高三数学高考复习必备精品教案:空间中的垂直关系 教案

合集下载

第一章1.2.3空间中的垂直关系1教案教师版

第一章1.2.3空间中的垂直关系1教案教师版

1.2.3空间中的垂直关系(一)【学习要求】1.理解直线与平面垂直的定义.2.掌握直线与平面垂直的判定定理及其性质定理.3.会应用两定理解决问题.【学法指导】借助对实例、图片的观察,提炼直线与平面垂直的定义;通过直观感知,操作确认,归纳直线与平面垂直的判定定理及性质定理;通过运用两定理感悟和体验线面垂直转化为线线垂直的思想方法.填一填:知识要点、记下疑难点1.如果两条直线相交于一点或经过平移后相交于一点,并且交角为直角,则称这两条直线互相垂直.2.如果一条直线AB和一个平面α相交于点O,并且和这个平面内过交点O的任何直线都垂直,我们就说这条直线和这个平面互相垂直.这条直线叫做平面的垂线,这个平面叫做直线得垂面,交点叫做垂足,垂线上任意一点到垂足间的线段,叫做这个点到这个平面的垂线段,垂线段的长度叫做这个点到平面的距离.3.线面垂直的判定定理:如果一条直线与平面内的两条相交直线垂直,则这条直线与这个平面垂直.4.线面垂直的性质定理:如果两条直线垂直于同一个平面,那么这两条直线平行 .研一研:问题探究、课堂更高效[问题情境]生活中处处都有直线和平面垂直的例子,如旗杆和地面、路灯与地面等等.在判断线面平行时我们有判定定理,那么判断线面垂直又有什么好办法呢?本节我们就来研究这一问题.探究点一直线与平面垂直的定义问题1你能举出在日常生活中给人以直线与平面垂直的例子吗?答:旗杆与地面的关系,给人以直线与平面垂直的形象;大桥的桥柱与水面的位置关系,给人以直线与平面垂直的形象.问题2在平面内,如果两条直线互相垂直,则它们一定相交.在空间中,两条互相垂直的直线也一定相交吗?你能举例说明吗?答:不一定.在空间中,两条互相垂直相交的直线中,如果固定其中一条,让另一条平移到空间的某一个位置,就可能与固定的直线没有公共点,这时两条直线为异面直线,它们同样是互相垂直.小结:空间两直线垂直的定义:如果两条直线相交于一点或经过平移后相交于一点,并且交角为直角,则称这两条直线互相垂直.问题3在平面中,到线段AB两端距离相等点的集合是线段的垂直平分线,在空间中,线段AB的垂直平分线有多少条?AB的这些垂直平分线构成的集合是怎样的图形?答:容易发现,空间中线段AB的垂直平分线有无数多条,它们构成的集合是一个平面.问题4结合对下列问题的思考,试着说明直线和平面垂直的意义.(1)如图,阳光下直立于地面的旗杆AB与它在地面上的影子BC的位置关系是什么?随着太阳的移动,旗杆AB与影子BC所成的角度会发生改变吗?答:垂直关系,所成的角度不变,都为90°.(2)旗杆AB与地面上任意一条不过旗杆底部B的直线B′C′的位置关系又是什么?依据是什么?由此得到什么结论?答:垂直关系,依据是空间两直线垂直的定义.得到的结论是:如果一条直线与平面垂直,则这条直线垂直于该平面内的任意一条直线.问题5通过上述分析,你认为应该如何定义一条直线与一个平面垂直?答:直线与平面垂直的定义:如果一条直线AB和一个平面α相交于一点O,并且和这个平面内过交点O的任何直线都垂直,我们就说这条直线和这个平面垂直.这条直线叫做平面的垂线,这个平面叫做直线的垂面,交点叫做垂足,垂线上一点到垂足间的线段叫做这个点到这个平面的垂线段,垂线段的长度叫做这个点到平面的距离.问题6如何画直线与平面垂直?如何用符号表示直线与平面垂直?答:画直线与平面垂直时,通常把直线画成与表示平面的平行四边形的一边垂直.直线l和平面α互相垂直,记作l⊥α.问题7若直线与平面内的无数条直线垂直,则直线垂直于平面吗?如不是,直线与平面的位置关系如何?答:不一定垂直,有可能平行或者相交.探究点二直线与平面垂直的判定定理问题1通常定义可以作为判定的依据,那么用上述定义判定直线与平面垂直是否方便?为什么?答:不方便,因为要验证直线垂直平面内所有的直线,这实际上是很困难的.问题2请同学们准备一块三角形的纸片,我们一起来做如图所示的试验:过△ABC的顶点A翻折纸片,得到折痕AD,将翻折后的纸片竖起放置在桌面上(BD、DC与桌面接触),问:折痕AD与桌面垂直吗?如何翻折才能保证折痕AD与桌面所在平面垂直?答: 从实验可知:当AD 与BC 不垂直时,翻折后的纸片竖起放置在桌面上折痕AD 与桌面不垂直;当AD 与BC 垂直时,翻折后的纸片竖起放置在桌面上折痕AD 与桌面垂直.问题3 由折痕AD ⊥BC ,翻折之后垂直关系不变,即AD ⊥CD ,AD ⊥BD.由此你能得到什么结论?答:若平面外一条直线与平面内两条相交直线垂直且相交,则该直线垂直这个平面.问题4 如图,把AD 、BD 、CD 抽象为直线l 、m 、n ,把桌面抽象为平面α,l 与α垂直的条件是什么? 答:条件是l 与平面α内的两条相交直线m ,n 垂直且相交.