CARTESIAN METHODS FOR THE SHALLOW WATER EQUATIONS ON A SPHERE

合集下载

小学上册第十二次英语第一单元综合卷

小学上册第十二次英语第一单元综合卷

小学上册英语第一单元综合卷英语试题一、综合题(本题有100小题,每小题1分,共100分.每小题不选、错误,均不给分)1.I like to watch ________ in the summer.2.My favorite holiday is ________ (圣诞节). I like to decorate the ________ (圣诞树).3.My favorite book is ________.4.What do we call the place where you can buy groceries?A. StoreB. MarketC. MallD. Supermarket5.The _______ of a balloon can be affected by altitude.6.The _______ (兔子) hops around quickly when it is excited.7.What is the name of the game where you shoot hoops?A. SoccerB. BasketballC. BaseballD. TennisB8. A thermochemical reaction involves heat and chemical ______.9. (85) is a famous park in New York City. The ____10.The _______ (Apollo 11) mission successfully landed humans on the Moon.11.What is 100 - 25?A. 65B. 70C. 75D. 8012.What is the main ingredient in sushi?A. RiceB. NoodlesC. BreadD. PotatoesA13.The bear roams in the _____ woods.14.__________ are important for environmental sustainability.15.The chemical formula for table salt is ______.16.What is the capital of Honduras?A. TegucigalpaB. San Pedro SulaC. La CeibaD. CholutecaA17. A ______ (狗) has a keen sense of smell.18.The ancient Greeks created _______ to explain natural phenomena. (神话)19.The teacher, ______ (老师), guides us in our studies.20.The cake is _______ (刚出炉).21.The _____ (first) man-made satellite was Sputnik, launched by the USSR.22.The capital of Faroe Islands is __________.23.The __________ can provide critical insights into environmental health and stability.24.What do you call the place where we see many books?A. SchoolB. LibraryC. StoreD. Park25.What do you call the study of the Earth's atmosphere?A. MeteorologyB. GeologyC. AstronomyD. Ecology26.What is the term for the distance around a circle?A. AreaB. DiameterC. CircumferenceD. RadiusC27. A ___ (小蝴蝶) flutters gently in the air.28.My ________ (玩具) is made of plush material.29.What do we call the act of cleaning a room?A. TidyingB. OrganizingC. DeclutteringD. CleaningA30.What do we call the tool we use to write on paper?A. MarkerB. PenC. PencilD. All of the above31.The teacher gives _____ (作业) every week.32.The _______ of matter refers to whether it is a solid, liquid, or gas.33.What is the opposite of short?A. TallB. WideC. NarrowD. ThickA34.I like to play ___ (video games).35.I like to play ________ with my friends after school.36.My _____ (表妹) is visiting this weekend.37.The ________ was a famous treaty that settled disputes in Europe.38.What do you call the action of planting flowers in a garden?A. GardeningB. LandscapingC. CultivatingD. SowingA39.ts can live for ______ (数十年). Some pla40.My family lives near a __________ (水库).41.What is the opposite of right?A. WrongB. CorrectC. TrueD. AccurateA42.The _____ (羊) eats grass in the field.43.What is the term for a person who collects stamps?A. PhilatelistB. NumismatistC. CollectorD. HobbyistA44.Every year, we celebrate ______ (感恩节) with a big feast and share what we are thankful for.45.The ancient Egyptians created vast ________ (陵墓) for their pharaohs.46.I have a _____ (遥控车) that can go super fast. 我有一辆可以跑得非常快的遥控车。

基于深度学习的水面无人清理船目标检测综述

基于深度学习的水面无人清理船目标检测综述

0引言水面无人艇(Unmanned Surface Vehicles ,USV )作为一种无人操作的水面舰艇,具有体积小、航速快、机动性强、模块化等特点,可用于执行危险以及不适于有人船执行的任务[1]。

其中,水面无人清理船(Unmanned Surface Cleaning Vessels ,USCV )是水面无人艇的其中一个任务分支。

相较于传统清理水面垃圾需要耗费大量的人力,水面无人清理船的应运而生不仅可以节省人工成本,同时提高清理效率。

目前国内USCV 尚未进行大规模应用,一个重要的原因就是水面目标检测算法性能不足,而精准检测目标是USCV 自主导航、智能避障、高效作业等需求的基础。

如何在保障目标检测速度的前提下提高目标检测的精度以适应复杂的水面场景,以及扩充检测目标的类别,都是水面目标识别中需要解决的问题。

USCV 用于目标检的设备主要有激光雷达和可见光相机,相较于激光雷达造价高、缺少纹理及色彩信息、能耗高等缺陷,可见光相机在目标检测领域的研究更为广泛。

———————————————————————作者简介:沈靖夫(1999-),男,辽宁鞍山人,硕士研究生,研究方向为水面图像处理技术。

基于深度学习的水面无人清理船目标检测综述A Review of Target Detection for Unmanned Surface Cleaning Ships Based on Deep Learning沈靖夫①SHEN Jing-fu ;张元良②ZHANG Yuan-liang ;刘飞跃①LIU Fei-yue ;柳淳①LIU Chun(①江苏海洋大学海洋工程学院,连云港222005;②江苏海洋大学机械工程学院,连云港222005)(①School of Ocean Engineering ,Jiangsu Ocean University ,Lianyungang 222005,China ;②School of Mechanical Engineering ,Jiangsu Ocean University ,Lianyungang 222005,China )摘要:水面目标识别对水资源环境具有重要意义。

小学上册第十四次英语第二单元真题试卷

小学上册第十四次英语第二单元真题试卷

小学上册英语第二单元真题试卷英语试题一、综合题(本题有100小题,每小题1分,共100分.每小题不选、错误,均不给分)1. A snail leaves a ______ (黏糊糊的) trail behind.2.My mom loves __________ (参与学校活动).3.Which vegetable is orange and long?A. PotatoB. CarrotC. BroccoliD. TomatoB4.The signing of the Treaty of Tordesillas divided the _____ territories.5.The ostrich lays the largest _______ (鸟蛋).6.Which season is cold?A. SummerB. AutumnC. WinterD. SpringC7.What do you call a person who studies human cultures?A. AnthropologistB. SociologistC. ArcheologistD. All of the aboveD8.The ______ is a skilled architect.9.I enjoy playing ________ (视频游戏) on my console.10.I love to eat ______ at lunchtime.11.The __________ (历史的回响) reverberates through ages.12.The flower pot is ______ (colorful) and bright.13.My friend, ______ (我的朋友), has a pet rabbit.14.The bear eats berries and fish in the ____.15.What do you call a baby goose?A. GoslingB. DucklingC. ChickD. CalfA16.What do we call the uppermost layer of the Earth?A. CrustB. MantleC. CoreD. LithosphereA17.What is the term for a young cassowary?A. ChickB. CalfC. KitD. PupA18.What do you call an animal that is active at night?A. DiurnalB. NocturnalC. CrepuscularD. SeasonalB19.The _____ (农场) is far away.20.What do we call the part of a plant that attracts pollinators?A. PetalB. LeafC. StemD. RootA21.What do we call the young of a cow?A. CalfB. KidC. LambD. Foal22. A chemical that helps to speed up a reaction is called a ______.23.What is the opposite of sweet?A. SourB. BitterC. SpicyD. Salty24.The owl’s eyes are very ______ (大) and round.25.What do you call the protective covering of a seed?A. ShellB. HuskC. PodD. CoatD26.What is 50 - 25?A. 15B. 20C. 25D. 3027.What do we call a massive star that has exhausted its nuclear fuel?A. Red GiantB. White DwarfC. Neutron StarD. Black Hole28.What is the opposite of happy?A. SadB. AngryC. ExcitedD. Tired29.The pufferfish can inflate to protect itself from _______ (捕食者).30.What is the name of the famous shipwreck that became a movie?A. TitanicB. LusitaniaC. Andrea DoriaD. Britannic31.What is 20 15?A. 3B. 4C. 5D. 6C32.What is the capital of Thailand?A. BangkokB. PhuketC. Chiang MaiD. PattayaA33.The ________ loves to swim in the pond.34.I wear ______ (glasses) to see better.35.I have a __________ in my class. (朋友)36.I enjoy _______ (与家人一起)露营。

光催化降解技术在污水处理中的应用

光催化降解技术在污水处理中的应用

18当代化工研究Chenmical I ntermediate环境工程2019•01光催化降解技术在污水处理中的应用*龚渝涵(成都实验外国语学校(西区)四川610000)摘要:在全球水资源匮乏的情况下,污水处理成了亟须攻克的重要难题,本文讨论了光催化降解技术在工业废水、染料废水、制药废水 等三种排量大、污染重、危害广的污水中的应用,比较了传统污水处理方法和光催化降解技术的优势与劣势,认为光催化降解技术对上述 三种污水的降解效果普遍优于传统方法,且催化剂可以进行回收再利用,极大降低了使用成本,符合绿色化学的要求.关键词:光催化降解;污水;循环中图分类吾:T 文献标识码:AApplication of Photocatalyst Degradation Technology in Sewage TreatmentGong Yuhan(Chengdu Experimental Foreign Language School West Campus, Sichuan, 610000) Abstract: In the context o f g lobal water shortage, sewage treatment has become an important issue that needs to be solved immediately. In this p aper,the application ofphotocatalytic degradation technology is discussed in the f allowing aspects: the industrial wastewater, dye wastewater, pharmaceutical wastewater. And compared with the traditional wastewater treatment methods with the photocatalytic degradation technology, it is considered t hat the p hotocatalytic degradation technology in the above-mentioned t hree kinds o f w astewater degradation effect is g enerally s uperior to the traditional method, and the catalyst can be recycled, so it can greatly reduces the cost, confirming to the standard o f g reen chemistry.Key wordsz Photocatalytic degradation-, sewage\ recycle1. 引言在全球水资源匮乏日益加重的今天,污水净化、回收与 再利用受到全社会的普遍关注。

20882606_基于水介质导电特性的水下信号传输方法及应用_

20882606_基于水介质导电特性的水下信号传输方法及应用_

2019年12月水下无人系统学报第27卷同速度情况下游动一周所用时间, 并与仿真时间进行比较, 如图19所示。

可见在2种方向的游动情况下, 实际游动时间比仿真结果时间略大, 这是因为机器鱼的实际游动环境是非线性且动态变化的, 所以在仿真时无法完全模拟真实的情况, 但随着速度值增大, 机器鱼游动一周的时间逐渐减小, 时间变化趋势和仿真结果基本一致, 从而可验证仿真结果的正确性。

