2021届全国新高考物理冲刺复习 滑块与滑板模型

2021届全国新高考物理冲刺复习 滑块与滑板模型
2021届全国新高考物理冲刺复习 滑块与滑板模型

2021届全国新高考物理冲刺复习

滑块与滑板模型

一 分析要点

1、相互作用:滑块之间的摩擦力

2、相对运动:具有相同的速度时相对静止。两相互作用的物体在速度相同,但加速度不相同时,两者之间同样有位置的变化,发生相对运动。

3、通常所说物体运动的位移、速度、加速度都是对地而言的。在相对运动的过程中相互作用的物体之间位移、速度、加速度、时间一定存在关联。它就是我们解决力和运动突破口。

4、求时间通常会用到牛顿第二定律加运动学公式或动量定理:应用动量定理时特别要注意条件和方向,最好是对单个物体应用动量定理求解。

5、求位移通常会用到牛顿第二定律加运动学公式或动能定理,应用动能定理时研究对象为单个物体或可以看成单个物体的整体。另外求相对位移时:通常会用到系统能量守恒定律。

6、求速度通常会用到牛顿第二定律加运动学公式或动能定理或动量守恒定律:应用动量守恒定律时要特别注意系统的条件和方向。

7、当滑块和滑板同向运动时相对位移等于滑块位移与滑板位移之差,若二者同向运动相对位移等于二者位移之和。

二 分类讲解

【模型一】滑块以一定的初速度滑上木板。

例题一 如图所示,质量kg m 3.02=的小车静止在光滑的水平面上,车长m L 5.1=,现有

质量kg m 2.01=的可视为质点的物块,以水平向右的速度s m v /20=从左端滑上小车,最 后在车面上某处与小车保持相对静止。物块与车面间的动摩擦因数5.0=μ,取

2

/10s m g =,求:

⑴物块在车面上滑行的时间t ;

⑵要使物块不从小车右端滑出,物块滑上小车左端的速度0v 不超过多少? 【解法一】牛顿运动定律+运动学公式 “经典八式”法

1m 在2m 上向右做匀减速直线运动由牛顿第二定律:111-a m g m =μ①得21/5s m a -= 2m 向右做匀加速直线运动由牛顿第二定律:221a m g m =μ②得22/3

10

s m a =

设二者历时t 时相对静止此时具有共同速度v ,则 对于1m :t a v v 10+=③ 对于2m :t a v 2=④

联立③④得??

?==s

t s

m v 24.0/8.0二者在这段时间内发生的位移分别为1x 、2x 则

对于1m :t v

v x 2

01+=⑤

对于2m :t v

x 2

2=⑥

二者的相对位移:21x x x -=?⑦ 要使物块不从小车右端滑出则x ≤?⑧ 联立⑤⑥⑦⑧得s m v /50≤

【解法2】(1)设物块与小车的共同速度为v ,以水平向右为正方向,根据动量守恒定律有 v m m v m )(2101+= ① 设物块与车面间的滑动摩擦力为F ,对物块应用动量定理有

011v m v m ft -=- ② 其中 g m f 1μ= ③ 解得 g

m m v m t )(210

2+=

μ

代入数据得 s t 24.0= ④

(2)要使物块恰好不从车厢滑出,须物块到车面右端时与小车有共同的速度v ′,则 v m m v m '+='

)(2101 ⑤ 由功能关系有

'+-'=

2212011)(2

121v m m v m gL m μ ⑥

代入数据解得 s m v /5='

故要使物块不从小车右端滑出,物块滑上小车的速度v 0′不能超过5m/s 。 【模型提炼】该模型中对于地面粗糙还需要讨论以下几点: 1、二者一定发生相对运动。

2、若滑板足够长则最终二者以共同速度匀速直线下去。若滑板板长满足L x >?,则滑块会

滑离滑板。

例题二 如图所示,物块A 、木板B 的质量均为==21m m m =10 kg ,不计A 的大小,

B 板长L =3 m 。开始时A 、B 均静止。现使A 以某一水平初速度从B 的最左端开始运动。已知A 与B 、B 与水平面之间的动摩擦因数分别为μ1=0.3和μ2=0.1,g 取10 m/s 2。

(1)若物块A 刚好没有从B 上滑下来,则A 的初速度多大?

⑤⑥也可由2

02

1at t v x +

=或 ax v v 22

02=-求解

因为二者同向运动相对位移为二

者位移差且是快的减慢的

(2)若把木板B 放在光滑水平面上,让A 仍以(1)问中的初速度从B 的最左端开始运动,则A 能否与B 脱离?最终A 和B 的速度各是多大? 【解析】(1)牛顿运动定律+运动学公式 “经典八式”法

A 在

B 上向右做匀减速直线运动由牛顿第二定律:1111-a m g m =μ①得21/3s m a -= B 向右做匀加速直线运动由牛顿第二定律:2221211)(a m g m m g m =+-μμ②得

22/1s m a =

设二者历时t 时相对静止此时具有共同速度v ,则 对于A :t a v v 10+=③ 对于B :t a v 2=④

联立③④得???

????==44

0v t v v 二者在这段时间内发生的位移分别为1x 、2x 则

对于1m :t v

v x 2

01+=⑤ 对于2m :t v

x 2

2=

⑥ 二者的相对位移:21x x x -=?⑦ 若物块A 刚好没有从B 上滑下来则L x =?⑧ 联立⑤⑥⑦⑧得s m v /620=

(2)若地面光滑则②式变为2211a m g m =μ此时2

2/3s m a = 设二者历时t 时相对静止此时具有共同速度v ,则 对于A :t a v v 10+=③ 对于B :t a v 2=④

联立③④得??

?

??==s t s m v 36

/6二者在这段时间内发生的位移分别为1x 、2x 则 对于1m :t v

v x 2

01+=

⑤得m x 31=

对于2m :t v

x 2

2=

⑥得m x 12= 二者的相对位移:m x x x 221=-=?⑦

L x

所以最终A 和B 的速度为:s m v /6=

【模型提炼】该模型中对于地面粗糙还需要讨论以下几点:

1. 如果g m m g m )(21211+≤μμ,那么B 就不滑动,A 在摩擦力作用下在B 上面做匀减速

直线运动停在B 上(B 足够长)或直至脱离B 。此类情况较为简单一般只在定性分析中才出现。

2. 如果g m m g m )(21211+>μμ那么B 的合外力不为0要滑动。

(1)如果B 足够长,经过一段时间t 后A 、B 将会以共同速度一起一起匀减速速最终静止。 (2)如果B 的长度满足L x >?,则A 最终将会从B 上面滑离。

【模型二】滑块受到水平拉力模型

例题一 如图甲,质量M =1 kg 的木板静止在水平面上,质量m =1 kg 、大小可以忽略的铁块静止在木板的右端。设最大静摩擦力等于滑动摩擦力,已知木板与地面间的动摩擦因数μ1=0.1,铁块与木板间的动摩擦因数μ2=0.4,取g =10 m/s 2。现给铁块施加一个水平向左的力F 。

