物理动能定理的综合应用练习题及解析

合集下载

高中物理动能定理的综合应用题20套(带答案)及解析

高中物理动能定理的综合应用题20套(带答案)及解析

(1)滑块到达底端 B 时的速度大小 vB;
(2)滑块与传送带间的动摩擦因数 μ;
(3)此过程中,由于克服摩擦力做功而产生的热量 Q.
【答案】(1)
2gh (2) v02 2gh (3) m v0
2
2gh
2gl
2
【解析】
试题分析:(1)滑块在由
A

B
的过程中,由动能定理得:
mgh= 1 2
(1)求运动员在 AB 段下滑时受到阻力 Ff 的大小; (2)若运动员能够承受的最大压力为其所受重力的 6 倍,则 C 点所在圆弧的半径 R 至少应为 多大? 【答案】(1)144 N (2)12.5 m 【解析】
试题分析:(1)运动员在 AB 上做初速度为零的匀加速运动,设 AB 的长度为 x,斜面的倾 角为 α,则有 vB2=2ax
mvB2
0

解得:

B
2gh ;
(2)滑块在由 B 到 C 的过程中,由动能定理得:μmgL= 1 mv02− 1 mvB2,
2
2
解得, =v02 2gh ; 2gL
(3)产生的热量:Q=μmgL
L 相对, 相对
0 B 2
2 g
= ( 0
2gh)2 2 g
(或
(0 v02
2 gh )2 2gh
(3)传送带的速度大于或等于 v1,则滑块回到水平轨道时的速度大小仍为 v1
mgs
0
1 2
mv12
得 s=0.9m,即滑块在水平轨道上滑行的路程为 0.9m,则最后停在离 B 点 0.2m 处。
若传送带的速度 7 m/s <v<3m/s,则滑块将回到 B 点,滑上圆弧轨道后又滑到水平轨道,

动能定理及其应用--高中物理模块典型题归纳(含详细答案)

动能定理及其应用--高中物理模块典型题归纳(含详细答案)

动能定理及其应用--高中物理模块典型题归纳(含详细答案)一、单选题1.一个物体速度由0增加到v,再从v增加到2v,外力做功分别为W1和W2,则W1和W2关系正确的是-()A.W2=W1B.W2 =2W1C.W2 =3W1D.W2 =4W12.质量m=2㎏的物块放在粗糙水平面上,在水平拉力的作用下由静止开始运动,物块动能E K与其发生位移x之间的关系如图所示。

