⋅uuu r uuu r的值是______.12.已知关于,x y 的不等式组0,,2,2x y x x y x y k≥⎧⎪≥⎪⎨+≤⎪⎪-≥⎩所表示的平面区域D 为三角形区域,则实数k 的取值范围是 .13.为了响应政府推进“菜篮子”工程建设的号召,某经销商投资60万元建了一个蔬菜生产基地.第一年支出各种费用8万元,以后每年支出的费用比上一年多2万元.每年销售蔬菜的收入为26万元.设()f n 表示前n 年的纯利润(()f n =前n 年的总收入-前n 年的总费用支出-投资额),则()f n =E CODBAP(用n 表示);从第 年开始盈利.14.在平面直角坐标系O x y 中,以点A (2,0),曲线21y x =-上的动点B ,第一象限内的点C ,构成等腰直角三角形ABC ,且90A ∠=︒,则线段OC 长的最大值是 .三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)在ABC ∆中,角A ,B ,C 的对边分别是a ,b ,c ,已知1cos 23A =-,3,sin 6sin c A C ==.(Ⅰ)求a 的值;(Ⅱ) 若角A 为锐角,求b 的值及ABC ∆的面积.16.(本小题满分13分)交通指数是交通拥堵指数的简称,是综合反映某区域道路网在某特定时段内畅通或拥堵实际情况的概念性指数值.交通指数范围为(010),,五个级别规定如下: 交通指数 (0,2)[2,4)[4,6)[6,8)[8,10)级别畅通基本畅通轻度拥堵中度拥堵严重拥堵某人在工作日上班出行每次经过的路段都在同一个区域内,他随机记录了上班的40个工作日早高峰时段(早晨7点至9点)的交通指数(平均值),其统计结果如直方图所示.(Ⅰ)据此估计此人260个工作日中早高峰 时段(早晨7点至9点)中度拥堵的 天数;(Ⅱ)若此人早晨上班路上所用时间近似为: 畅通时30分钟,基本畅通时35分钟, 轻度拥堵时40分钟,中度拥堵时50 分钟,严重拥堵时70分钟,以直方图 中各种路况的频率作为每天遇到此种路况的概率,求此人上班路上所用时间X 的数学期望.频率组距交通指数值0.25 0.10 0.05 0.152 4 6 8 10 0.20 13 5 7 917.(本小题满分14分)如图1,在等腰梯形ABCD 中,//BC AD ,122BC AD ==,60A ∠=︒, E 为AD 中点,点,O F 分别为,BE DE 的中点.将ABE ∆沿BE 折起到1A BE ∆的位置,使得平面1A BE ⊥平面BCDE (如图2).(Ⅰ)求证:1A O CE ⊥;(Ⅱ)求直线1A B 与平面1A CE 所成角的正弦值;(Ⅲ)侧棱1A C 上是否存在点P ,使得//BP 平面1A OF ? 若存在,求出11A PA C的值;若不 存在,请说明理由.18. (本小题满分13分)已知函数21()(1)1)ln 2f x x a x a x =-+++-(,a ∈R . (Ⅰ)当3a =时,求曲线:()C y f x =在点(1,(1))f 处的切线方程;(Ⅱ)当[]1,2x ∈时,若曲线:()C y f x =上的点(,)x y 都在不等式组12,,32x x y y x ⎧⎪≤≤⎪≤⎨⎪⎪≤+⎩所表示的 平面区域内,试求a 的取值范围.ECDBA图1BFOCDA 1E 图219.(本小题满分14分)在平面直角坐标系O x y 中,点000(,)(0)P x y y ≠在椭圆:C 2212x y +=上,过点P 的直线l 的方程为0012x xy y +=. (Ⅰ)求椭圆C 的离心率;(Ⅱ)若直线l 与x 轴、y 轴分别相交于,A B 两点,试求OAB ∆面积的最小值;(Ⅲ)设椭圆C 的左、右焦点分别为1F ,2F ,点Q 与点1F 关于直线l 对称,求证:点2,,Q P F三点共线.20.(本小题满分13分)已知集合311,(22n S k k k n *⎧⎫-⎪⎪=≤≤∈≥⎨⎬⎪⎪⎩⎭N ,且)n *∈N .若存在非空集合12,,,n S S S L ,使得12n S S S S =U UL U ,且(1,,)i j S S i j n i j =∅≤≤≠I ,并,(1,2,,),i x y S i n x y ∀∈=>L ,都有i x y S -∉,则称集合S 具有性质P ,i S (1,2,,i n =L )称为集合S 的P 子集. (Ⅰ)当2n =时,试说明集合S 具有性质P ,并写出相应的P 子集S 1,S 2;(Ⅱ)若集合S 具有性质P ,集合T 是集合S 的一个P 子集,设{3|}nT s s T '=+∈,求证:,x y T T '∀∈U ,x y >,都有x y T T '-∉U ; (Ⅲ)求证:对任意正整数2n ≥,集合S 具有性质P .北京市朝阳区2015-2016学年度第二学期高三年级统一考试数学答案(理工类) 2016.5一、选择题:(满分40分)题号 1 2 3 4 5 6 7 8 答案ABBCDADC二、填空题:(满分30分) 题号 91011121314答案33y x =±,4 3,16 6(,2][0,1)-∞-U21960n n -+-,5221+(注:两空的填空,第一空3分,第二空2分) 三、解答题:(满分80分) 15.(本小题满分13分)解:(Ⅰ) 因为21cos 212sin 3A A =-=-,且 0A <<π,所以6sin 3A =. 因为3,sin 6sin c A C ==,由正弦定理sin sin a cA C=,得66332a c =⋅=⨯=.…………………6分 (Ⅱ) 由6sin ,032A A π=<<得3cos 3A =. 由余弦定理2222cos a b c bc A =+-,得22150b b --=. 解得5b =或3b =-(舍负). 所以152sin 22ABC S bc A ∆==. …………………13分 解: (Ⅰ)由已知可得:上班的40个工作日中早高峰时段中度拥堵的频率为0.25, 据此估计此人260个工作日早高峰时段(早晨7点至9点)中度拥堵的天数为 260×0.25=65天. ……………………………………………………5分 (Ⅱ)由题意可知X 的可能取值为30,35,40,50,70.且(30)0.05P X ==;(35)0.10P X ==;(40)0.45P X ==; (50)0.25P X ==;(70)0.15P X ==;所以300.05+350.1+400.45+500.25+700.15=46EX =⨯⨯⨯⨯⨯.…………………………………13分17.(本小题满分14分)解:(Ⅰ)如图1,在等腰梯形ABCD 中,由//BC AD ,122BC AD ==,60A ∠=︒,E 为AD 中点,所以ABE ∆为等边三角形.