K12推荐学习2019高考数学一轮复习 第九章 平面解析几何 9.8 圆锥曲线的综合问题练习 理

合集下载

北京专用2019版高考数学一轮复习第九章平面解析几何第九节圆锥曲线的综合问题课件文

北京专用2019版高考数学一轮复习第九章平面解析几何第九节圆锥曲线的综合问题课件文

+
b
2
=1过A(2,0),B(0,1)两点.
(1)求椭圆C的方程及离心率;
(2)设P为第三象限内一点且在椭圆C上,直线PA与y轴交于点M,直线PB
与x轴交于点N.求证:四边形ABNM的面积为定值.
解析 (1)由题意得,a=2,b=1.
所以椭圆C的方程为 x 2 +y2=1.
4
又c= a=2 ,b2 3
x
2 0
2
+y
2 0
=1.
①当m=0时,点P(0,2),Q点坐标为(- 2,0)或( ,02 ),
S= 1 × 2 ×2= .2
2
②当m≠0时,直线OP的方程为y= 2 x,即2x-my=0,
m
直线QF的方程为y=- m (x-1).
2
点Q(x0,y0)到直线OP的距离d= | 2 x,0 m y0 |
所以离心率e= c = 3 .
a2
(2)证明:设P(x0,y0)(x0<0,y0<0),则
x
2 0
+4
y
2 0
=4.
又A(2,0),B(0,1),
所以,直线PA的方程为y= y (0 x-2).
x0 2
令x=0,得yM=- 2 y ,0
x0 2
从而|BM|=1-yM=1+ 2 y .0
x0 2
(1)求椭圆C的标准方程;
(2)设点Q为椭圆C上一点,过原点O且垂直于QF的直线与直线y=2交于
点P,求△OPQ的面积S的最小值.
b 1,
解析
(1)由题意,得
c
1解, 得a=
.
2
a 2 b 2 c 2 ,

核按钮(新课标)高考数学一轮复习第九章平面解析几何9.8直线与圆锥曲线的位置关系课件文

核按钮(新课标)高考数学一轮复习第九章平面解析几何9.8直线与圆锥曲线的位置关系课件文
直线与圆锥曲线________.
(2)注意消元后非二次的情况,即当 a=0 时,对应圆
锥曲线只可能是双曲线或抛物线.
当圆锥曲线是双曲线时,直线 l 与双曲线的渐近线的 位置关系是________;当圆锥曲线是抛物线时,直线 l 与
抛物线的对称轴的位置关系是________. (3)直线方程涉及斜率 k 要考虑其不存在的情形.
又∵y0=x0+m,∴P-m4 ,34m, 代入抛物线方程得196m2=18·-m4 ,
解得 m=0 或-8,经检验都符合.故填 0 或-8.
第十七页,共48页。
类型二 定点问题
(2013·陕西)已知动圆过定点 A(4,0),且在 y 轴上截得弦 MN 的长为 8.
(1)求动圆圆心的轨迹 C 的方程; (2)已知点 B(-1,0),设不垂直于 x 轴的直线 l 与轨迹 C 交于不同的
又|O1A|= (x-4)2+y2,
∴ (x-4)2+y2= x2+42,化简得 y2=8x(x≠0); 当 O1 在 y 轴上时,O1 与 O 重合,点 O1 的坐标(0,0)也满足方程 y2= 8x,∴动圆圆心的轨迹 C 的方程为 y2=8x.
第十九页,共48页。
(2)证明:如图,
设直线 l 的方程为 y=kx+b(k≠0),P(x1,y1),Q(x2,y2),将 y=kx+b 代入 y2=8x 中,得 k2x2+(2kb-8)x+b2=0,其中Δ=(2kb-8)2-4k2b2=64-32kb>0,得 kb<2.
两式相减得(x1-x2)a(2 x1+x2)+(y1-y2)b(2 y1+y2)=0,
变形得-ba22((xy11++xy22))=yx11--yx22,即-22ba22=-12,

(全国通用版)2019版高考数学大一轮复习 第九章 平面解析几何 第9节 第1课时 直线与圆锥曲线 理 新人教B版

(全国通用版)2019版高考数学大一轮复习 第九章 平面解析几何 第9节 第1课时 直线与圆锥曲线 理 新人教B版

(1)当a≠0时,设一元二次方程ax2+bx+c=0的判别式为Δ,则: Δ>0⇔直线与圆锥曲相线交C______; Δ=0⇔直线与圆锥曲相线切C______; Δ<0⇔直线与圆锥曲相线离C______. (2)当a=0,b≠0时,即得到一个一次方程,则直线l与圆锥曲 线C相交,且只有一个交点,此时,若C为双曲线,则平直行线l与 双曲线的渐近线的位置关系是______;若平C行为或抛重物合线,则直线 l与抛物线的对称轴的位置关系是______________.
解 (1)椭圆C1的左焦点为F1(-1,0),∴c=1, 又点P(0,1)在曲线C1上,
∴a02+b12=1,得 b=1,则 a2=b2+c2=2, 所以椭圆 C1 的方程为x22+y2=1.
(2)由题意可知,直线 l 的斜率显然存在且不等于 0,设直线 l 的方程为 y=kx+m, 由x22+y2=1,消去 y,得(1+2k2)x2+4kmx+2m2-2=0.
综合①②,解得k= 22,或k=- 22, m= 2 m=- 2.
所以直线 l 的方程为 y= 22x+ 2或 y=- 22x- 2.
规律方法 研究直线与圆锥曲线的位置关系时,一般转化为 研究其直线方程与圆锥曲线方程组成的方程组解的个数,消 元后,应注意讨论含x2项的系数是否为零的情况,以及判别式 的应用.但对于选择题、填空题要充分利用几何条件,用数形 结合的方法求解.
第9节 圆锥曲线的综合问题
最新考纲 1.掌握解决直线与椭圆、抛物线的位置关系的思 想方法;2.了解圆锥曲线的简单应用;3.理解数形结合的思 想.
知识梳 1.直线与圆锥曲线的位置关系 理
判断直线 l 与圆锥曲线 C 的位置关系时,通常将直线 l 的方程 Ax+By+C=0(A, B 不同时为 0)代入圆锥曲线 C 的方程 F(x,y)=0,消去 y(也可以消去 x)得到一个 关于变量 x(或变量 y)的一元方程, 即AFx(+xB,yy+)C==00,消去 y,得 ax2+bx+c=0.