已知物块与水平面间的动摩擦因数μ=0.2,重力加速度g取10m/s2,则下列说法正确的是()A.x=1m时物块的速度大小为2m/sB.x=3m时物块的加速度大小为C.在前4m位移过程中拉力对物块做的功为9JD.在前4m位移过程中物块所经历的时间为2.8s3.如图所示,小球从倾斜轨道上由静止释放,经平直部分冲上圆弧部分的最高点A时,对圆弧的压力大小为mg,已知圆弧的半径为R,整个轨道光滑.则()A.在最高点A,小球受重力和向心力的作用B.在最高点A,小球的速度为C.在最高点A,小球的向心加速度为gD.小球的释放点比A点高为R4.如图所示,木板可绕固定水平轴O转动.木板从水平位置OA缓慢转到OB位置,木板上的物块始终相对于木板静止.在这一过程中,物块的重力势能增加了2J.用F N表示物块受到的支持力,用F f表示物块受到的摩擦力.在此过程中,以下判断正确的是()A.F N和F f对物块都不做功B.F N对物块做功为2 J,F f对物块不做功C.F N对物块不做功,F f对物块做功为2 JD.F N和F f对物块所做功的代数和为05.如图所示,水平传送带长为x,以速度v始终保持匀速运动,把质量为m的货物放到A点,货物与皮带间的动摩擦因数为μ,当货物从A点运动到B点的过程中,摩擦力对货物做的功不可能()A.等于mv2B.小于mv2C.大于μmgxD.小于μmgx6.如图所示,足够长的传送带与水平面夹角为θ=37o,以速度v0逆时针匀速转动.在传送带的上端轻轻放置一个质量为m的小木块,小木块与传送带间的动摩擦因数,则图中能客观地反映小木块的速度随时间变化关系的是()A. B. C. D.7.如图所示,在轻弹簧的下端悬挂一个质量为m的小球A,若将小球A从弹簧原长位置由静止释放,小球A能够下降的最大高度为h.若将小球A换为质量为2m的小球B,仍从弹簧原长位置由静止释放,则小球B下降h时的速度为(重力加速度为g,不计空气阻力)()A. B. C. D.08.电磁轨道炮射程远、精度高、威力大.假设一款电磁轨道炮的弹丸(含推进器)质量为20.0kg,从静止开始在电磁驱动下速度达到2.50×103m/s.则此过程中弹丸所受合力做的功是()A.2.50×104JB.5.00×104JC.6.25×107JD.1.25×108J9.如图,一半径为R的半圆形轨道竖直固定放置,轨道两端等高;质量为m的质点自轨道端点P由静止开始滑下,滑到最低点Q时,对轨道的正压力为2mg,重力加速度大小为g.质点自P滑到Q的过程中,克服摩擦力所做的功为()A.mgRB.mgRC.mgRD.mgR10.物体A和B质量相等,A置于光滑的水平面上,B置于粗糙水平面上,开始时都处于静止状态.在相同的水平力作用下移动相同的距离,则()A.力F对A做功较多,A的动能较大B.力F对B做功较多,B的动能较大C.力F对A和B做功相同,A和B的动能相同D.力F对A和B做功相同,但A的动能较大二、多选题11.如图所示,有两固定且竖直放置的光滑半圆环,半径分别为R和2R,它们的上端在同一水平面上,有两质量相等的小球分别从两半圆环的最高点处(如图所示)由静止开始下滑,以半圆环的最高点为零势点,则下列说法正确的是()A.两球到达最低点时的机械能相等B.A球在最低点时的速度比B球在最低点时的速度小C.A球在最低点时的速度比B球在最低点时的速度大D.两球到达最低点时的向心加速度大小相等12.某足球运动员罚点球直接射门,球恰好从横梁下边缘A点踢进,球经过A点时的速度为v,A点离地面的高度为h,球的质量为m,运动员对球做的功为,球从踢飞到A点过程中克服空气阻力做的功为,选地面为零势能面,下列说法正确的是()A.运动员对球做的功B.从球静止到A点的过程中,球的机械能变化量为-C.球刚离开运动员脚面的瞬间,球的动能为D.从球刚离开运动员脚面的瞬间到A点的过程中,球的动能变化量为-mgh13.如图所示,三角形传送带以1m/s的速度逆时针匀速转动,两边的传送带长都是2m且与水平方向的夹角均为37°.现有两个小物块A,B同时从传送带顶端都以1m/s的初速度沿传送带下滑,已知物块与传送带间的动摩擦因数都是0.5,sin37°=0.6,cos37°=0.8,重力加速度g=10m/s2.下列说法正确的是()A.物块A,B运动的加速度大小不同B.物块A,先到达传送带底端C.物块A,B运动到传送带底端时重力的功率相等D.物块A,B在传送带上的划痕长度之比为1:314.如图所示,现有一端固定在地面上的两根长度相同竖直弹簧(K1>K2),两个质量相同的小球分别由两弹簧的正上方高为H处自由下落,落到轻弹簧上将弹簧压缩,小球落到弹簧上将弹簧压缩的过程中获得的最大弹性势能分别是E1和E2,在具有最大动能时刻的重力势能分别是E P1和E P2(以地面为重力势能的零势能),则()A.E1<E2B.E1>E2C.E P1=E P2D.E P1>E P215.如图所示,在a点由静止释放一个质量为m,电荷量为q的带电粒子,粒子到达b点时速度恰好为零,设ab所在的电场线竖直向下,a、b间的高度差为h,则()A.带电粒子带负电B.a、b两点间的电势差U ab=C.b点场强大于a点场强D.a点场强大于b点场强16.如图所示,光滑杆O′A的O′端固定一根劲度系数为k=10N/m,原长为l0=1m的轻弹簧,质量为m=1kg的小球套在光滑杆上并与弹簧的上端连接,OO′为过O点的竖直轴,杆与水平面间的夹角始终为θ=30°,开始杆是静止的,当杆以OO′为轴转动时,角速度从零开始缓慢增加,直至弹簧伸长量为0.5m,下列说法正确的是()A.杆保持静止状态,弹簧的长度为0.5mB.当弹簧伸长量为0.5m时,杆转动的角速度为rad/sC.当弹簧恢复原长时,杆转动的角速度为rad/sD.在此过程中,杆对小球做功为12.5J17.如图所示,在竖直平面内有一半径为R的圆弧轨道,半径OA水平、OB竖直,一个质量为m的小球自A的正上方P点由静止开始自由下落,小球沿轨道到达最高点B时,对轨道的压力为其重力的一半.已知AP=2R,重力加速度为g,则小球从P到B的运动过程中()A.机械能减少mgRB.动能增加mgRC.克服摩擦力做功mgRD.合外力做功mgR18.在水平向右的匀强电场中有一绝缘斜面,斜面上有一带电金属块沿斜面滑下,已知在金属块滑下的过程中动能增加了14J,金属块克服摩擦力做功10J,重力做功22J,则以下判断正确的是()A.金属块带正电荷B.金属块克服电场力做功8 JC.金属块的电势能减少2 JD.金属块的机械能减少8 J三、实验探究题19.某兴趣小组准备探究“合外力做功和物体速度变化的关系”,实验前组员们对初速为O的物体提出了以下几种猜想:①W∝v;②W∝v2;③W∝为了验证猜想,他们设计了如图甲所示的实验装置.PQ 为一块倾斜放置的木板,在Q处固定一个光电计时器(用来测量物体上的遮光片通过光电门时的挡光时间).(1)如果物体上的遮光片宽度为d,某次物体通过光电计时器挡光时间为△t,则物体通过光电计时器时的速度v=________.(2)实验过程中,让物体分别从不同高度无初速释放,测出物体初始位置到光电计时器的距离L1、L2、L3、L4…,读出物体每次通过光电计时器的挡光时间,从而计算出物体通过光电计时器时的速度v1、v2、v3、v4…,并绘制了如图乙所示的L﹣v图象.为了更直观地看出L 和v的变化关系,他们下一步应该作出:____________A.L﹣v2图象B.L﹣图象C.L﹣图象D.L﹣图象(3)实验中,物体与木板间摩擦力________(选填“会”或“不会”)影响探究的结果.四、综合题20.一质量为m=2kg的小滑块,从半径R=1.25m的1/4光滑圆弧轨道上的A点由静止滑下,圆弧轨道竖直固定,其末端B切线水平。

2025届高考物理复习:经典好题专项(动能定理及其应用)练习(附答案)

2025届高考物理复习:经典好题专项(动能定理及其应用)练习(附答案)

2025届高考物理复习:经典好题专项(动能定理及其应用)练习1.(2023ꞏ北京市东城区模拟)复兴号动车在世界上首次实现速度350 km/h 自动驾驶功能,成为我国高铁自主创新的又一重大标志性成果。

