大一下物理实验【实验报告】 静态拉伸法测弹性模量

合集下载

大一下物理实验【实验报告】 静态拉伸法测弹性模量

大一下物理实验【实验报告】 静态拉伸法测弹性模量

东南大学物理实验报告姓名学号指导老师日期座位号报告成绩实验名称静态拉伸法测弹性模量目录预习报告...................................................2~5 实验目的 (2)实验仪器 (2)实验中的主要工作 (2)预习中遇到的问题及思考 (3)实验原始数据记录 (4)实验报告…………………………………………6~12 实验原理………………………………………………………实验步骤………………………………………………………实验数据处理及分析…………………………………………讨论……………………………………………………………预习报告实验目的:1.熟悉并掌握弹性模量仪和光杠杆镜尺组的构造、工作原理和基本操作方法。

2.了解静态拉伸法是测量金属材料弹性模量的一个传统方法,并运用该方法准确测量出给定材料的弹性模量。

3.正确处理实验数据,并通过计算统计进行误差分析。

实验仪器(包括仪器型号)实验中的主要工作1.调整弹性模量仪:调整底座螺丝使立柱铅直,加2kg砝码在砝码托上把金属丝拉直,检查装置。

2.调节光杠杆镜尺组:安装望远镜尺组,调节望远镜三脚架、目镜与调焦手轮,使标尺在望远镜中成像清晰无视差;调节光杠杆小镜的倾角以及标尺的高度。

3.测量:依次将1kg砝码加到托上,共九次,记录读数Ri;依次将所加砝码取下,记录每次读数Ri。

4.用逐差法处理数据Ri,求N平均值:将数据R0、R1···R9分为前后两组,用逐差法处理数据,得每增减5kg 砝码时,标尺像读数变化平均值。

预习中遇到的问题及思考问:用逐差法处理数据有什么优点?有其它更精确的处理方法吗?答:逐差法的优点是把每一个数据都用上了,在逐差法中先求的是跨度为n/2的数据的平均值(n为数据组数)与相邻两组数据比较而言,随机误差造成的影响较小,结果更精确;最小二乘法比逐差法更精确,但是最小二乘法的计算较繁琐,一般不采用。

拉伸法测弹性模量实验报告

拉伸法测弹性模量实验报告

拉伸法测弹性模量实验报告一、实验目的1、掌握拉伸法测量金属丝弹性模量的基本原理和方法。

2、学会使用光杠杆法测量微小长度变化。

3、学会使用游标卡尺、螺旋测微器等测量工具,提高实验操作技能。

4、学习数据处理和误差分析的方法,培养科学严谨的实验态度。

二、实验原理弹性模量是描述材料抵抗弹性变形能力的物理量。

对于一根长度为$L$、横截面积为$S$ 的金属丝,在受到沿其长度方向的拉力$F$ 作用时,金属丝会伸长$\Delta L$。

根据胡克定律,在弹性限度内,应力与应变成正比,即$F/S = E \cdot \Delta L/L$,其中$E$ 为弹性模量。

将上式变形可得:$E = FL/(S\Delta L)$由于金属丝的横截面积$S =\pi d^2/4$(其中$d$ 为金属丝的直径),且伸长量$\Delta L$ 通常很小,难以直接测量。

本实验采用光杠杆法来测量微小伸长量$\Delta L$。

光杠杆原理:光杠杆是一个带有三个尖足的平面镜,前两尖足放在平台的固定槽内,后尖足置于圆柱体小砝码上。

当金属丝伸长时,光杠杆后尖足随之下降,从而带动平面镜转动一个微小角度$\theta$。

通过望远镜和标尺,可以测量出平面镜转动前后标尺的读数变化$\Delta n$。

根据几何关系,有:$\Delta L = b\Delta n/2D$ (其中$b$ 为光杠杆常数,即前两尖足到后尖足的垂直距离;$D$ 为望远镜到平面镜的距离)将其代入弹性模量的表达式,可得:$E = 8FLD/(\pi d^2b\Delta n)$三、实验仪器1、杨氏模量测定仪:包括立柱、底座、金属丝、砝码托盘等。