图19 不同速度下机器鱼游动时间对比Fig. 19 Comparison of swimming time of robotic fish at different speeds4 结束语鲹通过对电磁驱动器工作原理和鱼体波动表达式的研究, 得出单自由度机器鱼的运动表达式, 进而得到了尾鳍的摆动规律并推理出电磁驱动机器鱼转弯信号, 使用UDF动网格在FLUENT 软件中进行了二维平面内机器鱼游动仿真, 得到了机器鱼在转弯游动时艏向角变化情况, 通过流体仿真证明了转弯时机器鱼鱼尾摆动表达式的正确性。

最后使用模糊控制的方法, 实现了机器鱼在二维平面内的避障仿真, 并搭建驱动控制系统进行了水下实验。

在实验中, 电磁驱动机器鱼实现顺逆时针2个方向上的避障游动, 从而证明整个避障硬件系统搭建的正确性, 可为电磁驱动机器鱼的研究提供参考。

参考文献:[1]Shang L, Wang S, Tan M, et al. Motion Control for anUnderwater Robotic Fish with Two Undulating Long-fins[C]//Proceedings of the 48th IEEE Conference on Deci-sion and Control (CDC) Held Jointly with 2009 28th Chi- nese Control Conference. Shanghai, China: IEEE, 2009. [2]钟宏伟. 国外无人水下航行器装备与技术现状及展望[J]. 水下无人系统学报, 2017, 25(4): 215-225.Zhong Hong-wei. Review and Prospect of Equipment andTechniques for Unmanned Undersea Vehicle in ForeignCountries[J]. Journal of Unmanned Undersea Systems,2017, 25(4): 215-225.[3]Phuc N D, Truongthinh N. A Solution of Obstacle Colli-sion Avoidance for Robotic Fish Based on Fuzzy Sys-tems[C]//IEEE International Conference on Robotics &Biomimetics. Phuket, Thailand: IEEE, 2012.[4]Lee P J, Wang W J. Robotic Fish Kinectics Design Basedon a Fuzzy Control[M]//Latest Advances in Robot Kine-matics. Springer: Dordrecht, 2012: 67-74.[5]Zhang Q, Chen D, Chen T. An Obstacle Avoidance Method ofSoccer Robot Based on Evolutionary Artificial Potential Field[J]. Energy Procedia, 2012, 16(5): 1792-1798.[6]金久才. 无人水下自主航行器(AUV)避碰研究[D]. 呼和浩特: 内蒙古大学, 2008.[7]Huang Z, Zhu D, Bing S. A Multi-AUV CooperativeHunting Method in 3-D Underwater Environment withObstacle[J]. Engineering Applications of Artificial Inte-lligence, 2016, 50: 192-200.[8]Braginsky B, Guterman H. Obstacle Avoidance Ap-proaches for Autonomous Underwater Vehicle: Simulationand Experimental Results[J]. IEEE Journal of OceanicEngineering, 2016, 41(4): 882-892.[9]Sepulveda C A, Donley J M, Konstantinidis P, et al. Con-vergent Evolution in Mechanical Design of Lamnid Sha-rks and Tunas[J]. Nature, 2004, 429(6987): 61-65.[10]Stavridis S, Papageorgiou D, Doulgeri Z. Dynamical Sys-tem Based Robotic Motion Generation with Obstacle Avoidance[J]. IEEE Robotics and Automation Letters, 2017, 2(2): 712-718.[11]Guan Z, Nong G, Gao W, et al. 3D Hydrodynamic Analy-sis of a Biomimetic Robot Fish[C]//International Confer-ence on Control Automation Robotics & Vision. Singa-pore: IEEE, 2011.[12]Zhao Z Y, Hong Z H, Deng Y S. Angle Measurement ofRobotic Fish Based on Kalman Filter[J]. Applied Mechanics & Materials, 2014, 568-570: 1049-1053. [13]Xia X, Li T. A Fuzzy Control Model Based on BP NeuralNetwork Arithmetic for Optimal Control of Smart CityFacilities[J]. Personal and Ubiquitous Computing, 2019,23(3-4): 453-463.[14]Vafamand N, Khooban M H, Dragicevic T, et al. RobustNon-fragile Fuzzy Control of Uncertain DC MicrogridsFeeding Constant Power Loads[J]. IEEE Transactions onPower Electronics, 2019, 34(11): 11300-11308.[15]Liu W, Xin Z, Chen Z. Fuzzy Rule Optimization andReduction Based on Recursive Neural Networks[C]//International Conference on Control & Automation.Xiamen, China: IEEE, 2019.(责任编辑: 许妍)第27卷第6期 水下无人系统学报 Vol.27No.62019年12月JOURNAL OF UNMANNED UNDERSEA SYSTEMS Dec. 2019收稿日期: 2018-12-06; 修回日期: 2019-01-04.作者简介: 梁奇兵(1988-), 男, 硕士, 工程师, 主要从事水下运载器及通信装置研发.[引用格式] 梁奇兵, 吴飞, 施黎明, 等. 基于水介质导电特性的水下信号传输方法及应用[J]. 水下无人系统学报, 2019, 27(6):711-715.基于水介质导电特性的水下信号传输方法及应用梁奇兵, 吴 飞, 施黎明, 赵海潇(昆明五威科工贸有限公司, 云南 昆明, 650000)摘 要: 为了在注满水的金属容器内外之间实现近距离无线信号传输, 文中提出了一种利用水介质导电特性进行水下信号传输的方法。

污水处理厂污水和污泥中微塑料的研究展望

污水处理厂污水和污泥中微塑料的研究展望

污水处理厂污水和污泥中微塑料的研究展望李小伟;纪艳艳;梅庆庆;陈璐蓓;张晓磊;董滨;戴晓虎【摘要】微塑料被发现广泛存在于各类生态系统,研究表明,其可能对人类健康及其他生物产生潜在危害.污水中含有大量微塑料,尽管经污水处理厂处理后,含量显著减少,但仍被认为是自然水体中微塑料的主要来源之一.与此同时,污水中绝大部分微塑料会截留或转移到污泥中,在污泥土地利用过程中进入土壤生态系统,从而对后者产生潜在影响.此外,污水污泥处理过程中,微塑料的表面理化特性也会发生显著变化,从而影响其与重金属、有机污染物、致病菌的相互作用,进而增强污泥微塑料的生态风险.文中主要从以下几方面对污水处理厂污水和污泥微塑料相关研究进展进行综述:首先,从微塑料的组成、含量、来源、潜在危害,及其与人类活动的关系等方面进行概述;然后,分别综述污水处理厂污水和污泥中微塑料含量及去向研究进展;最后,提出需加强我国污水处理厂微塑料的研究、建立污水和污泥微塑料标准化分析方法、强化微塑料与污染物作用机制等的研究展望.【期刊名称】《净水技术》【年(卷),期】2019(038)007【总页数】11页(P13-22,84)【关键词】微塑料;污水处理厂;污水;污泥;潜在风险【作者】李小伟;纪艳艳;梅庆庆;陈璐蓓;张晓磊;董滨;戴晓虎【作者单位】上海大学环境与化学工程学院,上海200444;上海大学环境与化学工程学院,上海200444;上海大学环境与化学工程学院,上海200444;上海大学环境与化学工程学院,上海200444;上海大学环境与化学工程学院,上海200444;同济大学环境科学与工程学院,城市污染控制国家重点实验室,上海200092;同济大学环境科学与工程学院,城市污染控制国家重点实验室,上海200092【正文语种】中文【中图分类】TU992.3微塑料是指通过各种途径进入生态环境中直径小于5 mm的塑料颗粒。

它或悬浮于水体中,或沉积到水底,研究表明其广泛存在于海洋生态系统[1-2],和河流[3-4]、湖泊[5-6]等淡水生态系统[7-8],以及土壤[9-11]和沉积物[12-13]中,甚至在饮用水[14]、人类粪便、极地环境[15]中均发现了微塑料的存在。

219376740_气体扩散系数法估算水体反硝化速率

李晓寒,严星,夏永秋,等.气体扩散系数法估算水体反硝化速率[J].农业环境科学学报,2023,42(5):1109-1115.LI X H,YAN X,XIA Y Q,et al.Estimating the denitrification rate of water bodies by gas diffusion coefficient method [J].Journal of Agro-Environment Science ,2023,42(5):1109-1115.气体扩散系数法估算水体反硝化速率李晓寒1,2,严星1,2,夏永秋1*,颜晓元1(1.中国科学院南京土壤研究所土壤与农业可持续发展国家重点实验室,南京210008;2.中国科学院大学,北京100049)Estimating the denitrification rate of water bodies by gas diffusion coefficient methodLI Xiaohan 1,2,YAN Xing 1,2,XIA Yongqiu 1*,YAN Xiaoyuan 1(1.State Key Laboratory of Soil &Sustainable Agriculture,Institute of Soil Science,Chinese Academy of Sciences,Nanjing 210008,China;2.University of Chinese Academy of Sciences,Beijing 100049,China )Abstract :Although the gas diffusion coefficient method based on the empirical coefficient or mechanism process has been developed for simple and accurate denitrification estimation in recent years,little is known about its reliability,applicability,and uncertainty.In this study,a membrane inlet mass spectrometer (MIMS )-based method and the gas-diffusion coefficient method were compared in static waterbodies under different nitrate concentrations (0,1,2,4mg ·L -1,and 6mg ·L -1,calculated by N ).Results showed that the relationship between nitrate concentration and denitrification rates estimated by the three gas diffusion coefficient methods (BO04,CL07and Xia21models )followed the Michaelis –Menten equation (R 2=0.9946,P <0.01).There was a significant linear relationship between thedenitrification rates estimated by the three gas diffusion coefficient methods and the MIMS-based method (R 2=0.7767,P <0.05),although with a different slope.Among the three gas diffusion coefficient methods,the CL07and Xia21models were more reliable according to the slopes of the measurements from the MIMS-based method,with slopes of 1.22and 0.59,respectively.Taking the CL07model as anexample,Monte Carlo analysis revealed that wind speed,water flow velocity,and water temperature were the three most sensitive factors,收稿日期:2022-08-02录用日期:2022-11-07作者简介:李晓寒(1999—),女,河南南阳人,硕士研究生,从事氮素环境效应与过程模拟研究。