如图2, 因为O 为BE 的中点,所以1A O BE ⊥. 又因为平面1A BE ⊥平面BCDE , 且平面1A BE I 平面BCDE BE =,所以1A O ⊥平面BCDE ,所以1A O CE ⊥.………4分(Ⅱ)连结OC ,由已知得CB CE =,又O 为BE 的中点,图2所以OC BE ⊥.由(Ⅰ)知1A O ⊥平面BCDE , 所以11,A O BE A O OC ⊥⊥, 所以1,,OA OB OC 两两垂直.以O 为原点,1,,OB OC OA 分别为,,x y z 轴建立空间直角坐标系(如图).因为2BC =,易知13OA OC ==.所以1(003),(100),(030),(100)A B C E -,,,,,,,,, 所以111(103),(033),(103)A B AC A E =-=-=--u u u r u u u r u u u r,,,,,,. 设平面1A CE 的一个法向量为(,,)x y z =n ,ECDBA图1A 1xy z FOB CDEP CBFODA 1E由 110,0 AC A E ⎧⋅=⎪⎨⋅=⎪⎩u u u ru u u r n n 得330, 30.y z x z ⎧-=⎪⎨--=⎪⎩ 即0, 30. y z x z -=⎧⎪⎨+=⎪⎩取1z =,得(3,1,1)=-n .设直线1A B 与平面1A CE 所成角为θ,则133315sin cos ,5255A B θ--=〈〉===⨯u u u r n . 所以直线1A B 与平面1A CE 所成角的正弦值为155. …………………9分 (Ⅲ)假设在侧棱1A C 上存在点P ,使得//BP 平面1A OF .设11A P AC λ=u u u r u u u r ,[0,1]λ∈.因为1111BP BA A P BA AC λ=+=+u u u r u u u r u u u r u u u r u u u r, 所以(103)(033)(1,3,33)BP λλλ=-+-=--u u u r,,,,. 易证四边形BCDE 为菱形,且CE BD ⊥,又由(Ⅰ)可知,1A O CE ⊥,所以CE ⊥平面1A OF .所以(1,3,0)CE =--u u u r为平面1A OF 的一个法向量.由(1,3,33)(1,3,0)130BP CE λλλ⋅=--⋅--=-=u u u r u u u r ,得1[0,1]3λ=∈.所以侧棱1A C 上存在点P ,使得//BP 平面1A OF ,且1113A P A C =. …………14分 18.(本小题满分13分) 解:(Ⅰ)当3a =时, 21()42ln 2f x x x x =-+-,0x >. 2()4f x x x'=-+-.则(1)1421f '=-+-=,而17(1)422f =-+=. 所以曲线C 在点(1,(1)f )处的切线方程为712y x -=-,即2250x y -+=.…………………………………………………………………………4分(Ⅱ)依题意当[]1,2x ∈时,曲线C 上的点(),x y 都在不等式组12,,32x x y y x ⎧⎪≤≤⎪≤⎨⎪⎪≤+⎩所表示的平面区域内,等价于当12x ≤≤时,3()2x f x x ≤≤+恒成立. 设()()g x f x x =-211)ln 2x ax a x (=-++-,[]1,2x ∈. 所以21(1)()=+=a x ax a g x x a+x x ---++-'(1)(1))=x x a x---(-. (1)当11a -≤,即2a ≤时,当[]1,2x ∈时,()0g x '≤,()g x 为单调减函数,所以(2)()(1)g g x g ≤≤. 依题意应有131,222221ln20,()()()g a g a a ⎧=-≤⎪⎨⎪=-++-≥⎩ 解得21a a ,.≤⎧⎨≥⎩所以12a ≤≤.(2)若 112a <-<,即23a <<时,当[)1,1x a ∈-,()0g x '≥,()g x 为单调增函 数,当x ∈(]1,2a -,()0g x '<,()g x 为单调减函数.由于3(1)2g >,所以不合题意. (3)当12a -≥,即3a ≥时,注意到15(1)22g a =-≥,显然不合题意. 综上所述,12a ≤≤. …………………………………………13分19.(本小题满分14分) 解:(Ⅰ)依题意可知2a =,211c =-=,所以椭圆C 离心率为1222e ==. …………… 3分 (Ⅱ)因为直线l 与x 轴,y 轴分别相交于,A B 两点,所以000,0x y ≠≠. 令0y =,由0012x x y y +=得02x x =,则02(,0)A x .令0x =,由0012x x y y +=得01y y =,则01(0,)B y . 所以OAB ∆的面积0000112122OAB S OA OB x y x y ∆===. 因为点00(,)P x y 在椭圆:C 2212x y +=上,所以220012x y +=. 所以2002001222x y x y =+≥.即0022x y ≤,则0012x y ≥. 所以001122OAB S OA OB x y ∆==≥. 当且仅当22002x y =,即0021,2x y =±=±时,OAB ∆面积的最小值为2. … 9分(Ⅲ)①当00x =时,(0,1)P ±.当直线:1l y =时,易得(1,2)Q -,此时21F P k =-,21F Q k =-.因为22F Q F P k k =,所以三点2,,Q P F 共线. 同理,当直线:1l y =-时,三点2,,Q P F 共线.②当00x ≠时,设点(,)Q m n ,因为点Q 与点1F 关于直线l 对称,所以000011,22202() 1.1212x m n y n x m y -⎧⋅+⋅=⎪⎪⎪⎨-⎪⋅-=--⎪+⎪⎩整理得000000240,220.x m y n x y m x n y +--=⎧⎨-+=⎩解得220002200000220044,448.4x x y m y x x y y n y x ⎧+-=⎪+⎪⎨+⎪=⎪+⎩所以点22000000222200004448(,)44x x y x y y Q y x y x +-+++.又因为200(1,)F P x y =-u u u u r ,220000002222200004448(1,)44x x y x y y F Q y x y x +-+=-++u u u u r , 且 22200000000000002222220000004448(48)(48)(1)(1)(1)444x x y x y y x y x x y x y y x y x y x +-+--+--⋅-⋅-=⋅+++2200000220048(448)4x y x x y y x --+-=⋅+ 222200000002222220000008484(2)84280444y x y x y y y y x y x y x --+-++-⨯+=⋅=⋅=⋅=+++. 