2、光杠杆及望远镜尺组:用于测量微小长度变化。

3、游标卡尺:测量金属丝的长度。

4、螺旋测微器:测量金属丝的直径。

5、砝码若干:提供拉力。

四、实验步骤1、调节仪器调节杨氏模量测定仪的底座水平,使立柱垂直于底座。

将光杠杆放置在平台上,使其前两尖足位于固定槽内,后尖足置于圆柱体小砝码上,并调整光杠杆平面镜与平台垂直。

大学物理-拉伸法测弹性模量 实验报告

大学物理-拉伸法测弹性模量 实验报告

大连理工大学大 学 物 理 实 验 报 告院(系) 材料学院 专业 班级 姓 名 学号 实验台号 实验时间 年 月 日,第 周,星期 第 节实验名称 拉伸法测弹性模量教师评语实验目的与要求:1. 用拉伸法测定金属丝的弹性模量。

2. 掌握光杠杆镜尺法测定长度微小变化的原理和方法。

3. 学会处理实验数据的最小二乘法。

主要仪器设备:弹性模量拉伸仪(包括钢丝和平面镜、直尺和望远镜所组成的光杠杆装置), 米尺, 螺旋测微器实验原理和内容: 1. 弹性模量一粗细均匀的金属丝, 长度为l , 截面积为S , 一端固定后竖直悬挂, 下端挂以质量为m 的砝码; 则金属丝在外力F=mg 的作用下伸长Δl 。

单位截面积上所受的作用力F/S 称为应力, 单位长度的伸长量 Δl/l 称为应变。

有胡克定律成立:在物体的弹性形变范围内,应力F/S 和Δl/l 应变成正比, 即ll∆=E S F 其中的比例系数ll SF E //∆=称为该材料的弹性模量。

性质: 弹性模量E 与外力F 、物体的长度l 以及截面积S 无关, 只决定于金属丝的材料。

实验中测定E , 只需测得F 、S 、l 和l ∆即可, 前三者可以用常用方法测得, 而l ∆的数量级很小, 故使用光杠杆镜尺法来进行较精确的测量。

2. 光杠杆原理光杠杆的工作原理如下: 初始状态下, 平面镜为竖直状态, 此时标尺读数为n 0。

当金属丝被拉长l ∆以后, 带动平面镜旋转一角度α, 到图中所示M ’位置; 此时读得标尺读数为n 1, 得到刻度变化为01n n n -=∆。

Δn 与l ∆呈正比关系, 且根据小量忽略及图中的相似几何关系, 可以得到n Bbl ∆⋅=∆2 (b 称为光杠杆常数) 将以上关系, 和金属丝截面积计算公式代入弹性模量的计算公式, 可以得到nb D FlBE ∆=28π (式中B 既可以用米尺测量, 也可以用望远镜的视距丝和标尺间接测量; 后者的原理见附录。

杨氏-静态拉伸法测弹性模量

杨氏-静态拉伸法测弹性模量

2.松开螺丝,目试 调节望眼镜光轴和平 面镜等中心等高
8
光杠杆的放置
夹子能自由移动,A,B,C三足 应基本在同一水平面内
松开螺丝,可调K值
金属丝

后足C 后足C不能和金属丝接触
前足A
前足B
9
光杆杆系统的调整
3.微调镜面倾斜角,使 物镜筒的像位于视场 中间
1.从望眼镜视场中 看到平面镜
2.旋转调焦手轮,使物 镜筒经平面镜所成之像清 晰
1.用刚尺测量平面镜到标尺之间的垂直距离D,及测钢丝的长L
2.取下平面镜支架,放在白纸上轻轻压出前后足的痕迹,然 后用细铅笔做前后足AB以及后足C到AB连 线,测出此垂线的长度K.
3.用螺旋测微器不同位置 的直径,一共6次
前足A
前足B
K 后 足 C
12
实验原理
➢ 杨氏弹性模量 ➢ 光杠杆原理
13
弹性模量
14(n5n1)(n6n2)(n7n3)(n8n4)
U n
t
1 n(n 1)
4 i1
(ni
n
)2
2
(标尺 )2
(P=99% n=4, t=4.3)
16
数据处理
5.求出 Y
及其相对不确定度
Ur
总不确定度
U Y
.
Ur
卷 L
2
卷 D
2
卷 b
2
2
U d d
2
U n
n
测 砧
B可动刻度 A固定刻度
转 动 棘 轮
测 微 螺 杆
制 动 器
微 分 筒
4
螺旋测微器的使用
❖ 将待测物放在测砧和测微螺杆之间,轻轻转动棘轮,直到棘轮发 出“喀喀”响声后,将锁紧装置推向左边,便可读数。切不可用 力转动。测微螺杆,这样会影响测量结果,甚至损坏仪器.