2019届高考数学大一轮复习第九章平面解析几何9.8曲线与方程名师课件理科北师大版

2019届高考数学大一轮复习第九章平面解析几何9.8曲线与方程名师课件理科北师大版

证明
思维升华 直接法求曲线方程时最关键的就是把几何条件或等量关系翻译 为代数方程,有建系设点、列式、代换、化简、证明这五个步 骤,但最后的证明可以省略,求出曲线的方程后还需注意检验 方程的纯粹性和完备性.
x2 y2 跟踪训练 已知椭圆 C: 2+ 2=1(a>b>0)的一个焦点为( 5,0),离心率 a b 5 为 . 3
第九章 平面解析几何
§9.8 曲线与方程
内容索引
基础知识 自主学 习 题型分类 深度剖 析 课时作业
基础知识
自主学习
1.曲线与方程的定义
知识梳 理
一般地,在直角坐标系中,如果某曲线C(看作点的集合或适合某 种条件的点的轨迹 ) 上的点与一个二元方程 f(x ,y)= 0 的实数解建
立如下的对应关系:
A.双曲线
C.圆
B.椭圆
D.抛物线

解析 由已知|MF|=|MB|,根据抛物线的定义知, 点M的轨迹是以点F为焦点,直线l为准线的抛物线.
1
2
3
4
5
6
几何画板展示
解析
答案
3.曲线C:xy=2上任一点到两坐标轴的距离之积为 ____. 2 解析 在曲线xy=2上任取一点(x0,y0), 则x0y0=2,该点到两坐标轴的距离之积为|x0||y0|=|x0y0|=2.
这个方程的解
曲线上的点
曲线的方程 那么,这个方程叫作 .
, 这 条方程的曲线 曲 线 叫 作
2.求动点的轨迹方程的基本步骤
任意
x,y
所求方程
【知识拓展】 1.“曲线C是方程f(x,y)=0的曲线”是“曲线C上的点的坐标 都是方程f(x,y)=0的解”的充分不必要条件. 2.曲线的交点与方程组的关系