(1)若力F 恒为8 N ,经1 s 铁块运动到木板的左端。求木板的长度L 。

(2)若力F 从零开始逐渐增加,且木板足够长。试通过分析与计算,在图乙中作出铁块受到的摩擦力f 随力F 大小变化的图象。

【解析】(1)牛顿运动定律+运动学公式 “经典八式”法

m 在M 上向左做匀加速直线运动由牛顿第二定律:12-ma mg F =μ①得21/4s m a =

M 向左做匀加速直线运动由牛顿第二定律:212)(Ma g M m mg =+-μμ②得

22/2s m a =

设历时t 时m 动到M 的左端此时二者速度分别为1v ,2v 则

对于m :t a v 11=③ 对于M :t a v 22=④

二者在这段时间内发生的位移分别为1x 、2x 则

对于1m :2

1121t a x =

⑤ 对于2m :2

222

1t a x =⑥

二者的相对位移:21x x x -=?⑦

m 从一端运动到另一端,则L x =?⑧ 得m L 1=。

(2)当F ≤μ1(m +M )g =2 N 时,系统没有被拉动,静摩擦力f 与外力F 大小相等,即f =F 。

当F >μ1(m +M )g =2 N 时,如果M ,m 相对静止,铁块与木板有相同的加速度a ,则 F -μ1(m +M )g =(m +M )a ,F -f =ma ,解得F =2f -2,此时f ≤μ2mg =4 N ,也即F ≤6 N ,

所以当2 N <F ≤6 N 时, f =F

2

+1。 当F >6 N 时,M ,m 相对滑动,此时铁块受到的摩擦力为 f =μ2mg =4 N , f -F 图象如右图所示。

例二 如图所示,可看作质点的小物块放在长木板正中间,已知长木板质量为M =4 kg ,长度为L =2 m ,小物块质量为m =1 kg ,长木板置于光滑水平地面上,两物体皆静止。现在用一大小为F

的水平恒力作用于小物块上,发现只有当F 超过2.5 N 时,两物体间才能产生相对滑动,设两物体间的最大静摩擦力大小等于滑动摩擦力大小,重力加速度g 取10 m/s 2

(1)求小物块和长木板间的动摩擦因数。

(2)若一开始力F 就作用在长木板上,且F =12 N ,则小物块经过多长时间从长木板上掉下?

解析 (1)设两物体间的最大静摩擦力为f m ,当F =2.5 N 作用于小物块时,对整体,由牛顿第二定律有F =(M +m )a

对长木板,由牛顿第二定律有f m =Ma 联立可得f m =2 N

小物块在竖直方向上受力平衡,所受支持力N =mg ,由摩擦力性质有f m =mg

解得μ=0.2。

(2)F =12 N 作用于长木板时,两物体发生相对滑动,设长木板、小物块加速度分别为

a 1、a 2

对长木板,由牛顿第二定律有F -f m =Ma 1,解得a 1=2.5 m/s 2

对小物块,由牛顿第二定律有f m =ma 2,解得a 2=2 m/s 2

由匀变速直线运动规律,两物体在t 时间内的位移为s 1=12a 1t 2,s 2=12a 2t 2

小物块刚滑下长木板时s 1-s 2=1

2L ,联立解得t =2 s 。

【模型提炼】该模型中需要讨论以下几点: 1、M 滑动的条件是g M m mg )(12+>μμ 2、M 滑动又可以分为

(1)若M

g

M m mg m mg F )(-212+-=μμμ此时二者相对静止一起加速,加速度可有整体法求出。a M m g M m F )()(2+=+-μ

3、由于二者均做加速运动,此类问题不出现共速状态。

【模型三】滑板受到水平拉力模型

例题一 如图所示,光滑水平面上有一木板,质量kg M 0.1=,长度m L 0.1=.在木板的最左端有一个小铁块(可视为质点),质量kg m 0.1=.小铁块与木板之间的动摩擦因数0.30=μ.开始时它们都处于静止状

态,某时刻起对木板施加一个水平向左的拉力F ,2

/10s m g =.求: (1)拉力F 至少多大能将木板抽出;

(2)若N F 8=将木板抽出,则抽出过程中摩擦力分别对木板和铁块做的功.

【解析】(1)木板能够被抽出则对小铁块由牛顿第二定律:1ma mg =μ① 对木板由牛顿第二定律:2Ma mg F =-μ②得

若木板能被抽出:12a a >③即g m M F )(+>μ④解得N F 6>。 (2)设经历时间t 木板被抽出此时二者的位移分别为1x 、2x

由①②可得2

1/3s m a =、2

2/5s m a =则二者均向左做匀加速直线运动

对于m :2

1121t a x =

⑤ 对于M :2

222

1t a x =⑥

二者的相对位移:12x x x -=?⑦

m 从一端运动到另一端,则L x =?⑧

⑤⑥⑦⑧得s t 1=代入⑤⑥得m x 5.11=、m x 5.22= 摩擦力对m 做的功J mgx W f 5.411==μ⑨ 摩擦力对M 做的功J mgx W f 5.-7-12==μ⑨

例二 如图所示,长m L 5.1=、质量kg 3=M 的木板静止放在水平面上,质量kg 1=m 的小物块(可视为质点)放在木板的右端,木板和小木块间的动摩擦因数.101=μ,木板与地面间的动摩擦因数.202=μ。现对木板施加一水平向右的拉力F ,取2

m/s 10=g ,求: (1)使小物块不掉下木板的最大拉力0F (小物块受到的最大静摩擦力等于滑动摩擦力)。 (2)如果拉力N 21=F 恒定不变,小物块所能获得的最大动能。 【解析】(1)要使小物块不掉下木板则二者具有相同加速度21a a = 对小物块由牛顿第二定律:11ma mg =μ①得2

1/1s m a = 对木板由牛顿第二定律:220)Ma g M m F =+-(μ② 解得N F 120=。

(3)拉力12N N 21>=F 二者相对滑动-------‘经典八式’

对木板由牛顿第二定律:221)Ma g M m mg F =+--(μμ③得2

2/4s m a =

二者均向右做匀加速直线运动。设经历时间t 小物块脱离木板此时二者的位移分别为1x 、

2x ,速度分别为1v 、2v 。

对于m :2

1121t a x =

④ 对于M :2

222

1t a x =⑤

二者的相对位移:12x x x -=?⑦

m 从一端运动到另一端,则L x =?⑧

图1

图2

④⑤⑥⑦得s t 1=此时对于m :

s m t a v /11==,J mv E k 5.02

12

==

【模型提炼】1、二者是否相对滑动的临界条件是加速度相等 (1)当

g M

g M m mg F 121)μμμ≤+--(则二者不发生相对滑动,此时运用整体法求加速

度即:a m M g m M F )()(2+=+-μ。 (2)当

g M

g M m mg F 121)μμμ>+--(则二者不发生相对滑动应用八式解题即可。

(3)由于二者都做加速运动不会出现高速状态。

例三 图l 中,质量为m 的物块叠放在质量为2m 的足够长的木板上方右侧,木板放在光滑的水平地面上,物块与木板之间的动摩擦因数为μ=0.2.在木板上施加一水平向右的拉力F ,在0~3s 内F 的变化如图2所示,图中F 以mg 为单位,重力加速度2

10m/s g =.整个系统开始时静止.

(1)求1s 、1.5s 、2s 、3s 末木板的速度以及2s 、3s 末物块的速度; (2)在同一坐标系中画出0~3s 内木板和物块的t -v 图象,据此求0~3s 内物块相对于木板滑过的距离。 【解析】(1)设木板和物块的加速度分别为a 和a ',在t 木板和物块的速度分别为

t

v 和

t '

v ,木板

和物块之间摩擦力的大小为f ,依牛顿第二定律、运动学公式和摩擦定律得 f ma '=

① f mg μ=,当t t '

t t a t t '''=+-v v ③ (2)F f m a -= ④

2121()

t t a t t =+-v v

由①②③④⑤式与题给条件得

1 1.5234m/s, 4.5m/s,4m/s,4m/s

====v v v v

234m/s,4m/s

''==v v

θ

v v

F

(2)由⑥⑦式得到物块与木板运动的t -v 图象,如右图所示。在0~3s 内物块相对于木板的距离s ?等于木板和物块t -v 图线下的面积之差,即图中带阴影的四边形面积,该四边形由两个三角形组成,上面的三角形面积为0.25(m),下面的三角形面积为2(m),因此

2.25m s ?=

【模型四】斜面上的板块问题

例一 如图所示,在倾角为θ的足够长的斜面上,有一质量为1m 的长木板。开始时,长木板上有一质量为2m 的小铁块(视为质点)以相对斜面的初速度0v 从长木板的中点沿长木板向下滑动,同时长木板在沿斜面向上的拉力作用下始终做速度为v 的匀速运动(已知二者速率的值v v >0),小铁块最终跟长木板一起向上做匀速运动。已知小铁块与木板、木板与斜面间的动摩擦因数均为μ(θμtan >),试求: (1)小铁块在长木板上滑动时的加速度? (2)长木板至少多长?