一列质量为m 的动车,初速度为v 0,以恒定功率P 在平直轨道上运动,经时间t 达到该功率下的最大速度v m ,设动车行驶过程所受到的阻力F 保持不变。

下列关于列车在整个过程中的说法正确的是( )A .做匀加速直线运动B .牵引力的功率P =F v mC .当动车速度为v m 3时,其加速度为3F mD .牵引力做的功等于12m v m 2-12m v 022. 如图所示,竖直平面内有一半径为R 的14B 。

一质量为m的小物块从A 处由静止滑下,沿轨道运动至C 处停下,B 、C 两点间的距离为R ,物块与圆轨道和水平轨道之间的动摩擦因数相同。

现用始终平行于轨道或轨道切线方向的力推动物块,使物块从C 处缓慢返回A 处,重力加速度为g ,设推力做的功至少为W ,则( )A .W =mgRB .mgR <W <2mgRC .W =2mgRD .W >2mgR3. 如图所示,AB 是带有半径为R 的竖直圆轨道的光滑轨道,它的质量为M ,置于左右固定的水平地面上,紧挨轨道的B 点有一倾角为θ的斜面,一质量为m 的小球从光滑斜面上距B 点4R 处由静止释放,当小球通过圆轨道最高点时轨道恰好能离开地面,已知斜面倾角θ=53°,sin 53°=0.8,不计小球经过B 点时的能量损失,则轨道质量M 与小球质量m 之间的关系为( )A .M =0.8mB .M =1.2mC .M =1.4mD .M =2.0m4. 如图,半圆形光滑轨道固定在水平地面上,半圆的直径与地面垂直,一小球以速度v 从轨道下端滑入轨道,并保证从轨道上端水平飞出,则关于小球落地点到轨道下端的水平距离x 与轨道半径R 的关系,下列说法正确的是( )A .R 越大,则x 越大B .R 越小,则x 越大C .当R 为某一定值时,x 才有最大值D .当R 为某一定值时,x 才有最小值5. (2023ꞏ四川绵阳市诊断)如图所示,有一倾角θ=45°的粗糙斜面固定于空中的某位置。

高考物理动能定理的综合应用题20套(带答案)含解析(1)

高考物理动能定理的综合应用题20套(带答案)含解析(1)