【K12教育学习资料】[学习](全国通用版)2019版高考数学大一轮复习 第九章 平面解析几何 第9

【K12教育学习资料】[学习](全国通用版)2019版高考数学大一轮复习 第九章 平面解析几何 第9

第2课时 定点、定值、范围、最值问题考点一 定点问题【例1】 (2018·临汾一中月考)已知椭圆C :x 2a2+y 2=1(a >0),过椭圆C 的右顶点和上顶点的直线与圆x 2+y 2=23相切.(1)求椭圆C 的方程;(2)设M 是椭圆C 的上顶点,过点M 分别作直线MA ,MB 交椭圆C 于A ,B 两点,设这两条直线的斜率分别为k 1,k 2,且k 1+k 2=2,证明:直线AB 过定点.(1)解 ∵直线过点(a ,0)和(0,1),∴直线的方程为x +ay -a =0,∵直线与圆x 2+y 2=23相切,∴|a |1+a2=63,解得a 2=2,∴椭圆C 的方程为x 22+y 2=1. (2)证明 当直线AB 的斜率不存在时,设A (x 0,y 0),则B (x 0,-y 0),由k 1+k 2=2得y 0-1x 0+-y 0-1x 0=2,解得x 0=-1.当直线AB 的斜率存在时,设AB 的方程为y =kx +m (m ≠1),A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x 22+y 2=1,y =kx +m ,消去y ,整理得(1+2k 2)x 2+4kmx +2m 2-2=0,得x 1+x 2=-4km 1+2k2,x 1·x 2=2m 2-21+2k 2, 由k 1+k 2=2⇒y 1-1x 1+y 2-1x 2=2⇒ (kx 2+m -1)x 1+(kx 1+m -1)x 2x 1x 2=2,即(2-2k )x 1x 2=(m -1)(x 1+x 2)⇒(2-2k )(2m 2-2)=(m -1)(-4km ), 即(1-k )(m 2-1)=-km (m -1),由m ≠1,得(1-k )(m +1)=-km ⇒k =m +1, 即y =kx +m =(m +1)x +m ⇒m (x +1)=y -x , 故直线AB 过定点(-1,-1). 综上,直线AB 过定点(-1,-1).规律方法 圆锥曲线中定点问题的两种解法(1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法,根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.【训练1】 (2018·西安模拟)设F 1,F 2分别为椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,若椭圆上的点T (2,2)到点F 1,F 2的距离之和等于4 2. (1)求椭圆C 的方程;(2)若直线y =kx (k ≠0)与椭圆C 交于E ,F 两点,A 为椭圆C 的左顶点,直线AE ,AF 分别与y 轴交于点M ,N .问:以MN 为直径的圆是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.解 (1)由椭圆上的点T (2,2)到点F 1,F 2的距离之和是42, 可得2a =42,a =2 2.又T (2,2)在椭圆上,因此4a 2+2b2=1,所以b =2.所以椭圆C 的方程为x 28+y 24=1.(2)因为椭圆C 的左顶点为A ,所以点A 的坐标为(-22,0). 因为直线y =kx (k ≠0)与椭圆x 28+y 24=1交于E ,F 两点,设点E (x 0,y 0)(不妨设x 0>0),则点F (-x 0,-y 0).由⎩⎪⎨⎪⎧y =kx ,x 28+y 24=1消去y ,得x 2=81+2k 2,所以x 0=221+2k2,则y 0=22k 1+2k2,所以直线AE 的方程为y =k1+1+2k 2(x +22). 因为直线AE ,AF 分别与y 轴交于点M ,N ,令x =0,得y =22k1+1+2k 2,即点M ⎝ ⎛⎭⎪⎫0,22k 1+1+2k 2. 同理可得点N ⎝ ⎛⎭⎪⎫0,22k 1-1+2k 2.所以|MN |=⎪⎪⎪⎪⎪⎪22k1+1+2k 2-22k 1-1+2k 2=22(1+2k 2)|k |. 设MN 的中点为P ,则点P 的坐标为⎝⎛⎭⎪⎫0,-2k .则以MN 为直径的圆的方程为x 2+⎝ ⎛⎭⎪⎫y +2k 2=⎝ ⎛⎭⎪⎫2(1+2k 2)|k |2,即x 2+y 2+22ky =4,令y =0,得x 2=4,即x =2或x =-2.故以MN 为直径的圆经过两定点P 1(2,0),P 2(-2,0). 考点二 定值问题【例2】 (2018·长春模拟)已知抛物线E :x 2=2py (p >0)的焦点为F ,以抛物线E 上点P (22,y 0)⎝ ⎛⎭⎪⎫y 0>p 2为圆心的圆与直线y =p 2相交于M ,N 两点且|MN →|=3|PM →|=233|PF →|.(1)求抛物线E 的方程;(2)设直线l 与抛物线E 相交于A ,B 两点,线段AB 的中点为D .与直线l 平行的直线与抛物线E 切于点C .若点A ,B 到直线CD 的距离之和为42,求证:△ABC 的面积为定值. (1)解 由抛物线的定义得|PF |=y 0+p 2,点P 到直线y =p 2的距离为y 0-p2,∵圆P 与直线y =p 2相交于M ,N 两点,且|MN →|=3|PM →|,∴12|MN →||PM →|=32,即cos ∠PMN =32,∴∠PMN =30°,∴点P 到直线y =p 2的距离为12|PM →|,即|PM →|=2⎝⎛⎭⎪⎫y 0-p 2, ∵3|PM →|=233|PF →|,∴y 0-p 2=13⎝⎛⎭⎪⎫y 0+p 2,得y 0=p ,将点(22,p )代入抛物线方程,得p =2, ∴抛物线E 的方程为x 2=4y .(2)证明 设A (x 1,y 1),B (x 2,y 2),直线l 的方程为y =kx +b ,代入抛物线方程,得x 2-4kx -4b =0,则x 1+x 2=4k ,x 1x 2=-4b ,则点D (2k ,2k 2+b ).设与直线l 平行且与抛物线E 相切的直线方程为y =kx +m ,代入抛物线方程,得x 2-4kx -4m =0,由Δ=16k 2+16m =0,得m =-k 2,点C 的横坐标为2k ,则C (2k ,k 2),∴直线CD 与x 轴垂直,则点A ,B 到直线CD 的距离之和为|x 1-x 2|,即|x 1-x 2|=42,∴(x 1+x 2)2-4x 1x 2=42, 则16k 2+16b =32,即b =2-k 2, ∴|CD |=|2k 2+b -k 2|=2,∴S △ABC =12|CD |·|x 1-x 2|=12×2×42=42,即△ABC 的面积为定值.规律方法 圆锥曲线中定值问题的特点及两大解法 (1)特点:待证几何量不受动点或动线的影响而有固定的值. (2)两大解法:①从特殊入手,求出定值,再证明这个值与变量无关; ②引起变量法:其解题流程为变量→选择适当的动点坐标或动线中系数为变量 ↓函数→把要证明为定值的量表示成上述变量的函数 ↓定值→把得到的函数化简,消去变量得到定值【训练2】 (2016·北京卷)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,A (a ,0),B (0,b ),O (0,0),△OAB 的面积为1.(1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:|AN |·|BM |为定值. (1)解 由已知ca =32,12ab =1. 又a 2=b 2+c 2,解得a =2,b =1,c = 3. 所以椭圆方程为x 24+y 2=1.(2)证明 由(1)知,A (2,0),B (0,1). 设椭圆上一点P (x 0,y 0),则x 204+y 20=1.当x 0≠0时,直线PA 方程为y =y 0x 0-2(x -2),令x =0得y M =-2y 0x 0-2.从而|BM |=|1-y M |=⎪⎪⎪⎪⎪⎪1+2y 0x 0-2. 直线PB 方程为y =y 0-1x 0x +1. 令y =0得x N =-x 0y 0-1. ∴|AN |=|2-x N |=⎪⎪⎪⎪⎪⎪2+x 0y 0-1.∴|AN |·|BM |=⎪⎪⎪⎪⎪⎪2+x 0y 0-1·⎪⎪⎪⎪⎪⎪1+2y 0x 0-2 =⎪⎪⎪⎪⎪⎪x 0+2y 0-2x 0-2·⎪⎪⎪⎪⎪⎪x 0+2y 0-2y 0-1=⎪⎪⎪⎪⎪⎪x 20+4y 20+4x 0y 0-4x 0-8y 0+4x 0y 0-x 0-2y 0+2 =⎪⎪⎪⎪⎪⎪4x 0y 0-4x 0-8y 0+8x 0y 0-x 0-2y 0+2=4.