所以2//F P u u u u r 2F Q u u u u r .所以点2,,Q P F 三点共线.综上所述,点2,,Q P F 三点共线. …………………………………14分 20.(本小题满分13分)证明:(Ⅰ)当2n =时,{1,2,3,4}S =,令1{1,4}S =,2{2,3}S =,则12S S S =U , 且对,(1,2),i x y S i x y ∀∈=>,都有i x y S -∉,所以S 具有性质P .相应的P 子集为1{1,4}S =,2{2,3}S =. ………… 3分 (Ⅱ)①若31,(1)2n x y T y x -∈≤<≤,由已知x y T -∉, 又31132n n x y --≤-<,所以x y T '-∉.所以'x y T T -∉U . ②若,x y T '∈,可设3,3n nx s y r =+=+,,r s T ∈,且3112n r s -≤<≤, 此时31(3)(3)132n n nn x y s r s r --=+-+=-≤-<. 所以'x y T -∉,且x y s r T -=-∉.所以x y T T '-∉U .③若y T ∈, 3nx s T '=+∈,s T ∈, 则313331(3)()3(1)3222n n n n nn x y s y s y -+--=+-=-+≥-+=>, 所以x y T -∉.又因为,y T s T ∈∈,所以s y T -∉.所以(3)()3n n x y s y s y T '-=+-=-+∉.所以'x y T T -∉U .综上,对于,'x y T T ∀∈U ,x y >,都有'x y T T -∉U . …………… 8分 (Ⅲ)用数学归纳法证明.(1)由(Ⅰ)可知当2n =时,命题成立,即集合S 具有性质P .(2)假设n k =(2k ≥)时,命题成立.即1231{1,2,3,,}2k k S S S S -==L U UL U , 且(1,,)i j S S i j n i j =∅≤≤≠I ,,(1,2,,),i x y S i k x y ∀∈=>L ,都有i x y S -∉. 那么 当1n k =+时,记{3|}k i i S s s S '=+∈,,并构造如下 k +1个集合:111S S S '''=U ,222S S S '''=U ,,kk k S S S '''=U , 1313131{1,2,,21}222k k k k S +---''=++⨯+L , 显然()i j S S i j ''''=∅≠I . 又因为131313122k k +--=⨯+,所以112131{1,2,3,,}2k k k S S S S ++-''''''''=U UL U U L . 下面证明 ¢¢S i 中任意两个元素之差不等于¢¢S i 中的任一元素(1,2,,1)i k =+L . ①若两个元素13131,22k k k r s S +--''++∈,31112k r s -≤<≤+, 则313131()()222k k k s r s r ---+-+=-≤, 所以13131()()22k k k s r S +--''+-+∉. ②若两个元素都属于i i i S S S '''=U (1)i k ≤≤,由(Ⅱ)可知,i S ''中任意两个元素之差不等于i S ''中的任一数(1,2,,1)i k =+L . 从而,1n k =+时命题成立.综上所述,对任意正整数2n ≥,集合S 具有性质P .………………………13分。
(优辅资源)北京市朝阳区高三二模数学(理)试题 Word版含答案
北京市朝阳区高三年级第二次综合练习数学学科测试(理工类)2017.5(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知i 为虚数单位,则复数z =i(12i)+对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限 2.执行如图所示的程序框图,则输出的S 值是 A .23 B .31 C .32 D .633.“0,0x y >>”是“2y xx y+≥”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件4.已知函数π()sin()(0)6f x x >=+ωω的最小正周期为4π,则A .函数()f x 的图象关于原点对称B .函数()f x 的图象关于直线π3x =对称 C .函数()f x 图象上的所有点向右平移π3个单位长度后,所得的图象关于原点对称D .函数()f x 在区间(0,π)上单调递增5.现将5张连号的电影票分给甲、乙等5个人,每人一张,且甲、乙分得的电影票连号,则共有不同分法的种数为A .12B . 24C .36D . 48 6.某三棱锥的三视图如图所示,则该三棱锥最长的棱长为AB. C .3 D.7.已知函数log ,0,()3,40a x x f x x x >⎧⎪=⎨+-≤<⎪⎩(0a >且1)a ≠.若函数()f x 的图象上有且只有两个点关于y 轴对称,则a 的取值范围是A .(0,1)B .(1,4)C .(0,1)(1,)+∞UD .(0,1)(1,4)U 8.中国古代儒家要求学生掌握六种基本才艺:礼、乐、射、御、书、数,简称“六艺”.某 中学为弘扬“六艺”的传统文化,分别进行了主题为“礼、乐、射、御、书、数”六场 传统文化知识的竞赛.现有甲、乙、丙三位选手进入了前三名的最后角逐.规定:每场 知识竞赛前三名的得分都分别为,,(,a b c a b c >>且,,)N a b c *∈;选手最后得分为各场 得分之和.在六场比赛后,已知甲最后得分为26分,乙和丙最后得分都为11分,且乙在其中一场比赛中获得第一名,则下列说法正确的是A .每场比赛第一名得分a 为4B .甲可能有一场比赛获得第二名C .乙有四场比赛获得第三名D .丙可能有一场比赛获得第一名第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9.双曲线22136x y -=的渐近线方程是 ,离心率是 .10.若平面向量(cos ,sin )a =θθ,(1,1)-b =,且a b ⊥,则sin 2θ的值是 . 11.等比数列{a n }的前n 项和为n S .已知142,2a a ==-,则{a n }的通项公式n a = ,俯视图正视图侧视图9S = .12.