高考物理动能定理的综合应用题20套(带答案)含解析(1)一、高中物理精讲专题测试动能定理的综合应用1.如图所示,半径为R =1 m ,内径很小的粗糙半圆管竖直放置,一直径略小于半圆管内径、质量为m =1 kg 的小球,在水平恒力F =25017N 的作用下由静止沿光滑水平面从A 点运动到B 点,A 、B 间的距离x =175m ,当小球运动到B 点时撤去外力F ,小球经半圆管道运动到最高点C ,此时球对外轨的压力F N =2.6mg ,然后垂直打在倾角为θ=45°的斜面上(g =10 m/s 2).求:(1)小球在B 点时的速度的大小; (2)小球在C 点时的速度的大小;(3)小球由B 到C 的过程中克服摩擦力做的功; (4)D 点距地面的高度.【答案】(1)10 m/s (2)6 m/s (3)12 J (4)0.2 m 【解析】 【分析】对AB 段,运用动能定理求小球在B 点的速度的大小;小球在C 点时,由重力和轨道对球的压力的合力提供向心力,由牛顿第二定律求小球在C 点的速度的大小;小球由B 到C 的过程,运用动能定理求克服摩擦力做的功;小球离开C 点后做平抛运动,由平抛运动的规律和几何知识结合求D 点距地面的高度. 【详解】(1)小球从A 到B 过程,由动能定理得:212B Fx mv = 解得:v B =10 m/s(2)在C 点,由牛顿第二定律得mg +F N =2c v m R又据题有:F N =2.6mg 解得:v C =6 m/s.(3)由B 到C 的过程,由动能定理得:-mg ·2R -W f =221122c B mv mv - 解得克服摩擦力做的功:W f =12 J(4)设小球从C 点到打在斜面上经历的时间为t ,D 点距地面的高度为h , 则在竖直方向上有:2R -h =12gt 2由小球垂直打在斜面上可知:cgtv=tan 45° 联立解得:h =0.2 m 【点睛】本题关键是对小球在最高点处时受力分析,然后根据向心力公式和牛顿第二定律求出平抛的初速度,最后根据平抛运动的分位移公式列式求解.2.为了研究过山车的原理,某物理小组提出了下列设想:取一个与水平方向夹角为θ=60°、长为L 1=23m 的倾斜轨道AB ,通过微小圆弧与长为L 2=3m 的水平轨道BC 相连,然后在C 处设计一个竖直完整的光滑圆轨道,出口为水平轨道上D 处,如图所示.现将一个小球从距A 点高为h =0.9m 的水平台面上以一定的初速度v 0水平弹出,到A 点时小球的速度方向恰沿AB 方向,并沿倾斜轨道滑下.已知小球与AB 和BC 间的动摩擦因数均为μ=33,g 取10m/s 2.(1)求小球初速度v 0的大小; (2)求小球滑过C 点时的速率v C ;(3)要使小球不离开轨道,则竖直圆弧轨道的半径R 应该满足什么条件? 【答案】(16m/s (2)6m/s (3)0<R ≤1.08m 【解析】试题分析:(1)小球开始时做平抛运动:v y 2=2gh代入数据解得:22100.932/y v gh m s =⨯⨯==A 点:60y x v tan v ︒=得:032/6/603yx v v v s m s tan ==︒== (2)从水平抛出到C 点的过程中,由动能定理得:()2211201122C mg h L sin mgL cos mgL mv mv θμθμ+---=代入数据解得:36/C v m s =(3)小球刚刚过最高点时,重力提供向心力,则:21mv mg R =22111 222C mv mgR mv += 代入数据解得R 1=1.08 m当小球刚能到达与圆心等高时2212C mv mgR = 代入数据解得R 2=2.7 m当圆轨道与AB 相切时R 3=BC•tan 60°=1.5 m 即圆轨道的半径不能超过1.5 m综上所述,要使小球不离开轨道,R 应该满足的条件是 0<R≤1.08 m . 考点:平抛运动;动能定理3.如图所示,竖直平面内的轨道由直轨道AB 和圆弧轨道BC 组成,直轨道AB 和圆弧轨道BC 平滑连接,小球从斜面上A 点由静止开始滑下,滑到斜面底端后又滑上一个半径为=0.4m R 的圆轨道;(1)若接触面均光滑,小球刚好能滑到圆轨道的最高点C ,求斜面高h ;(2)若已知小球质量m =0.1kg ,斜面高h =2m ,小球运动到C 点时对轨道压力为mg ,求全过程中摩擦阻力做的功.【答案】(1)1m ;(2) -0.8J ; 【解析】 【详解】(1)小球刚好到达C 点,重力提供向心力,由牛顿第二定律得:2v mg m R=从A 到C 过程机械能守恒,由机械能守恒定律得:()2122mg h R mv -=, 解得:2.5 2.50.4m 1m h R ==⨯=;(2)在C 点,由牛顿第二定律得:2Cv mg mg m R+=,从A 到C 过程,由动能定理得:()21202f C mgh R W mv -+=-, 解得:0.8J f W =-;4.如图甲所示,倾斜的传送带以恒定的速率逆时针运行.在t =0时刻,将质量为1.0 kg 的物块(可视为质点)无初速度地放在传送带的最上端A 点,经过1.0 s ,物块从最下端的B 点离开传送带.取沿传送带向下为速度的正方向,则物块的对地速度随时间变化的图象如图乙所示(g =10 m/s 2),求:(1)物块与传送带间的动摩擦因数;(2)物块从A 到B 的过程中,传送带对物块做的功. 【答案】3-3.75 J 【解析】解:(1)由图象可知,物块在前0.5 s 的加速度为:2111a =8?m/s v t = 后0.5 s 的加速度为:222222?/v v a m s t -== 物块在前0.5 s 受到的滑动摩擦力沿传送带向下,由牛顿第二定律得:1mgsin mgcos ma θμθ+=物块在后0.5 s 受到的滑动摩擦力沿传送带向上,由牛顿第二定律得:2mgsin mgcos ma θμθ-=联立解得:3μ=(2)由v -t 图象面积意义可知,在前0.5 s ,物块对地位移为:1112v t x =则摩擦力对物块做功:11·W mgcos x μθ= 在后0.5 s ,物块对地位移为:12122v v x t +=则摩擦力对物块做功22·W mgcos x μθ=- 所以传送带对物块做的总功:12W W W =+ 联立解得:W =-3.75 J5.在某电视台举办的冲关游戏中,AB 是处于竖直平面内的光滑圆弧轨道,半径R=1.6m ,BC 是长度为L 1=3m 的水平传送带,CD 是长度为L 2=3.6m 水平粗糙轨道,AB 、CD 轨道与传送带平滑连接,参赛者抱紧滑板从A 处由静止下滑,参赛者和滑板可视为质点,参赛者质量m=60kg ,滑板质量可忽略.已知滑板与传送带、水平轨道的动摩擦因数分别为μ1=0.4、μ2=0.5,g 取10m/s 2.求:(1)参赛者运动到圆弧轨道B 处对轨道的压力;(2)若参赛者恰好能运动至D 点,求传送带运转速率及方向; (3)在第(2)问中,传送带由于传送参赛者多消耗的电能.【答案】(1)1200N ,方向竖直向下(2)顺时针运转,v=6m/s (3)720J 【解析】(1) 对参赛者:A 到B 过程,由动能定理 mgR(1-cos 60°)=12m 2B v 解得v B =4m /s在B 处,由牛顿第二定律N B -mg =m 2Bv R解得N B =2mg =1 200N根据牛顿第三定律:参赛者对轨道的压力 N′B =N B =1 200N ,方向竖直向下. (2) C 到D 过程,由动能定理-μ2mgL 2=0-12m 2C v 解得v C =6m /sB 到C 过程,由牛顿第二定律μ1mg =ma 解得a =4m /s 2(2分) 参赛者加速至v C 历时t =C Bv v a-=0.5s 位移x 1=2B Cv v +t =2.5m <L 1 参赛者从B 到C 先匀加速后匀速,传送带顺时针运转,速率v =6m /s . (3) 0.5s 内传送带位移x 2=vt =3m参赛者与传送带的相对位移Δx =x 2-x 1=0.5m 传送带由于传送参赛者多消耗的电能 E =μ1mg Δx +12m 2C v -12m 2B v =720J .6.如图所示,小物体沿光滑弧形轨道从高为h 处由静止下滑,它在水平粗糙轨道上滑行的最远距离为s ,重力加速度用g 表示,小物体可视为质点,求:(1)求小物体刚刚滑到弧形轨道底端时的速度大小v ; (2)水平轨道与物体间的动摩擦因数均为μ。

高考物理-实验探究动能定理-专题练习(含答案与解析)

高考物理-实验探究动能定理-专题练习(含答案与解析)

高考物理实验探究动能定理题型一、考查实验原理与实验操作1.某同学把附有滑轮的长木板平放在实验桌上,将细绳一端拴在小车上,另一端绕过定滑轮,挂上适当的钩码,使小车在钩码的牵引下运动,以此定量探究绳拉力做功与小车动能变化的关系。