问题5 如图,若α内两条相交直线m 、n 与l 无公共点且l ⊥m 、l ⊥n ,我们可以把直线l 平移到交点处,由此你能给出判定直线与平面垂直的方法吗?答:线面垂直的判定定理:如果一条直线与平面内的两条相交直线垂直,则这条直线与这个平面垂直.问题6 如何用符号语言表示直线与平面垂直的判定定理?答: ⎭⎪⎬⎪⎫m ⊂αn ⊂αm∩n =P l ⊥m l ⊥n⇒l ⊥α即:线线垂直⇒线面垂直. 例1 已知:a ∥b ,a ⊥α.求证:b ⊥α.证明 在平面α内作两条相交直线m ,n.因为直线a ⊥α,根据直线与平面垂直的定义知a ⊥m ,a ⊥n.又因为b ∥a ,所以b ⊥m ,b ⊥n.又因为m ⊂α,n ⊂α,m ,n 是两条相交直线,所以b ⊥α.小结:推论1:如果在两条平行直线中,有一条垂直于平面,那么另一条直线也垂直于这个平面.跟踪训练1 已知:直线l ⊥平面α,直线m ⊥平面α,垂足分别为A 、B ,如图,求证:l ∥m.证明:假设直线m 不与直线l 平行,过直线m 与平面α的交点B ,作直线m′∥l ,由直线与平面垂直的判定定理的推论可知m′⊥α,设m 和m′确定的平面为β,α与β的交线为a ,因为直线m 和m′都垂直于平面α. 所以直线m 和m′都垂直于交线a.因为在同一平面内,通过直线上一点与已知直线垂直的直线不可能有两条,所以直线m 和m′必重合,即l ∥m.小结:推论2:如果两条直线垂直于同一个平面,那么这两条直线平行.例2 过一点和已知平面垂直的直线只有一条.已知:平面α和一点P(如下图).求证:过点P 与平面α垂直的直线只有一条.证明:不论点P 在α外或内,设PA ⊥α,垂足为A(或P).如果过点P ,除直线PA ⊥α外,还有一条直线PB ⊥α,设PA ,PB 确定的平面为β,且α∩β=a ,于是在平面β内过点P 有两条直线PA ,PB 垂直于交线a ,这是不可能的.所以过点P 与α垂直的直线只有一条.小结:如果直接证明比较难或感觉无从下手,可以假设结论不成立,然后设出成立的结论,由此推理得出矛盾,从而说明原结论成立.跟踪训练2 已知:直线l ⊥平面α,垂足为A ,直线AP ⊥l. 求证:AP 在平面α内.证明:设AP 与l 确定的平面为β,假设AP 不在平面α内,则设平面β与平面α交于直线AM ,如下图所示:因为l ⊥α,AM ⊂α,所以l ⊥AM ,又因为AP ⊥l ,所以在平面β内过一点A 存在两条直线垂直于l ,这是不可能的,所以AP 在平面α内.例3 有一根旗杆高8 m(如图),在它的顶点处系两条长10 m 的绳子,拉紧绳子并把它们的下端固定在地面上的两点(与旗杆脚不在同一条直线上).如果这两点与旗杆脚距 6m ,那么旗杆就与地面垂直,为什么?解:如题图,旗杆PO =8,两绳子长PA =PB =10,OA =OB =6,A ,O ,B 三点不共线,因此A ,O ,B 三点确定平面α,因为PO 2+AO 2=PA 2,PO 2+BO 2=PB 2,所以PO ⊥OA ,PO ⊥OB ,又OA∩OB =O.所以OP ⊥α,因此旗杆与地面垂直.小结:证明线面垂直的一般思路是依据线面垂直的判定定理,寻找满足定理的条件,当条件满足了,也就证明了线面垂直;线面垂直的定义说明了直线垂直平面,则直线垂直这个平面内的任意直线,常用此性质证,线面垂直线线垂直.跟踪训练3如图,直四棱柱A′B′C′D′—ABCD中,底面四边形满足什么条件时,A′C⊥B′D′?为什么?解:四边形ABCD的两条对角线互相垂直时,A′C⊥B′D′.因A′A⊥平面ABCD,BD⊂平面ABCD,所以A′A⊥BD,又因AC⊥BD,A′A∩AC=A,所以BD⊥A′C.由B′D′∥BD,得A′C⊥B′D′.练一练:当堂检测、目标达成落实处1.直线a⊥直线b,b⊥平面β,则a与β的关系是(D)A.a⊥β B.a∥βC.a⊂β D.a⊂β或a∥β2.直线l⊥平面α,直线m⊂α,则l与m不可能(A)A.平行B.相交C.异面D.垂直3.如图所示,AF⊥平面ABCD,DE⊥平面ABCD,且AF=DE,AD=6,则EF=________.解析:∵AF、DE垂直于同一平面ABCD,∴AF∥DE,又∵AF=DE,∴四边形ADEF为矩形,∴EF=AD=6.课堂小结:1.直线和平面垂直的判定方法(1)利用线面垂直的定义.(2)利用线面垂直的判定定理.(3)利用下面两个结论:①若a∥b,a⊥α,则b⊥α;②若α∥β,a⊥α,则a⊥β.2.直线和平面垂直的性质定理可以作为两条直线平行的判定定理,可以并入平行推导链中,实现平行与垂直的相互转化,即线线垂直⇒线面垂直⇒线线平行⇒线面平行.3.“垂直于同一平面的两条直线互相平行”、“垂直于同一直线的两个平面互相平行”都是真命题.但“垂直于同一直线的两条直线互相平行”、“垂直于同一平面的两个平面互相平行”都是假命题.。