静态拉伸法测弹性模量实验报告

静态拉伸法测弹性模量实验报告

静态拉伸法测弹性模量实验报告弹性模量(亦称杨氏模量)是固体材料的一个重要物理参数,它标志着材料对于拉伸或压缩形变的抵抗能力。

作为测定金属材料弹性模量的一个传统方法,静态拉伸法在一起合理配置、误差分析和长度的放大测量等方面有着普遍意义,但这种方法拉伸试验荷载大,加载速度慢,存在弛豫过程,对于脆性材料和不同温度条件下的测量难以实现。

实验原理及仪器胡克定律指出,对于有拉伸压缩形变的弹性形体,在弹性范围内,应力F 与应变L∆成正比,即式中比例系数E 称为材料的弹性模量,它是描写材料自身弹性的物理量.改写上式则有、(1)可见,只要测量外力F 、材料(本实验用金属丝)的长度L 和截面积S ,以及金属丝的长度变化量L ∆,就可以计算出弹性模量E 。

其中,F 、S 和L 都是比较容易测得的,唯有L ∆很小,用一般的量具不易准确测量。

本实验采用光杠杆镜尺组进行长度微小变化量的测量,这是一种非接触式的长度放大测量的方法。

本实验采用的主要实验仪器有: 弹性模量仪(如图1)、光杠杆镜尺组(如图2)、螺旋测微器、米尺、砝码等。

图1 弹性模量测量装置图2 光杠杆 图3 光杠杆放大原理仪器调节好后,金属丝未伸长前,在望远镜中可看到由平面镜反射的标尺的像,将望远镜的细叉丝对准标尺的刻度,读出读数为R 0;将砝码加在砝码托上后,金属丝被拉长,光杠杆镜面向后倾斜了α角.根据光的反射定律可知,此时在望远镜中细叉丝对准的是镜面反射后的标尺上的刻度R 1,其对应的入射光和反射光的夹角为2α。

设N=R 1-R 2,K 为光杠杆的前后足之间的垂直距离,D 为光杠杆镜面到标尺之间的距离,考虑到,角很小,所以有可得∆ (2)将式(2)代入式(1)即得拉伸法测定金属丝弹性模量的计算公式E (3)式中d 为金属丝的直径.实验步骤1.1 调整弹性模量仪① 调节三脚底座上的调节螺丝,使立柱铅直。

② 将光杠杆放在平台上,两前足放在平台前面的横槽内,后足放在夹子B 上,注意后足不要与金属丝相碰。

静态拉伸法测材料的弹性模量实验报告

静态拉伸法测材料的弹性模量实验报告

静态拉伸法测材料的弹性模量实验报告
静态拉伸法测材料的弹性模量实验报告实验日期:2012年12月1日—4日,2012年11月24日9点20分
试样编号:12实验者姓名:胡超祥所在班级:08机电2班实验目的:1.学习与掌握静态拉伸法测定钢材弹性模量;2.了解钢材弹性模量的实际意义。

3.巩固理论知识。

实验原理:静态拉伸法测定钢材的弹性模量是将被测试样放入试样夹中并施以拉伸负荷后,通过测定试样开始破坏前单位面积上的变形来确定试样的弹性模量,即为弹性模量。

一般钢铁材料具有良好的塑性和韧性,其弹性模量比较大,因此可采用这种方法测得它们的弹性模量。

主要仪器:1、金属丝线材。

- 1 -。

大学物理实验实验静态拉伸法测材料的弹性模量


数据处理
EXCEL作钢丝伸长与外力的关系 曲线
Δx/cm
钢丝伸长与外力的关系曲线
y = 2.0021x + 0.2575
8
7
6
5
4
3
2
1
0
0
0.5
1
1.5
2
2.533.5源自4M/kg实验内容
1. 使用EXCEL给出∆X-m直线并求出直线斜 率b以及斜率的不确定度Ub。
2. 计算弹性模量E。 3. 计算弹性模量E的相对不确定度,并给出E
• 在望远镜中读数时,要避免视差。当视线略作上下移动时, 所看到标尺上的刻度线和叉丝之间应没有相对的变动。如有 明显的视差,可调整目镜,同时眼睛不宜太靠近目镜,观测 时间不能太久。
• 注意保持钢丝的铅直状况,不能有弯曲;在增加砝码时钢丝 两固定端不应发生下滑伸长的现象,利用备用丝测量钢丝直 径。
± UE。
实验分析
1. 实验数据处理过程中,如果发现数据点距 离拟合直线比较远分析一下原因。
2. 实验中为什么可以使用Excel或者最小二乘 法进行直线拟合。
实验结论
注意事项
• 在镜尺系统调整符合要求后,整个实验过程中都要保证平面 支架前两足和望远镜、标尺的位置不应有任何变动。尤其在 加砝码和减砝码时,应轻放轻取,不应有撞击现象,不能让 砝码挂钩发生扭摆和震动。否则须重新调整。
② 用卷尺测量钢丝长度L,误差为0.5cm(UL); ③ 用千分尺多次测量钢丝的直径d ,误差为
0.0004cm(Ud); ④ 用游标卡尺(米尺达不到精确度)测量光杠杆
臂长l ,误差为0.02cm(Ul),(将平面镜支架 的三个足尖按在一张平的纸上,留下三个点的 印记,用铅笔从后足尖点到前两足间的连线作 一垂线,垂线长即为l)。