(3)小铁块从中点开始运动到最终匀速运动的过程中拉力做了多少功?

【解析】(1)对小铁块受力分析如图

由牛顿第二定律:ma mg mg =-θθμsin cos ① 解得θθμsin cos g g a -=②由于θμtan >

所以小铁块与木板相对滑动时加速度方向向上。

(2)小铁块先沿斜面向下减速为0,在沿斜面向上加速最终与木板以v 共速运动设整个过程经历时间t 则:at v v +-=0③解得

)

sin cos (0θθμ-+=

g v

v t ④这段时间内小铁块的位移

t v

v S 2

01-=

⑤因为v v >0所以方向沿斜面向下。木板沿斜面向上的位移 vt S =2⑥由题意可知

212

S S L

+≥⑦所以)sin cos ()()(22021θθμ-+=+≥g v v S S L

(3)对木板有:θθμθμsin cos cos )(Mg mg g M m F +++=⑧

由Fvt FS W ==2⑨得v v v g g Mg mg g M m W )(sin cos sin cos cos )(0+?-+++=

θ

θμθ

θμθμ

滑块—滑板模型

高三物理专题复习: 滑块—滑板模型 典型例题: 例1. 如图所示,在粗糙水平面上静止放一长L质量为1的木板B , 一质量为1的物块A以速度s m v /0.20=滑上长木板B 的左端,物 块与木板的摩擦因素μ1=0.1、木板与地面的摩擦因素为μ2=0.1, 已知重力加速度为10m 2,求:(假设板的 长度足够长) (1)物块A 、木板B 的加速度; (2)物块A 相对木板B 静止时A 运动的 位移; (3)物块A 不滑离木板B,木板B 至少多长? 考点: 本题考查牛顿第二定律及运动学规律 考查:木板运动情况分析,地面对木板的摩擦力、木板的加速 度计算,相对位移计算。 解析:(1)物块A 的摩擦力:N mg f A 11==μ A 的加速度:21/1s m m f a A -=-= 方向向左 木板B 受到地面的摩擦力:A g m M f f N 2)(2>=+=μ地 故木板B 静止,它的加速度02=a (2)物块A 的位移:m a v S 222 0=-= (3)木板长度:m S L 2=≥ 拓展1. 在例题1中,在木板的上表面贴上一层布,使得物块与木板的 摩擦因素 μ3=0.4,其余条件保持不变,(假设木板足够长)求: (1)物块A 与木块B 速度相同时,物块A 的速度多大? (2)通过计算,判断速度相同以后的

运动情况; (3)整个运动过程,物块A与木板B相互摩擦产生的摩擦热 多大? 考点:牛顿第二定律、运动学、功能关系 考查:木板与地的摩擦力计算、是否共速运动的判断方法、相对 位移和摩擦热的计算。 解析:对于物块A:N mg f A 44==μ 1分 加速度:,方向向左。24/0.4s m g m f a A A -=-=-=μ 1分 对 于木板:N g m f 2)M 2=+=(地μ 1分 加 速度:,方向向右。地2A /0.2s m M f f a C =-= 1分 物块A 相对木板B 静止时,有:121-t a v t a C B = 解得运动时间: ,s t .3/11= s m t a v v B B A /3/21=== 1分 (2)假设共速后一起做运动,22/1)()(s m m M g m M a -=++-= μ 物 块A的静摩擦力:A A f N ma f <==1' 1分 所以假设成立,共速后一起做匀减速直线运动。 1分 (3)共速前A的位移: m a v v S A A A 942202=-= 木板B的位 移:m a v S B B B 9 122==

滑块滑板模型 - 答案

滑块、滑板模型 [典例] 1.如图所示,A 、B 两物块叠放在一起,放在光滑地面上,已知A 、B 物块的质量分别为M 、m ,物块间粗糙。现用水平向右的恒力F 1、F 2先后分别作用在A 、B 物块上,物块A 、B 均不发生相对运动,则F 1、F 2的最大值之比为( ) A .1∶1 B .M ∶m C .m ∶M D .m ∶(m +M) 2.(多选)(2014·江苏高考)如图所示,A 、B 两物块的质量分别为2 m 和m ,静止叠放在 水平地面上。A 、B 间的动摩擦因数为μ,B 与地面间的动摩擦因数为1 2 μ。最大静摩擦力等 于滑动摩擦力,重力加速度为g 。现对A 施加一水平拉力F ,则( ) A .当F<2μmg 时,A 、 B 都相对地面静止 B .当F =52μmg 时,A 的加速度为1 3 μg C .当F>3μmg 时,A 相对B 滑动 D .无论F 为何值,B 的加速度不会超过1 2 μg 3.如图所示,质量M=8 kg 的小车放在水平光滑的平面上,在小车左端加一水平推力F=8 N ,当小车向右运动的速度达到1.5 m/s 时,在小车前端轻轻地放上一个大小不计,质量为m=2 kg 的小物块,物块与小车间的动摩擦因数 =0.2,小车足够长(取g=l0 m/s2)。求: (1)小物块放后,小物块及小车的加速度大小各为多大? (2)经多长时间两者达到相同的速度? (3)从小物块放上小车开始,经过t=1.5 s 小物块通过的 位移大小为多少? 4.如图所示,质量M = 8kg 的长木板放在光滑水平面上,在长木板的右端施加一水平恒力F = 8N ,当长木板向右运动速率达到v 1 =10m/s 时,在其右端有一质量m = 2kg 的小物块(可视为质点)以水平向左的速率v 2 = 2m/s 滑上木板,物块与长木板间的动摩擦因数μ = 0.2,小物块始终没离开长木板,g 取10m/s 2,求: ⑴经过多长时间小物块与长木板相对静止; ⑵长木板至少要多长才能保证小物块始终不滑离长木板; ⑶上述过程中长木板对小物块摩擦力做的功。 5. 质量M =4 kg 、长2l =4 m 的木板放在光滑水平地面上,以木板中点为界,左边和右边的动摩擦因数不同.一个质量为m =1 kg 的滑块(可视为质点)放在木板的左端,如图甲所示.在t =0时刻对滑块施加一个水平向右的恒力F ,使滑块和木板均由静止开始运动,t 1=2 s 时滑块恰好到达木板中点,滑块运动的x 1-t 图象如图乙所示.取g =10 m/s 2. M m m

滑块滑板模型专题

滑块与滑板相互作用模型 【模型分析】 1、相互作用:滑块之间的摩擦力分析 2、相对运动:具有相同的速度时相对静止。两相互作用的物体在速度相同,但加速度不相同时,两者之间同样有位置的变化,发生相对运动。 3、通常所说物体运动的位移、速度、加速度都是对地而言的。在相对运动的过程中相互作用的物体之间位移、速度、加速度、时间一定存在关联。它就是我们解决力和运动突破口。 4、求时间通常会用到牛顿第二定律加运动学公式或动量定理:应用动量定理时特别要注意条件和方向,最好是对单个物体应用动量定理求解。 5、求位移通常会用到牛顿第二定律加运动学公式或动能定理,应用动能定理时研究对象为单个物体或可以看成单个物体的整体。另外求相对位移时:通常会用到系统能量守恒定律。 6、求速度通常会用到牛顿第二定律加运动学公式或动能定理或动量守恒定律:应用动量守恒定律时要特别注意系统的条件和方向。 1、如图所示,在光滑水平面上有一小车A,其质量为0.2 m,小 A