当x 0=0时,y 0=-1,|BM |=2,|AN |=2, 所以|AN |·|BM |=4.故|AN |·|BM |为定值. 考点三 范围与最值问题【例3】 (2018·武汉模拟)已知点F 为椭圆E :x 2a 2+y 2b2=1(a >b >0)的左焦点,且两焦点与短轴的一个顶点构成一个等边三角形,直线x 4+y2=1与椭圆E 有且仅有一个交点M .(1)求椭圆E 的方程;(2)设直线x 4+y2=1与y 轴交于P ,过点P 的直线l 与椭圆E 交于不同的两点A ,B ,若λ|PM |2=|PA |·|PB |,求实数λ的取值范围.解 (1)由题意,得a =2c ,b =3c ,则椭圆E 为x 24c 2+y 23c2=1.由⎩⎪⎨⎪⎧x 24+y 23=c 2,x 4+y 2=1,得x 2-2x +4-3c 2=0.∵直线x 4+y2=1与椭圆E 有且仅有一个交点M ,∴Δ=4-4(4-3c 2)=0⇒c 2=1,a =2,b =3, ∴椭圆E 的方程为x 24+y 23=1.(2)由(1)得M ⎝ ⎛⎭⎪⎫1,32,∵直线x 4+y 2=1与y 轴交于P (0,2),∴|PM |2=54,当直线l 与x 轴垂直时,|PA |·|PB |=(2+3)×(2-3)=1, ∴λ|PM |2=|PA |·|PB |⇒λ=45.当直线l 与x 轴不垂直时,设直线l 的方程为y =kx +2,A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =kx +2,3x 2+4y 2-12=0⇒(3+4k 2)x 2+16kx +4=0, 依题意得,x 1x 2=43+4k2,且Δ=48(4k 2-1)>0,∴|PA |·|PB |=(1+k 2)x 1x 2=(1+k 2)·43+4k 2=1+13+4k 2=54λ,∴λ=45⎝ ⎛⎭⎪⎫1+13+4k 2,∵k 2>14,∴45<λ<1.综上所述,λ的取值范围是⎣⎢⎡⎭⎪⎫45,1.规律方法 1.解决圆锥曲线中的取值范围问题应考虑的五个方面(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围; (2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系;(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围; (4)利用已知的不等关系构造不等式,从而求出参数的取值范围;(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.2.处理圆锥曲线最值问题的求解方法圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:一是利用几何法,即通过利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解.【训练3】 (2018·惠州模拟)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)短轴的两个顶点与右焦点的连线构成等边三角形,直线3x +4y +6=0与圆x 2+(y -b )2=a 2相切. (1)求椭圆C 的方程;(2)已知过椭圆C 的左顶点A 的两条直线l 1,l 2分别交椭圆C 于M ,N 两点,且l 1⊥l 2,求证:直线MN 过定点,并求出定点坐标; (3)在(2)的条件下求△AMN 面积的最大值.(1)解 由题意,得⎩⎪⎨⎪⎧a =2b ,|4b +6|5=a ,∴⎩⎪⎨⎪⎧a =2,b =1,即C :x 24+y 2=1.(2)证明 由题意得直线l 1,l 2的斜率存在且不为0. ∵A (-2,0),设l 1:x =my -2,l 2:x =-1my -2,由⎩⎪⎨⎪⎧x =my -2,x 2+4y 2-4=0,得(m 2+4)y 2-4my =0, ∴M ⎝ ⎛⎭⎪⎫2m 2-8m 2+4,4m m 2+4.同理,N ⎝ ⎛⎭⎪⎫2-8m 24m 2+1,-4m 4m 2+1. ①m ≠±1时,k MN =5m4(m 2-1), l MN :y =5m 4(m 2-1)⎝ ⎛⎭⎪⎫x +65.此时过定点⎝ ⎛⎭⎪⎫-65,0.②m =±1时,l MN :x =-65,过点⎝ ⎛⎭⎪⎫-65,0.∴l MN 恒过定点⎝ ⎛⎭⎪⎫-65,0.(3)解 由(2)知S △AMN =12×45|y M -y N |=25⎪⎪⎪⎪⎪⎪4m m 2+4+4m 4m 2+1=8⎪⎪⎪⎪⎪⎪m 3+m 4m 4+17m 2+4=8⎪⎪⎪⎪⎪⎪m +1m 4⎝ ⎛⎭⎪⎫m +1m 2+9=84⎪⎪⎪⎪⎪⎪m +1m +9⎪⎪⎪⎪⎪⎪m +1m .令t =⎪⎪⎪⎪⎪⎪m +1m ≥2,当且仅当m =±1时取等号,∴S △AMN ≤1625,且当m =±1时取等号.∴(S △AMN )max =1625.基础巩固题组 (建议用时:40分钟)一、选择题1.(2018·石家庄模拟)已知P 为双曲线C :x 29-y 216=1上的点,点M 满足|OM →|=1,且OM →·PM→=0,则当|PM →|取得最小值时点P 到双曲线C 的渐近线的距离为( ) A.95B.125C.4D.5解析 由OM →·PM →=0,得OM ⊥PM ,根据勾股定理,求|MP |的最小值可以转化为求|OP |的最小值,当|OP |取得最小值时,点P 的位置为双曲线的顶点(±3,0),而双曲线的渐近线为4x ±3y =0,∴所求的距离d =125,故选B.答案 B2.(2018·衡水中学周测)设F 为抛物线y 2=4x 的焦点,A ,B ,C 为该抛物线上不同的三点,FA →+FB →+FC →=0,O 为坐标原点,且△OFA ,△OFB ,△OFC 的面积分别为S 1,S 2,S 3,则S 21+S 22+S 23等于( )A.2B.3C.6D.9解析 由题意可知F (1,0),设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),则FA →=(x 1-1,y 1),FB →=(x 2-1,y 2),FC →=(x 3-1,y 3),由FA →+FB →+FC →=0,得(x 1-1)+(x 2-1)+(x 3-1)=0,即x 1+x 2+x 3=3.又A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)在抛物线上,所以y 21=4x 1,y 22=4x 2,y 23=4x 3,又S 1=12·|OF |·|y 1|=12|y 1|,S 2=12|OF |·|y 2|=12|y 2|,S 3=12|OF |·|y 3|=12|y 3|,所以S 21+S 22+S 23=14(y 21+y 22+y 23)=14×(4x 1+4x 2+4x 3)=3. 答案 B3.若双曲线x 2a 2-y 2b2=1(a >0,b >0)的渐近线与抛物线y =x 2+2有公共点,则此双曲线的离心率的取值范围是( ) A.[3,+∞) B.(3,+∞) C.(1,3]D.(1,3)解析 依题意可知双曲线渐近线方程为y =±b ax ,与抛物线方程联立消去y 得x 2±b ax +2=0.∵渐近线与抛物线有交点,∴Δ=b 2a2-8≥0,求得b 2≥8a 2,∴c =a 2+b 2≥3a , ∴e =c a≥3. 答案 A4.(2018·贵阳模拟)已知双曲线x 2-y 2=1的左、右顶点分别为A 1,A 2,动直线l :y =kx +m 与圆x 2+y 2=1相切,且与双曲线左、右两支的交点分别为P 1(x 1,y 1),P 2(x 2,y 2),则x 2-x 1的最小值为( )A.2 2B.2C.4D.3 2解析 ∵直线l 与圆相切, ∴原点到直线的距离d =|m |1+k2=1,∴m 2=1+k 2.由⎩⎪⎨⎪⎧y =kx +m ,x 2-y 2=1得(1-k 2)x 2-2mkx -(m 2+1)=0, ∴⎩⎪⎨⎪⎧1-k 2≠0,Δ=4m 2k 2+4(1-k 2)(m 2+1)=4(m 2+1-k 2)=8>0,x 1x 2=1+m 2k 2-1<0,∴k 2<1,∴-1<k <1,由于x 1+x 2=2mk 1-k 2,∴x 2-x 1=(x 1+x 2)2-4x 1x 2=22|1-k 2|=221-k 2,∵0≤k 2<1,∴当k 2=0时,x 2-x 1取最小值22,故选A. 答案 A5.(2018·南昌NCS 项目模拟)抛物线y 2=8x 的焦点为F ,设A (x 1,y 1),B (x 2,y 2)是抛物线上的两个动点,若x 1+x 2+4=233|AB |,则∠AFB 的最大值为( )A.