拉伸法测弹性模量实验报告

2.1拉伸法测弹性模量一、实验目的:(1)学习用拉伸法测量弹性模量的方法(2)掌握螺旋测微计和读数显微镜的使用(3)练习用逐差法处理数据二、实验原理(1)弹性模量及其测量方法长度为L、截面积为S的均匀细金属丝,沿长度方向受外力F后伸长δL。

单位横截面积上的垂直作用力F/S称为正应力,金属丝的相对伸长δL/L称作线应变。

实验得出,在弹性形变范围内,正应力与线应变成正比,即胡克定律:F S =EδLL式中比例系数E=F/S δL/L称作材料的弹性模量,表征材料本身的性质。

弹性模量越大的材料,要使它发生一定的相对型变所需的单位横截面积上的作用力也越大。

E的单位是Pa。

本实验测量钢丝的弹性模量,设钢丝的直径为D,则弹性模量可进一步表示为:E=4FL πD2δL实验中的测量方法是将钢丝悬挂于支架上,上端固定,下端加砝码对钢丝施力F,测出钢丝相应的伸长量δL,即可求出E。

钢丝长度L用钢尺测量,钢丝直径用螺旋测微计测量,力F由砝码的重力F=mg求出。

δL一般很小,约0.1mm量级,本实验用读数显微镜测量(也可用光杠杆等其它方法测量)。

通过多次测量并用逐差法处理数据达到减少随机误差的目的。

(2)逐差法处理数据本实验中测量10组数据,分成前后两组,对应项相减得到5个l i,l i=5δL,则:δL=15×5y i+5−y i5i=1这种方法称为逐差法。

其优点是充分利用了所测数据,可以减少测量的随机误差,也可以减少测量仪器带来的误差。

三、实验仪器支架:用以悬挂被测钢丝;读数显微镜:用以较准确的测量微小位移。

由物镜和测微目镜构成。

测微目镜鼓轮上有100分格,鼓轮转动一圈,叉丝移动1mm。

故分度值为0.01mm;底座:用以调节钢丝铅直;钢尺、螺旋测微计:测量钢丝的长度和直径。

四、实验步骤(1)调整钢丝竖直:钢丝下夹具上应先挂砝码钩,用以拉直钢丝。

调节底座螺钉使夹具不与周围支架碰蹭。

(2)调节读数显微镜:粗调显微镜高度,使之与钢丝下夹具的标记线同高,再细调读数显微镜。

大学物理实验A1弹性模量的测量实验报告

清华大学测量弹性模量试验物理实验完整报告班级姓名学号结稿日期:弹性模量的测量实验报告一.拉伸法测弹性模量1 •实验LI 的(1) ・学习用拉伸法测量弹性模量的方法; (2) •掌握螺旋测微计和读数显微镜的使用。

2. 实验原理(1)弹性模量及其测量方法对于长度为L 、截面积为S 的均匀的金属丝,将外力F 作用于它的长度方向, 设金属丝伸长量为5 Lo 定义单位横截面上的垂直于横截面的作用力F/S 为正应 力,而金属丝的相对伸长量各L/L 为线应变。