《空间中的垂直关系:直线与平面垂直》参考教案

《空间中的垂直关系:直线与平面垂直》参考教案

βαm la αaα 1.2.3 直线与平面垂直教学目的:1.理解直线与平面垂直的定义;2.掌握直线与平面垂直的判定、性质定理内容及其应用;3.应用直线与平面垂直的判定、性质定理解决问题 .教学重点:直线与平面垂直的判定、性质定理内容及其应用. 教学难点:直线与平面垂直的判定、性质定理内容及论证过程教学过程:一、复习引入:1.直线和平面的位置关系是什么?观察空间直线和平面可知它们的位置关系有:(1)直线在平面内(无数个公共点);(2)直线和平面相交(有且只有一个公共点);(3)直线和平面平行(没有公共点)它们的图形分别可表示为如下,符号分别可表示为a ⊂α,a ⋂α=A ,a//α.2.线面平行的判定定理:如果不在一个平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行.推理模式:,,////l m l m l ααα⊄⊂⇒ 3.线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.推理模式://,,//l l m l αβαβ⊂⋂=⇒ 引入新课:在直线和平面相交的位置关系中,有一种相交是很特殊的,我们把它叫做垂直相交,这节课我们重点来探究这种形式的相交----引出课题.二、研探新知1.观察实例,发现新知现实生活中线面垂直的实例:旗杆与地面的关系,大桥的桥柱与水面的位置关系,房屋的屋柱与地面的关系,都给人以直线与平面垂直的形象。

2.实例研探,定义新知探究:什么叫做直线和平面垂直呢?当直线与平面垂直时,此直线与平面内的所有直线的关系又怎样呢?变换时间观察现实生活中线面垂直的实例:在阳光下观察直立于地面的旗杆及它在地面的影子,随着时间的变化,尽管影子的位置在移动,但是旗杆所在的直线始终与影子所在的直线垂直,就是说,旗杆AB所在直线与地面上任意一条过点B的直线垂直(如图),事实上,旗杆AB所在直线与地面内任意一条不过点B的直线也是垂直的。

人教版高中必修2(B版)1.2.3空间中的垂直关系教学设计

人教版高中必修2(B版)1.2.3空间中的垂直关系教学设计

人教版高中必修2(B版)1.2.3空间中的垂直关系教学设计一、教学目标1.了解空间中垂直关系的概念和性质,掌握相关的基本概念和定义;2.能够运用垂直关系的定义,判断两条直线、两个平面、线段和直线、线段和平面等是否垂直,解决与垂直相关的简单问题;3.通过垂直关系的学习,增强学生的空间想象能力和数学思维水平。

二、教学重点和难点1.垂直关系的定义和应用;2.掌握判断两条直线、两个平面、线段和直线、线段和平面等是否垂直的方法;3.解决与垂直相关的简单问题。

三、教学方法本课采用讲授、讨论和练习相结合的教学方法,倡导“启发式”教学,让学生在教师的引导下自主思考,发掘规律和方法,并通过课堂讨论和解决问题的过程中加深对知识的理解和记忆。

四、教学步骤1. 引入(10分钟)通过一个有趣的例子,激发学生对垂直关系的兴趣,引导学生了解垂直关系的概念和性质。

举例:小明在修建房屋时,需要确定柱子是否和地面垂直。

那么,垂直现象出现在我们生活中的哪些场合呢?2. 讲解垂直关系的基本概念和定义(20分钟)通过演示、讲解等方式,介绍垂直关系的定义和性质,如“两条直线垂直的条件是什么?两个平面垂直的条件是什么?”等等。

3. 探究垂直关系的应用(30分钟)带领学生探究判断两条直线、两个平面、线段和直线、线段和平面等是否垂直的方法和步骤,并通过练习,帮助学生巩固相关知识,增强应用能力。

4. 实际应用(30分钟)分组或个人作业,设计一些实际问题,让学生通过运用垂直关系的知识,解决实际问题。

举例:如何确定大型建筑物的每根柱子是否与地面垂直?5. 总结(10分钟)对本节课的重点知识、难点问题进行总结,并对学生问题进行答疑解惑,解决学生的困惑。

五、教学工具黑板、粉笔、几何模型、PPT等。

六、教学评价1.通过课堂练习,检验学生对垂直关系的掌握程度;2.通过实际应用的作业,检验学生对垂直关系的应用能力;3.通过教师观察、记录等方式,评价学生的表现和进步情况。

人教B版高中数学必修二最新资料空间中的垂直关系教案

人教B版高中数学必修二最新资料空间中的垂直关系教案

第一章立体几何初步第1.2.3节空间中的垂直关系教学设计(一)创设情景,揭示课题1、教师首先提出问题:在现实生活中,我们经常看到一些直线与平面垂直的现象,例如:“旗杆与地面,大桥的桥柱和水面等的位置关系”,你能举出一些类似的例子吗?然后让学生回忆、思考、讨论、教师对学生的活动给予评价。

2、接着教师指出:一条直线与一个平面垂直的意义是什么?并通过分析旗杆与它在地面上的射影的位置关系引出课题内容。

(二)研探新知1、为使学生学会从“感性认识”到“理性认识”过程中获取新知,可再借助长方体模型让学生感知直线与平面的垂直关系。

然后教师引导学生用“平面化”的思想来思考问题:从直线与直线垂直、直线与平面平行等的定义过程得到启发,能否用一条直线垂直于一个平面内的直线来定义这条直线与这个平面垂直呢?并组织学生交流讨论,概括其定义。