π3B.3π4C.5π6D.2π3解析 由抛物线的定义可得|AF |=x 1+2,|BF |=x 2+2,又x 1+x 2+4=233|AB |,得|AF |+|BF |=233|AB |,所以|AB |=32(|AF |+|BF |),所以cos ∠AFB =|AF |2+|BF |2-|AB |22|AF |·|BF |=|AF |2+|BF |2-⎣⎢⎡⎦⎥⎤32(|AF |+|BF |)22|AF |·|BF |=14|AF |2+14|BF |2-32|AF |·|BF |2|AF |·|BF |=18⎝ ⎛⎭⎪⎫|AF ||BF |+|BF ||AF |-34 ≥18×2|AF ||BF |·|BF ||AF |-34=-12, 当且仅当|AF |=|BF |时等号成立.而0<∠AFB <π,所以∠AFB 的最大值为2π3.答案 D 二、填空题6.已知动点P (x ,y )在椭圆x 225+y 216=1上,若A 点坐标为(3,0),|AM →|=1,且PM →·AM →=0,则|PM →|的最小值是________. 解析 ∵PM →·AM →=0,∴AM →⊥PM →. ∴|PM →|2=|AP →|2-|AM →|2=|AP →|2-1, ∵椭圆右顶点到右焦点A 的距离最小,故|AP →|min =2,∴|PM →|min = 3. 答案37.(2018·东北三省四校模拟)若双曲线x 2-y 2b2=1(b >0)的一条渐近线与圆x 2+(y -2)2=1至多有一个公共点,则双曲线离心率的取值范围是________. 解析 双曲线的渐近线方程为y =±bx ,则有|0-2|1+b2≥1,解得b 2≤3,则e 2=1+b 2≤4,∵e >1,∴1<e ≤2.答案 (1,2]8.(2018·河南六市一模)椭圆C :x 24+y 23=1的左、右顶点分别为A 1,A 2,点P 在C 上(P 不与A 1,A 2重合)且直线PA 2斜率的取值范围是[-2,-1],那么直线PA 1斜率的取值范围是________.解析 由椭圆C :x 24+y 23=1可知左顶点A 1(-2,0),右顶点A 2(2,0),设P (x 0,y 0)(x 0≠±2),则x 204+y 203=1,得y 20x 20-4=-34,∵k PA 1=y 0x 0+2,k PA 2=y 0x 0-2,∴k PA 1·k PA 2=y 20x 20-4=-34,又∵-2≤k PA 2≤-1,∴-2≤-34k PA 1≤-1,解得38≤k PA 1≤34,即直线PA 1斜率的取值范围为⎣⎢⎡⎦⎥⎤38,34.答案 ⎣⎢⎡⎦⎥⎤38,34三、解答题9.如图,在平面直角坐标系xOy 中,点F ⎝ ⎛⎭⎪⎫12,0,直线l :x = -12,点P 在直线l 上移动,R 是线段PF 与y 轴的交点,RQ ⊥FP ,PQ ⊥l .(1)求动点Q 的轨迹C 的方程;(2)设圆M 过A (1,0),且圆心M 在曲线C 上,TS 是圆M 在y 轴上截得的弦,当M 运动时,弦长|TS |是否为定值?请说明理由.解 (1)依题意知,点R 是线段FP 的中点,且RQ ⊥FP , ∴RQ 是线段FP 的垂直平分线.∵点Q 在线段FP 的垂直平分线上,∴|PQ |=|QF |,又|PQ |是点Q 到直线l 的距离,故动点Q 的轨迹是以F 为焦点,l 为准线的抛物线,其方程为y 2=2x (x >0). (2)弦长|TS |为定值.理由如下:取曲线C 上点M (x 0,y 0),M 到y 轴的距离为d =|x 0|=x 0,圆的半径r =|MA |=(x 0-1)2+y 20, 则|TS |=2r 2-d 2=2y 20-2x 0+1, ∵点M 在曲线C 上,∴y 20=2x 0, ∴|TS |=2y 20-y 20+1=2是定值.10.(2017·全国Ⅱ卷)设O 为坐标原点,动点M 在椭圆C :x 22+y 2=1上,过M 作x 轴的垂线,垂足为N ,点P 满足NP →=2NM →. (1)求点P 的轨迹方程;(2)设点Q 在直线x =-3上,且OP →·PQ →=1.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .(1)解 设P (x ,y ),M (x 0,y 0),则N (x 0,0),NP →=(x -x 0,y ),NM →=(0,y 0), 由NP →=2NM →得:x 0=x ,y 0=22y ,因为M (x 0,y 0)在C 上,所以x 22+y 22=1,因此点P 的轨迹方程为x 2+y 2=2.(2)证明 由题意知F (-1,0),设Q (-3,t ),P (m ,n ),则OQ →=(-3,t ),PF →= (-1-m ,-n ),OQ →·PF →=3+3m -tn , OP →=(m ,n ),PQ →=(-3-m ,t -n ),由OP →·PQ →=1,得-3m -m 2+tn -n 2=1, 又由(1)知m 2+n 2=2.故3+3m -tn =0.所以OQ →·PF →=0,即OQ →⊥PF →,又过点P 存在唯一直线垂直于OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F .能力提升题组 (建议用时:20分钟)11.(2018·长沙模拟)若P 是双曲线C :x 22-y 2=1右支上一点,直线l 是双曲线C 的一条渐近线,P 在l 上的射影为Q ,F 1是双曲线C 的左焦点,则|PF 1|+|PQ |的最小值为( ) A.1B.2+155C.4+155D.22+1解析 设F 2是双曲线C 的右焦点,因为|PF 1|-|PF 2|=22,所以|PF 1|+|PQ |=22+|PF 2|+|PQ |,显然当F 2,P ,Q 三点共线且P 在F 2,Q 之间时,|PF 2|+|PQ |最小,且最小值为F 2到l 的距离.易知l 的方程为y =x2或y =-x2,F 2(3,0),求得F 2到l 的距离为1,故|PF 1|+|PQ |的最小值为22+1. 答案 D12.(2018·合肥模拟)若点O 和点F 分别为椭圆x 29+y 28=1的中心和左焦点,点P 为椭圆上的任一点,则OP →·FP →的最小值为________.解析 点P 为椭圆x 29+y 28=1上的任意一点,设P (x ,y )(-3≤x ≤3,-22≤y ≤22),依题意得左焦点F (-1,0),∴OP →=(x ,y ),FP →=(x +1,y ),∴OP →·FP →=x (x +1)+y 2=x 2+x+72-8x 29=19⎝ ⎛⎭⎪⎫x +922+234.∵-3≤x ≤3,∴32≤x +92≤152,∴94≤⎝ ⎛⎭⎪⎫x +922≤2254, ∴14≤19⎝ ⎛⎭⎪⎫x +922≤22536,∴6≤19⎝ ⎛⎭⎪⎫x +922+234≤12,即6≤OP →·FP →≤12,故最小值为6. 答案 613.(2018·昆明诊断)已知椭圆x 2a 2+y 2b2=1(a >b >0),F 1,F 2为它的左、右焦点,P 为椭圆上一点,已知∠F 1PF 2=60°,S △F 1PF 2=3,且椭圆的离心率为12.(1)求椭圆方程;(2)已知T (-4,0),过T 的直线与椭圆交于M ,N 两点,求△MNF 1面积的最大值. 解 (1)由已知,得|PF 1|+|PF 2|=2a ,① |PF 1|2+|PF 2|2-2|PF 1||PF 2|cos 60°=4c 2, 即|PF 1|2+|PF 2|2-|PF 1||PF 2|=4c 2,②12|PF 1||PF 2|sin 60°=3,即|PF 1||PF 2|=4,③ 联立①,②,③解得a 2-c 2=3.又c a =12,∴c 2=1,a 2=4,b 2=a 2-c 2=3,椭圆方程为x 24+y 23=1.(2)根据题意可知直线MN 的斜率存在,且不为0. 设M (x 1,y 1),N (x 2,y 2),直线MN 的方程为x =my -4, 代入椭圆方程,整理得(3m 2+4)y 2-24my +36=0, 则Δ=(24m )2-4×36×(3m 2+4)>0,所以m 2>4.y 1+y 2=24m 3m 2+4,y 1y 2=363m 2+4, 则△MNF 1的面积S △MNF 1=|S △NTF 1-S △MTF 1| =12|TF 1|·|y 1-y 2|=32(y 1+y 2)2-4y 1y 2 =32⎝ ⎛⎭⎪⎫24m 3m 2+42-1443m 2+4=18m 2-44+3m 2 =6×1m 2-4+163m 2-4=6×1m 2-4+163m 2-4≤62163=334. 当且仅当m 2-4=163m 2-4,即m 2=283时(此时适合Δ>0的条件)取得等号. 故△MNF 1面积的最大值为334.。