车上放一个物体B ,其质量为0.1=B m ,如图(1)所示。给B 一个水平推力F ,当F增大到稍大于3.0N 时,A、B开始相对滑动。如果撤去F ,对A 施加一水平推力F ′,如图(2)所示,要使A 、B不相对滑动,求F ′的最大值m F 2.如图所示,质量8 的小车放在水平光滑的平面上,在小车左端加一水平推力8 N ,当小车向右运动的速度达到1.5 时,在小车前端轻轻地放上一个大小不计,质量为2 的小物块,物块与小车间的动摩擦因数μ=0.2,小车足够长(取0 2)。求: (1)小物块放后,小物块及小车的加速度大小各为 多大? (2)经多长时间两者达到相同的速度? (3)从小物块放上小车开始,经过1.5 s 小物块通过的位移大小为多少? M m

高中物理滑块滑板模型

高中物理滑块滑板模型 1. 在水平地面上,有一质量为M=4kg、长为L=3m的木板,在水平向右F=12N的拉力作用下,从静 止开始经t=2s速度达到υ=2m/s,此时将质量为m=3kg的铁块(看成质点)轻轻地放在木板的最右端,如图所示.不计铁块与木板间的摩擦.若保持水平拉力不变,请通过计算说明小铁块能否离开 木板?若能,进一步求出经过多长时间离开木板? 解答:设木板加速运动的加速度大小为a1, 由v=a1t得,a1=1m/s2. 设木板与地面间的动摩擦因数为μ,由牛顿第二定律得, F-μMg=Ma1 代入数据解得μ=0.2. 放上铁块后,木板所受的摩擦力f2=μ(M+m)g=14N>F,木板将做匀减速运动. 设加速度为a2,此时有: f2-F=Ma2 代入数据解得a2=0.5m/s2. 设木板匀减速运动的位移为x,由匀变速运动的公式可得, x=v2/2 a2=4m 铁块静止不动,x>L,故铁块将从木板上掉下. 设经t′时间离开木板,由 L=vt′- 1/2a2t′2 代入时间解得t′=2s(t′=6s舍去). 答:铁块能从木板上离开,经过2s离开木板. 2. 如图所示,两木板A、B并排放在地面上,A左端放一小滑块,滑块在F=6N的水平力作用下由静止开始向右运 动.已知木板A、B长度均为l=1m,木板A的质量M A=3kg,小滑块及木板B的质量均为m=1kg,小滑块与木板A、B间的动摩擦因数均为μ1=0.4,木板A、B与地面间的动摩擦因数均为μ2=0.1,重力加速度g=10m/s2.求:(1)小滑块在木板A上运动的时间; (2)木板B获得的最大速度. 解答:解:(1)小滑块对木板A的摩擦力 木板A与B整体收到地面的最大静摩擦力 ,小滑块滑上木板A后,木板A保持静止① 设小滑块滑动的加速度为② ③ 解得:④

“滑块—滑板”模型 培优提高专题

“滑块—滑板”模型培优提高专题 【精讲细练】 1.如图(a),一长木板静止于光滑水平桌面上,t=0时,小物块以速度v0滑到长木板上,图(b)为物块与木板运动的v-t图像,图中t1、v0、v1已知.重力加速度大小为g.由此可求得( ) A. 木板的长度 B. 物块与木板质量之比 C. 物块与木板之间的动摩擦因数 D. 从t=0开始到t1时刻,木板获得的动能 2.如图所示,A物体放在B物体的左侧,用水平恒力F将A拉至B的右端,第一次B固定在地面上,F做功为W1,产生热量Q1.第二次让B在光滑地面上自由滑动,F做功为W2,产生热量为Q2,则应有( ) A. W1=W2,Q1<Q2 B. W1=W2,Q1=Q2 C. W1<W2,Q1<Q2 D. W1<W2,Q1=Q2 3.如图所示,质量m2=0.3kg的小车静止在光滑的水平面上,车长L=1.5m,现有质量m1=0.2kg 的可视为质点的物块,以水平向右的速度v0=2m/s从左端滑上小车,最后在车面上某处与小车保持相对静止。物块与车面间的动摩擦因数μ=0.5,g=10 m/s2. ⑴物块在车面上滑行的时间; ⑴要使物块不从小车右端滑出,物块滑上小车左端的速度v0不超过多少?

4.如图所示,一质量m=2kg的长木板静止在水平地面上,某时刻一质量M=1kg的小铁块以水平向左v0=9 m/s的速度从木板的右端滑上木板.已知木板与地面间的动摩擦因数μ1=0.1,铁块与木板间的动摩擦因数μ2=0.4,取重力加速度g=10 m/s2,木板足够长,求: (1)铁块相对木板滑动时木板的加速度的大小; (2)铁块与木板摩擦所产生的热量Q和木板在水平地面上滑行的总路程x. 5.如图甲,质量M=1 kg的木板静止在水平面上,质量m=1 kg、大小可以忽略的铁块静止在木板的右端。设最大静摩擦力等于滑动摩擦力,已知木板与地面间的动摩擦因数μ1=0.1,铁块与木板间的动摩擦因数μ2=0.4,取g=10 m/s2。现给铁块施加一个水平向左的力F。 (1)若力F恒为8 N,经1 s铁块运动到木板的左端。求木板的长度L。 (2)若力F从零开始逐渐增加,且木板足够长。试通过分析与计算,在图乙中作出铁块受到的摩擦力f随力F大小变化的图象。

滑块—滑板模型

高三物理专题复习:滑块一滑板模型 典型例题 例1. 如图所示,在粗糙水平面上静止放一长L质量为M=1kg的木板B, —质量为 m=1Kg的物块A以速度v0=2.0m/s滑上长木板B的左端,物块与木板的摩擦因素卩 1=0.1、木板与地面的摩擦因素为卩2=0.1,已知重力加速度为g=10m/s , 求:(假设板的长度足够长) (1)物块A、木板B的加速度; (2)物块A相对木板B静止时A运动的位移;人 ---------- _B (3)物块A不滑离木板B,木板B至少多长? "TT/TTTTTTTTT/TTTTTTTT1 考点:本题考查牛顿第二定律及运动学规律 考查:木板运动情况分析,地面对木板的摩擦力、木板的加速度计算,相对位移计算。 解析:(1)物块A的摩擦力:f A二fmg =1N A的加速度:aj - - -1m/ s 方向向左 m 木板B受到地面的摩擦力:f地二」2(M - m)g =2N - f A 故木板B静止,它的加速度a2=0 2 (2)物块A的位移:s二二^=2m 2a (3)木板长度:L亠S = 2m 拓展1. 在例题1中,在木板的上表面贴上一层布,使得物块与木板的摩擦因素卩 3=0.4,其余条件保持不变,(假设木板足够长)求: (1)物块A与木块B速度相同时,物块A的速度多大? (2)通过计算,判断AB速度相同以后的运动 情况; A _____________________ B (3)整个运动过程,物块A与木板B相互摩