此外还准备了打点计时器及配套的电源、导线、复写纸、纸带、小木块等。

组装的实验装置如图所示。

(1)若要完成该实验,必需的实验器材还有哪些________________;(2)实验开始时,他先调节木板上定滑轮的高度,使牵引小车的细绳与木板平行。

他这样做的目的是下列的哪个_______________(填字母代号)。

A.避免小车在运动过程中发生抖动B.可使打点计时器在纸带上打出的点迹清晰C.可以保证小车最终能够实现匀速直线运动D.可在平衡摩擦力后使细绳拉力等于小车受的合力(3)平衡摩擦力后,当他用多个钩码牵引小车时,发现小车运动过快,致使打出的纸带上点数较少,难以选到合适的点计算小车速度。

在保证所挂钩码数目不变的条件下,请你利用本实验的器材提出一个解决办法:___________________。

(4)他将钩码重力做的功当作细绳拉力做的功,经多次实验发现拉力做功总是要比小车动能增量大一些。

这一情况可能是下列哪些原因造成的__________(填字母代号)。

A.在接通电源的同时释放了小车B.小车释放时离打点计时器太近C.阻力未完全被小车重力沿木板方向的分力平衡掉D.钩码做匀加速运动,钩码重力大于细绳拉力2.某学习小组做探究“合力的功和物体速度变化关系”的实验,如图中小车是在一条橡皮筋作用下弹出,沿木板滑行,这时,橡皮筋对小车做的功记为W,当用2条、3条……,完全相同的橡皮筋并在一起进行第2次、第3次……实验时,使每次实验中橡皮筋伸长的长度都保持一致。

每次实验中小车获得的速度由打点计时器所打的纸带测出。

(1)除了图中已有的实验器材外,还需要导线、开关、刻度尺和__________。

(2)实验中,小车会受到摩擦阻力的作用,可以使木板适当倾斜来平衡摩擦阻力,则下面操作正确的是__________。

高三物理动能定理的综合应用试题答案及解析

高三物理动能定理的综合应用试题答案及解析

高三物理动能定理的综合应用试题答案及解析1.已知一足够长的传送带与水平面的倾角为θ,以一定的速度匀速运动.某时刻在传送带适当的位置放上具有一定初速度的物块(如图a所示),以此时为t=0时刻记录了小物块之后在传送带上运动速度随时间的变化关系,如图b所示(图中取沿斜面向上的运动方向为正方向,其中两坐标大小v1>v2),已知传送带的速度保持不变(g取10 m/s2),则A.0~t1内,物块对传送带做正功B.物块与传送带间的动摩擦因数为μ,μ<tanθC.0~t2内,传送带对物块做功为D.系统产生的热量大小一定大于物块动能的变化量大小【答案】D【解析】分析题图b可知,传送带沿斜面向上运动;0~t1内,物块沿斜面向下运动,物块受到的摩擦力沿斜面向上,故传送带受到的摩擦力沿斜面向下,物块对传送带做负功,选项A错误;0~t1内,物块沿斜面向下减速运动,故物块加速度沿斜面向上,即μmgcosθ>mgsinθ,故μ>tanθ,选项B错误;0~t2内,传送带对物块做的功W加上物块重力做的功WG等于物块动能的增加量,即,根据v-t图像的“面积”法求位移可知,WG≠0,选项C错误;设0~t1内物块的位移大小为s1,t1~t2内物块的位移大小为s2,全过程物块与传送带之间有相对滑动,物块受到的摩擦力f大小恒定,系统的一部分机械能会通过“摩擦生热”转化为热量即内能,其大小Q=fs相对,对0~t1内和t1~t2内的物块运用动能定理,有-(f-mgsinθ)s1=0-mv,(f-mgsinθ)s2=mv,即f(s1+s2)=mv+mv+mgsinθ(s1+s2)>mv-mv,因s相对>s1+s2,故Q=fs相对>f(s1+s2)>mv-mv,选项D正确2.(15分)如图所示,MN与PQ为在同一水平面内的平行光滑金属导轨,间距l=0.5m,电阻不计,在导轨左端接阻值为R=0.6Ω的电阻.整个金属导轨置于竖直向下的匀强磁场中,磁感应强度大小为B=2T.将质量m=1kg、电阻r=0.4Ω的金属杆ab垂直跨接在导轨上.金属杆ab在水平拉力F的作用下由静止开始向右做匀加速运动.开始时,水平拉力为F=2N.(1)求金属杆ab的加速度大小;(2)求2s末回路中的电流大小;(3)已知开始2s内电阻R上产生的焦耳热为6.4J,求该2s内水平拉力F所做的功.【答案】(1)2 m/s2(2)4A (3)18.7J【解析】(1)(4分)在初始时刻,由牛顿第二定律:(2分)得(2分)(2)(5分)2s末时,(1分)感应电动势(2分)回路电流为(2分)(3)(6分)设拉力F所做的功为, 由动能定理:(2分)为金属杆克服安培力做的总功,它与R上焦耳热关系为:,(2分)得:(1分)所以:(1分)【考点】本题考查电磁感应、动能定理=5m/s的水平初速度滑上静止在光滑水平3.(10分)如图所示,质量为m=1kg的滑块,以υ面的平板小车,若小车质量M=4kg,平板小车足够长,滑块在平板小车上滑移1s后相对小车静止。