如果直线L与平面α内的任意一条直线都垂直,我们就说直线L与平面α互相垂直,记作L⊥α,直线L叫做平面α的垂线,平面α叫做直线L的垂面。

如图2.3-1,直线与平面垂直时,它们唯一公共点P叫做垂足。

并对画示表示进行说明。

Lpα图2-3-12、老师提出问题,让学生思考:(1)问题:虽然可以根据定义判定直线与平面垂直,但这种方法实际上难以实施。

有没有比较方便可行的方法来判断直线和平面垂直呢?(2)师生活动:请同学们准备一块三角形的纸片,我们一起来做如图2.3-2试验:过△ABC的顶点A翻折纸片,得到折痕AD,将翻折后的纸片竖起放置在桌面上(BD、DC 与桌面接触),问如何翻折才能保证折痕AD与桌面所在平面垂直?AB D C图2.3-2(3)归纳结论:引导学生根据直观感知及已有经验(两条相交直线确定一个平面),进行合情推理,获得判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。

老师特别强调:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想。

高考数学一轮复习 第八章立体几何8.5空间中的垂直关系

高考数学一轮复习 第八章立体几何8.5空间中的垂直关系

8.5 空间中的垂直关系考纲要求1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面垂直的有关性质与判定.2.能运用公理、定理和已获得的结论证明一些空间图形的垂直关系的简单命题.1.直线与平面垂直(1)直线和平面垂直的定义:如果一条直线AB和一个平面(α)相交于点(O),并且和这个平面内过交点(O)的________直线都垂直,我们就说这条直线l和这个平面α互相垂直,记作______,直线AB叫做平面(α)的______,平面α叫做直线l的______.(2)直线与平面垂直的判定定理:如果一条直线与一个平面内的____________垂直,则这条直线与这个平面垂直.符号表示:a⊂α,b⊂α,a∩b=P,__________⇒l⊥α.(3)推论1:如果在两条平行直线中,有一条垂直于平面,那么另一条直线也垂直于这个平面.推论2:如果两条直线垂直于__________,那么这两条直线平行.符号表示:a⊥α,b ⊥α⇒a∥b;其作用:证明____平行与作平行线.(4)过一点有且仅有一条直线与已知平面垂直;过一点有且仅有一个平面与已知直线垂直.2.平面与平面垂直(1)平面与平面垂直的定义:如果两个相交平面的交线与第三个平面垂直,又这两个平面与第三个平面相交所得的两条交线互相垂直,就称这两个平面互相垂直.(2)平面与平面垂直的判定定理:如果一个平面过另一个平面的一条______,则两个平面互相垂直.符号表示:a⊥β,a⊂α⇒α⊥β.(3)平面与平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于__________的直线垂直于另一个平面.符号表示:α⊥β,α∩β=l,a⊂α,a⊥l⇒a ⊥β.其作用:证明线面垂直与作面的垂线.1.“直线l垂直于平面α内的无数条直线”是“l⊥α”的( ).A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件2.(2012北京模拟)已知如图,六棱锥P­ABCDEF的底面是正六边形,PA⊥平面ABC.则下列结论不正确的是( ).A.CD∥平面PAFB.DF⊥平面PAFC.CF∥平面PABD.CF⊥平面PAD3.设α,β,γ为彼此不重合的三个平面,l为直线,给出下列命题:①若α∥β,α⊥γ,则β⊥γ;②若α⊥γ,β⊥γ,且α∩β=l,则l⊥γ;③若直线l与平面α内的无数条直线垂直,则直线l与平面α垂直;④若α内存在不共线的三点到β的距离相等,则平面α平行于平面β.上面命题中,真命题的序号为__________(写出所有真命题的序号).4.在三棱柱ABC­A1B1C1中,AA1⊥平面ABC,AC=BC=AA1=2,∠ACB=90°,E为BB1的中点,∠A1DE=90°,求证:CD⊥平面A1ABB1.一、直线与平面垂直的判定与性质【例1】如图所示,在四棱锥P­ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC =60°,PA=AB=BC,E是PC的中点.求证:(1)CD⊥AE;(2)PD⊥平面ABE.方法提炼证明直线和平面垂直的常用方法:(1)利用判定定理;(2)利用面面垂直的性质定理;(3)利用结论:a∥b,a⊥α⇒b⊥α;(4)利用结论:a⊥α,α∥β⇒a⊥β.请做演练巩固提升1,3二、平面与平面垂直的判定与性质【例2】在如图所示的几何体中,四边形ABCD是正方形,MA⊥平面ABCD,PD∥MA,E,G,F分别为MB,PB,PC的中点,且AD=PD=2MA.(1)求证:平面EFG⊥平面PDC;(2)求三棱锥P­MAB与四棱锥P­ABCD的体积之比.方法提炼1.证明平面与平面垂直,主要方法是判定定理,通过证明线面垂直来实现,从而把问题再转化成证明线线垂直加以解决.2.线线垂直、线面垂直、面面垂直的相互转化是解决有关垂直证明题的指导思想,其中线线垂直是最基本的,在转化过程中起穿针引线的作用,线面垂直是纽带,可以把线线垂直与面面垂直联系起来.请做演练巩固提升2要善于挖掘图形中存在的关系及添加辅助线【典例】 (12分)(2012课标全国高考)如图,三棱柱ABC ­A 1B 1C 1中,侧棱垂直底面,∠ACB=90°,AC =BC =12AA 1,D 是棱AA 1的中点.(1)证明:平面BDC 1⊥平面BDC ;(2)平面BDC 1分此棱柱为两部分,求这两部分体积的比. 规范解答:(1)由题设知BC ⊥CC 1,BC ⊥AC ,CC 1∩AC =C , 所以BC ⊥平面ACC 1A 1.(2分)又DC 1⊂平面ACC 1A 1,所以DC 1⊥BC . 由题设知∠A 1DC 1=∠ADC =45°, 所以∠CDC 1=90°,即DC 1⊥DC .(4分) 又DC ∩BC =C ,所以DC 1⊥平面BDC .又DC 1⊂平面BDC 1,故平面BDC 1⊥平面BDC .(6分) (2)设棱锥B ­DACC 1的体积为V 1,AC =1.由题意得V 1=13×1+22×1×1=12.(8分)又三棱柱ABC ­A 1B 1C 1的体积V =1,(10分) 所以(V -V 1)∶V 1=1∶1.故平面BDC 1分此棱柱所得两部分体积的比为1∶1.