在极坐标系中,圆2cos ρθ=被直线1cos 2ρθ=所截得的弦长为 . 13.已知,x y 满足,4,2.y x x y x y k ≥⎧⎪+≤⎨⎪-≥⎩若2z x y =+有最大值8,则实数k 的值为 .14.已知两个集合,A B ,满足B A ⊆.若对任意的x A Î,存在,i j a a B Î()i j ≠,使得 12i j x a a λλ=+(12,{1,0,1}λλ?),则称B 为A 的一个基集.若 {1,2,3,4,5,6,7,8,A =,则其基集B 元素个数的最小值是 .三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)在△ABC 中, 角,,A B C 的对边分别为,,a b c ,且b c =,2sin B A =.(Ⅰ)求cos B 的值;(Ⅱ)若2a =,求△ABC 的面积.16.(本小题满分13分)从某市的中学生中随机调查了部分男生,获得了他们的身高数据,整理得到如下频率分布直方图. (Ⅰ)求a 的值;(Ⅱ)假设同组中的每个数据用该组区间的中点值代替,估计该市中学生中的全体男生的平均身高;(Ⅲ)从该市的中学生中随机抽取一名男生,根据直方图中的信息,估计其身高在180 cm 以上的概率.若从全市中学的男生(人数众多)中随机抽取3人,用X 表示身高在180 cm 以上的男生人数,求随机变量X 的分布列和数学期望EX .a 身高(cm)17.(本小题满分14分)如图1,在Rt △ABC 中,90C ∠=︒,4,2AC BC ==,D E ,分别为边,AC AB 的中点,点,F G 分别为线段,CD BE 的中点.将△ADE 沿DE 折起到△1A DE 的位置,使160A DC ∠=︒.点Q 为线段1A B 上的一点,如图2.(Ⅰ)求证:1A F BE ⊥;(Ⅱ)线段1A B 上是否存在点Q ,使得FQ平面1A DE ?若存在,求出1A Q 的长,若不存在,请说明理由; (Ⅲ)当1134AQ A B =时,求直线GQ 与平面1A DE 所成角的大小.18.(本小题满分13分)已知椭圆W :22221x y a b+=(0)a b >>的上下顶点分别为,A B ,且点B (0,1)-.12,F F 分别为椭圆W 的左、右焦点,且12120F BF ∠=. (Ⅰ)求椭圆W 的标准方程;(Ⅱ)点M 是椭圆上异于A ,B 的任意一点,过点M 作MN y ⊥轴于N ,E 为线段MN 的中点.直线AE 与直线1y =-交于点C ,G 为线段BC 的中点,O 为坐标原点.求 O E G ∠的大小.19.(本小题满分14分)图1图2BA 1FCED QG ABCDEFG已知函数2()e x f x x x =+-,2(),g x x ax b =++,a b ÎR . (Ⅰ)当1a =时,求函数()()()F x f x g x =-的单调区间;(Ⅱ)若曲线()y f x =在点(0,1)处的切线l 与曲线()y g x =切于点(1,)c ,求,,a b c 的值;(Ⅲ)若()()f x g x ≥恒成立,求a b +的最大值.20.(本小题满分13分)各项均为非负整数的数列}{n a 同时满足下列条件:①m a =1 ()N m ∈*;②1n a n ≤- (2)n ≥;③n 是12n a a a +++的因数(1n ≥).(Ⅰ)当5=m 时,写出数列}{n a 的前五项;(Ⅱ)若数列}{n a 的前三项互不相等,且3≥n 时,n a 为常数,求m 的值; (Ⅲ)求证:对任意正整数m ,存在正整数M ,使得n M ≥时,n a 为常数.北京市朝阳区高三年级第二次综合练习数学学科测试答案(理工类) 2017.5一、选择题:本大题共8小题,每小题5分,共40分.二、填空题:本大题共6小题,每小题5分,共30分.三、解答题:(15)(本小题满分13分)解:(Ⅰ)因为2sin B A =,所以2b =.所以a =所以222cos 232a c b B ac b +-===. …………7分 (Ⅱ)因为2a =,所以b c ==又因为cos B =sin B =.所以11sin 222ABCSa c B =⋅⋅=⨯=. …………13分 (16)(本小题满分13分)解:(Ⅰ)根据题意得:(0.00520.02020.040)101a ⨯++⨯+⨯=.解得 0.010a =. …………3分(Ⅱ)设样本中男生身高的平均值为x ,则1450.051550.11650.21750.41850.21950.05x =⨯+⨯+⨯+⨯+⨯+⨯(145195)0.051550.1(165185)0.21750.4=+⨯+⨯++⨯+⨯1715.57070172.5=+++=.所以估计该市中学全体男生的平均身高为172.5 cm . …………7分(Ⅲ)从全市中学的男生中任意抽取一人,其身高在180 cm 以上的概率约为14. 由已知得,随机变量X 的可能取值为0,1,2,3.所以00331327(0)()()4464P X C ==⋅=; 11231327(1)()()4464P X C ==⋅=; 2213139(2)()()4464P X C ==⋅=; 3303131(3)()()4464P X C ==⋅=.随机变量X 的分布列为因为X ~(3)4B ,,所以13344EX =⨯=.…………………………………13分 (17)(本小题满分14分)解:(Ⅰ)因为11,60A D DC A DC =∠=︒,所以△1A DC 为等边三角形. 又因为点F 为线段CD 的中点, 所以1A F DC ⊥.由题可知1,ED A D ED DC ⊥⊥, 所以ED ⊥平面1A DC .因为1A F ⊂平面1A DC ,所以ED ⊥1A F . 又EDDC D =,所以1A F ⊥平面BCDE .所以1A F BE ⊥.…………5分(Ⅱ)由(Ⅰ)知1A F ⊥平面BCDE ,FG DC ⊥,如图建立空间直角坐标系,则(0,0,0)F ,(0,1,0)D -,(0,1,0)C ,(1,1,0)E -,1A ,(2,1,0)B .设平面1A DE 的一个法向量为(,,)x y z =n ,1(0,1,A D =-,(1,0,0)DE =,所以10,0.n n A D DE ⎧⋅=⎪⎨⋅=⎪⎩即0,0.y x ⎧=⎪⎨=⎪⎩ 令1z =,所以y =(0,=n 假设在线段1A B 上存在点Q ,使FQ 平面1A DE .设11AQ A B λ=,(]0,1λ∈. BA 1FCED QG又1(2,1,A B =,所以1(2,,)AQ λλ=.所以(2,)Q λλ.则(2,)FQ λλ=.所以0FQ ⋅=+=n . 解得,12λ=. 