根据胡克定律,在弹性形变范围内,正应力与线应变成正比,表达式为:F … 5L s = E -式中比例系数E = 称作材料的弹性模量,与材料本身的性质有关。

在本实验中,设钢丝的直径为D,则钢丝的弹性模量可进一步表示为:4 FL irD 2§ L公式(2)即为本实验的计算公式。

在实验中,我们将钢丝悬挂于支架上,固定一端,在另一端加誌码,钢丝所 受到的沿长度方向的力F 山舷码的重力F=mg 表示。

用读数显微镜可以测岀钢丝 相应地伸长量5L (微小量)。

此外,钢丝长度L 用钢尺测量(本实验中钢丝长度 数据已给岀),钢丝直径用螺旋测微讣测量。

3. 实验仪器竖直金属支架,读数显微镜,支架底座,螺旋测微讣。

4. 实验步骤(1) 调整钢丝竖直。

钢丝下端应先挂硅码钩,用以拉直钢丝。

调节底座螺钉,使 得底座水平,保持钢丝以及下端夹具不与周圉碰蹭。

(2) 调节读数显微镜。

首先粗调显微镜高度,使得显微镜与标记线(细铜丝)同 高。

然后进行细调,先调节LI 镜看到义丝清晰的像,再前后移动镜筒看清标记线, 使标记线的像与义丝无视差。

⑶测量:测量钢丝长度L 及其伸长量§ L 。

先读出无耘码,仅有耘码钩(质量为 0. 200kg )时标记线的位置(反映在鼓轮上),然后在琏码钩上每加一个碓码(质 量均为0. 200kg ),(1)(2)读下一个位置yi。

先从无舷码逐步增加到九个琏码,增加完毕后,消除空程影响后,再依次递减到无祛码,乂得一组数据。

大学物理实验《用拉伸法测金属丝的杨氏弹性模量》

3、动态悬挂法:将试样(圆棒或矩形棒)用两根线悬挂起来并激发它作横向振动。在一定条件下,试样振动的固有频率取决于它的几何形状、尺寸、质量以及它的杨氏弹性模量,如果我们在实验中测出了试样在不同温度下的固有频率,就可以算出试样在不同温度下的杨氏弹性模量。此法克服了静态拉伸法的缺点,具有实用价值,是国家标准规定的一种测量方法。
三、实验中注意:实验测量中,发现增荷和减荷时读数相关差较大,当荷重按比例增加时,?n不按比例增加,应找出原因,重新测量。这种情况可能发生的原因有:
1、金属丝不直,初始砝码太轻,没有把金属丝完全拉直。
2、杨氏弹性模量仪支柱不垂直,使金属丝下端的夹头不能在金属框内上下自由滑动,摩擦阻力太大。
1
3、加减砝码时动作不够平衡,导致光杠杆足尖发生移动。
1、万能试验机法:在万能试验机上做拉伸或压缩试验,自动记录应力和应变的关系图线,从而计算出杨氏弹性模量。
2、静态拉伸法(本实验采用此法),它适用于有较大形变的固体和常温下的测量,它的缺点是:①因为载荷大,加载速度慢,含有驰豫过程。所以它不能很真实地反映出材料内部结构的变化。②对脆性材料不能用拉伸法测量;③不能测量材料在不同温度下的杨氏弹性模量。
8LD?n??F?KF 2?dbE
8LD
?d2bE由此式作?n?F图线,应得一直线。从图线中计算出直线的斜率K,再由K?
即可计算出E。
3
篇二:大学物理实验用拉伸法测金属丝的杨氏模量
用拉伸法测金属丝的杨氏模量
材料在外力作用下产生形变,其应力与应变的比值叫做弹性模量,它是反映材料抵抗形变能力的物理量,杨氏模量是固体材料的纵向弹性模量,是选择机械构件的依据之一,也是工程技术中研究材料性质的常用参数。测定弹性模量的方法很多,如拉伸法、振动法、弯曲法、光干涉法等,本实验采用拉伸法测定金属丝的杨氏弹性模量,研究拉伸正应力与应变之间的关系。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

东南大学
物理实验报告
姓名学号指导老师
日期座位号报告成绩
实验名称静态拉伸法测弹性模量
目录
预习报告...................................................2~5 实验目的 (2)
实验仪器 (2)
实验中的主要工作 (2)
预习中遇到的问题及思考 (3)
实验原始数据记录 (4)
实验报告…………………………………………6~12 实验原理………………………………………………………实验步骤………………………………………………………实验数据处理及分析…………………………………………讨论……………………………………………………………
预习报告
实验目的:
1.熟悉并掌握弹性模量仪和光杠杆镜尺组的构造、工作原理和基本操作方法。