高三物理专题复习:滑块一滑板模型 擦产生的摩擦热多大? 考点:牛顿第二定律、运动学、功能关系

解析:对于物块 A : f A = %mg =4N 1分 -0 解析:(1)A 、B 动量守恒,有: mv 0 = (M - m )v mv 0 解得:"Lf" (2)由动能定理得: 1 2 1 2 对 A: -叫 mgS A mv mv 0 加速度: aA - - - J 4g -4.0m/ s ,方向向左。 1 分 m 对于木板:1 『地二 ”2( m M )^ = 2N 1 分 加速度:a C =2.0m / si 方向向右。 物块A 相对木板B 静止时,有:a B h = v 2 - a C l 解得运动时间:鮎=1/3.s , V A = VB = aBb = 2 / 3m / s (2)假设AB 共速后一起做运动, a 二」2 (M ― - -1m/s 2 (M m) 物块A 的静摩擦力: 二 ma = 1N :: f A 所以假设成立,AB 共速后一起做匀减速直线运动。 2 2 (3)共速前A 的位移:S A =V A V ° 木板B 的位移:S B V B 1 m 2a B 9 4 所以: J 3 mg(S A - S B ) J 3 拓展2: 在例题1中,若地面光滑,其他条件保持不变,求: (1) 物块A 与木板B 相对静止时,A 的速度和位移多大? (2) 若物块A 不能滑离木板 B,木板的长度至少多大? 物块A 与木板B 摩擦产生的热量多大? 动量守恒定律、动能定理、能量守恒定律 相对位移与物块、木板位移的关系,优 (3) 考点: 考查: 物块、木板的位移计算,木板长度的计算, 选公式列式计算。 对B: 1 2 -叫mgS B Mv A …f 地 M

滑块滑板模型教案

第4讲专题:牛顿运动定律在综合应用中的常见模型(1)教案 ——滑板—滑块模型 甘肃省张掖中学周正伟 一教学目标: 1、知识与技能: (1)能正确的隔离法、整体法受力分析; (2)能正确运用牛顿运动学知识求解共速问题; (3)能根据运动学知识解决滑块在滑板上的相对位移问题。 2、过程与方法: 能够建立由系统牛顿运动定律的概念,并且能够熟练应用整体法和隔离法研究。 3、情感态度与价值观: 通过本节课的学习,让学生树立学习信心,其实高考的难点是由一个个小知识点组合而成的,只要各个击破,高考并不难。树立学生水滴石穿的学习精神。 二教学过程 (一)自主复习 例题1:如图所示,一质量为m=2kg、初速度为6m/s的小滑块(可视为质点),向右滑上一质量为M=4kg的静止在光滑水平面上足够长的滑板,m、M间动摩擦因数为μ=0.2。 (1)滑块滑上滑板时,滑块和滑板分别如何运动? 加速度大小分别是________、__________; (2)1秒后滑块和滑板的速度分别是________、__________; (3)1秒后滑块和滑板的位移分别是________、__________; (4)3秒后滑块和滑板的速度分别是________、__________。 (5)3秒后滑块和滑板的位移分别是________、__________。 (二)疑难问题大家谈 接例题1,讨论下列问题: (6)滑块滑上滑板开始,经过多长时间后会与滑板保持相对静止? (7)滑块和滑板相对静止时,各自的位移是多少? (8)滑块和滑板相对静止时,滑块距离滑板的左端有多远? (9)4秒钟后,滑块和滑板的位移各是多少? (三)反思提高 1.例题2:如图所示,一质量为M=4kg的滑板以12m/s的速度在光滑水平面上向右做匀速直线运动(滑板足够长),某一时刻,将质量为m=2kg可视为质点的滑块轻轻放在滑板的最右端,已知滑块和滑板之间的动摩擦因数为μ=0.2。 (a)滑块放到滑板上时,滑块和滑板分别怎么运动? 加速度大小分别是________、__________; (b)1秒后滑块和滑板的速度分别是________、__________; (c)1秒后滑块和滑板的位移分别是________、__________; (d)5秒后滑块和滑板的速度分别是________、__________。

滑块-滑板模型

滑块、滑板模型专题 【学习目标】 1能正确的隔离法、整体法受力分析 2、能正确运用牛顿运动学知识求解此类问题 3、能正确运用动能定理和功能关系求解此类问题。 【自主学习】 1处理滑块与滑板类问题的基本思路与方法是什么 2、滑块与滑板存在相对滑动的临界条件是什么 3、滑块滑离滑板的临界条件是什么 问题(4): B 运动的位移S B 及B 向右运动的时间t B2 问题(5): A 对B 的位移大小△ S 、A 在B 上的划痕厶L 、A 在B 上相对B 运动的路程 X A 问题(6): B 在地面的划痕L B 、B 在地面上的路程 X B 问题(7):摩擦力对A 做的功W fA 、摩擦力对A 做的功W fB 、系统所有摩擦力对 A 和B 的总功W f 问题(8): A 、B 间产生热量Q AB 、B 与地面产生热量 Q B 、系统因摩擦产生的热量 Q 【合作探究精讲点拨】 例题:如图所示,滑块 A 的质量m = 1kg ,初始速度向右V i = 8.5m/s ;滑板B 足够长,其 质量M = 2kg ,初始速度向左V 2= 3.5m/s 。已知滑块A 与滑板B 之间动摩擦因数 口= 0.4, 滑板B 与地面之间动摩擦因数 曲=0.1。取重力加速度 g = 10m/s 2。且两者相对静止时, A] ? v i = 8.5m/s 速度大小:,V=5m/s ,在两者相对运动 的过程中: 问题(1): 刚 开始玄人、a BI V 2= 3.5m/s ^777777^7777^77777777777777777777777^ 问题(2): B 向左运动的时间t Bi 及 B 向左运动的最大位移 S B 2 问题(3): A 向右运动的时间 t 及A 运动的位移S A

2020年高考物理素养提升专题02 动力学中的“滑块-滑板”模型(解析版)

素养提升微突破02 动力学中的“滑块-滑板”模型 ——构建模型,培养抽象思维意识 “滑块-滑板”模型 “滑块-滑板”模型涉及两个物体,并且物体间存在相对滑动。叠放在一起的滑块和木板,它们之间存在着相互作用力,在其他外力作用下它们或加速度相同,或加速度不同,无论哪种情况受力分析和运动过程分析都是关键,特别是对相对运动条件的分析。本模型深刻体现了物理运动观念、相互作用观念的核心素养。 【2019·新课标全国Ⅲ卷】如图(a),物块和木板叠放在实验台上,物块用一不可伸长的细绳与固定在实验台上的力传感器相连,细绳水平。t=0时,木板开始受到水平外力F的作用,在t=4 s时撤去外力。细绳对物块的拉力f随时间t变化的关系如图(b)所示,木板的速度v与时间t的关系如图(c)所示。 木板与实验台之间的摩擦可以忽略。重力加速度取g=10 m/s2。由题给数据可以得出 A.木板的质量为1 kg B.2 s~4 s内,力F的大小为0.4 N C.0~2 s内,力F的大小保持不变 D.物块与木板之间的动摩擦因数为0.2 【答案】AB

【解析】结合两图像可判断出0~2 s物块和木板还未发生相对滑动,它们之间的摩擦力为静摩擦力,此过程力F等于f,故F在此过程中是变力,即C错误;2~5 s内木板与物块发生相对滑动,摩擦力转变为滑动摩擦力,由牛顿运动定律,对2~4 s和4~5 s列运动学方程,可解出质量m为1 kg,2~4 s内的力F 为0.4 N,故A、B正确;由于不知道物块的质量,所以无法计算它们之间的动摩擦因数μ,故D错误。【素养解读】本题以木板为研究对象,通过f-t与v-t图像对运动过程进行受力分析、运动分析,体现了物理学科科学推理的核心素养。 一、水平面上的滑块—滑板模型 水平面上的滑块—滑板模型是高中参考题型,一般采用三步解题法: 【典例1】如图所示,质量m=1 kg 的物块A放在质量M=4 kg的木板B的左端,起初A、B静止在水平地面上。现用一水平向左的力F作用在B上,已知A、B之间的动摩擦因数为μ1=0.4,地面与B之间的动摩擦因数为μ2=0.1。假设最大静摩擦力等于滑动摩擦力,g=10 m/s2。求: (1)能使A、B发生相对滑动的力F的最小值; (2)若力F=30 N,作用1 s后撤去,要想A不从B上滑落,则B至少多长;从开始到A、B均静止,A的总 位移是多少。 【答案】(1)25 N(2)0.75 m14.4 m 【解析】