塔里木盆地盐碱水形成过程及淡化技术探究

价值工程0引言新疆南疆塔里木盆地周边,是我国水量型缺水的贫水区,该区域地表水和地下水受周边盐碱土的影响,呈现出不同程度的盐碱化,具有高pH 值、高矿化度和高离子系数的特点[1],属于碳化物型、氯化物型盐碱水,储量大、分布零散、盐碱化重,再利用难度大。

由于盐碱水会影响一切生命特征的正常性,阻碍社会进步和经济发展,对当地生态环境产生不利影响,在当地研究盐碱水淡化处理技术,使盐碱水实现资源化再利用,对于节约资源、改善生态环境、促进经济发展具有十分重要的积极作用。

1塔里木盆地盐碱水的形成1.1地质作用的结果塔里木盆地盐碱水的形成经历了漫长而又复杂的过程,它的形成、发展、消失是水土盐分搬运、溶解聚集和转化的综合结果。

国内外学者认为盐碱水的形成原因有古盐渍化形成、湖成盐碱水、污染型盐碱水三种,其中第一种原因比较符合新疆南疆地区的实际情况,是当地盐碱水形成的主要原因[2]。

在我国黄河冲积平原盐碱土分布与盐碱水分布范围一致,盐碱土化学盐分特征与地下水化学盐分特征也近于一致,由此说明土壤中的的盐分是盐碱水中盐分物质来源,掩埋古盐碱土层是形成大面积盐碱水的主要原因。

塔里木盆地地处亚欧大陆中心,地表水和地下水主要来自于大气降水补充,而西部高山阻挡了来自西方的大气气流,全年降水量稀少,且雨水含盐量较低,为盐碱水层提供盐分的可能性十分微小,只能溶解、搬运盐分形成盐碱水。

在干旱炎热的气候条件下,塔里木盆地拥有极高的日蒸发量,形成了我国土壤盐碱化分布最广的地区。

经历长期的地质演变时期,盐碱土掩埋于地下,流经盐碱区域的地表水和地下水将土壤盐分部分消融于自身水体之中,获得盐分,使得自身盐碱程度在原有的基础上进一步上升,便形成盐碱水。

新疆地貌广阔,土地沙漠化严重,除伊犁河谷、阿勒泰和塔城地区土壤盐含量相对较少外,全疆其他地区都存有不同程度的土地盐碱化、荒漠化等复杂特点,全疆范围内盐碱化土壤面积非常大,且南疆盐碱化土地面积高于北疆,故形成的盐碱水也是含盐量较高、分布最广的。