2.了解静态拉伸法是测量金属材料弹性模量的一个传统方法,并运用该方法准确测量出给定材料的弹性模量。

3.正确处理实验数据,并通过计算统计进行误差分析。

实验仪器(包括仪器型号)
实验中的主要工作
1.调整弹性模量仪:
调整底座螺丝使立柱铅直,加2kg砝码在砝码托上把金属丝拉直,检查装置。

2.调节光杠杆镜尺组:
安装望远镜尺组,调节望远镜三脚架、目镜与调焦手轮,使标尺在望远镜中成像清晰无视差;
调节光杠杆小镜的倾角以及标尺的高度。

3.测量:
依次将1kg砝码加到托上,共九次,记录读数Ri;
依次将所加砝码取下,记录每次读数Ri。

4.用逐差法处理数据Ri,求N平均值:
将数据R0、R1···R9分为前后两组,用逐差法处理数据,得每增减5kg 砝码时,标尺像读数变化平均值。

预习中遇到的问题及思考
问:用逐差法处理数据有什么优点?有其它更精确的处理方法吗?
答:逐差法的优点是把每一个数据都用上了,在逐差法中先求的是跨度为n/2的数据的平均值(n为数据组数)与相邻两组数据比较而言,随机误差造成的影响较小,结果更精确;最小二乘法比逐差法更精确,但是最小二乘法的计算较繁琐,一般不采用。

实验原始数据记录:
1. g=9.795N/kg
D±U D=157.5±0.5cm
L±U L=75.1±0.2cm
K±U K=7.2±0.05cm
2. 螺旋测微计的初始读数=-0.040mm
仪器误差限△ins=0.004mm
实验报告
请按以下几个部分完成实验报告。

一.实验原理 二.实验步骤
三.实验数据处理及分析 四.讨论
一.实验原理
实验结果指出,在弹性形变范围内,正应力和线应变成正比,即
L L E S F δ=
于是,弹性模量
L L S F E //δ=
在本实验中,
L D FL E δπ24=
其中,E为弹性模量。

F为外力,L为金属棒长,D为棒的直径,δL为在外力F下的伸长量。

二.实验步骤
1.调整钢丝竖直。

先挂上砝码钩拉直钢丝,在调整底座螺钉使钢丝夹具不和周围支架碰蹭。

2.调节读数显微镜,使叉丝和标记线无视差。

调节显微镜的位置,使像距和物距之比为1:1。

3.测量δL。

每加一个砝码记录一次刻度值。

4.测量D6次,并在测量前后记录螺旋测微计的零点d 各3次。

三.实验数据处理和分析
1.各单次测量量
g=9.795N/kg
D±U D=157.5±0.5cm
L±U L=75.1±0.2cm
K±U K=7.2±0.05cm
2.金属丝直径d的测量
螺旋测微计的初始读数=-0.040mm 仪器误差限△ins=0.004mm
3.望远镜中标尺像Ri的数据处理
4. 计算金属的弹性模量E 和不确定度
2
112/1063.182m
N KN
d FLD E N D K L L
L E S F ⨯==∴•=∆∆•=π
对KN FLD
E 2
d 8π=
两边同时取对数 KN d FLD
E 28ln
ln π= N
N
E K K E L L E D D E d d KN FLD d E 1ln 1ln 1ln 1ln 2ln 8ln ln '
2-
=∂∂-
=∂∂=∂∂=∂∂-
=⎪⎭

⎝⎛-=∂∂π
%
3.2ln ln ln ln ln 22
22
22
22
22
=⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=∴N
K L D d E U N E U K E U L E U D E U d E E U ()2
11
211/1004.063.1/100375.0%3.2m
N E m N E U E ⨯+=∴⨯=•=
四.讨论
1.误差分析
(1)静态拉伸法实验荷载大,加载速度慢,存在慢拉伸过程,即在加载重物后金属丝形变需要一定过程,在该过程中测量时会产生微小的误差。

(2)金属丝的直径测量在不同位置、温度,F的测量结果都会有微小的偏差,金属丝受强拉力后可能对其直径测量也会造成一定影响。

(3)光杠杆反映的是微小的形象,人无意地对桌面的按压、施力导致桌面的形变也可能会影响测量结果。

2.在本实验中,为什么不同的尺度量要用不同的量具进行测量?
答:因为公式中的任何一个数据都要保持3位有效数字,不同的尺度用不同的量具测量时为了保证计算结果的精度。

3.在本实验中,用逐差法处理数据有什么优点?有其它更精确的处理方法吗?答:逐差法的优点是把每一个数据都用上了,在逐差法中先求的是跨度为n/2的数据的平均值(n为数据组数)与相邻两组数据比较而言,随机误差造成的影响较小,结果更精确;最小二乘法比逐差法更精确,但是最小二乘法的计算较繁琐,一般不采用。

相关文档
最新文档