(12分)答题指导:解决垂直问题时,还有以下几点容易造成失分,在备考时要高度关注: (1)缺乏空间想象能力,找不出应该垂直的线和面; (2)对几何体体积、面积及线面角的计算不准确;(3)不善于挖掘图形中存在的关系,缺乏通过添加辅助线解题的能力.另外要重视对基础知识的积累、解题过程的规范,并且要善于使用数学符号进行表达.1.已知α,β为不重合的两个平面,直线m ⊂α,那么“m ⊥β”是“α⊥β”的( ). A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 2.下列命题中错误的是( ).A .如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βB .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βC .如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l ,那么l ⊥平面γD .如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β3.如图,正方形ABCD 和四边形ACEF 所在的平面互相垂直,EF ∥AC ,AB =2,CE =EF =1.(1)求证:AF∥平面BDE;(2)求证:CF⊥平面BDE.4.(2012北京高考)如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点.将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2.图1 图2(1)求证:DE∥平面A1CB;(2)求证:A1F⊥BE;(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.参考答案基础梳理自测知识梳理1.(1)任何l⊥α垂线垂面(2)两条相交直线l⊥a,l⊥b(3)同一个平面线线2.(2)垂线(3)它们交线基础自测1.B2.D 解析:A中,∵CD∥AF,AF⊂面PAF,CD⊄面PAF,∴CD∥平面PAF成立;B中,∵ABCDEF为正六边形,∴DF⊥AF.又∵PA⊥面ABCDEF,∴DF⊥平面PAF成立;C中,CF∥AB,AB⊂平面PAB,CF⊄平面PAB,∴CF∥平面PAB;而D中CF与AD不垂直,故选D.3.①②解析:③中l∥α也满足;④中α与β可能相交.4.证明:连接A1E,EC,∵AC=BC=2,∠ACB=90°,∴AB=2 2.设AD=x,则BD=22-x,∴A1D2=4+x2,DE2=1+(22-x)2,A1E2=(22)2+1.∵∠A1DE=90°,∴A1D2+DE2=A1E2.∴x= 2.∴D为AB的中点.∴CD⊥AB.又AA1⊥CD,且AA1∩AB=A,∴CD⊥平面A1ABB1.考点探究突破【例1】证明:(1)∵PA⊥底面ABCD,∴PA⊥CD.又AC⊥CD,∴CD⊥平面PAC.而AE⊂平面PAC,∴CD⊥AE.(2)∵PA⊥底面ABCD,∴PA⊥AB.又AB⊥AD,∴AB⊥平面PAD.而PD⊂平面PAD,∴AB⊥PD.①又由∠ABC=60°,PA=AB=BC,得PA=AC.∵E是PC的中点,∴AE⊥PC.由(1)知AE⊥CD,∴AE⊥平面PCD.∴AE⊥PD.②由①②,得PD⊥平面ABE.【例2】 (1)证明:由已知MA⊥平面ABCD,PD∥MA,得PD⊥平面ABCD.又BC⊂平面ABCD,所以PD⊥BC.因为四边形ABCD 为正方形, 所以BC ⊥DC .又PD ∩DC =D ,因此BC ⊥平面PDC .在△PBC 中,因为G ,F 分别为PB ,PC 的中点, 所以GF ∥BC ,因此GF ⊥平面PDC .又GF ⊂平面EFG ,所以平面EFG ⊥平面PDC .(2)解:因为PD ⊥平面ABCD ,四边形ABCD 为正方形,不妨设MA =1,则PD =AD =2,所以V P ­ABCD =13S 正方形ABCD ·PD =83.由于DA ⊥面MAB ,且PD ∥MA ,所以DA 即为点P 到平面MAB 的距离,V P ­MAB =13×12×1×2×2=23,所以V P ­MAB ∶V P ­ABCD =1∶4. 演练巩固提升1.A 解析:根据面面垂直的判定定理可知若m ⊂α,m ⊥β⇒α⊥β,反之则不一定成立.2.D 解析:对于命题A ,在平面α内存在直线l 平行于平面α与平面β的交线,则l 平行于平面β,故命题A 正确.对于命题B ,若平面α内存在直线垂直于平面β,则平面α与平面β垂直,故命题B 正确.对于命题C ,设α∩γ=m ,β∩γ=n ,在平面γ内取一点P 不在l 上,过P 作直线a ,b ,使a ⊥m ,b ⊥n .∵γ⊥α,a ⊥m ,则a ⊥α,∴a ⊥l ,同理有b ⊥l .又a ∩b =P ,a ⊂γ,b ⊂γ, ∴l ⊥γ.故命题C 正确.对于命题D ,设α∩β=l ,则l ⊂α,但l ⊂β. 故在α内存在直线不垂直于平面β,即命题D 错误. 3.证明:(1)设AC 与BD 交于点G .因为EF ∥AG ,且EF =1,AG =12AC =1,所以四边形AGEF 为平行四边形. 所以AF ∥EG .因为EG ⊂平面BDE ,AF ⊄平面BDE , 所以AF ∥平面BDE . (2)连接FG .因为EF ∥CG ,EF =CG =1,且CE =1, 所以四边形CEFG 为菱形. 所以CF ⊥EG .因为四边形ABCD 为正方形, 所以BD ⊥AC .又因为平面ACEF⊥平面ABCD,且平面ACEF∩平面ABCD=AC,所以BD⊥平面ACEF.所以CF⊥BD.又BD∩EG=G,所以CF⊥平面BDE.4.解:(1)因为D,E分别为AC,AB的中点,所以DE∥BC.又因为DE⊄平面A1CB,所以DE∥平面A1CB.(2)由已知得AC⊥BC且DE∥BC,所以DE⊥AC.所以DE⊥A1D,DE⊥CD.所以DE⊥平面A1DC.而A1F⊂平面A1DC,所以DE⊥A1F.又因为A1F⊥CD,所以A1F⊥平面BCDE.所以A1F⊥BE.(3)线段A1B上存在点Q,使A1C⊥平面DEQ.理由如下:如图,分别取A1C,A1B的中点P,Q,则PQ∥BC.又因为DE∥BC,所以DE∥PQ.所以平面DEQ即为平面DEP.由(2)知,DE⊥平面A1DC,所以DE⊥A1C.又因为P是等腰三角形DA1C底边A1C的中点,所以A1C⊥DP. 所以A1C⊥平面DEP.从而A1C⊥平面DEQ.故线段A1B上存在点Q,使得A1C⊥平面DEQ.。