西双版纳绞杀植物斜叶榕的水分利用策略

西双版纳绞杀植物斜叶榕的水分利用策略*王平元1刘文杰1李金涛1,2(1中国科学院西双版纳热带植物园,云南勐仑666303;2中国科学院研究生院,北京100049)摘要以斜叶榕为研究对象,通过测定其不同生长阶段木质部与各潜在水源的稳定氢、氧同位素组成,以及土壤水分含量、土壤水势、叶片水势等参数,揭示西双版纳地区不同生长阶段的绞杀榕(斜叶榕)在不同季节的水分利用策略.结果表明:浅层土壤(10 50cm )的水势在干热季与雾凉季变化较大,较深土壤(51 120cm )的水势在各季节无明显变化;雾凉季与干热季的土壤含水量之间无显著差异(P =0.64);植物黎明前叶片水势与中午叶片水势随不同生长阶段而异;根据木质部水与各潜在水源的稳定氧同位素以及植物水势等其他参数判定,浅层土壤水是斜叶榕全年最主要的水分来源,不同生长阶段的斜叶榕在不同季节采取了不同的水分利用策略来应对环境的变化.关键词稳定同位素水分利用策略土壤水势叶片水势斜叶榕西双版纳文章编号1001-9332(2010)04-0836-07中图分类号Q948文献标识码AWater use strategy of Ficus tinctoria in tropical rainforest region of Xishuangbanna ,South-western China.WANG Ping-yuan 1,LIU Wen-jie 1,LI Jin-tao 1,2(1Xishuangbanna Tropical Bo-tanical Garden ,Chinese Academy of Sciences ,Menglun 666303,Yunnan ,China ;2Graduate Univer-sity of Chinese Academy of Sciences ,Beijing 100049,China ).-Chin.J.Appl.Ecol .,2010,21(4):836-842.Abstract :Based on the measurement of the stable isotope ratios of hydrogen and oxygen in soil ,fog ,rain ,and plant non-photosynthetic tissues ,as well as the gravimetric soil water content ,soilwater potential ,and leaf water potential ,this paper studied the water use strategy of F.tinctoria at its different life stages in Xishuangbanna of Southwestern China.The water potential in shallow soil layer (10-50cm )had a greater change between hot-dry season and foggy season ,whereas that indeeper soil layer (51-120cm )had less change during the seasons.No significant difference was observed in the soil water content between foggy season and hot-dry season.The leaf water potentialat predawn and midday varied with life stage.From the measurement of the stable isotope ratios and other parameters ,it was found that shallow soil water was the main water source for F.tinctoria ,and F.tinctoria had different water use strategy at its different life stages.Key words :stable isotope ;water use strategy ;soil water potential ;leaf water potential ;Ficus tinc-toria ;Xishuangbanna.*中国科学院“西部之光”人才计划项目和国家自然科学基金项目(30770368)资助.通讯作者.E-mail :pingyuan0920@ 2009-06-05收稿,2010-02-04接受.稳定同位素技术作为生态学研究的一种重要手段,近年来在生态学的诸多领域得到了广泛的应用.由于同位素分馏过程的存在,自然界中的不同水源具有不同的同位素组成[1].而在植物体内,除了一些排盐植物外[2],在植物根系对土壤水分的吸收过程中,稳定氢氧同位素一般不发生分馏;水分在被植物根系吸收后沿木质部向上运输是通过液流方式进行的,不存在汽化现象,一般在植物体内不存在稳定氢氧同位素分馏现象[3-5].因此,植物木质部水分的同位素组成能反映出植物利用不同水源的稳定同位素信息.如果不同来源的同位素组成差异显著,就可以通过对比植物木质部水分与各种水源的同位素组成确定植物究竟利用哪些来源的水分[6].日趋成熟的稳定同位素示踪技术为植物在不同季节从不同深度土壤获取水分的研究提供了捷径,国内外有许多学者利用稳定同位素技术对不同生态系统的植物水分利用策略进行了研究,如Valentini 等[7]对不同生应用生态学报2010年4月第21卷第4期Chinese Journal of Applied Ecology ,Apr.2010,21(4):836-842活型的植物研究发现,常绿地中海树种趋于利用雨水(浅层土壤中的水),而落叶树种则几乎毫无例外地依赖于地下水;Field等[8]对半附生植物Didymo-panax pittieri进行研究发现,该植物在其不同生长阶段采取了不同的水分获取策略,即:完全附生阶段从雾水和附生苔藓层中获取水分,乔木阶段从土壤中获取水分,而半附生阶段则同时采取以上两种方式.榕树是桑科(Moraceae)榕属(Ficus)植物的总称,主要分布在热带地区,尤以热带雨林最为集中[9],在维持热带雨林的生物多样性甚至整个生态系统的平衡中都起着十分重要的作用,是国内外公认的热带雨林中的一类关键类群[10-12].榕树物种的减少或灭绝将直接影响或改变整个热带雨林的物种多样性,没有榕树就形成不了热带雨林生态系统[9].榕树的一些种类是热带雨林中的绞杀植物,如高山榕(F.altissima)、垂叶榕(F.benjamina)、丛毛垂叶榕(F.benjamina var.nuda)、钝叶榕(F.cur-tipes)和斜叶榕(F.tinctoria)等.它们的种子通过鸟类的传播在热带雨林中的多种树木上发芽、生长,成为绞杀植物,有的种类还绞杀同种其他树木或另一种榕树.绞杀现象是热带雨林的一个重要特征,也是热带雨林中物种间复杂关系的体现,具有重要的生态学意义[13].被绞杀掉的树木死后,绞杀榕由于缺少支柱,很容易倒掉死亡,在它生长的地方就形成了一个林窗,有利于种子的萌发,使群落树种组成得以更新.同时,异质性环境也有利于森林中物种多样性的维持.另外,被榕树绞杀的多为多病的老树,所以,绞杀榕的存在有利于森林中树种的更新和森林生态系统的健康发展[14].榕树中的对叶榕、斜叶榕等是热带雨林中的先锋树种,多出现在受到一定破坏的林段、林窗与路旁.它们的种子主要靠动物传播,能够传很远的距离,且萌发力强,在光照充足的环境中生长迅速,很快就能长满林窗或被破坏的林段,在热带雨林的恢复中起到重要作用[9].绞杀榕的绞杀过程可分为3个明显的阶段:附生阶段、半附生阶段、乔木阶段.其中,我们根据缠绕在宿主树上与扎入土壤中树根的相对多少,将半附生阶段分为前期与后期.西双版纳地区具有特殊的气候条件,一年可以分为雨季、雾凉季与干热季,其中雾凉季降雨较少,而林下有大量滴落雾水补充土壤水,因此雾凉季的雾水有可能是绞杀榕的重要水分来源.本研究将以斜叶榕为研究对象,通过测定其木质部与各种潜在水源的氢氧同位素组成,以及不同生长阶段的叶片碳同位素组成,揭示西双版纳地区不同生长阶段的绞杀榕在不同季节的水分利用策略和生存机理,从而对热带雨林的保护提供参考.1研究地区与研究方法1.1自然概况西双版纳(21ʎ09ᶄ—22ʎ33ᶄN,99ʎ58ᶄ—101ʎ50ᶄE),受西南季风的影响,一年中有明显的雾凉季(11月—次年2月)、干热季(3—4月)和雨季(5—10月)之分,干热季与雾凉季又合称为干季.该地区年平均降雨量约1400mm,从图1可以看出,在雾凉季与干热季降水稀少,不足全年的13%,月均气温都在16ħ以上,温度较高,白天植物蒸散强烈,植物需水量增大,易受水分胁迫;雨季降雨占全年降雨量的87%以上.但干季几乎每日早晚都有浓雾出现(出现率>90%),且其总持续时间占干季时间的40%以上[15].本文以西双版纳勐仑地区中国科学院西双版纳热带植物园内不同生长阶段的斜叶榕为研究对象,定期测定不同深度土壤水势、叶片黎明水势与中午水势、土壤含水量,并定期收集雨水、林下滴落雾水、不同深度土壤水、木质部水分(用于测定其稳定性同位素比率δD、δ18O)以及不同生长阶段斜叶榕的叶片(用于测定其稳定性同位素比率δ13C).1.2研究方法1.2.1土壤水势的测定将土壤水势张力计(UIT,Germany)探头分不同层次(30、50、70cm)插入林下土壤中,测量土壤水势,3次重复,并在2007年8月、2007年12月与2008年2月、2008年4月分别测定雨季、雾凉季与干热季的土壤水势.土壤含水量图1西双版纳地区月均降水量(Ⅰ)与月均气温(Ⅱ)Fig.1Monthly precipitation(Ⅰ)and monthly average air temperature(Ⅱ)in Xishuangbanna(2007-05—2008-08).7384期王平元等:西双版纳绞杀植物斜叶榕的水分利用策略的测定、土壤水分与木质部水分以及叶片的取样时间均同土壤水势的测定时间.1.2.2叶片水势的测定在黎明前(5:00—6:00)和中午(12:00—14:00)用枝剪剪取不同生长阶段样树的叶片,用Pump-Up无气瓶植物压力室测定叶片水势[16].测定3片叶子,取平均值.于2007年10月与2008年3月分别测定雨季与干季的叶片水势. 1.2.3土壤质量含水量的测定用钻孔法钻取不同深度土壤样品(5、15、20、30、40、50、60、80、100、120 cm),实验室105ħ烘干,求取土壤的质量含水量.1.2.4大气降水的收集定期采集雾水样品,采集时间是干季9:00—10:00雾滴消失时,10d左右收集一次当日雾水水样并收集每次降雨水样.降雨水样采用中国科学院西双版纳热带雨林生态系统研究站采集的降水样品.1.2.5土壤水的取样用钻孔法钻取不同深度的土壤(5、15、20、30、40、50、60、80、100、120cm),同时取附生阶段与半附生阶段样树树干腐殖土.实验室内采用低温真空蒸馏法[17-18]提取土壤水.在数据处理时,我们认定表层土至50cm处为浅层土壤,50 cm以下为深层土壤.1.2.6植物木质部水分的取样8:00—9:00(干季为雾较浓重时),用枝剪剪取不同生长阶段样树的小枝样品(3 5个),实验室内采用低温真空蒸馏法[17-18]提取木质部水分.每个季节取样1 2次. 1.2.7叶片采集及δ13C的测定12:00—14:00,采摘不同生长阶段绞杀榕以及其宿主油棕(Elaeis gunieensis)林冠上的当年向阳叶片,分别在烘箱内60ħ烘干并研磨,过40目筛,用于叶片δ13C的测定.1.2.8雾水贡献比例的确定采用Brunel等[19]建立的同位素质量平衡模型计算植物利用不同来源水(雾水、雨水、地下水)的比例(P).模型假设植物获得的水分来自两部分:雾水或土壤水(雨水)以及地下水,对植物利用来说,雾水和土壤水具有同等可利用性.