滑板-滑块模型专题

(滑板-滑块模型专题)2015.11 1、(2011天津第2题).如图所示,A 、B 两物块叠放在一起,在粗糙的水平面上保持相对静 止地向右做匀减速直线运动,运动过程中B 受到的摩擦力 A .方向向左,大小不变 B .方向向左,逐渐减小 C .方向向右,大小不变 D .方向向右,逐渐减小 2、如图所示,一足够长的木板静止在光滑水平面上,一物块静止在木板上,木板和物块间有摩擦。现用水平力向右拉木板,当物块相对木板滑动了一段距离但仍有相对运动时,撤掉拉力,此后木板和物块相对于水平面的运动情况为 ( ) A .物块先向左运动,再向右运动 B .物块向右运动,速度逐渐增大,直到做匀速运动 C .木板向右运动,速度逐渐变小,直到做匀速运动 D .木板和物块的速度都逐渐变小,直到为零 3、(新课标理综第21题).如图,在光滑水平面上有一质量为m 1的足够长的木板,其上叠放一质量为m 2的木块。假定木块和木板之间的最大静摩擦力和滑动摩擦力相等。现给木块施加一随时间t 增大的水平力F=kt (k 是常数),木板和木块加速度的大小分别为a 1和a 2,下列反映a 1和a 2变化的图线中正确的是() 4、如图所示,A 、B 两物块的质量分别为 2 m 和 m, 静止叠放在水平地面上. A 、B 间的动摩擦因数为μ,B 与地面间的动摩擦因数为0.5μ. 最大静摩擦力等于滑动摩擦力,重力加速度为 g. 现对 A 施加一水平拉力 F,则( ) A 当 F < 2 μmg 时,A 、 B 都相对地面静止 B 当 F =5μmg /2 时, A 的加速度为μg /3 C 当 F > 3 μmg 时,A 相对 B 滑动 D 无论 F 为何值,B 的加速度不会超过0.5μg 5.一质量为M=4kg 的木板静止在光滑的水平面上,一个质量为m=1kg 的滑块(可以视为质点)以某一初速度V 0=5m/s 从木板左端滑上木板,二者之间的摩擦因数为μ=0.4,经过一段时间的 相互作用,木块恰好不从木板上滑落,求木板长度为多少? 6. 如图所示,质量M=0.2kg 的长木板静止在水平面上,长木板与水平面间的动摩擦因数μ2=0.1.现有一质量m=0.2kg 的滑块以v 0=1.2m/s 的速度滑上长板的左端,小滑块与长木板间的动摩擦因数μ1=0.4.滑块最终没有滑离长木板,求滑块在开始滑上长木板到最后静止下来的 过程中,滑块滑行的距离是多少?(以地面为参考系,g=10m/s 2 )? 7.如图所示,m 1=40kg 的木板在无摩擦的地板上,木板上又放m 2=10kg 的石块,石块与木板间的动摩擦因素μ=0.6。试问: (1)当水平力F=50N 时,石块与木板间有无相对滑动? (2)当水平力F=100N 时,石块与木板间有无相对滑动?(g=10m/s 2 )此时m 2的加速度为 多大? 8. 如图所示,质量为M=4kg 的木板放置在光滑的水平面上,其左端放置着一质量为 m=2kg

人教版高中物理-滑块--滑板模型专题

《滑块—滑板模型专题练习》 1.如图所示,一质量M =50kg、长L=3m的平板车静止在光滑水平地面上,平板车上表面距地面的高度h=1.8m。一质量m=10kg可视为质点的滑块,以v0=7.5m/s的初速度从左端滑上平板车,滑块与平板车间的动摩擦因数μ=0.5,取g =10m/s2。 (1)分别求出滑块在平板车上滑行时,滑块与平板车的加速度大小; (2)计算说明滑块能否从平板车的右端滑出。 2.如图,A为一石墨块,B为静止于水平面的足够长的木板,已知A的质量m A和B的质量m B均为2kg,A、B之间的动摩擦因数μ1 = 0.05,B与水平面之间的动摩擦因数μ2=0.1 。t=0时,电动机通过水平细绳拉木板B,使B做初速度为零,加速度a B=1m/s2的匀加速直线运动。最大静摩擦力与滑动摩擦力大小视为相等,重力加速度g=10m/s2。求: (1)当t1=1.0s时,将石墨块A轻放在木板B上,此时A的加速度a A大小; (2)当A放到木板上后,保持B的加速度仍为a B=1m/s2,此时木板B所受拉力F的大小;(3)当B做初速度为零,加速度a B=1m/s2的匀加速直线运动,t1=1.0s时,将石墨块A轻放在木板B上,则t2=2.0s时,石墨块A在木板B上留下了多长的划痕? 3.如图,一块质量为M = 2kg、长L = 1m的匀质木板放在足够长的光滑水平桌面上,初始时速度为零.板的最左端放置一个质量m = 1kg的小物块,小物块与木板间的动摩擦因数为μ = 0.2,小物块上连接一根足够长的水平轻质细绳,细绳跨过位于桌面边缘的定滑轮(细绳与滑轮间的摩擦不计,木板与滑轮之间距离足够长,g = 10m/s2)。 ⑴若木板被固定,某人以恒力F= 4N向下拉绳,则小木块滑离木板所需要的时间是多少? ⑵若木板不固定,某人仍以恒力F= 4N向下拉绳,则小木块滑离木板所需要的时间是多少? 4、一个小圆盘静止在桌布上,桌布位于一方桌的水平桌面的中央。桌布的一边与桌的AB 边重合,如图所示。已知盘与桌布间的动摩擦因数为μ 1 ,盘与桌面间的动摩擦因数为μ 2 。现突然以恒定加速度a将桌布沿桌面抽离 桌面,加速度方向水平且与AB边垂直。若圆盘 恰好未从桌面掉下,求加速度a的大小 (重力加速度为g)。 F M m A B a

滑块 滑板模型

滑块、滑板模型 【学习目标】 1、能正确的隔离法、整体法受力分析 2、能正确运用牛顿运动学知识求解此类问题 3、能正确运用动能定理和功能关系求解此类问题。 【自主学习】 1、处理滑块与滑板类问题的基本思路与方法是什么? 2、滑块与滑板存在相对滑动的临界条件是什么? 3、滑块滑离滑板的临界条件是什么? 【合作探究精讲点拨】 例题:如图所示,滑块A的质量m=1kg,初始速度向右v1=8.5m/s;滑板B足够长,其质量M=2kg,初始速度向左v2=3.5m/s。已知滑块A与滑板B之间动摩擦因数μ1=0.4,滑板B与地面之间动摩擦因数μ2=0.1。取重 力加速度g=10m/s2。且两者相对静止时,速度大小:,Array ,在两者相对运动的过程中: 5 v/ s m 问题(1):刚开始a A、a B1 问题(2):B向左运动的时间t B1及B向左运动的最大位移S B2 问题(3):A向右运动的时间t及A运动的位移S A 问题(4):B运动的位移S B及B向右运动的时间t B2 问题(5):A对B的位移大小△S、A在B上的划痕△L、A在B上相对B运动的路程 x A