2019届高考数学人教A版理科第一轮复习课件:第九章+解析几何+9.8

2019届高考数学人教A版理科第一轮复习课件:第九章+解析几何+9.8

1+
1
2 |y1-y2|
-4-
知识梳理
双基自测
1 2 3 4
3.圆锥曲线的中点弦问题 遇到中点弦问��2 圆 2 + 2 =1(a>b>0)中,以 P(x0,y0)为中点的弦所在直线的斜率 ������ ������ ������ ������0 ������2 k=-������2 ������ ;在双曲线������2 0
2 2

������2 ������
2 =1
中,以 P(x0,y0)为中点的弦所在直线的斜
������ ������ 率 k=������2 ������0 ;在抛物线 y2=2px(p>0)中,以 P(x0,y0)为中点的弦所在直线 0 ������ 的斜率 k= . ������0
-5-
知识梳理
������������ + ������������ + ������ = 0, 由 消元, ������(������,������) = 0
-2-
知识梳理
双基自测
1 2 3 4
如消去y后得ax2+bx+c=0. ①若a=0,当圆锥曲线是双曲线时,直线l与双曲线的渐近线平行; 当圆锥曲线是抛物线时,直线l与抛物线的对称轴平行(或重合). ②若a≠0,设Δ=b2-4ac. 当Δ > 0时,直线和圆锥曲线相交于不同的两点; 当Δ = 0时,直线和圆锥曲线相切于一点; 当Δ < 0时,直线和圆锥曲线没有公共点.
-3-
知识梳理
双基自测
1 2 3 4
2.直线与圆锥曲线相交时的弦长问题 (1)斜率为k(k不为0)的直线与圆锥曲线交于两点P1(x1,y1),P2(x2,y2), 1 + ������ 2 · |x1-x2| 则所得弦长|P1P2|= 或

2019-2020年高考数学一轮复习第九章平面解析几何第九节圆锥曲线的综合问题夯基提能作业本文(I)

2019-2020年高考数学一轮复习第九章平面解析几何第九节圆锥曲线的综合问题夯基提能作业本文(I)1.(xx北京,19,14分)已知椭圆C:x2+2y2=4.(1)求椭圆C的离心率;(2)设O为原点.若点A在直线y=2上,点B在椭圆C上,且OA⊥OB,求线段AB长度的最小值.2.(xx北京东城一模)已知椭圆W:+=1(a>b>0)的左右焦点分别为F1,F2,且|F1F2|=2,椭圆上一动点P满足|PF1|+|PF2|=2.(1)求椭圆W的标准方程及离心率;(2)如图,过点F1作直线l1与椭圆W交于点A,C,过点F2作直线l2⊥l1,且l2与椭圆W交于点B,D,l1与l2交于点E,试求四边形ABCD的面积的最大值.3.(xx北京西城期末)已知椭圆C:+=1(a>b>0)的离心率为,点A在椭圆C上,O为坐标原点.(1)求椭圆C的方程;(2)设动直线l与椭圆C有且仅有一个公共点,且l与圆x2+y2=5相交于不在坐标轴上的两点P1,P2,记直线OP1,OP2的斜率分别为k1,k2,求证:k1·k2为定值.4.(xx北京朝阳一模)已知椭圆C:+=1的焦点分别为F1,F2.(1)求以线段F1F2为直径的圆的方程;(2)过点P(4,0)任作一条直线l与椭圆C交于不同的两点M,N.在x轴上是否存在点Q,使得∠PQM+∠PQN=180°?若存在,求出点Q的坐标;若不存在,请说明理由.B组提升题组5.(xx北京海淀二模)已知F1(-1,0)、F2(1,0)分别是椭圆C:+=1(a>0)的左、右焦点.(1)求椭圆C的方程;(2)若A,B分别在直线x=-2和x=2上,且AF1⊥BF1.(i)当△ABF1为等腰三角形时,求△ABF1的面积;(ii)求点F1,F2到直线AB距离之和的最小值.6.(xx北京海淀二模)已知曲线C:+=1(y≥0),直线l:y=kx+1与曲线C交于A,D两点,A,D两点在x轴上的射影分别为点B,C.(1)当点B坐标为(-1,0)时,求k的值;(2)记△OAD的面积为S1,四边形ABCD的面积为S2.(i)若S1=,求|AD|的值;(ii)求证:≥.答案精解精析A组基础题组1.解析(1)由题意,知椭圆C的标准方程为+=1.所以a2=4,b2=2,从而c2=a2-b2=2.因此a=2,c=.故椭圆C的离心率e==.(2)设点A,B的坐标分别为(t,2),(x0,y0),其中x0≠0.因为OA⊥OB,所以·=0,即tx0+2y0=0,解得t=-.又+2=4,所以|AB|2=(x0-t)2+(y0-2)2=+(y0-2)2=+++4=+++4=++4(0<≤4).因为+≥4(0<≤4),当且仅当=4时等号成立,所以|AB|2≥8.故线段AB长度的最小值为2.2.解析(1)由已知,得解得所以椭圆W的标准方程为+=1,离心率e==.(2)连接EO.由题意知EF1⊥EF2,所以|EO|=|F1F2|=1.所以点E的轨迹是以原点为圆心,1为半径的圆.显然点E在椭圆W的内部.S四边形ABCD=S△ABC+S△ADC=|AC|·|BE|+|AC|·|DE|=|AC|·|BD|.①当直线l1,l2中的一条直线与x轴垂直时,不妨令l2⊥x轴,此时AC为长轴,BD⊥x轴,把x=1代入椭圆方程,可求得y=±,则|BD|=,此时S四边形ABCD=|AC|·|BD|=4.②当直线l1,l2的斜率都存在时,设直线l1:x=my-1(m≠0),A(x1,y1),B(x2,y2).联立消去x,得(2m2+3)y2-4my-4=0.所以y1+y2=,y1y2=,则|AC|==.同理,|BD|=.S四边形ABCD=|AC|·|BD|=××====4<4.综上,四边形ABCD的面积的最大值为4.3.解析(1)由题意,得=,a2=b2+c2,又因为点A在椭圆C上,所以+=1,解得a=2,b=1,c=,所以椭圆C的方程为+y2=1.(2)证明:当直线l的斜率不存在时,由题意知l的方程为x=±2,易得直线OP1,OP2的斜率之积k1·k2=-.当直线l的斜率存在时,设l的方程为y=kx+m(k≠0).由得(4k2+1)x2+8kmx+4m2-4=0,因为直线l与椭圆C有且只有一个公共点,所以Δ=(8km)2-4(4k2+1)(4m2-4)=0,即m2=4k2+1.由得(k2+1)x2+2kmx+m2-5=0,设P1(x1,y1),P2(x2,y2),则x1+x2=,x1x2=,所以k1·k2=====,将m2=4k2+1代入上式,得k1·k2==-.综上,k1·k2为定值-.4.解析(1)因为a2=4,b2=2,所以c2=2.所以以线段F1F2为直径的圆的方程为x2+y2=2.(2)假设存在点Q(m,0),使得∠PQM+∠PQN=180°,则直线QM和QN的斜率存在,分别设为k1,k2.则k1+k2=0.依题意,知直线l的斜率存在,故设直线l的方程为y=k(x-4).由得(2k2+1)x2-16k2x+32k2-4=0.因为直线l与椭圆C有两个交点,所以Δ>0.即(-16k2)2-4(2k2+1)(32k2-4)>0,解得k2<.设M(x1,y1),N(x2,y2),则x1+x2=,x1x2=,y1=k(x1-4),y2=k(x2-4). k1+k2=+=0,即(x1-m)y2+(x2-m)y1=0,即(x1-m)k(x2-4)+(x2-m)k(x1-4)=0,当k≠0时,2x1x2-(m+4)(x1+x2)+8m=0,所以2·-(m+4)·+8m=0,化简得=0,所以m=1.当k=0时,也成立.所以存在点Q(1,0),使得∠PQM+∠PQN=180°.B组提升题组5.解析(1)由题意可得a2-3=1,所以a2=4,所以椭圆C的方程为+=1.(2)由题意可设A(-2,m),B(2,n),因为AF1⊥BF1,所以·=0,所以(1,-m)·(-3,-n)=0,所以mn=3①.(i)因为AF1⊥BF1,所以当△ABF1为等腰三角形时,只能是|AF1|=|BF1|,即=,化简得m2-n2=8②.由①②可得或所以=|AF1||BF1|=×()2=5.(ii)直线AB:y=(x+2)+m,化简得(n-m)x-4y+2(m+n)=0,设点F1,F2到直线AB的距离分别为d1,d2,则d1+d2=+.因为点F1,F2在直线AB的同一侧,所以d1+d2==4.因为mn=3,所以m2+n2≥2mn=6(当且仅当m=n时取等号),d1+d2=4=4,所以d1+d2=4≥2.当m=n=或m=n=-时,点F1,F2到直线AB的距离之和取得最小值2.6.解析(1)因为B(-1,0),所以设A(-1,y0),代入+=1(y≥0),解得y0=,将A代入直线y=kx+1,得k=-.(2)(i)解法一:设点E(0,1),A(x1,y1),D(x2,y2).由得(3+4k2)x2+8kx-8=0,所以因为S1=|OE|(|x1|+|x2|)=×1·|x1-x2|=|x1-x2|,而|x1-x2|=,所以S1=·=,所以=,所以=,解得k=0,所以|AD|==.解法二:设点E(0,1),A(x1,y1),D(x2,y2). 由得(3+4k2)x2+8kx-8=0,所以点O到直线AD的距离d=,|AD|=|x1-x2|=·.所以S1=|AD|·d=·==.所以=,解得k=0.所以|AD|==.(ii)证明:因为S2=(y1+y2)|x1-x2|,所以==,而y1+y2=kx1+1+kx2+1=k(x1+x2)+2,所以==≥=.。