例如:模型计算的雾水利用比例(Pf)值不是雾水或雨水对地下水的简单比值,而是一个加权的比值.模型如下:当存在两个水分来源时:δD1x1+δD2x2=δD(1)δ18O1x1+δ18O1x2=δ18O(2)x 1+x2=1(3)如果存在3个水分来源,则:δ18O1x1+δ18O2x2+δ18O3x3=δ18O(4)δD1x1+δD2x2+δD3x3=δD(5)x1+x2+x3=1(6)式中:δ18O与δD分别指植物木质部水分的氧与氢的稳定同位素值;δD1(δ18O1)、δD2(δ18O2)、δD3(δ18O3)分别指可能利用的水源1、2、3的稳定氢(氧)同位素组成;x1、x2、x3指植物利用水源1、2、3的比例.所有水样与树叶样品寄送中国科学院兰州分院测试中心地球化学部采用稳定性同位素气体质谱仪测定其稳定同位素值.2007年8月—2008年5月期间,共收集雨水样品11个,雾水样品5个,土壤水样品113个,木质部水样品27个,树叶样品31个.水样品的稳定性氢氧同位素比率采用同位素质谱仪(氢的测定用Finnigan MAT-251,氧的测定用Finni-gan MAT-252,USA)测定.氢氧稳定性同位素比率的值是以相对于V-SMOW(Vienna Standard Mean Ocean Water)的千分率(ɢ)给出,分别以δD和δ18O 表示,精度分别为ʃ2.5ɢ和ʃ0.5ɢ.树叶样品采用同位素质谱仪(Finnigan MAT-252,USA)测定,碳稳定性同位素比率的值是以相对于PDB(Pee Dee Bel-emnite,一种出自美国南卡罗来那州的碳酸盐陨石)的千分率(ɢ)给出,以δ13C表示,精度为ʃ0.5ɢ.质谱分析的方程表达式为:δɢ=[(R sample/R standard)-1]ˑ1000(7)其中,Rsample与Rstandard分别表示样品与标准物的D与H、18O与16O、13C与12C的丰度之比.对不同季节的土壤水势、土壤含水量、叶片水势进行方差分析,数据的处理分析采用统计软件SPSS 13.0.采用绘图软件SigmaPlot10.0对文中各图进行绘制.2结果与分析2.1土壤水势的季节变化从图2可以看出,干热季的30cm土壤处水势最低值达到-0.0305MPa,此时土壤含水状况最差,随着深度的增加,土壤水势逐渐增大;最大水势出现在雾凉季时30cm深度土壤处,为-0.0145MPa.对数据进行差异显著性比较可知,雨季与干热季之间不同深度土壤的水势差异不显著,与雾凉季之间差异显著,雾凉季与干热季之间差异也显著.在雨季,随着土壤深度的增加,土壤水势逐渐变大.在30cm 处,不同季节之间土壤水势变化较大,而随着土壤深度的增加,不同季节的土壤水势逐渐趋向一致,到70cm处,在各个季节的土壤水势几乎没有差异.838应用生态学报21卷图2不同土壤深度的土壤水势季节变化Fig.2Comparisons of soil water potential at different depthsamong different seasons(meanʃSD).A:雨季Rainy season;B:雾凉季Foggy season;C:干热季Dry hotseason.下同The same below.2.2叶片水势的季节变化研究期间叶片黎明前、中午水势的季节变化如图3所示,在不同的生长阶段,雨季的叶片水势(包括黎明前与中午叶片水势)要明显大于干季的叶片水势,而干季时不同生长阶段叶片水势差异也较大.黎明前最低水势出现在干季时乔木阶段,为-0.35MPa,最高水势出现在雨季时半附生阶段前期,为-0.02MPa;中午最低水势出现在干季时附生阶段,为-0.4MPa;最高水势出现在雨季时半附生阶段后期,为-0.08MPa.图3雨季(A)与干季(B)叶片水势的季节变化Fig.3Comparisons of leaf water potential between rainy season(A)and dry season(B)(meanʃSD).Ⅰ:附生阶段Epiphytic;Ⅱ:半附生阶段前期Early stage of hemiepi-phytic;Ⅲ:半附生阶段后期Late stage of hemiepiphytic;Ⅳ:乔木阶段Arborescent.下同The same below.2.3土壤含水量的季节变化雨季的土壤水分含量为(19.05ʃ2.14)%,雾凉季为(14.93ʃ4.96)%,干热季为(14.53ʃ2.16)%(图4).雨季的土壤含水量极显著高于雾凉季与干热季(P<0.001),而雾凉季与干热季的土壤含水量则比较接近,差异不显著(P=0.64).2.4不同生长阶段斜叶榕的水分利用来源2.4.1雨季不同生长阶段斜叶榕的水分利用在雨季,雨水的稳定氧同位素值为(-9.37ʃ3.09)ɢ,浅层土壤水为(-7.76ʃ3.07)ɢ,深层土壤水为(-8.47ʃ1.7)ɢ,树干腐殖土水为(-8.9ʃ0.76)ɢ.根据Brunel等[19]建立的同位素质量平衡模型,我们可以用图中不同水源与木质部水分δ18O值之间的距离比较来表示各水源与木质部水分δ18O值的接近程度,从而揭示利用各种水分的相对比例,与木质部水分δ18O值距离越小,则该水源被利用的比例越大.只要木质部水分与某种潜在可利用水源的稳定同位素值大致处于同一区域或者有部分交叉,我们就可以认为植物利用该水源.但从图5A可以看出,不同生长阶段木质部水分的δ18O值普遍低于各潜在水源,主要是因为在蒸馏时未能将木质部中的水分提取充分,从而导致同位素发生分馏,使所得数值偏低.但根据斜叶榕的生态与生理习性可知,附生阶段由于整个植株都在宿主树上,因此只能利用雨水与树干腐殖土水;半附生阶段(包括前期与后期)则可以利用雨水、树干腐殖土水以及浅层土壤水(根系较浅不能扎入深层土壤);而乔木阶段则主要利用雨水与土壤水,由于斜叶榕的根系主要分布在土壤上层,加之浅层土壤水分含量较高,因此主要利用浅层土壤的水分.2.4.2雾凉季不同生长阶段斜叶榕的水分利用雨图4不同深度土壤含水量的季节变化Fig.4Soil water content at different depths among foggy,dryhot and rainy seasons(meanʃSD).9384期王平元等:西双版纳绞杀植物斜叶榕的水分利用策略图5不同生长阶段植物木质部水分与各潜在水源δ18O关系Fig.5Relationship ofδ18O between stem xylem water and theavailable water sources in(meanʃSD).a)可利用水源,指斜叶榕在不同生长阶段可以利用的水分来源,即图中的雨水(1)、树干腐殖土水(2)、深层土壤水(3)、浅层土壤水(4)、雾水(5)The available water sources,meant the water sources usedby F.tinctoria at different life stages,such as rain water(1),stem hu-mus water(2),deep soil water(3),shallow soil water(4)and fog drip(5);b)木质部水Stem xylem water.水的稳定氧同位素值为(-1.1ʃ0.14)ɢ,雾水为(-1.24ʃ0.15)ɢ,浅层土壤水为(-7.44ʃ2.18)ɢ,深层土壤水为(-8.02ʃ1.35)ɢ,树干腐殖土水为(-2.78ʃ3.34)ɢ.从图5B可以看出,附生阶段木质部δ18O值与雨水、雾水以及树干腐殖土水最为接近;半附生阶段木质部δ18O值与树干腐殖土水、浅层土壤水、深层土壤水最为接近;而乔木阶段木质部δ18O值与浅层土壤水以及深层土壤水最接近.2.4.3干热季不同生长阶段斜叶榕的水分利用雨水的稳定氧同位素值为(-4.87ʃ1.81)ɢ,浅层土壤水为(-6.01ʃ2.37)ɢ,深层土壤水为(-7.55ʃ0.图5C图6Fig.6gler fig可以看出,附生阶段木质部δ18O值与雨水最为接近;半附生阶段木质部δ18O值与雨水、树干腐殖土水以及浅层土壤水最为接近;而乔木阶段木质部δ18O值与浅层土壤水最接近.2.5油棕以及不同生长阶段的绞杀榕叶片碳同位素δ13C从图6可以看出,在不同季节,油棕的δ13C值比较稳定,各季节变化不大;叶片δ13C的最大值出现在干热季时附生阶段,最小值则出现在雾凉季时半附生阶段;半附生阶段后期与乔木阶段斜叶榕叶片的δ13C值普遍较大,且变化不大,而在附生与半附生阶段前期,雾凉季叶片的δ13C值明显比另外两个季节要小;在雨季,各个生长阶段的斜叶榕的δ13C值之间差异不显著.2.6雾凉季雾水的贡献比例在雾凉季时常有滴落雾水存在,雾水的存在对附生阶段斜叶榕的生长起着极其重要的作用.而对于半附生阶段的斜叶榕,雾水仍可作为其水分来源的一部分,经三元混合模型计算可知,在雾凉季,半附生阶段前期的斜叶榕利用的水分大约有7%来源于雾水,其他的绝大部分依赖于浅层土壤水(大约90%);而半附生阶段后期的斜叶榕几乎不利用雾水.3讨论西双版纳地区具有特殊的气候条件,降雨主要集中在雨季,干季时降雨极其稀少,但干季常有雾水出现,因此干季植物怎样获取水分以及利用哪种水分从而获得生存显得尤为重要.同时,由于斜叶榕具048应用生态学报21卷有特殊的生态习性,其生活史可以分为3个明显的生长阶段,各阶段潜在可利用水源不同,因此斜叶榕在不同季节不同生长阶段所利用的水源也可能存在不同.斜叶榕土壤最低水势出现在干热季较浅土壤30cm深度处,表明在干热季,30cm深度处的土壤水分含量极低,植物受水分胁迫严重.这可能是因为干热季降雨极其稀少,没有或很少有雾水补给,且气温较高,土壤蒸发与植物蒸腾非常大,导致浅层土壤水势较低.最高水势出现在雾凉季土壤30cm深度处,表明此时该处的土壤水分状况良好.这可能是因为雾凉季气温较低,植物蒸腾与土壤蒸发都较小,且浅层土壤有滴落雾水补给.在70cm深度处,各个季节的水势较高且趋向一致,说明在较深的土壤层水分含量较高并且变化较小,即斜叶榕很少利用深层土壤水.与土壤水势相比,叶片黎明前水势与中午水势明显偏低,显然这有利于植物从土壤中吸收水分.在各个生长阶段,雨季比干季的黎明前叶片水势要高,这可能是由于雨季多为阴雨天气,土壤含水量与空气相对湿度较高,叶片蒸腾较低,因而叶片水势较高.不同生长阶段的植物雨季与干季黎明前叶片水势的差异较大,说明不同生长阶段的绞杀榕对不同的水分状况表现不同的反应.黎明前叶片水势实际反映植物本身的吸水能力[20],在不同季节,植物的黎明前叶片水势随不同生长阶段而异,说明不同生长阶段的绞杀榕在不同季节具有不同的吸水能力,最低水势出现在干季乔木阶段,说明此阶段其吸水能力最强.中午时的叶片水势反映叶片水分的亏缺情况[20],最低水势出现在干季附生阶段,说明此时的叶片受水分胁迫最严重,这可能与干季时降水量较少以及气温较高有关.雨季中午叶片水势较高且差异不大,说明雨季时不同生长阶段的绞杀榕可利用水分状况良好且差异不大.由于在植物根系对土壤水分的吸收过程以及吸收后沿木质部向上运输过程中不存在稳定氢氧同位素分馏现象,各生长阶段斜叶榕木质部的稳定氧同位素值要普遍小于其各潜在水源,这可能是在取样过程或处理样品过程中出现同位素分馏现象造成的.在雨季,对于不同生长阶段的斜叶榕,雨水均为其主要水源;树干腐殖土水分也是附生阶段与半附生阶段的补充水源(树干腐殖土水分来源于雨水,同位素值与雨水接近);浅层土壤水是半附生阶段与乔木阶段的主要水源之一,这可能是因为雨季降雨充足,植物易于直接从雨水或浅层土壤中获取所需水分.在雾凉季,斜叶榕附生阶段的主要水源是雨水、雾水、树干腐殖土水;在半附生阶段前期,由于斜叶榕的根未能延伸足够长从而吸收深层土壤的水分,因此,半附生阶段前期的斜叶榕只能吸收树干腐殖土水、雾水以及浅层土壤水,而浅层土壤水与树干腐殖土水是其主要水源;而在半附生阶段后期与乔木阶段,土壤水(包括浅层与深层土壤水)是其主要水源;由于雾凉季降水很少,树干腐殖土水分含量低,因此树干腐殖土水分是半附生阶段的补充水源而非主要水源;雾水也是半附生阶段的补充水源.