问题(6):B 在地面的划痕L B 、B 在地面上的路程x B 问题(7):摩擦力对A 做的功W fA 、摩擦力对A 做的功W fB 、系统所有摩擦力对A 和B 的总功W f 问题(8):A 、B 间产生热量Q AB 、B 与地面产生热量Q B 、系统因摩擦产生的热量Q 问题(9):画出两者在相对运动过程中的示意图和v -t 图象 练习:如图为某生产流水线工作原理示意图.足够长的工作平台上有一小孔A ,一定长度的操作板(厚度可忽略不计)静止于小孔的左侧,某时刻开始,零件(可视为质点)无初速地放上操作板的中点,同时操作板在电动机带动下向右做匀加速直线运动,直至运动到A 孔的右侧(忽略小孔对操作板运动的影响),最终零件运动到A 孔时速度恰好为零,并由A 孔下落进入下一道工序.已知零件与操作板间的动摩擦因数μ1=0.05,零件与与工作台间的动摩擦因数μ2=0.025,不计操作板与工作台间的摩擦.重力加速度g=10m/s2.求: (1)操作板做匀加速直线运动的加速度大小; (2)若操作板长L=2m ,质量M=3kg ,零件的质量m=0.5kg ,则操作板从A 孔左侧完全运动到右侧的过程中,电动机至少做多少功? 【总结归纳】 【针对训练】 A 工作台

滑块—木板模型专题(附详细答案)

牛顿定律——滑块和木板模型专题 一.“滑块—木板模型”问题的分析思路 1.模型特点:上、下叠放两个物体,并且两物体在摩擦力的相互作用下发生相对滑动.2.建模指导 解此类题的基本思路: (1)分析滑块和木板的受力情况,根据牛顿第二定律分别求出滑块和木板的加速度 (2)对滑块和木板进行运动情况分析,找出滑块和木板之间的位移关系或速度关系, 建立方程.特别注意滑块和木板的位移都是相对地面的位移. 例1、m A=1 kg,m B=2 kg,A、B间动摩擦因数是0.5,水平面光滑. 用10 N水平力F拉B时,A、B间的摩擦力是 用20N水平力F拉B时,A、B间的摩擦力是 例2、如图所示,物体A叠放在物体B上,B置于光滑水平面上,A、B质量分别为m A =6 kg,m B=2 kg,A、B之间的动摩擦因数μ=0.2,开始时F=10 N,此后逐渐增加,若使AB不发生相对运动,则F的最大值为 针对练习1、如图5所示,物体A叠放在物体B上,B置于光滑水平面上,A、B质量分别为m A=6 kg,m B=2 kg,A、B之间的动摩擦因数μ=0.2,开始时F=10 N,此后逐渐增加,在增大到45 N的过程中,则() A.当拉力F<12 N时,物体均保持静止状态 B.两物体开始没有相对运动,当拉力超过12 N 时,开始相对运动 C.两物体从受力开始就有相对运动 D.两物体始终没有相对运动

例3、如图所示,质量M=8 kg的小车放在光滑的水平面上,在小车左端加一水平推力F =8 N,当小车向右运动的速度达到1.5 m/s时,在小车前端轻轻地放上一个大小不计,质量为m=2 kg的小物块,小物块与小车间的动摩擦因数μ=0.2,当二者达到相同速度时,物块恰好滑到小车的最左端.取g=10 m/s2.则: (1)小物块放上后,小物块及小车的加速度各为多大? (2)小车的长度L是多少?

动量和能量中的滑板滑块模型专题

动量和能量中的滑块—滑板模型 一、三个观点及其概要 ——— 解决力学问题的三把金钥匙 二、思维切入点 1、五大定律和两大定理是该模型试题所用知识的思维切入点。该模型试题一般主要是考查学生对上述五大定律和两大定理的综合理解和掌握,因此,学生在熟悉这些定律和定理的内容、研究对象、表达式、适用条件等基础上,根据试题中的已知量或隐含已知量选择解决问题的最佳途径和最简捷的定律,以达到事半功倍的效果。 2、由于滑块和木板之间依靠摩擦力互相带动,因此,当滑块和木板之间的摩擦力未知时,根据动能定理、动量定理或能量守恒求摩擦力的大小是该模型试题的首选思维切入点。 3、滑块和木板之间摩擦生热的多少和滑块相对地面的位移无关,大小等于滑动摩擦力与滑块相对摩擦面所通过总路程之乘积是分析该模型试题的巧妙思维切入点。若能先求出由于摩擦生热而损失的能量,就可以应用能量守恒求解其它相关物理量。 4、确定是滑块带动木板运动还是木板带动滑块运动是分析该模型运动过程的关键切入点之一.当(没有动力的)滑块带动木板运动时,滑块和木板之间有相对运动,滑块依靠滑动摩...擦力.. 带动木板运动;当木板带动滑块运动时,木板和滑块之间可以相对静止,若木板作变速运动,木板依靠静摩擦力....带动滑块运动。 三、专题训练 1.如图所示,右端带有竖直挡板的木板B ,质量为M ,长L =1.0m ,静止在光滑水平面上.一个质量为m 的小木块(可视为质点)A ,以水平速度0 4.0m /s v 滑上B 的左端,而后与其右端挡板碰撞,最后恰好滑到木板B 的左端.已知M =3m ,并设A 与挡板碰撞时无机械能损失,碰撞时间可忽略(g 取2 10m /s ).求: (1)A 、B 最后的速度; (2)木块A 与木板B 间的动摩擦因数. 2.如图所示,光滑水平地面上停着一辆平板车,其质量为2m ,长为L ,车右端(A 点)有一块静止的质量为m 的小金属块.金属块与车间有 思想观点 规律 研究对象 动力学观点 牛顿运动(第一第二第三)定律及运动学公式 单个物体或整体 动量观点 动量守恒定律 系统 动量定理 单个物体 能量观点 动能定理 单个物体 机械能守恒定律能量守恒定律 单个(包含地球)或系统

高中物理滑块滑板模型

高中物理滑块滑板模型 1.在水平地面上,有一质量为M=4kg、长为L=3m的木板,在水平向右 F=12N的拉力作用下,从静止开始经t=2s速度达到υ=2m/s,此时将质量为m=3kg的铁块(看成质点)轻轻地放在木板的最右端,如图所示.不计铁块与木板间的摩擦.若保持水平拉力不变,请通过计算说明小铁块能否离开木板若能,进一步求出经过多长时间离开木板 解答:设木板加速运动的加速度大小为a 1 , 由v=a 1t得,a 1 =1m/s2. 设木板与地面间的为μ,由得, F-μMg=Ma 1 代入数据解得μ=0.2. 放上铁块后,木板所受的摩擦力f 2 =μ(M+m)g=14N>F,木板将做匀减速运动. 设加速度为a 2 ,此时有: f 2-F=Ma 2 代入数据解得a 2 =0.5m/s2. 设木板匀减速运动的位移为x,由匀变速运动的公式可得, x=v2/2 a 2 =4m 铁块静止不动,x>L,故铁块将从木板上掉下. 设经t′时间离开木板,由 L=vt′- 1/2a 2 t′2