则在线段1A B 上存在中点Q ,使FQ 平面1A DE .且1AQ = ……………………10分(Ⅲ)因为1134AQ A B =,又1(2,1,A B =,所以133(,,24A Q =.所以33(,24Q .又因为3(,0,0)2G ,所以3(0,,)44GQ =.因为(0,=n 设直线GQ 与平面1A DE 所成角为θ,则1sin .2GQ GQ θ⋅===n n直线GQ 与平面1A DE 所成角为30︒. ………………………………14分 (18)(本小题满分13分)解:(Ⅰ)依题意,得1b =.又12120F BF ∠=︒,在1Rt BFO ∆中,160F BO ∠=︒,所以2a =. 所以椭圆W 的标准方程为2214x y +=. …………4分 (Ⅱ)设M 00(,)x y ,00x ≠,则N 0(0,)y ,E 00(,)2x y . 因为点M 在椭圆W 上,所以220014x y +=.即220044x y =-. 又A (0,1),所以直线AE 的方程为002(1)1y y x x --=.令1y =-,得C 0(,1)1x y --. 又B (0,1)-,G 为线段BC 的中点,所以G 00(,1)2(1)x y --.所以00(,)2x OE y =,0000(,1)22(1)x x GE y y =-+-. 因为000000()(1)222(1)x x x OE GE y y y ⋅=-++- 2220000044(1)x x y y y =-++-20004414(1)y y y -=-+-0011y y =--+0=,所以OE GE ⊥.90OEG ∠=︒. ……………………13分(19)(本小题满分14分)解:(Ⅰ)()e 2x F x x b =--,则()e 2xF x '=-.令()e 20,xF x '=->得ln 2x >,所以()F x 在(ln 2,)+∞上单调递增.令()e 20,x F x '=-<得ln 2x <,所以()F x 在(,ln 2)-∞上单调递减. …………4分 (Ⅱ)因为()e 21x f x x '=+-,所以(0)0f '=,所以l 的方程为1y =.依题意,12a-=,1c =. 于是l 与抛物线2()2g x x x b =-+切于点(1,1), 由2121b -+=得2b =.所以2,2, 1.a b c =-== …………8分(Ⅲ)设()()()e (1)xh x f x g x a x b =-=-+-,则()0h x ≥恒成立.易得()e (1).xh x a '=-+ (1)当10a +≤时,因为()0h x '>,所以此时()h x 在(,)-∞+∞上单调递增.①若10a +=,则当0b ≤时满足条件,此时1a b +≤-; ②若10a +<,取00x <且01,1bx a -<+ 此时0001()e (1)1(1)01xbh x a x b a b a -=-+-<-+-=+,所以()0h x ≥不恒成立.不满足条件; (2)当10a +>时,令()0h x '=,得ln(1).x a =+由()0h x '>,得ln(1)x a >+; 由()0h x '<,得ln(1).x a <+所以()h x 在(,ln(1))a -∞+上单调递减,在(ln(1),)a ++∞上单调递增. 要使得“()e (1)0xh x a x b =-+-≥恒成立”,必须有“当ln(1)x a =+时,min ()(1)(1)ln(1)0h x a a a b =+-++-≥”成立. 所以(1)(1)ln(1)b a a a ≤+-++.则2(1)(1)ln(1) 1.a b a a a +≤+-++- 令()2ln 1,0,G x x x x x =-->则()1ln .G x x '=- 令()0G x '=,得 e.x =由()0G x '>,得0e x <<;由()0G x '<,得 e.x >所以()G x 在(0,e)上单调递增,在(e,)+∞上单调递减, 所以,当e x =时,max ()e 1.G x =-从而,当e 1,0a b =-=时,a b +的最大值为e 1-.综上,a b +的最大值为e 1-. …………14分(20)(本小题满分13分)解:(Ⅰ)5,1,0,2,2. …………3分 (Ⅱ)因为10-≤≤n a n ,所以20,1032≤≤≤≤a a ,又数列}{n a 的前3项互不相等, (1)当02=a 时,若13=a ,则3451a a a ====,优质文档优质文档 且对3≥n ,12)2(0+-=-++nm n n m 都为整数,所以2=m ; 若23=a ,则3452a a a ====, 且对3≥n ,24)2(20+-=-++nm n n m 都为整数,所以4=m ; (2)当12=a 时,若03=a ,则3450a a a ====,且对3≥n ,n m n n m 1)2(01+=-⋅++都为整数,所以1-=m ,不符合题意;若23=a ,则3452a a a ====, 且对3≥n ,23)2(21+-=-++nm n n m 都为整数,所以3=m ; 综上,m 的值为2,3,4. …………8分 (Ⅲ)对于1≥n ,令12n n S a a a =+++, 则11111+=+≤+=<++++nS n n S n a S n S n S n n n n n n . 又对每一个n ,n S n 都为正整数,所以11++n S n m S nS n =≤≤≤1...1,其中“<”至多出现1-m 个.故存在正整数M m >,当n M >时,必有n S n S n n =++11成立. 当n S n S n n =++11时,则nS S n S n S S a n n n n n n =-+=-=++)1(11. 从而22)1(2212112122+-+=+++=+++=+++++++++n a a a n a n a n S a a n S n n n n n n n n n . 由题设知1212||12<++≤+-++n n n a a n n ,又22++n S n 及1+n a 均为整数, 所以=++22n S n =+1n a 11+=+n S n S n n ,故1212n n n S S S n n n ++====++常数. 从而==-+=-=++nS S n S n S S a n n n n n n )1(11常数. 故存在正整数M ,使得n M ≥时,n a 为常数. ………………………………13分。
北京市朝阳区2016届高三第二次(5月)综合练习英语试题(原卷版)
2016. 5本试卷共12页,共150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分:听力理解(共三节,30分)第一节(共5小题;每小题1.5分,共7.5分)听下面5段对话。