2025届高考数学一轮复习教案:立体几何-空间直线、平面的垂直

2025届高考数学一轮复习教案:立体几何-空间直线、平面的垂直

第四节空间直线、平面的垂直课程标准1.从定义和基本事实出发,借助长方体,通过直观感知,了解空间中直线与直线、直线与平面、平面与平面的垂直关系的定义,归纳出有关垂直的性质定理和判定定理,并加以证明.2.能运用已获得的结论证明空间基本图形位置关系的简单命题.考情分析考点考法:高考题常以空间几何体为载体,考查空间直线、平面的垂直关系.线面垂直是高考的热点,在各种题型中都会有所体现.核心素养:直观想象、数学运算、逻辑推理.【必备知识·逐点夯实】【知识梳理·归纳】1.直线与平面垂直(1)直线和平面垂直的定义一般地,如果直线l与平面α内的任意一条直线都垂直,我们就说直线l与平面α互相垂直.(2)判定定理与性质定理类型文字语言图形表示符号表示【微点拨】证明线面垂直时,平面内的两条直线必须是相交直线.2.直线和平面所成的角(1)定义:平面的一条斜线和它在平面上的射影所成的角,叫做这条直线和这个平面所成的角.一条直线垂直于平面,则它们所成的角是90°;一条直线和平面平行或在平面内,则它们所成的角是0°.(2)范围:,3.二面角(1)定义:从一条直线出发的两个半平面所组成的图形叫做二面角.(2)二面角的平面角若有①O ∈l ;②OA ⊂α,OB ⊂β;③OA ⊥l ,OB ⊥l ,则二面角α-l -β的平面角是∠AOB .(3)二面角的平面角θ的范围:0°≤θ≤180°.4.平面与平面垂直(1)定义一般地,两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.(2)判定定理与性质定理【基础小题·自测】类型辨析改编易错高考题号12341.(多维辨析)(多选题)下列结论错误的是()A .若直线与平面所成的角为0°,那么直线与平面平行B .直线l 与平面α内的无数条直线都垂直,则l ⊥αC .设m ,n 是两条不同的直线,α是一个平面,若m ∥n ,m ⊥α,则n ⊥αD .若两平面垂直,则其中一个平面内的任意一条直线垂直于另一个平面【解析】选ABD .A 中直线也可能在平面内;B 中若平面α内的与直线l 都垂直的无数条直线都平行,则l 与α不一定垂直;C正确;D 中平面内与交线垂直的直线与另一个平面垂直.2.(必修二P161例10变形式)如图所示,在Rt △ABC 中,∠ABC =90°,P 为△ABC 所在平面外一点,PA ⊥平面ABC ,则四面体P-ABC 中直角三角形的个数为()A .4B .3C .2D .1【解析】选A.在Rt△ABC中,∠ABC=90°,P为△ABC所在平面外一点,PA⊥平面ABC,所以BC⊥PA,因为BC⊥AB,PA∩AB=A,所以BC⊥平面PAB.所以四面体P-ABC中直角三角形有△PAC,△PAB,△ABC,△PBC,共4个.3.(多选题)(空间垂直关系不清致误)下列命题中不正确的是()A.如果直线a不垂直于平面α,那么平面α内一定不存在直线垂直于直线aB.如果平面α垂直于平面β,那么平面α内一定不存在直线平行于平面βC.如果直线a垂直于平面α,那么平面α内一定不存在直线平行于直线aD.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β【解析】选ABD.A中存在无数条在平面α内与a垂直的直线;B中α内与交线平行的直线与β平行.若直线a垂直于平面α,则直线a垂直于平面α内的所有直线,故C 正确,不符合题意,D中α内与交线不垂直的直线与β不垂直.4.(2021·浙江高考)如图,已知正方体ABCD-A1B1C1D1,M,N分别是A1D,D1B的中点,则()A.直线A1D与直线D1B垂直,直线MN∥平面ABCDB.直线A1D与直线D1B平行,直线MN⊥平面BDD1B1C.直线A1D与直线D1B相交,直线MN∥平面ABCDD.直线A1D与直线D1B异面,直线MN⊥平面BDD1B1【解析】选A.连接AD1(图略),则易得点M在AD1上,且M为AD1的中点,AD1⊥A1D.因为AB⊥平面AA1D1D,A1D⊂平面AA1D1D,所以AB⊥A1D,又AB∩AD1=A,AB,AD1⊂平面ABD1,所以A1D⊥平面ABD1,又BD1⊂平面ABD1,显然A1D与BD1异面,所以A1D与BD1异面且垂直.在△ABD1中,由中位线定理可得MN∥AB,又MN⊄平面ABCD,AB⊂平面ABCD,所以MN∥平面ABCD.