2019-2020最新高三数学一轮总复习第九章平面解析几何第八节圆锥曲线的综合问题第一课时直线与圆锥曲线的位

解析:∵通径2p=2,又|AB|=x1+x2+p,∴|AB|=3>2p,故这样的直线有且只有2条.
答案:2
2.椭圆ax2+by2=1与直线y=1-x交于A,B两点,过原点与线段AB中点的直线的斜率为,则=________.
解析:设A(x1,y1),B(x2,y2),AB的中点M(x0,y0),结合题意,由点差法得,=-·=-·=-·=-1,∴=.
解析:由题可设斜率存在的切线的方程为y-=k(x-1)(k为切线的斜率),即2kx-2y-2k+1=0,
由=1,解得k=-,
所以圆x2+y2=1的一条切线的方程为3x+4y-5=0,
可求得切点的坐标为,
易知另一切点的坐标为(1,0),
则直线AB的方程为y=-2x+2,
令y=0得右焦点为(1,0),
令x=0得上顶点为(0,2),
解析:∵y2=4x,∴F(1,0),准线l:x=-1,过焦点F且斜率为的直线l1:y=(x-1),与y2=4x联立,解得A(3,2),∴AK=4,∴S△AKF=×4×2=4.
答案:4
5.中心为原点,一个焦点为F(0,5)的椭圆,截直线y=3x-2所得弦中点的横坐标为,则该椭圆方程为________.
∴·=-+==4(定值).
10.(20xx·无锡一中检测)已知椭圆E:+=1(a>b>0)的离心率为,右焦点为F(1,0).
(1)求椭圆E的标准方程;
(2)设点O为坐标原点,过点F作直线l与椭圆E交于M,N两点,若OM⊥ON,求直线l的方程.
解:(1)依题意可得解得a=,b=1,
所以椭圆E的标准方程为+y2=1.
解析:由已知得c=5,
设椭圆的方程为+=1,联立得
消去y得(10a2-450)x2-12(a2-50)x+4(a2-50)-a2(a2-50)=0,

2019届高考数学一轮复习第九章平面解析几何第八节直线与圆锥曲线的位置关系课件文


2.直线与圆锥曲线相交的弦长问题
直线l:f(x,y)=0,圆锥曲线r:F(x,y)=0,l与r有两个不同的交点A(x1,y1),B(x2,
f ( x, y ) 0, y2),则A、B两点的坐标是方程组 的两组解,方程组消元后化为 F ( x , y ) 0
关于x(或y)的一元二次方程ax2+bx+c=0(或ay2+by+c=0),判别式Δ=b2-4ac, 应有Δ>0,所以x1,x2(或y1,y2)是方程ax2+bx+c=0(或ay2+by+c=0)的两个根.
由根与系数的关系得x1+x2=- ,x1· x2= 或 y y , y y 1 2 1 2 ,以此结合 a a a a
b
c
b
c

Байду номын сангаас

弦长公式可整体代入求值.A、B两点间的距离|AB|=⑥
1 k
2
|x1-x2| =
( x1 x2 ) 2 4 x1 x2 (其中k为直线l的斜率),也可以写成关于y的形式, 1 k2 ·
2.双曲线的切线方程
x2 y 2 x0 x y0 y (1)双曲线 =1( a >0, b >0) 上一点 P ( x , y ) 处的切线方程是 - =1. 0 0 a2 b2 a 2 b2 x2 y 2 (2)过双曲线 - =1(a>0,b>0)外一点P(x0,y0)所引两条切线的切点弦所 2 2 a b x0 x y0 y 在直线方程是 - =1. 2 2 a b 2 2 x y 2 2 2 2 (3)双曲线 =1( a >0, b >0) 与直线 Ax + By + C =0 相切的条件是 A a B b= 2 2 a b
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小初高试卷+教案 K12学习精品WIRD §9.8 圆锥曲线的综合问题

考纲解读

考点 内容解读 要求 高考示例 常考题型 预测热度

1.定值与最值及 范围问题 掌握与圆锥曲线有关的最值、定值、参数范围问题 掌握 2017课标全国Ⅰ,20; 2017浙江,21;2017山东,21; 2016课标全国Ⅱ,20;2016北京,19; 2016山东,21;2015浙江,19; 2014四川,10;2014浙江,21 解答题 ★★★

2.存在性问题 了解并掌握与圆锥曲线有关的存在性问题 掌握 2014山东,21;2013江西,20 解答题 ★★☆ 分析解读 1.会处理动曲线(含直线)过定点的问题.2.会证明与曲线上的动点有关的定值问题.3.会按条件建立目标函数,研究变量的最值问题及变量的取值范围问题,注意运用“数形结合”“几何法”求某些量的最值.4.能与其他知识交汇,从假设结论成立入手,通过推理论证解答存在性问题.5.本节在高考中围绕直线与圆锥曲线的位置关系,展开对定值、最值、参数取值范围等问题的考查,注重对数学思想方法的考查,分值约为12分,难度偏大.

五年高考 考点一 定值与最值及范围问题 1.(2017浙江,21,15分)如图,已知抛物线x2=y,点A,B,抛物线上的点P(x,y).过点B作直线AP的垂线,垂足为Q. (1)求直线AP斜率的取值范围; (2)求|PA|·|PQ|的最大值.