每段对话后有一道小题,从每题所给的A、B、C三个选项中选出最佳选项。
听完每段对话后,你将有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话你将听一遍。
例:What is the man going to read?A. A newspaper .B. A magazine.C. A book.答案是A。
1. What did the man do this morning?A. He attended a meeting.B. He had a history lesson.C. He had an English lesson.2. Where does this conversation probably take place?A. In a restaurant.B. In the theatre.C. In the hospital.3. Where is the post office?A. B. C.4. Which is the right gate for the man’s flight?A. Gate 16.B. Gate 23.C. Gate 25.5. What caused the man problems at the bank?A.The computers weren’t working.B. He forgot to fix the time.C. He lost his cheques.第二节(共10小题;每小题1.5分,共15分)听下面4段对话或独白。
每段对话或独白后有几道小题,从每题所给的A、B、C三个选项中选出最佳选项。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京市朝阳区2015-2016学年度高三年级第二次综合练习数学试卷(理工类) 2016.5(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知集合{}124xA x =<<,{}10B x x =-≥,则A B I =A .{}12x x ≤< B .{}01x x <≤ C .{}01x x << D .{}12x x << 2.复数i1iz =-(i 为虚数单位)在复平面内对应的点位于 A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.执行如图所示的程序框图,输出的S 值为 A .6 B .10 C .14 D .154.已知非零向量a ,b ,“a ∥b ”是 “a ∥()+a b ”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件5.同时具有性质:“①最小正周期是π; ②图象关于直线3x π=对称; ③在区间5,6π⎡⎤π⎢⎥⎣⎦上是单调递增函数”的一个函数可以是 A .cos()26xy π=+B .sin(2)6y x 5π=+C .cos(23y x π=-D .sin(2)6y x π=-6.已知函数1,2,()2log ,2a x x f x x x -≤⎧=⎨+>⎩(0a >且1)a ≠的最大值为1,则a 的取值范围是 A .112[,) B .01(,) C .102(,] D .1(,)+∞7.某学校高三年级有两个文科班,四个理科班,现每个班指定1人,对各班的卫生进行检 查.若每班只安排一人检查,且文科班学生不检查文科班,理科班学生不检查自己所在的班,则不同安排方法的种数是A .48B .72C .84D .1688.已知正方体1111A B C D A B C D -的棱长为2,E 是棱11D C 的中点,点F 在正方体内部或正方体的表面上,且EF ∥平面11A BC ,则动点F 的轨迹所形成的区域面积是 A .92B.C.D.第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9.双曲线22:13x C y -=的渐近线方程是 ;若抛物线22(0)y px p =>的焦点与 双曲线C 的一个焦点重合,则p = .10.如图,P 为⊙O 外一点,PA 是⊙O 的切线,A 为切点,割线PBC 与⊙O 相交于,B C 两点,且3PC PA =,D 为线段BC 的中点, AD 的延长线交⊙O 于点E .若1PB =,则PA 的长为______;AD DE ⋅的值是 .11.已知等边ABC ∆的边长为3,D 是BC 边上一点,若1BD =,则AC AD ⋅uu u r uuu r的值是______.12.已知关于,x y 的不等式组0,,2,2x y x x y x y k≥⎧⎪≥⎪⎨+≤⎪⎪-≥⎩所表示的平面区域D 为三角形区域,则实数k 的取值范围是 .13.为了响应政府推进“菜篮子”工程建设的号召,某经销商投资60万元建了一个蔬菜生产基地.第一年支出各种费用8万元,以后每年支出的费用比上一年多2万元.每年销售蔬菜的收入为26万元.设()f n 表示前n 年的纯利润(()f n =前n 年的总收入-前n 年的总费用支出-投资额),则()f n = (用n 表示);从第 年开始盈利.14.在平面直角坐标系O x y 中,以点A (2,0),曲线y =B ,第一象限内的点C ,构成等腰直角三角形ABC ,且90A ∠=︒,则线段OC 长的最大值是 . 三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)在ABC ∆中,角A ,B ,C 的对边分别是a ,b ,c ,已知,(Ⅰ)求a 的值;(Ⅱ) 若角A 为锐角,求b 的值及ABC ∆的面积.16.(本小题满分13分)交通指数是交通拥堵指数的简称,是综合反映某区域道路网在某特定时段内畅通或拥堵实际情况的概念性指数值.交通指数范围为(010),,五个级别规定如下:某人在工作日上班出行每次经过的路段都在同一个区域内,他随机记录了上班的40个工作日早高峰时段(早晨7点至9点)的交通指数(平均值),其统计结果如直方图所示.(Ⅰ)据此估计此人260个工作日中早高峰 时段(早晨7点至9点)中度拥堵的 天数;(Ⅱ)若此人早晨上班路上所用时间近似为: 畅通时30分钟,基本畅通时35分钟, 轻度拥堵时40分钟,中度拥堵时50 分钟,严重拥堵时70分钟,以直方图 中各种路况的频率作为每天遇到此种路况的概率,求此人上班路上所用时间X 的数学期望.交通指数值0.25 0.10 0.05 0.152 4 6 8 10 0.20 13 5 7 917.