代入时间解得t′=2s(t′=6s舍去). 答:铁块能从木板上离开,经过2s离开木板. 2. 如图所示,两木板A、B并排放在地面上,A左端放一小滑块,滑块在F=6N的水平力作用下由静止开始向右运动.已知木板A、B长度均为l=1m,=3kg,小滑块及木板B的质量均为m=1kg,小滑块与木板木板A的质量M A A、B间的动摩擦因数均为μ =0.4,木板A、B与地面间的动摩擦因数均为 1 =0.1,重力加速度g=10m/s2.求: μ 2 (1)小滑块在木板A上运动的时间; (2)木板B获得的最大速度. 解答:解:(1)小滑块对木板A的摩擦力 木板A与B整体收到地面的最大静摩擦力 ,小滑块滑上木板A后,木板A保持静止① 设小滑块滑动的加速度为② ③ 解得:④ (2)设小滑块滑上B时,小滑块速度,B的加速度,经过时间滑块与B速度脱离,滑块的位移,B的位移,B的最大速度,则:

滑板-滑块模型专题

相互作用,木块恰好不从木板上滑落,求木板长度为多少?(滑板-滑块模型专题)2015.11 1、(2011天津第2题).如图所示,A B两物块叠放在一起,在粗糙的水平面上保持相对静 止地向右做匀减速直线运动,运动过程中B受到的摩擦力 A.方向向左,大小不变 B .方向向左,逐渐减小 C.方向向右,大小不变 D .方向向右,逐渐减小 2、如图所示,一足够长的木板静止在光滑水平面上,一物块静止在木板上,木板和物块间有摩 擦。现用水平力向右拉木板,当物块相对木板滑动了一段距离但仍有相对运动时,撤掉拉 3、(新课标理综第21题).如图,在光滑水平面上有一质量为m 的足够长的木板,其上叠放一 质量为m的木块。假定木块和木板之间的最大 静摩擦力和滑动摩擦力相等。现给木块施加一 随时间t增大的水平力F=kt (k是常数),木板和木 块加速度的大小分别为a1和a2,下列反 映a1和a2变化的图线中正确的是() 4、如图所示,A、B两物块的质量分别为2 m和m,静止叠放在水平地面上.A、B间的动摩擦因数为卩,B与地面间的动摩擦因数为0.5卩.最大静摩擦力等于滑动摩擦力,重力加速度为 A当F < 2卩mg时,A、B都相对地面静止 B当F =5卩mg /2时,A的加速度为卩g /3 C当F > 3卩mg时,A相对B滑动 D无论F为何值,B的加速度不会超过0.5卩g 5. —质量为M=4kg的木板静止在光滑的水平面上,一个质量为m=1kg的滑块(可以视为质点)以某一初速度V o=5m/s从木板 6.如图所示,质量M=0.2kg的长木板静止在水平面上,长木板与水平面间的动摩擦因数 力,此后木板和物块相对于水平面的运动情况为(少=0.1.现有一质量m=0.2kg的滑块以v o=1.2m/s的速度滑上长板的左端,小滑块与长木板间 A .物块先向左运动,再向右运动 B .物块向右运动,速度逐渐增大,直到做匀速运动 C .木板向右运动,速度逐渐变小,直到做匀速运动 D ?木板和物块的速度都逐渐变小,直到为零77T77777T777777777777T77 的动摩擦因数卩=04滑块最终没有滑离长木板,求滑块在开始滑上长木板到最后静止下来的过 程中,滑块滑行的距离是多少?(以地面为参考系,g=10m/s2)? A B C 7.如图所示,m,! =40kg的木板在无摩擦的地板上,木板上又放叫=10kg的石块,石块与木 板间的动摩擦因素卩=0.6。试问: (1)当水平力F=50N时,石块与木板间有无相对滑动? (2)当水平力F=100N时,石块与木板间有无相对滑动?(g=10m/s2)此时叫的加速度为 多大? g.现对A施加一水平拉力F,则() 8.如图所示,质量为M=4kg的木板放置在光滑的水平面上,其左端放置着一质量为m=2kg

牛顿运动定律巧解滑块--滑板模型

云和课堂: 牛顿运动定律巧解滑块--滑板模型 (第一课时)综述及计算题 王海桥12.10 1.模型特点: 上、下叠放两个物体,并且两物体在摩擦力的相互作用下发生相对滑动. 2.建模指导: 基本思路: (1)受力分析,根据牛顿第二定律分别求出滑块和木板的加速度; (2)运动状态分析,找出位移关系,速度关系,建立方程.(特别注意位移都是相对地面的位移). 3.两种位移关系:(相对滑动的位移关系) 滑块由滑板的一端运动到另一端的过程中,若滑块和滑板同向运动,位移之差等于板长;反向运动时,位移之和等于板长. 4.滑块与滑板间是否发生相对滑动的判断方法 (1).动力学条件判断法: 分析滑块—滑板间的摩擦力是否为滑动摩擦力 。 若为静摩擦力,则两者之间无相对滑动; 若为滑动摩擦力,则两者之间有相对滑动。 (2).运动学条件判断法: 求出不受外力F 作用的物体的最大临界加速度amax , 若滑块与滑板整体的加速度a 满足条件 二者之间就不发生相对滑动, (3).滑块滑离滑板的临界条件 当滑板的长度一定时,滑块可能从滑板滑下,恰好滑到滑板的边缘达到共同速度是滑块滑离滑板的临界条件. 【例1】如图所示,m1 =40kg 的木板在无摩擦的地板上,木板上又放m2 =10kg 的石块, 石块与木板间的动摩擦因素μ=0.6。试问: (1)当水平力F=50N 时,石块与木板间有无相对滑动? (2)当水平力F=100N 时,石块与木板间有无相对滑动?(g=10m/s )此时m 的加速度为多大? 【例2】.如图所示,在光滑水平面上有一小车A ,其质量为mA=2.0kg ,小车上放一个物体B ,其质量为mB=1.0kg ,如图(1)所示.给B 一个水平推力F ,当F 增大到稍大于3.0N 时,A 、B 开始相对滑动.如果撤去F ,对A 施加一水平推力F ′,如图(2)所示,要使A 、B 不相对滑动,求F ′的最大值Fm . 【例3】木板M 静止在光滑水平面上,木板上放着一个小滑块m ,与木板之间的动摩擦因数μ,为了使得m 能从M 上滑落下来,求下列情况下力F 的大小范围。 (第二课时)选择题及小结 【例2】如图所示,光滑的水平面上静置质量为M =8 kg 的平板小车,在小车左端加一个由零逐渐增大的水平推力F ,一个大小不计、质量为m =2 kg 的小物块放在小车右端上面,小物块与小车间的动摩擦因数μ=0.2,小车足够长.重力加速度g 取10 m/s 2 ,设最大静摩擦力等于滑动摩擦力,下列说法中正确的是( )

滑板上的滑块解题技巧

滑板上的滑块解题技巧 一个滑板一滑块,在中学物理中这一最简单、最典型的模型,外加档板、弹簧等辅助器件,便可以构成物理情景各不相同、知识考察视点灵巧多变的物理习题,能够广泛考察学生的应用能力、迁移能力,成为力学综合问题的一道亮丽风景。归纳起来,滑板滑块问题主要有以下几种情形: 一、 系统机械能守恒,动量(或某一方向动量)守恒 当物体系既没有外力做功,也没有内部非保守力(如滑动摩擦力)做功时,这个物体系机械能守恒;同时,物体系受合力(或某一方向合力)为零,动量(或某一方向动量)守恒。 例1:有光滑圆弧轨道的小车总质量为M ,静止在光滑的水平地面上,轨道足够长,下端水平,有一质量为m 的滑块以水平初速度V 0滚上小车(图1),求: ⑴滑块沿圆弧轨道上升的最大高度h 。 ⑵滑块又滚回来和M 分离时两者的速度。 [解析] ⑴小球滚上小车的过程中,系统水平方向上动量守恒, 小球沿轨道上升的过程中,球的水平分速度从V 0开始逐渐 减小,而小车的速度却从零开始逐渐增大,若V 球> V 车,则球处于上升阶段;若V 球

相关文档
最新文档