(物理)动能定理的综合应用练习

(物理)动能定理的综合应用练习
(物理)动能定理的综合应用练习
一、高中物理精讲专题测试动能定理的综合应用
1.如图所示,人骑摩托车做腾跃特技表演,以1.0m/s的初速度沿曲面冲上高0.8m、顶部水平的高台,若摩托车冲上高台的过程中始终以额定功率1.8kW行驶,经过1.2s到达平台顶部,然后离开平台,落至地面时,恰能无碰撞地沿圆弧切线从A点切入光滑竖直圆弧轨道,并沿轨道下滑.A、B为圆弧两端点,其连线水平.已知圆弧半径为R=1.0m,人和车的总质量为180kg,特技表演的全过程中不计一切阻力(计算中取g=10m/s2,sin53°=0.8,cos53°=0.6).求:

x= 3.2m
(3)F与位移x的关系图线围成的面积表示F所做的功,即
对全过程运用动能定理,
WF−μmgxm=0
代入数据得:
xm=10m
8.如图所示,BC为半径等于 m竖直放置的光滑细圆管,O为细圆管的圆心,在圆管的末端C连接倾斜角为45°、动摩擦因数μ=0.6的足够长粗糙斜面,一质量为m=0.5kg的小球从O点正上方某处A点以v0水平抛出,恰好能垂直OB从B点进入细圆管,小球从进入圆管开始受到始终竖直向上的力F=5N的作用,当小球运动到圆管的末端C时作用力F立即消失,小球能平滑地冲上粗糙斜面.(g=10m/s2)求:
(1)滑雪运动员沿山坡下滑时的加速度大小a;
(2)滑雪运动员沿山坡下滑过程中受到的阻力大小f;
(3)滑雪运动员在全过程中克服阻力做的功Wf.
【答案】(1)4m/s2(2)f = 70N (3)1.75×104J
【解析】
【分析】
(1)运动员沿山坡下滑时做初速度为零的匀加速直线运动,已知时间和位移,根据匀变速直线运动的位移时间公式求出下滑的加速度.
(1)人和车到达顶部平台的速度v;

【物理】物理动能定理的综合应用题20套(带答案)及解析

【物理】物理动能定理的综合应用题20套(带答案)及解析
解得:μ=0.375
⑵滑块要能通过最高点C,则在C点所受圆轨道的弹力N需满足:N≥0 ①
在C点时,根据牛顿第二定律有:mg+N= ②
在滑块由A运动至C的过程中,根据动能定理有:-μmgcos37° = - ③
由①②③式联立解得滑块从A点沿斜面滑下时的初速度v0需满足:v0≥ = m/s
即v0的最小值为:v0min= m/s
(1)人和车到达顶部平台的速度v;
(2)从平台飞出到A点,人和车运动的水平距离x;
(3)圆弧对应圆心角 ;
(4)人和车运动到圆弧轨道最低点O时对轨道的压力.
【答案】(1)3m/s(2)1.2m(3)106°(4)7.74×103N
【解析】
【分析】
【详解】
(1)由动能定理可知:
v=3m/s
(2)由 可得:
(3)摩托车落至A点时,其竖直方向的分速度
设摩托车落地时速度方向与水平方向的夹角为α,则
,即α=53°
所以θ=2α=106°
(4)在摩托车由最高点飞出落至O点的过程中,由机械能守恒定律可得:
在O点:
所以N=7740N
由牛顿第三定律可知,人和车在最低点O时对轨道的压力为7740N
2.如图所示,倾角为37°的粗糙斜面AB底端与半径R=0.4m的光滑半圆轨道BC平滑相连,O点为轨道圆心,BC为圆轨道直径且处于竖直方向,A、C两点等高.质量m=1kg的滑块从A点由静止开始下滑,恰能滑到与O点等高的D点,g取10m/s2,sin37°=0.6,cos37°=0.8.求:
⑶滑块从C点离开后将做平抛运动,根据平抛运动规律可知,在水平方向上的位移为:x=vt ④
在竖直方向的位移为:y= ⑤
根据图中几何关系有:tan37°= ⑥
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

物理动能定理的综合应用练习题及解析一、高中物理精讲专题测试动能定理的综合应用1.由相同材料的细杆搭成的轨道如图所示,其中细杆AB 、BC 、CD 、DE 、EF ……长均为 1.5m L =,细杆OA 和其他细杆与水平面的夹角都为()37sin370.6,cos370.8β︒︒︒===,一个可看成质点的小环套在细杆OA 上从图中离轨道最低点的竖直高度 1.32m h =处由静止释放,小环与细杆的动摩擦因数都为0.2μ=,最大静摩擦力等于相同压力下的滑动摩擦力,在两细杆交接处都用短小曲杆相连,不计动能损失,使小环能顺利地经过,重力加速度g 取210m /s ,求: (1)小环在细杆OA 上运动的时间t ; (2)小环运动的总路程s ; (3)小环最终停止的位置。