对于半附生阶段前期,大约有7%的水分来源于雾水,这是因为半附生阶段前期时裸露在地表上的根较多,而在半附生阶段后期,由于大部分根扎入地下,因此几乎不利用雾水.根据刘文杰等[21]对西双版纳地区的雾水与土壤水的稳定同位素研究发现,浅层土壤水主要来自于雨水与雾水的补给,但干季浅层土壤水中包含更多的雾水[21].同样,在本研究中,由于雾凉季降雨极其稀少,雾水成为浅层土壤水的主要补给水源,而浅层土壤水又是雾凉季斜叶榕半附生阶段以及乔木阶段的主要水分来源,因此,雾水虽然不会作为雾凉季斜叶榕最主要的直接水分来源,但由于其对浅层土壤水的补给作用,对雾凉季斜叶榕的生长也起着非常重要的作用.在干热季,由于附生阶段斜叶榕只有雨水与树干腐殖土水两个潜在可利用水源,且雨水与附生阶段木质部水的稳定同位素值接近,因此雨水是该阶段斜叶榕的主要水源;浅层土壤水是半附生阶段与乔木阶段的主要水源;由于干热季时降雨极少,树干腐殖质水分含量也极低,因此,雨水与树干腐殖土水是半附生阶段的补充水源;由于各生长阶段木质部同位素值与深层土壤水的同位素值相差较远,因此,各生长阶段几乎不利用深层土壤水,这是因为即使是乔木阶段斜叶榕的根也很浅,延伸不到深层土壤层.δ13C值与植物水分利用效率(WUE)呈正相关,与土壤水分含量呈负相关,油棕的δ13C比较稳定,说明油棕的水分来源也是稳定的水源,如深层土壤水,即使是在干季,受水分胁迫程度也较轻;半附生阶段后期与乔木阶段斜叶榕叶片的δ13C值普遍较大,且变化不大,说明这两个阶段植物需水量较大,且主要利用较稳定的水源,如土壤水;最大值出现在干热季的附生阶段,说明此时水分状况极差,WUE1484期王平元等:西双版纳绞杀植物斜叶榕的水分利用策略最大;雨季的各个生长阶段斜叶榕的δ13C变化不大,说明雨季时各生长阶段受水分胁迫较轻,WUE 较低.由于半附生阶段斜叶榕开始利用土壤水,乔木阶段的斜叶榕与油棕都主要利用土壤水,二者形成竞争,因此,斜叶榕生长到乔木阶段以后,根系逐渐发育完全,在与油棕的水分竞争中占据优势,油棕将逐渐死亡.综上所述,由于斜叶榕在不同季节内各生长阶段都具有不同的潜在水源,且各水源稳定同位素值存在差异,因此,根据稳定氧同位素以及植物水势等参数判定,斜叶榕不同生长阶段的植株在不同季节具有不同的水分利用来源,即在不同生长阶段采取不同的水分利用策略来应对环境的变化.参考文献[1]Hobson KA,Wasenaar LI.Stable isotope ecology:An introduction.Oecologia,1999,120:312-313[2]Lin GH,Sternberg L.Hydrogen isotopic fractionation by plant roots during water uptake in coastal wetlandplants//Ehleringer J,Hall A,Farqubar G,eds.StableIsotopes and Plant Carbon-Water Relations.San Diego,California:Academic Press,1993:497-510[3]Wershaw RL,Friedman I,Heller SJ.Hydrogen isotope fractionation of water passing through trees//Hobson F,Speers M,eds.Advances in Organic Geochemistry.New York:Pergamon Press,1966:55-67[4]Zimmermann V,Ehhalt D,Munnich KO.Soil-water movement and evapotranspiration:Changes in the iso-topic composition of water.Proceedings of the Symposi-um of Isotopes in Hydrology.Vienna,InternationalAtomic Energy Agency,1966:567-585[5]White JW,Cook ER,Lawrence JR.The D/H ratios of sap in trees:Implications of water sources and tree ringD/H ratios.Geochimica et Cosmochimica Acta,1985,49:237-246[6]Du D-Y(段德玉),Ouyang H(欧阳华).Application of hydrogen and oxygen isotope in analyzing plant wateruse sources.Ecology and Environment(生态环境),2007,16(2):655-660(in Chinese)[7]Valentini R,Scarascia Mugnozza GE,Ehleringer JR.Hydrogen and carbon isotope ratios of selected species ofa Mediterranean macchia ecosystem.Functional Ecolo-gy,1992,6:627-631[8]Field TS,Dawson TE.Water sources used by Didmo-panax pittieri at different life stages in a tropical cloudforest.Ecology,1998,79:1448-1452[9]XU Z-F(许再富),Zhu H(朱华),Yang D-R(杨大荣),et al.Species diversity and ecological signifi-cance of fig trees in tropical rainforests of southern Yun-nan//Xishuangbanna Tropical Botanical Garden,Chi-nese Academy Sciences,ed.Collected Research Paperson the Tropical Botany,Kunming:Yunnan UniversityPress,1996,4:1-15(in Chinese)[10]O’Brien TG,Kinnaird MF,Dierenfeld NL,et al.What’s so special about figs?Nature,1998,392:668[11]Zhang G-M(张光明),Gu H-Y(谷海燕),Song Q-S (宋启示),et parison of habitats and seasonallydifferentiated distribution patterns of fig wasp populationsassociated with Ficus racemosa in Xishuangbanna.Chi-nese Journal of Applied Ecology(应用生态学报),2004,15(4):627-633(in Chinese)[12]Yang D-R(杨大荣),Peng Y-Q(彭艳琼),Zhang G-M(张光明),et al.Structure and biodiversity of insectcommunity on syconia fruits of Ficus racemosa in tropicalrainforest of Xishuangbanna,China.Chinese Journal ofApplied Ecology(应用生态学报),2003,14(10):1710-1714(in Chinese)[13]Xu Z-F(许再富).Fig trees:A key species in tropical rainforests of southern Yunnan.Biodiversity Science(生物多样性),1994,2(1):21-23(in Chinese)[14]Wei Z-D(魏作东),Yang D-R(杨大荣),Peng Y-Q (彭艳琼),et al.Function of Ficus in the tropical rain-forest ecosystem in Xishuangbanna.Chinese Journal ofEcology(生态学杂志),2005,24(3):233-237(inChinese)[15]Liu W-J(刘文杰),Zhang Y-P(张一平),Liu Y-H (刘玉洪),et al.Fog throughfall at a seasonal rain for-est in Xishuangbanna,southwest China.Acta Phytoeco-logia Sinica(植物生态学报),2003,27(6):749-755(in Chinese)[16]Dawson TE,Ehleringer JR.Isotopic enrichment of water in‘woody’tissues of plants:Implications for plant-wa-ter source,water uptake and other studies which use sta-ble isotopic composition of cellulose.Geochimica et Cos-mochimica Acta,1993,57:3487-3492[17]Dawson TE.Fog in the California redwood forest:Eco-system inputs and use by plants.Oecologia,1998,117:476-485[18]Stratton LC,Goldstein G,Meinzer FC.Temporal and spatial partitioning of water resources among eight woodyspecies in a Hawaiian dry forest.Oecologia,2000,124:309-317[19]Brunel JP,Walker GR,Kennett-Smith AK.Field vali-dation of isotopic procedures for determining source wa-ter used by plants in a semi-arid environment.Journalof Hydrology,1995,167:351-368[20]Lin Z-F(林植芳),Sun G-C(孙谷畴),Lin G-Z(林桂珠),et al.Changes of leaf water potential in plantsfrom different sites at Dinghushan Biosphere Reserve//Sun H-L(孙鸿烈),ed.Papers on Tropical and Sub-tropical Forest Ecosystem.Beijing:China Meteorologi-cal Press,1998:110-118(in Chinese)[21]Liu W-J(刘文杰),Li P-J(李鹏菊),Li H-M(李红梅),et al.Fog interception and its relation with to soilwater in the tropical seasonal rain forest of Xishuangban-na,Southwest China.Acta Ecologica Sinica(生态学报),2006,26(1):9-15(in Chinese)作者简介王平元,男,1985年生,硕士.主要从事植物水分利用研究与植物专类园区管理工作.E-mail:pingyuan0920@ 责任编辑肖红248应用生态学报21卷。