易知直线AB与平面BB1D1D成45°角,所以MN与平面BB1D1D不垂直.【巧记结论·速算】1.若两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.2.一条直线垂直于两个平行平面中的一个,则这条直线与另一个平面也垂直.3.两个相交平面同时垂直于第三个平面,它们的交线也垂直于第三个平面.【即时练】已知PD垂直于正方形ABCD所在的平面,连接PB,PC,PA,AC,BD,则一定互相垂直的平面有________对.【解析】如图,由于PD垂直于正方形ABCD,故平面PDA⊥平面ABCD,平面PDB⊥平面ABCD,平面PDC⊥平面ABCD,平面PDA⊥平面PDC,平面PAC⊥平面PDB,平面PAB⊥平面PAD,平面PBC⊥平面PDC,共7对.答案:7【核心考点·分类突破】考点一直线与平面垂直的判定与性质【考情提示】直线与平面垂直作为空间垂直关系的载体因其集中考查直线与平面垂直的判定定理和性质定理而成为高考的热点,涉及直线与平面垂直关系的判断、证明以及线面垂直关系在空间几何体中的实际应用.角度1直线与平面垂直的判定[例1]如图所示,在四棱锥P-ABCD中,AB⊥平面PAD,AB∥DC,PD=AD,E是PB的中点,F是DC上的点,且DF=12AB,PH为△PAD中AD边上的高.求证:(1)PH⊥平面ABCD;(2)EF⊥平面PAB.【证明】(1)因为AB⊥平面PAD,AB⊂平面ABCD,所以平面PAD⊥平面ABCD.因为平面PAD∩平面ABCD=AD,PH⊥AD,所以PH⊥平面ABCD.(2)取PA的中点M,连接MD,ME.因为E是PB的中点,所以ME=12AB.又因为DF=12AB,所以ME-DF,所以四边形MEFD是平行四边形,所以EF∥MD.因为PD=AD,所以MD⊥PA.因为AB⊥平面PAD,所以MD⊥AB.因为PA∩AB=A,所以MD⊥平面PAB,所以EF⊥平面PAB.角度2直线与平面垂直的性质[例2]如图,在四棱锥P-ABCD中,四边形ABCD是矩形,AB⊥平面PAD,AD=AP,E 是PD的中点,M,N分别在AB,PC上,且MN⊥AB,MN⊥PC.证明:AE∥MN.【证明】因为AB⊥平面PAD,AE⊂平面PAD,所以AE⊥AB.又AB∥CD,所以AE⊥CD.因为AD=AP,E是PD的中点,所以AE⊥PD.又CD∩PD=D,CD,PD⊂平面PCD,所以AE⊥平面PCD.因为MN⊥AB,AB∥CD,所以MN⊥CD.又因为MN⊥PC,PC∩CD=C,PC,CD⊂平面PCD,所以MN⊥平面PCD,所以AE∥MN.【解题技法】1.证明线面垂直的常用方法(1)判定定理;(2)垂直于平面的传递性(a∥b,a⊥α⇒b⊥α);(3)面面平行的性质(a⊥α,α∥β⇒a⊥β);(4)面面垂直的性质.2.直线与平面垂直性质的解题策略(1)判定定理与性质定理的合理转化是证明线面垂直的基本思想,证明线线垂直则需借助线面垂直的性质.(2)在解题中要重视平面几何的知识,特别是正余弦定理及勾股定理的应用.(3)重要结论要熟记:经过一点与已知直线垂直的直线都在过这点且与已知直线垂直的平面内.此结论可帮助解决动点的轨迹问题.【对点训练】1.如图所示,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.证明:(1)CD⊥AE;(2)PD⊥平面ABE.【证明】(1)在四棱锥P-ABCD中,因为PA⊥底面ABCD,CD⊂平面ABCD,所以PA⊥CD.因为AC⊥CD,PA∩AC=A,所以CD⊥平面PAC.而AE⊂平面PAC,所以CD⊥AE.(2)由PA=AB=BC,∠ABC=60°,所以△ABC是等边三角形,所以AC=PA.因为E是PC的中点,所以AE⊥PC.由(1)知AE⊥CD,且PC∩CD=C,所以AE⊥平面PCD.而PD⊂平面PCD,所以AE⊥PD.因为PA⊥底面ABCD,所以PA⊥AB.又因为AB⊥AD且PA∩AD=A,所以AB⊥平面PAD,而PD⊂平面PAD,所以AB⊥PD.又因为AB∩AE=A,所以PD⊥平面ABE.2.如图所示,已知正方体ABCD-A1B1C1D1.(1)求证:A1C⊥B1D1;(2)M,N分别为B1D1与C1D上的点,且MN⊥B1D1,MN⊥C1D,求证:MN∥A1C.【证明】(1)连接A1C1(图略).因为CC1⊥平面A1B1C1D1,B1D1⊂平面A1B1C1D1,所以CC1⊥B1D1.因为四边形A1B1C1D1是正方形,所以A1C1⊥B1D1.又CC1∩A1C1=C1,所以B1D1⊥平面A1C1CA.