解析 (1)设直线AP的斜率为k,k==x-, 因为-(2)解法一:联立直线AP与BQ的方程 解得点Q的横坐标是xQ=. 因为|PA|==(k+1), |PQ|=(xQ-x)=-, 所以|PA|·|PQ|=-(k-1)(k+1)3, 令f(k)=-(k-1)(k+1)3.因为f '(k)=-(4k-2)(k+1)2, 所以f(k)在区间上单调递增,上单调递减,因此当k=时,|PA|·|PQ|取得最大值. 小初高试卷+教案

K12学习精品WIRD 解法二:如图,连接BP,|AP|·|PQ|=|AP|·|PB|·cos∠BPQ=·(-)=·-. 易知P(x,x2), 则·=2x+1+2x2-=2x2+2x+,=+=x2+x++x4-x2+=x4+x2+x+. ∴|AP|·|PQ|=-x4+x2+x+. 设f(x)=-x4+x2+x+, 则f '(x)=-4x3+3x+1=-(x-1)(2x+1)2, ∴f(x)在上为增函数,在上为减函数, ∴f(x)max=f(1)=. 故|AP|·|PQ|的最大值为. 2.(2017山东,21,14分)在平面直角坐标系xOy中,椭圆E:+=1(a>b>0)的离心率为,焦距为2. (1)求椭圆E的方程; (2)如图,动直线l:y=k1x-交椭圆E于A,B两点,C是椭圆E上一点,直线OC的斜率为k2,且k1k2=.M是线段OC延长线上一点,且|MC|∶|AB|=2∶3,☉M的半径为|MC|,OS,OT是☉M的两条切线,切点分别为S,T.求∠SOT的最大值,并求取得最大值时直线l的斜率.

解析 (1)由题意知e==,2c=2,所以a=,b=1, 因此椭圆E的方程为+y2=1. (2)设A(x1,y1),B(x2,y2), 联立消y整理得(4+2)x2-4k1x-1=0, 由题意知Δ>0,且x1+x2=,x1x2=-, 所以|AB|=|x1-x2|=. 由题意可知圆M的半径 r=|AB|=·. 由题设知k1k2=,所以k2=, 因此直线OC的方程为y=x. 联立得x2=,y2=, 因此|OC|==. 由题意可知sin==, 而==, 令t=1+2,则t>1,∈(0,1), 因此=·=· =·≥1, 当且仅当=,即t=2时等号成立,此时k1=±, 所以sin≤, 因此≤,所以∠SOT的最大值为. 综上所述:∠SOT的最大值为,取得最大值时直线l的斜率k1=±. 3.(2016课标全国Ⅱ,20,12分)已知椭圆E:+=1的焦点在x轴上,A是E的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA. (1)当t=4,|AM|=|AN|时,求△AMN的面积; (2)当2|AM|=|AN|时,求k的取值范围. 解析 (1)设M(x1,y1),则由题意知y1>0. 小初高试卷+教案 K12学习精品WIRD 当t=4时,E的方程为+=1,A(-2,0).(1分) 由已知及椭圆的对称性知,直线AM的倾斜角为. 因此直线AM的方程为y=x+2.(2分) 将x=y-2代入+=1得7y2-12y=0. 解得y=0或y=,所以y1=.(4分) 因此△AMN的面积S△AMN=2×××=.(5分) (2)由题意,t>3,k>0,A(-,0).将直线AM的方程y=k(x+) 代入+=1得(3+tk2)x2+2·tk2x+t2k2-3t=0.(7分) 由x1·(-)=得x1=, 故|AM|=|x1+ |=.(8分) 由题设,直线AN的方程为y=-(x+), 故同理可得|AN|=.(9分) 由2|AM|=|AN|得=, 即(k3-2)t=3k(2k-1). 当k=时上式不成立,因此t=.(10分) t>3等价于=<0,即<0.(11分) 由此得或 解得因此k的取值范围是(,2).(12分) 教师用书专用(4—15) 4.(2014四川,10,5分)已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,·=2(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是( )

A.2 B.3 C. D. 答案 B 5.(2015江苏,12,5分)在平面直角坐标系xOy中,P为双曲线x2-y2=1右支上的一个动点.若点P到直线x-y+1=0的距离大于c恒成立,则实数c的最大值为 . 答案 6.(2016山东,21,14分)平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的离心率是,抛物线E:x2=2y的焦点F是C的一个顶点. (1)求椭圆C的方程; (2)设P是E上的动点,且位于第一象限,E在点P处的切线l与C交于不同的两点A,B,线段AB的中点为D.直线OD与过P且垂直于x轴的直线交于点M. (i)求证:点M在定直线上; (ii)直线l与y轴交于点G,记△PFG的面积为S1,△PDM的面积为S2.求的最大值及取得最大值时点P的坐标.

解析 (1)由题意知=,可得a2=4b2. 因为抛物线E的焦点F的坐标为, 所以b=,所以a=1. 所以椭圆C的方程为x2+4y2=1. (2)(i)设P(m>0). 由x2=2y,可得y'=x, 所以直线l的斜率为m. 因此直线l方程为y-=m(x-m),即y=mx-. 小初高试卷+教案 K12学习精品WIRD 设A(x1,y1),B(x2,y2),D(x0,y0). 联立 得(4m2+1)x2-4m3x+m4-1=0. 由Δ>0,得0且x1+x2=,因此x0=. 将其代入y=mx-,得y0=. 因为=-, 所以直线OD方程为y=-x. 联立得点M的纵坐标yM=-, 所以点M在定直线y=-上. (ii)由(i)知直线l方程为y=mx-. 令x=0,得y=-,所以G.又P,F,D, 所以S1=·|GF|·m=, S2=·|PM|·|m-x0|=××=. 所以=. 设t=2m2+1. 则===-++2, 当=,即t=2时,取到最大值, 此时m=,满足(*)式, 所以P点坐标为. 因此的最大值为,此时点P的坐标为. 7.(2015课标全国Ⅱ,20,12分)已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M. (1)证明:直线OM的斜率与l的斜率的乘积为定值; (2)若l过点,延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由. 解析 (1)设直线l:y=kx+b(k≠0,b≠0),A(x1,y1),B(x2,y2),M(xM,yM). 将y=kx+b代入9x2+y2=m2得(k2+9)x2+2kbx+b2-m2=0,故 xM==,yM=kxM+b=. 于是直线OM的斜率kOM==-,即kOM·k=-9. 所以直线OM的斜率与l的斜率的乘积为定值. (2)四边形OAPB能为平行四边形. 因为直线l过点,所以l不过原点且与C有两个交点的充要条件是k>0,k≠3. 由(1)得OM的方程为y=-x. 设点P的横坐标为xP. 由得=,即xP=. 将点的坐标代入l的方程得b=, 因此xM=. 四边形OAPB为平行四边形当且仅当线段AB与线段OP互相平分,即xP=2xM. 于是=2×,解得k1=4-,k2=4+. 因为ki>0,ki≠3,i=1,2,所以当l的斜率为4-或4+时,四边形OAPB为平行四边形. 8.(2015浙江,19,15分)已知椭圆+y2=1上两个不同的点A,B关于直线y=mx+对称. (1)求实数m的取值范围; (2)求△AOB面积的最大值(O为坐标原点).

相关文档
最新文档