金属-有机骨架MIL-88A (Fe)及其复合物的合成与高级氧化降解水体有机污染物的研究进展

研究还处在初期ꎬ总结、对比其合成方法有利于促进
一 [43] . 将 FeCl 3 6H 2 O 和 富 马 酸 按 1 ∶ 1 分 散 在
加热 4 ~ 6 h 即可得到 MIL ̄88A( Fe) 〔 见图 1( a) 〕 . 合
成条件( 如加热温度和溶剂种类) 对颗粒尺寸有明显
影响ꎬ通常以 H 2 O 为溶剂且提高反应温度可得到粒


性能ꎬ如 NH 2  ̄UiO ̄66 [27] 、ZIF ̄8[28] 等. 促进光生 e -  ̄h +
分离效率是提高光催化性能的有效途径ꎬ因此很多研
究者通过引入氧化石墨烯
[29]
、金属氧化物
[30]
等功能
材料实现 e 快 速 转 移 从 而 提 高 光 催 化 效 率. Wang


[23]
系统综述了 MOFs 光催化降解有机污染物的研
作为电子受体快速消耗电子ꎬ有效克服了光生电子 ̄空穴复合问题. 此外ꎬ将 MIL ̄88A( Fe) 与其他功能材料复合可进一步改善其
光生电子 ̄空穴分离效率、提高光吸收能力及水稳定性. 总之ꎬMIL ̄88A( Fe) 及其复合物在光芬顿、活化 PS 和催化臭氧氧化降解
有机污染物方面具有较大的实际应用潜力.
料等有机污染物研究进展ꎬ认为铁基 MOFs 是具有广
阔应用前景的异相催化剂ꎻCheng 等
[33]
总结并对比了
铁及其他金属基 MOFs 类芬顿降解有机物性能ꎬ发现
MIL (materials of institute lavoisior) 系列的铁基 MOFs
关注度较高. MIL 系列的铁基 MOFs 有 MIL ̄53( Fe)、
Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediationꎬ School of Environment and Energy
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ORNL/TM-13430 CARTESIAN METHODS FOR THE SHALLOW W ATER EQUATIONS ON A SPHEREJohn B.DrakeComputer Science and Mathematics DivisionOak Ridge National LaboratoryPaul N.Swarztrauber and David L.WilliamsonNational Center for Atmospheric ResearchDate Published:December1999Prepared byOAK RIDGE NATIONAL LABORATORYOak Ridge,Tennessee37831-6285managed byLOCKHEED MARTIN ENERGY RESEARCH CORP.for theU.S.DEPARTMENT OF ENERGYunder contract DE-AC05-96OR22464This report has been reproduced directly from the best available copy.Available to DOE and DOE contractors from the Office of Scientific and Technical Information.P.O.Box62,Oak Ridge,TN37831;prices available from(615)576-8401.Available to the public from the National Technical Information Service, U.S.Department of Commerce,5285Port Royal Rd.,Springfield,V A 22161.This report was prepared as an account of work sponsored by an agency of the United States Government.Neither the United States nor any agency thereof,nor any of their employees,makes any warranty,express or implied,or assumes any legal liability or responsibility for the accuracy, completeness,or usefulness of any information,apparatus,product,or process disclosed,or represents that its use would not infringe privately owned rights.Reference herein to any specific commercial product,process, or service by trade name,trademark,manufacturer,or otherwise,does not necessarily constitute or imply its endorsement,recommendation,or favoring by the United States Government or any agency thereof.The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.ContentsList of Figures iv List of Tables v Acknowledgments vi Abstract vii 1INTRODUCTION1 2THE SHALLOW WATER EQUATIONS ON A SPHERE32.1ROTATIONAL FORM OF THE MOMENTUM EQUATION (5)3LOCAL CARTESIAN SPECTRAL APPROXIMATION7 4DISCRETE OPERATOR FORMULAS84.1NUMERICAL RESULTS FOR THE GRADIENT APPROXIMATION (10)5TEST CASES115.1ADVECTION TEST (12)5.2STEADY,ZONAL FLOW TEST (12)5.3NON-ANALYTIC,STEADY,ZONAL FLOW TEST (17)5.4FORCED NONLINEAR SYSTEM WITH A TRANSLATING LOW (18)5.5ZONAL FLOW OVER AN ISOLATED MOUNTAIN (21)5.6ROSSBY-HAURWITZ W A VE (23)5.7ANALYZED500mb INITIAL CONDITIONS (27)6CONCLUSIONS29 A SPHERICAL HARMONIC POLYNOMIALS11Approximation stencil for a regular point of an icosahedral grid (11)2Convergence of the Gradient Approximations (12)3Relative RMS Error in height;Test Case1;q1234 (13)4Relative RMS Error in velocity;Test Case2;q234;Standard Form (14)5Relative RMS Error in height;Test Case2;q234;Standard Form (14)6Relative RMS Error in Velocity;Test Case2;q234;Rotational Form (15)7Relative RMS Error in Height;Test Case2;q234;Rotational Form (15)8Error in Geopotential at5days;Test Case2;q4;Rotational Form (16)9Comparison of geopotential Fourier spectrum for Case2;q3;Rotational Form..17 10Test Case2,Perturbed Spectral Geopotential Error(a)at Day4,(b)at Day5 (18)11Relative RMS Error in Velocity;Test Case3;q234;Standard Form (19)12Relative RMS Error in Height;Test Case3;q234;Standard Form (19)13Relative RMS Error in Velocity;Test Case3;q234;Rotational Form (20)14Relative RMS Error in Height;Test Case3;q234;Rotational Form (20)15Error in Geopotential at5days;Test Case3;q4;Rotational Form (21)16Relative RMS Error in Velocity;Test Case4;q234;Rotational Form (22)17Relative RMS Error in Height;Test Case4;q234;Rotational Form (22)18Conserved integral quantities;Test Case5;q4;Rotational Form (23)19Geopotential at15days;Test Case5;q4;Rotational Form (24)20Conserved integral quantities;Test Case6;q4;Rotational Form (24)21Geopotential at14days;Test Case6;q4;Rotational Form (25)22Cartesian Geopotential at Day1 (26)23Comparison of geopotential Fourier spectrum for Case6;q3;Rotational Form..26 24Test Case6,(a)Cartesian Geopotential at Day5,(b)Perturbed Spectral Geopoten-tial at Day5 (27)25Conserved integral quantities;Test Case7a;q4;Rotational Form (28)26Test Case7a,(a)Reference Solution at Day1,(b)Cartesian Geopotential at Day1.28 27Test Case7,(a)Reference Solution at5Day,(b)Cartesian Geopotential at5Day..29 28Test Case7b,(a)Reference Solution at Day1,(b)Cartesian Geopotential at Day1.30 29Test Case7,(a)Reference Solution at5Day,(b)Cartesian Geopotential at5Day..30 30Conserved integral quantities.Test Case7b,q4;Rotational Form (31)31Test Case7c,(a)Reference Solution at Day1,(b)Cartesian Geopotential at Day1.31 32Test Case7c,(a)Reference Solution at5Day,(b)Cartesian Geopotential at5Day.32 33Conserved integral quantities.Test Case7c,q4;Rotational Form (32)1Geometric information for icosahedral grids (10)AcknowledgementsThis report is one in a series of documents describing the the development of numerical methods for global climate modeling.The work reported is sponsored by the CHAMMP program of the Department of Energy’s Office of Biological and Environmental Research,Environmental Sciences Division.We gratefully acknowledge the support of the CHAMMP program and the National Science Foundation who jointly support the work at the National Center for Atmospheric Research in Boulder.AbstractThe shallow water equations in a spherical geometry are solved using a3-dimensional Cartesian method.Spatial discretization of the2-dimensional,horizontal differential operators is based on the Cartesian form of the spherical harmonics and an icosahedral(spherical)putational velocities are expressed in Cartesian coordinates so that a problem with a singularity at the pole is avoided.Solution of auxiliary elliptic equations is also not necessary.A comparison is made between the standard form of the Cartesian equations and a rotational form using a standard set of test problems.Error measures and conservation properties of the method are reported for the test problems.1INTRODUCTIONThis report is one in a series of documents describing the development of numerical methods for global climate modeling.The work reported is sponsored by the CHAMMP program of the De-partment of Energy’s Office of Biological and Environmental Research.CHAMMP is an acronym for Computer Hardware,Advanced Mathematics and Model Physics.Its goal is the development of advanced climate models with considerably improved throughput,accuracy and realism over existing models.The use of triangular meshes for the solution of partial differential equations(PDE’s)on a spherical domain is attractive for two reasons.Triangles allow nearly uniform meshes while rect-angular meshes suffer the problem of varying resolution near the poles.Secondly,triangles require only a simple data structure for use with adaptive mesh techniques or for meshes that resolve irregular features.Adapting a mesh tofit a coastline is an obvious example.Several early papers investigated the use of icosahedral-triangular meshes[12,13,19,20,21, 22].The barotropic vorticity equation and the shallow water equations on the sphere served as the primary equation sets for testing the numerical methods because of their relevance in atmospheric flow models.A review article[23]gives further references to that early work.More recently an icosahedral method based on the stream function and velocity potential for-mulation of the shallow water equations with a control volume discretization has been proposed by Masuda[9].The method was refined and tested on a standard set of cases[24]by Heikes and Randall in[5,6].Other icosahedral methods have also been proposed in[2].Renewed interest in these methods springs from advances in computing and numerical anal-ysis.The introduction of massively parallel computers has prompted the reexamination of many classical algorithms.The granularity of tasks that can be performed in parallel appears to befin-er for thefinite difference andfinite element methods than for spectral transform methods which dominate global atmospheric modeling.This offers the possibility for the effective use of many small processors of a parallel computer.The Cartesian form of the shallow water equations was proposed by Swarztrauber in[24]and further developed in[17].This alternative formulation avoids the usual singularity in the velocity at the pole by expressing velocities in a three dimensional Cartesian form instead of in spherical coordinates.The introduction of three dimensional velocities necessitates a change of the form of the shallow water equations.Atfirst sight,this form appears more complicated and probably moreexpensive computationally.However,a closer examination shows the Cartesian formulation to be compact and computationally simple.The pole problem can also be partially addressed by introducing new scalar variables derived from the velocity.The stream function/velocity potential or the vorticity/divergence function are the usual choices.The resulting system of equations then involves elliptic equations relating the new scalar variables.Since there is no introduction of new scalar variables in the Cartesian formu-lation,the introduction of elliptic equations is avoided.Thus,the Cartesian method has a signifi-cantly lower operation count than those methods requiring the solution of an elliptic equation.The Cartesian geometry of the sphere and the discretization of the sphere using the points of an icosahedral triangular mesh also lead to a computational economy at the poles.The distances between points of this mesh are nearly uniform,thus,there is not an artificially severe CFL restric-tion on timestep arising from a longitudinal concentration of points near the pole.There is no need tofilter the solution near the poles,a step that can be costly for some methods and can introduce errors on all scales.The Cartesian formulation was used with the calculation of derivatives using a spectral vector harmonic method in previous research[16].In this paper,we consider the Cartesian formula-tion with the calculation of derivatives using a stencil of points located on an icosahedral grid. The derivative approximations might be characterized as locally spectral in that they are based on spherical harmonics,but only use a local stencil of points like afinite difference method.We show,by numerical experiments,that the method of approximating differential operators on the icosahedral mesh is accurate and converges as the mesh is refined.The discretization is then applied to the shallow water equations on a sphere and tested exten-sively on a set of standard cases for shallow water equation solvers.These tests highlight many of the positive properties of the method as well as expose some of its shortcomings.We pay particular attention to the conservation properties of the computed solutions.By changing the formulation of the shallow water equations to a“rotational form,”the conservation and energy stability is signifi-cantly improved.2THE SHALLOW W ATER EQUATIONS ON A SPHEREThe momentum and mass continuity equations for shallow waterflows can be written in advective form:d vdth∇v F h(2) where the substantial derivative is given byd∂tv∇(3) The velocity is referred to a rotating Cartesian frame and the components of v u v are in the longitudinal and latitudinal directions,respectively.The height of the free surface is defined h h h s,where h is the depth of thefluid and the bottom surface height is given by the time invariant function h s.External forcing,if present,is included in F v F u F v and F h.This equation is not in conservative form and,consequently,the numerical methods we develop will not be strictly conservative.It may be advantageous to evaluate the horizontal(surface)derivatives using a Cartesian form. This form was developed in detail in previous research[17].By extending the surface vector v u v T to the three-dimensional v s w v u T,the momentum equations can be embedded in the system∂v s∂r 1∂θv1∂λu cosθ∂va ∂va cosθ∂v∂r 1∂θ1∂λv sinθw cosθ(5)λis the longitude coordinate,θis the latitude coordinate,r is the radial coordinate(r a at theearth’s surface)andαu2v2a∂ha cosθ∂h∂tCV Q Tαβγδ0(12) In this equation,C Q T SQ ∂X∂y∂X ∂x∂Y∂z ∂Z∂y∂ZQ Tα1a20z yz0xy x0XYZ(15)andQ Tβg P∇c h(16) whereP1∂x ∂h∂zT(18)Similarly,the continuity equation in Cartesian form is∂h2ζk v(20) the momentum equation can be written as∂v2F v(21)Changing variables to Cartesian velocities the resulting Cartesian equation is∂Va20z yz0xy x0XYZ(23)andQ TΛP∇c ghV Va,where the notation in Cartesian coordinates should not be confused with the standard notation k for the unit vector in the z-direction.The Cartesian curl is the standard∇c V ∂Z∂z∂X∂x∂Y∂y(25)These derivatives are available from the C matrix described above.The rotational form of the momentum equation has one excellent property for collocation methods[1]:it is semi-energy conserving.This can be seen by considering the discrete kinetic energy equation obtained by the vector multiplication of the momentum equation with the veloci-ty.Ignoring forcing terms and surface orography:V ∂Va2V0z yz0xy x0XYZV P∇c gh V Vmultiplied by the Cartesian velocity because the velocity is tangent to the surface of the sphere:∂V VV P∇c gh V V∂tand adding Equation27to Equation19,the discrete2energy equation is∂EE.IntegratingS2Equation28yields0V P∇c gh gh∇c V(30) If the discrete gradient is the negative adjoint of the discrete divergence,the energy equation be-comes0∇c gh V(31) For a divergence free velocity,thefirst term vanishes,and the second term is the condition of global conservation of mass.Therefore,the discrete energy will be conserved if these conditions are ing the rotational form in collocation methods improves the nonlinear energy stability of the numerical method and reduces the need for artificial diffusion to enhance stability.3LOCAL CARTESIAN SPECTRAL APPROXIMATION The spherical harmonic functions form a basis for functions defined on the surface of the sphere. They have long been used in climate and weather models as the basis for the spectral method[8] and for the approximation of derivatives on the surface of the sphere[15].The spherical harmonic, Y m n,can be defined with the normalized associated Legendre functions,P m nθ,byY m nλθe imλ¯P m nθ(32)The normalized associated Legendre polynomials can be defined from Rodrigues’formula[14]:¯P m n θ1m2n1n m!121dz m nz21n(33)where z cosθandθis colatitude.