【答案】(1)1s ;(2)8.25m ;(3)最终停在A 点 【解析】 【分析】 【详解】(1)因为sin cos mg mg βμβ>,故小环不能静止在细杆上,小环下滑的加速度为2sin cos 4.4m/s mg mg a mβμβ-==设物体与A 点之间的距离为0L ,由几何关系可得0 2.2m sin37hL ︒== 设物体从静止运动到A 所用的时间为t ,由2012L at =,得 1s t =(2)从物体开始运动到最终停下的过程中,设总路程为s ,由动能定理得cos3700mgh mgs μ︒=--代入数据解得s =8.25m(3)假设物体能依次到达B 点、D 点,由动能定理有201(sin37)cos37()2B mg h L mg L L mv μ︒︒+=-- 解得20B v <说明小环到不了B 点,最终停在A 点处2.为了备战2022年北京冬奥会,一名滑雪运动员在倾角θ=30°的山坡滑道上进行训练,运动员及装备的总质量m=70 kg.滑道与水平地面平滑连接,如图所示.他从滑道上由静止开始匀加速下滑,经过t=5s到达坡底,滑下的路程 x=50 m.滑雪运动员到达坡底后又在水平面上滑行了一段距离后静止.运动员视为质点,重力加速度g=10m/s2,求:(1)滑雪运动员沿山坡下滑时的加速度大小a;(2)滑雪运动员沿山坡下滑过程中受到的阻力大小f;(3)滑雪运动员在全过程中克服阻力做的功W f.【答案】(1)4m/s2(2)f = 70N (3)1.75×104J【解析】【分析】(1)运动员沿山坡下滑时做初速度为零的匀加速直线运动,已知时间和位移,根据匀变速直线运动的位移时间公式求出下滑的加速度.(2)对运动员进行受力分析,根据牛顿第二定律求出下滑过程中受到的阻力大小.(3)对全过程,根据动能定理求滑雪运动员克服阻力做的功.【详解】(1)根据匀变速直线运动规律得:x=1at22解得:a=4m/s2(2)运动员受力如图,根据牛顿第二定律得:mgsinθ-f=ma解得:f=70N(3)全程应用动能定理,得:mgxsinθ-W f =0解得:W f =1.75×104J【点睛】解决本题的关键要掌握两种求功的方法,对于恒力可运用功的计算公式求.对于变力可根据动能定理求功.3.我国将于2022年举办冬奥会,跳台滑雪是其中最具观赏性的项目之一.如图1-所示,质量m=60 kg的运动员从长直助滑道AB的A处由静止开始以加速度a=3.6 m/s2匀加速滑下,到达助滑道末端B时速度v B=24 m/s,A与B的竖直高度差H=48 m.为了改变运动员的运动方向,在助滑道与起跳台之间用一段弯曲滑道衔接,其中最低点C处附近是一段以O为圆心的圆弧.助滑道末端B与滑道最低点C的高度差h=5 m,运动员在B、C间运动时阻力做功W=-1530 J,g取10 m/s2.(1)求运动员在AB段下滑时受到阻力F f的大小;(2)若运动员能够承受的最大压力为其所受重力的6倍,则C点所在圆弧的半径R至少应为多大?【答案】(1)144 N (2)12.5 m【解析】试题分析:(1)运动员在AB上做初速度为零的匀加速运动,设AB的长度为x,斜面的倾角为α,则有v B2=2ax根据牛顿第二定律得mgsinα﹣F f=ma 又sinα=H x由以上三式联立解得 F f=144N(2)设运动员到达C点时的速度为v C,在由B到达C的过程中,由动能定理有mgh+W=12mv C2-12mv B2设运动员在C点所受的支持力为F N,由牛顿第二定律得 F N﹣mg=m2 C v R由运动员能承受的最大压力为其所受重力的6倍,即有 F N=6mg 联立解得 R=12.5m考点:牛顿第二定律;动能定理【名师点睛】本题中运动员先做匀加速运动,后做圆周运动,是牛顿第二定律、运动学公式、动能定理和向心力的综合应用,要知道圆周运动向心力的来源,涉及力在空间的效果,可考虑动能定理.4.为了研究过山车的原理,某同学设计了如下模型:取一个与水平方向夹角为37°、长为L=2.5 m的粗糙倾斜轨道AB,通过水平轨道BC与半径为R=0.2 m的竖直圆轨道相连,出口为水平轨道DE,整个轨道除AB段以外都是光滑的。

其中AB与BC轨道以微小圆弧相接,如图所示。

一个质量m=2 kg小物块,当从A点以初速度v0=6 m/s沿倾斜轨道滑下,到达C 点时速度v C=4 m/s。

取g=10 m/s2,sin37°=0.60,cos37°=0.80。

(1)小物块到达C 点时,求圆轨道对小物块支持力的大小; (2)求小物块从A 到B 运动过程中,摩擦力对小物块所做的功;(3)小物块要能够到达竖直圆弧轨道的最高点,求沿倾斜轨道滑下时在A 点的最小初速度v A 。

【答案】(1) N =180 N (2) W f =−50 J (3) 30A v m/s 【解析】 【详解】(1)在C 点时,设圆轨道对小物块支持力的大小为N ,则:2c mv N mg R-= 解得 N =180 N(2)设A →B 过程中摩擦力对小物块所做的功为W f ,小物块A →B →C 的过程,有22011sin 3722f c mgL W mv mv ︒+=- 解得 W f =−50 J 。

(3)小物块要能够到达竖直圆弧轨道的最高点,设在最高点的速度最小为v m ,则:2mmv mg R= 小物块从A 到竖直圆弧轨道最高点的过程中,有22m A 11sin 37222f mgL W mgR mv mv ︒+-=- 解得A 30v =5.如图甲所示,带斜面的足够长木板P ,质量M =3kg 。