(本小题满分14分)如图1,在等腰梯形ABCD 中,//BC AD ,122BC AD ==,60A ∠=︒, E 为AD 中点,点,O F 分别为,BE DE 的中点.将ABE ∆沿BE 折起到1A BE ∆的位置,使得平面1A BE ⊥平面BCDE (如图2).(Ⅰ)求证:1AO CE ⊥; (Ⅱ)求直线1A B 与平面1ACE 所成角的正弦值; (Ⅲ)侧棱1AC 上是否存在点P ,使得//BP 平面1AOF ? 若存在,求出11A PAC 的值;若不 存在,请说明理由.18. (本小题满分13分)已知函数21()(1)1)ln 2f x x a x a x =-+++-(,a ∈R . (Ⅰ)当3a =时,求曲线:()C y f x =在点(1,(1))f 处的切线方程;(Ⅱ)当[]1,2x ∈时,若曲线:()C y f x =上的点(,)x y 都在不等式组12,,32x x y y x ⎧⎪≤≤⎪≤⎨⎪⎪≤+⎩所表示的平面区域内,试求a 的取值范围.ECDBA图1BFOCDA 1E 图219.(本小题满分14分)在平面直角坐标系O x y 中,点000(,)(0)P x y y ≠在椭圆:C 2212x y +=上,过点P 的直线l 的方程为0012x xy y +=. (Ⅰ)求椭圆C 的离心率;(Ⅱ)若直线l 与x 轴、y 轴分别相交于,A B 两点,试求OAB ∆面积的最小值;(Ⅲ)设椭圆C 的左、右焦点分别为1F ,2F ,点Q 与点1F 关于直线l 对称,求证:点2,,Q P F三点共线.20.(本小题满分13分)已知集合311,(22n S k k k n *⎧⎫-⎪⎪=≤≤∈≥⎨⎬⎪⎪⎩⎭N ,且)n *∈N .若存在非空集合12,,,n S S S ,使得12n S S S S = ,且(1,,)i j S S i j n i j =∅≤≤≠ ,并,(1,2,,),i x y S i n x y ∀∈=> ,都有i x y S -∉,则称集合S 具有性质P ,i S (1,2,,i n = )称为集合S 的P 子集. (Ⅰ)当2n =时,试说明集合S 具有性质P ,并写出相应的P 子集S 1,S 2;(Ⅱ)若集合S 具有性质P ,集合T 是集合S 的一个P 子集,设{3|}nT s s T '=+∈,求证:,x y T T '∀∈ ,x y >,都有x y T T '-∉ ; (Ⅲ)求证:对任意正整数2n ≥,集合S 具有性质P .数学答案(理工类) 2016.5一、选择题:(满分40分)二、填空题:(满分30分) 10(注:两空的填空,第一空3分,第二空2分) 三、解答题:(满分80分) 15.(本小题满分13分)0A <<π,由正弦定理sin sin a cA C=分cos 3A =. 由余弦定理2222cos a b c bc A =+-,得22150b b --=. 解得5b =或3b =-(舍负).…………………13分 解: (Ⅰ)由已知可得:上班的40个工作日中早高峰时段中度拥堵的频率为0.25, 据此估计此人260个工作日早高峰时段(早晨7点至9点)中度拥堵的天数为 260×0.25=65天. ……………………………………………………5分 (Ⅱ)由题意可知X 的可能取值为30,35,40,50,70.且(30)0.05P X ==;(35)0.10P X ==;(40)0.45P X ==;(50)0.25P X ==;(70)0.15P X ==;所以300.05+350.1+400.45+500.25+700.15=46EX =⨯⨯⨯⨯⨯.…………………………………13分17.(本小题满分14分)解:(Ⅰ)如图1,在等腰梯形ABCD 中,由//BC AD ,122BC AD ==,60A ∠=︒,E 为AD 中点,所以ABE ∆为等边三角形.如图2, 因为O 为BE 的中点,所以1AO BE ⊥. 又因为平面1A BE ⊥平面BCDE , 且平面1A BE 平面BCDE BE =, 所以1AO ⊥平面BCDE ,所以1AO CE ⊥.………4分 (Ⅱ)连结OC ,由已知得CB CE =,又O 为BE 的中点,图2所以OC BE ⊥.由(Ⅰ)知1AO ⊥平面BCDE , 所以11,AO BE AO OC ⊥⊥, 所以1,,OA OB OC 两两垂直.以O 为原点,1,,OB OC OA 分别为,,x y z 轴建立空间直角坐标系(如图).因为2BC =,易知1OA OC ==所以1(00(100),(0(100)A B C E -,,,,,所以111(10(0(10A B AC A E ===- ,,. 设平面1ACE 的一个法向量为(,,)x y z =n , ECDBA图1DCBFODA 1E由 110,0 AC A E ⎧⋅=⎪⎨⋅=⎪⎩n n得0, 0.x =-=⎪⎩即0, 0. y z x -=⎧⎪⎨+=⎪⎩取1z =,得(,1)=n .设直线1A B 与平面1ACE 所成角为θ,则1sin cos ,A B θ=〈〉===n . 所以直线1A B 与平面1ACE所成角的正弦值为5. …………………9分 (Ⅲ)假设在侧棱1AC 上存在点P ,使得//BP 平面1AOF . 设11A P AC λ=,[0,1]λ∈.因为1111BP BA A P BA AC λ=+=+,所以(10(0(1)BP λ=-+=-.易证四边形BCDE 为菱形,且CE BD ⊥,又由(Ⅰ)可知,1AO CE ⊥,所以CE ⊥平面1AOF .所以(1,CE =-为平面1AOF 的一个法向量.由(1)(1,130BP CE λ⋅=-⋅-=-= ,得1[0,1]3λ=∈.所以侧棱1AC 上存在点P ,使得//BP 平面1AOF ,且1113A P AC =. …………14分 18.(本小题满分13分) 解:(Ⅰ)当3a =时, 21()42ln 2f x x x x =-+-,0x >. 2()4f x x x'=-+-. 则(1)1421f '=-+-=,而17(1)422f =-+=. 所以曲线C 在点(1,(1)f )处的切线方程为712y x -=-,即2250x y -+=.…………………………………………………………………………4分(Ⅱ)依题意当[]1,2x ∈时,曲线C 上的点(),x y 都在不等式组12,,32x x y y x ⎧⎪≤≤⎪≤⎨⎪⎪≤+⎩所表示的平面区域内,等价于当12x ≤≤时,3()2x f x x ≤≤+恒成立. 设()()g x f x x =-211)ln 2x ax a x (=-++-,[]1,2x ∈. 所以21(1)()=+=a x ax a g x x a+x x---++-'(1)(1))=x x a x ---(-.