(In this section only,θrefers to colatitude while in other sections it refers to latitude.)Equations32and33are combined to give a formula for the Cartesian representation of the spherical harmonics[18]:Y m n x y z C m n x iy md m n2n n!2n1n m!12(35)Each spatialfield could be approximated in Cartesian coordinates by a series of trivariate poly-nomials.For example,φx y z∑m nc m n Y m n x y z(36) where the c m n are coefficients of the trivariate polynomials Y m n.Tofind the c m n’s in the expression for φ,a least squares problem could be solved tofitφdata at a set of points on the surface of the sphere with the expansion.Depending on how many points this involves and how many terms are taken in the spectral expansion,this is either a full rank or a rank deficient least squares problem.For example,on an icosahedral grid each grid point has six or seven nearest ing a second order interpolant,we have nine spherical harmonics.This would be a local spectral approximation.4DISCRETE OPERATOR FORMULASAs an alternative to interpolating afield and then differentiating the formula,we can approximate the differential operators directly by requiring that the discrete operators act correctly on the se-lected basis functions.Given a cluster of points p l,l0np1on the surface of the sphere and a tabulation of a function U,U p l about the point p0,we wish to determine coefficients c lsuch thatL U p0np1∑l0c l U p l(37)The sense of the approximation[]must be described.We require Equation37to hold for all spherical harmonics through some number N:L r n Y m n p0np1∑l0c l r n Y m n p l(38)The spherical harmonics Y m n are ordered so that with increasing number the degree increases(see Appendix A for a listing of the harmonics as trivariate polynomials).This system is then solved for the c l.A different set of c l is required for each point p0and the stencil of points around it.For the shallow water equations,the stencil coefficients are calculated for each of the linear operators, L U∂U∂y∂U-12206699.06699.06699.0 1.0000 042803482.03938.03710.00.8843 11623201613.02070.01901.00.7792 26421280761.11049.0956.20.7255 325625120368.4526.3478.80.7001 41024220480181.2263.4239.50.6878dient is then transformed to spherical coordinates and compared with the exact gradient of φ.The error reported is the l 2-error over the points of the icosahedral mesh.The choice of N ,the number of spherical harmonics and np ,the number of points in the stencil,determines the formal accuracy of the method.If N 9,then spherical harmonics of second orderare used.If N16,then third order harmonics are included.For N 25,fourth order harmonicsare included.On an icosahedral grid each point is in a cluster of six or seven.Adding neighbors of these points with some symmetry leads to either thirteen or nineteen point clusters.These clusters define the stencil of the discrete operator (see Figure 1).181245637891012111314151617Fig.1:Approximation stencil for a regular point of an icosahedral grid.Plotting the error in Figure 2with a log-log scale shows the second order (or greater)conver-gence of the approximation as the mesh spacing is decreased.Though the gradient approximations appear to be accurate for higher order spherical harmonics,we will restrict attention in this paper to the quadratic case using N9and np7.5TEST CASESA set of test cases for the shallow water equations on a sphere are detailed in [24].These cases provide a rigorous test for methods as well as allowing for comparison between methods.100.01000.010000.0hmax (km)1.0e-081.0e-061.0e-041.0e-021.0e+00l 2 e r r o rnp=7, N=9np=7, N=16np=19, N=16np=19, N=25Fig.2:Convergence of the Gradient Approximations.5.1ADVECTION TESTTest Case 1is a pure advection problem in which a cosine bell is blown around the sphere under a constant velocity field.Figure 3shows the relative RMS error in the geopotential field as a function of time for a variety of grids.The operators are approximated with quadratic spherical harmonics and use only nearest neighbors.No diffusion was used for this case.The timestep was 1200seconds for meshes q123and 600seconds for the q4mesh.As can be seen fromFigure 3,the error decreases with mesh refinement.A contour plot of the error (not shown)reveals a significant wake behind the cosine bell as a result of the centered spatial approximation.Thus,while convergent,the method has deficiencies as an advection scheme.5.2STEADY,ZONAL FLOW TESTTest Case 2is a steady,non-linear zonal flow rotated through an angle,απ0.0100.0200.0300.0Time (hours)0.000.020.040.060.08r e l a t i v e R M S e r r o r (h )Fig.3:Relative RMS Error in height;Test Case 1;q1234.RMS error with the exact steady solution)and the RMS error in the height field,respectively.The q23integrations used a time step of 1200seconds for the 5day (120hour)simulations whilethe q 4mesh used a 600second timestep.For the standard formulation,two diffusion terms wereadded.The momentum equation was modified with a diffusion operator,εV ∆V ,where εV 8000.Similarly,the height equation was modified with a diffusion coefficient of εh 20000.For therotational formulation,no diffusion was added.The rotational form gives somewhat better results with no diffusion added.Figures 6and 7show the velocity error and the height error for the rotational form of the Cartesian equations also using the quadratic approximation on six or seven neighbors.The error growth for this form is more controlled.A contour plot of the absolute geopotential error is given in Figure 8.The error is measured at five days.Clearly evident are the base points of the icosahedral grid where the difference stencil involves six rather than seven points.The error is held to a small level.However,the error shown in Figure 8exhibits a curious wave #5mode.Other methods based on latitude-longitude grids do not exhibit a systematic error in wave #5.Since there are five icosahedral points around the earth at a given latitude,this raises questions about the influence of the truncation error on the computed solution.What is the expected growth0.050.0100.0150.0Time (hours)1.0e-051.0e-041.0e-031.0e-021.0e-011.0e+00r e l a t i v e R M S e r r o r (V )Fig.4:Relative RMS Error in velocity;Test Case 2;q234;Standard Form.0.050.0100.0150.0Time (hours)1.0e-081.0e-061.0e-041.0e-021.0e+00r e l a t i v e R M S e r r o r (h )Fig.5:Relative RMS Error in height;Test Case 2;q234;Standard Form.0.050.0100.0150.0Time (hours)1.0e-051.0e-041.0e-031.0e-02r e l a t i v e R M S e r r o r (V )Fig.6:Relative RMS Error in Velocity;Test Case 2;q234;Rotational Form.0.050.0100.0150.0Time (hours)1.0e-081.0e-071.0e-061.0e-051.0e-041.0e-031.0e-02r e a l a t i v e R M S e r r o r (h )Fig.7:Relative RMS Error in Height;Test Case 2;q234;Rotational Form.Fig.8:Error in Geopotential at5days;Test Case2;q4;Rotational Form.of this error in the nonlinear model due to a perturbation of the initial conditions?To explore this question the computed geopotential from the Cartesian model after one day was used as an initial condition in a spectral shallow water equation model,STSWM[4].The spectral code was run at T42resolution.After dayfive,the STSWM Fourier spectrum at a given latitude is compared to the spectrum of the Cartesian models solution for each day(Figure9).The Fourier mode amplitude is the square of the modulus of the complex Fourier coefficient of the geopotential.The Fourier coefficients were sampled at the latitude of the T42spectral model nearest26.6degrees,which is the location of one set of icosahedral points and the latitude of highest error in the geopotential.The solution spectrums do not match but show the same features.The Cartesian solution has modes5,10,and15arising from the icosahedral points.These modes appear to grow over time in the Cartesian model,but no more so than the other modes.The perturbed spectral solution maintains the strong mode#5components at Day5with some redistribution of the other modes. The diffusion characteristics of the two methods seem evident.The continued growth of error in the Cartesian model might be attributed to the truncation errors injected in the solution at each timestep.The growth is not a nonlinear mode interaction since the perturbed spectral model shows a preservation of the mode5amplitude.When the Cartesian solution is used as an initial condition in the spectral model,the errors are0.05.010.015.0Fourier Wave Number (m)1.0e-101.0e-051.0e+001.0e+051.0e+10W a v e A m p l i t u d eCartesian t = 0 day Cartesian t = 1 day Cartesian t = 2 days Cartesian t = 3 days Cartesian t = 4 days Cartesian t = 5 daysPerturbed T42 at 5 daysFig.9:Comparison of geopotential Fourier spectrum for Case 2;q3;Rotational Form.advected.As these errors (associated with different wave numbers)move around the globe,they sometimes cancel to produce smaller errors and other times superimpose to create larger errors.Figure 10shows the error in the perturbed spectral solution for two different days in the northern hemisphere.The error on day 4is considerably more dispersed and smaller than the error on Day 3or Day 5,indicating a harmonic of the motion.The Cartesian model and the Heikes-Randall [5,6]model both show eight peaks of error over the five day period.Once an error is present,it tends to remain over time,but each model exhibits different numerical diffusion.The Cartesian model shows a much smoother error than the spectral,indicating that it is more diffusive than the spectral model.The error profile of the Hiekes-Randall model ([6],Figure 9)also shows less diffusion than the Cartesian model.It should be reiterated that no diffusion has been explicitly added to any of these simulations for Case 2.5.3NON-ANALYTIC,STEADY,ZONAL FLOW TESTTest Case 3is a steady,non-linear zonal flow rotated through some angle απFig.10:Test Case2,Perturbed Spectral Geopotential Error(a)at Day4,(b)at Day5.show the error,as a function of time,in the velocity(using the relative RMS error with the exact steady solution)and the RMS error in the heightfield,respectively.Since the model includes no damping the error builds over time and then grows exponentially.The q23integrations used a time step of1200seconds for the5-day(120hour)simulations while the q4mesh used a600 second timestep.For this case,no explicit diffusion was added to either the momentum or height equations.The rotational form error results for Case3are given in Figures13and14.A contour plot of the absolute geopotential error is given in Figure15.The error is measured at Day5.5.4FORCED NONLINEAR SYSTEM WITH A TRANSLATING LOWTest Case4is a time-dependent,non-linear forcedflow with an exact solution.It tests the perfor-mance of the scheme in an unsteady,dynamic simulation.Theflow is a translating low pressure center superimposed on a jet stream symmetrical about the equator.Thefield is similar to a mid-level troposphericflow with a short-wave trough embedded in a westerly jet.As the simulation progresses,the low translates eastward maintaining,its original shape.Figures16and17show the error,as a function of time,in the velocity(using the relative RMS error with the exact solution)and the RMS error in the heightfield,respectively.The model in rotational form includes no damping.The q23integrations used a time step of1200seconds0.050.0100.0150.0Time (hours)1.0e-041.0e-031.0e-021.0e-011.0e+00r e l a t i v e R M S e r r o r (V )Fig.11:Relative RMS Error in Velocity;Test Case 3;q234;Standard Form.0.050.0100.0150.0Time (hours)1.0e-061.0e-051.0e-041.0e-031.0e-021.0e-011.0e+001.0e+011.0e+02r e l a t i v e R M S e r r o r (h )Fig.12:Relative RMS Error in Height;Test Case 3;q234;Standard Form.0.050.0100.0150.0Time (hours)1.0e-041.0e-031.0e-021.0e-011.0e+00r e l a t i v e R M S e r r o r (V )Fig.13:Relative RMS Error in Velocity;Test Case 3;q234;Rotational Form.0.050.0100.0150.0Time (hours)1.0e-061.0e-051.0e-041.0e-031.0e-021.0e-01r e l a t i v e R M S e r r o r (h )Fig.14:Relative RMS Error in Height;Test Case 3;q234;Rotational Form.Fig.15:Error in Geopotential at5days;Test Case3;q4;Rotational Form.for the5day(120hour)simulations while the q4mesh used a600second timestep.The convergence of the Cartesian method is again exhibited as the mesh is refined.5.5ZONAL FLOW OVER AN ISOLATED MOUNTAINThis Test Case is the only one with orography.A5400meter high mountain is given through the surface height function,h s.No analytical solution is known for this case so the usefulness of the case is in diagnosing the conservation properties of the numerical scheme.The simulation used a diffusion coefficient ofεV50105with a timestep of600seconds for the q4mesh.The following conserved quantities are presented as functions of time:mass,total energy,and potential enstrophy.The relative error of the conserved quantity is computed as a normalized inte-gral of the quantity;the normalization is with respect to the integral of the initial value(see[24]). The vorticity is presented as an integral without normalization in Figure18.The conservation properties of the Cartesian method are much better than expected,considering that the difference formula used to approximate the conservation of mass is not influx form and are not guaranteed to preserve the global mass.The excellent conservation of enstrophy and vorticity are also a surprise. As normalized integrals it is not evident from Figure18that the integral of enstrophy maintains a value near machine zero(1013)throughout the simulation.A contour plot of the geopotential。

相关文档
最新文档