静止在水平地面上,其右侧靠竖直墙壁,倾斜面BC 与水平面AB 的夹角=37θ︒、两者平滑对接。

t =0时,质量m =1kg 、可视为质点的滑块Q 从顶点C 由静止开始下滑,图乙所示为Q 在0~6s 内的速率v 随时间t 变化的部分图线。

已知P 与Q 间的动摩擦因数是P 与地面间的动摩擦因数的5倍,sin37°=0.6,cos37°=0.8,g 取10m/s 2。

求:(1)木板P 与地面间的动摩擦因数; (2)t =8s 时,木板P 与滑块Q 的速度大小;(3)0~8s 内,滑块Q 与木板P 之间因摩擦而产生的热量。

【答案】(1)20.03μ=;(2)0.6m/s P Q v v ==;(3)54.72J Q ∆= 【解析】 【分析】 【详解】(1)0~2s 内,P 因墙壁存在而不动,Q 沿着BC 下滑,2s 末的速度为v 1=10m/s ,设P 、Q 间动摩擦因数为μ1,P 与地面间的动摩擦因数为μ2; 对Q ,由v t -图像有21 4.8m/s a =由牛顿第二定律有11sin 37cos37mg mg ma μ︒-︒=联立求解得10.15μ=,120.035μμ==(2)2s 后,Q 滑到AB 上,因12()mg m M g μμ>+,故P 、Q 相对滑动,且Q 减速、P 加速,设加速度大小分别是a 2、a 3,Q 从B 滑动AB 上到P 、Q 共速所用的时间为t 0 对Q 有12mg ma μ=对P 有123()mg m M g Ma μμ-+=共速时12030v a t a t -=解得a 2=1.5m/s 2、a 3=0.1m/s 2、6t s =故在t =8s 时,P 和Q 共速30.6m /s p v a t ==(3)0~2s 内,根据v -t 图像中面积的含义,Q 在BC 上发生的位移x 1=9.6m2~8s 内,Q 发生的位移12030.6m 2Qv v x t +==P 发生的位移30 1.8m 2Pv x t == 0~8s 内,Q 与木板P 之间因摩擦而产生的热量11123cos37()Q mgx mg x x μμ∆=+-o代入数据得54.72J Q ∆=6.如图所示,光滑坡道顶端距水平面高度为h ,质量为m 的小物块A 从坡道顶端由静止滑下,进入水平面上的滑道时无机械能损失,为使A 制动,将轻弹簧的一端固定在水平滑道延长线M 处的墙上,另一端恰位于滑道的末端O 点.已知在OM 段,物块A 与水平面间的动摩擦因数均为μ,其余各处的摩擦不计,重力加速度为g ,求:(1)物块速度滑到O 点时的速度大小;(2)弹簧为最大压缩量d 时的弹性势能 (设弹簧处于原长时弹性势能为零) (3)若物块A 能够被弹回到坡道上,则它能够上升的最大高度是多少? 【答案】(12gh 2)mgh mgd μ-;(3)2h d μ- 【解析】 【分析】根据题意,明确各段的运动状态,清楚各力的做功情况,再根据功能关系和能量守恒定律分析具体问题. 【详解】(1)从顶端到O 点的过程中,由机械能守恒定律得:212mgh mv =解得:2v gh(2)在水平滑道上物块A 克服摩擦力所做的功为:W mgd μ=由能量守恒定律得:212P mv E mgd μ=+ 联立上式解得:P E mgh mgd μ=-(3)物块A 被弹回的过程中,克服摩擦力所做的功仍为;W mgd μ=由能量守恒定律得 :P mgh E mgd μ'=-解得物块A 能够上升的最大高度为:2h h d μ'=-【点睛】考察功能关系和能量守恒定律的运用.7.一质量为m =0.1kg 的滑块(可视为质点)从倾角为θ=37°、长为L =6m 的固定租糙斜面顶端由静止释放,滑块运动到斜面底端时的速度大小为v ,所用的时间为t .若让此滑块从斜面底端以速度v 滑上斜面,利滑块在斜面上上滑的时间为12t .已知重力加速度g 取10m/s 2,sin37°=0.6,cos37°=0.8.求: (1)滑块通过斜面端时的速度大小v ;(2)滑块从斜而底端以速度v 滑上斜面又滑到底端时的动能.【答案】(1);(2)1.2J 【解析】 【详解】解:(1)设滑块和斜面间的动摩擦因数为μ,滑块下滑时的加速度大小为1a ,滑块上滑时的加速度大小为2a ,由牛顿第二定律可得 滑块下滑时有1mgsin mgcos ma θμθ-= 滑块上滑时有2mgsin mgcos ma θμθ+= 由题意有122t v a t a == 联立解得μ=0.25则滑块在斜面上下滑时的加速度1a =4m/s 2,滑块上滑时的加速度大小2a =8m/s 2由运动学公式有212v a L =联立解得v =m/s(2)设滑块沿斜面上滑的最大位移为x ,则有222v a x =解得:x =3m则滑块从斜面底端上滑到下滑到斜面底端的过程中,由动能定理有:21cos 22k mg x E mv μθ-⋅=-解得:k E =1.2J8.在真空环境内探测微粒在重力场中能量的简化装置如图所示,P 是一个微粒源,能持续水平向右发射质量相同、初速度不同的微粒.高度为h 的探测屏AB 竖直放置,离P 点的水平距离为L ,上端A 与P 点的高度差也为h .(1)若微粒打在探测屏AB 的中点,求微粒在空中飞行的时间; (2)求能被屏探测到的微粒的初速度范围;(3)若打在探测屏A 、B 两点的微粒的动能相等,求L 与h 的关系. 【答案】3h g 42g g v h h≤≤22h 【解析】 【分析】 【详解】(1)若微粒打在探测屏AB 的中点,则有:32h =12gt 2, 解得:3h t g=(2)设打在B 点的微粒的初速度为V1,则有:L=V 1t 1,2h=12gt 12 得:14g v h=同理,打在A 点的微粒初速度为:22g v h= 所以微粒的初速度范围为:4g h ≤v≤2g h(3)打在A 和B 两点的动能一样,则有:12mv 22+mgh=12mv 12+2mgh 联立解得:2h9.质量为2kg 的物体,在竖直平面内高h = 1m 的光滑弧形轨道A 点,以v =4m/s 的初速度沿轨道滑下,并进入BC 轨道,如图所示。

相关文档
最新文档