(1)当11a -≤,即2a ≤时,当[]1,2x ∈时,()0g x '≤,()g x 为单调减函数,所以(2)()(1)g g x g ≤≤. 依题意应有131,222221ln20,()()()g a g a a ⎧=-≤⎪⎨⎪=-++-≥⎩ 解得21a a ,.≤⎧⎨≥⎩所以12a ≤≤. (2)若 112a <-<,即23a <<时,当[)1,1x a ∈-,()0g x '≥,()g x 为单调增函 数,当x ∈(]1,2a -,()0g x '<,()g x 为单调减函数.由于3(1)2g >,所以不合题意. (3)当12a -≥,即3a ≥时,注意到15(1)22g a =-≥,显然不合题意. 综上所述,12a ≤≤. …………………………………………13分19.(本小题满分14分) 解:(Ⅰ)依题意可知a =1c ==,所以椭圆C离心率为2e ==. …………… 3分 (Ⅱ)因为直线l 与x 轴,y 轴分别相交于,A B 两点,所以000,0x y ≠≠. 令0y =,由0012x x y y +=得02x x =,则02(,0)A x .令0x =,由0012x x y y +=得01y y =,则01(0,)B y . 所以OAB ∆的面积0000112122OAB S OA OB x y x y ∆===. 因为点00(,)P x y 在椭圆:C 2212x y +=上,所以220012x y +=.所以220012x y =+≥.即00x y ≤,则001x y ≥所以00112OAB S OA OB x y ∆==≥ 当且仅当22002x y =,即001,2x y =±=±时,OAB ∆… 9分 (Ⅲ)①当00x =时,(0,1)P ±.当直线:1l y =时,易得(1,2)Q -,此时21F P k =-,21F Q k =-.因为22F Q F P k k =,所以三点2,,Q P F 共线. 同理,当直线:1l y =-时,三点2,,Q P F 共线.②当00x ≠时,设点(,)Q m n ,因为点Q 与点1F 关于直线l 对称,所以000011,22202() 1.1212x m n y n x m y -⎧⋅+⋅=⎪⎪⎪⎨-⎪⋅-=--⎪+⎪⎩整理得000000240,220.x m y n x y m x n y +--=⎧⎨-+=⎩解得220002200000220044,448.4x x y m y x x y y n y x ⎧+-=⎪+⎪⎨+⎪=⎪+⎩所以点22000000222200004448(,)44x x y x y y Q y x y x +-+++.又因为200(1,)F P x y =- ,220000002222200004448(1,)44x x y x y y F Q y x y x +-+=-++ , 且 22200000000000002222220000004448(48)(48)(1)(1)(1)444x x y x y y x y x x y x y y x y x y x +-+--+--⋅-⋅-=⋅+++2200000220048(448)4x y x x y y x --+-=⋅+ 222200000002222220000008484(2)84280444y x y x y y y y x y x y x --+-++-⨯+=⋅=⋅=⋅=+++. 所以2//F P 2F Q.所以点2,,Q P F 三点共线.综上所述,点2,,Q P F 三点共线. …………………………………14分 20.(本小题满分13分)证明:(Ⅰ)当2n =时,{1,2,3,4}S =,令1{1,4}S =,2{2,3}S =,则12S S S = , 且对,(1,2),i x y S i x y ∀∈=>,都有i x y S -∉,所以S 具有性质P .相应的P 子集为1{1,4}S =,2{2,3}S =. ………… 3分(Ⅱ)①若31,(1)2n x y T y x -∈≤<≤,由已知x y T -∉, 又31132n n x y --≤-<,所以x y T '-∉.所以'x y T T -∉ . ②若,x y T '∈,可设3,3nnx s y r =+=+,,r s T ∈,且3112n r s -≤<≤,此时31(3)(3)132n nnn x y s r s r --=+-+=-≤-<.所以'x y T -∉,且x y s r T -=-∉.所以x y T T '-∉ . ③若y T ∈, 3nx s T '=+∈,s T ∈,则313331(3)()3(1)3222n n n nnnx y s y s y -+--=+-=-+≥-+=>, 所以x y T -∉.又因为,y T s T ∈∈,所以s y T -∉.所以(3)()3n n x y s y s y T '-=+-=-+∉. 所以'x y T T -∉ .综上,对于,'x y T T ∀∈ ,x y >,都有'x y T T -∉ . …………… 8分 (Ⅲ)用数学归纳法证明.(1)由(Ⅰ)可知当2n =时,命题成立,即集合S 具有性质P .(2)假设n k =(2k ≥)时,命题成立.即1231{1,2,3,,}2k k S S S S -== ,且(1,,)i j S S i j n i j =∅≤≤≠ ,,(1,2,,),i x y S i k x y ∀∈=> ,都有i x y S -∉. 那么 当1n k =+时,记{3|}ki i S s s S '=+∈,,并构造如下 k +1个集合:111S S S '''= ,222S S S '''= ,,kk k S S S '''= , 1313131{1,2,,21}222k k k k S +---''=++⨯+ ,显然()i j S S i j ''''=∅≠ .又因为131313122k k +--=⨯+,所以112131{1,2,3,,}2k k k S S S S ++-''''''''= . 下面证明 ¢¢S i 中任意两个元素之差不等于¢¢S i 中的任一元素(1,2,,1)i k =+ .①若两个元素13131,22k k k r s S +--''++∈,31112k r s -≤<≤+, 则313131()()222k k k s r s r ---+-+=-≤, 所以13131()()22k k k s r S +--''+-+∉. ②若两个元素都属于i i i S S S '''= (1)i k ≤≤,由(Ⅱ)可知,i S ''中任意两个元素之差不等于i S ''中的任一数(1,2,,1)i k =+ . 从而,1n k =+时命题成立.综上所述,对任意正整数2n ≥,集合S 具有性质P .………………………13分。