又A1C⊂平面A1C1CA,所以A1C⊥B1D1.(2)连接B1A,AD1(图略).因为B1C1∥AD,所以四边形ADC1B1为平行四边形,所以C1D∥AB1.因为MN⊥C1D,所以MN⊥AB1.又MN⊥B1D1,AB1∩B1D1=B1,所以MN⊥平面AB1D1.易得A1C⊥AB1,由(1)知A1C⊥B1D1,又AB1∩B1D1=B1,所以A1C⊥平面AB1D1,所以MN∥A1C.考点二平面与平面垂直的判定与性质【考情提示】平面与平面垂直作为空间垂直关系的载体因其集中考查平面与平面垂直的判定定理,性质定理成为高考的热点,涉及平面与平面垂直关系的判断、证明以及在空间几何体中的实际应用.角度1平面与平面垂直的判定[例3]如图,四棱锥P-ABCD中,底面ABCD是菱形,对角线AC,BD交于点O,M为棱PD的中点,MA=MC.求证:(1)PB∥平面AMC;(2)平面PBD⊥平面AMC.【证明】(1)连接OM(图略),因为O是菱形ABCD对角线AC,BD的交点,所以O 为BD的中点,因为M是棱PD的中点,所以OM∥PB,因为OM⊂平面AMC,PB⊄平面AMC,所以PB∥平面AMC.(2)在菱形ABCD中,AC⊥BD,且O为AC的中点,因为MA=MC,所以AC⊥OM,因为OM∩BD=O,所以AC⊥平面PBD,因为AC⊂平面AMC,所以平面PBD⊥平面AMC.角度2平面与平面垂直的性质[例4]在矩形ABCD中,AB=2AD=4,E是AB的中点,沿DE将△ADE折起,得到如图所示的四棱锥P-BCDE.(1)若平面PDE⊥平面BCDE,求四棱锥P-BCDE的体积;(2)若PB=PC,求证:平面PDE⊥平面BCDE.【解析】(1)如图所示,取DE的中点M,连接PM,由题意知,PD=PE,所以PM⊥DE,又平面PDE⊥平面BCDE,平面PDE∩平面BCDE=DE,PM⊂平面PDE,所以PM⊥平面BCDE,即PM为四棱锥P-BCDE的高.在等腰直角三角形PDE中,PE=PD=AD=2,所以PM=12DE=2,而梯形BCDE的面积S=12(BE+CD)·BC=12×(2+4)×2=6,所以四棱锥P-BCDE的体积V=13PM·S=13×2×6=22.(2)取BC的中点N,连接PN,MN,则BC⊥MN,因为PB=PC,所以BC⊥PN,因为MN∩PN=N,MN,PN⊂平面PMN,所以BC⊥平面PMN,因为PM⊂平面PMN,所以BC⊥PM,由(1)知,PM⊥DE,又BC,DE⊂平面BCDE,且BC与DE延长后是相交的,所以PM⊥平面BCDE,因为PM⊂平面PDE,所以平面PDE⊥平面BCDE.【解题技法】关于面面垂直的判定与性质(1)判定面面垂直的方法①面面垂直的定义.②面面垂直的判定定理.(2)面面垂直性质的应用①面面垂直的性质定理是把面面垂直转化为线面垂直的依据,运用时要注意“平面内的直线”.②若两个相交平面同时垂直于第三个平面,则它们的交线也垂直于第三个平面.【对点训练】1.如图,在四棱锥P-ABCD中,底面ABCD是矩形,点E在棱PC上(异于点P,C),平面ABE与棱PD交于点F.(1)求证:AB∥EF;(2)若AF⊥EF,求证:平面PAD⊥平面ABCD.【证明】(1)因为四边形ABCD是矩形,所以AB∥CD.又AB⊄平面PDC,CD⊂平面PDC,所以AB∥平面PDC.又因为AB⊂平面ABE,平面ABE∩平面PDC=EF,所以AB∥EF.(2)因为四边形ABCD是矩形,所以AB⊥AD.因为AF⊥EF,(1)中已证AB∥EF,所以AB⊥AF.又AB⊥AD,由点E在棱PC上(异于点P,C),所以点F异于点D,所以AF∩AD=A,AF,AD⊂平面PAD,所以AB⊥平面PAD.又AB⊂平面ABCD,所以平面PAD⊥平面ABCD.2.如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠BAD=60°,PA=PD=AD=2,点M 在线段PC上,且PM=2MC,N为AD的中点.(1)求证:AD⊥平面PNB;(2)若平面PAD⊥平面ABCD,求三棱锥P-NBM的体积.【解析】(1)连接BD(图略).因为PA=PD,N为AD的中点,所以PN⊥AD.又底面ABCD是菱形,∠BAD=60°,所以△ABD为等边三角形,所以BN⊥AD.又PN∩BN=N,所以AD⊥平面PNB.(2)因为PA=PD=AD=2,所以PN=NB=3.又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,PN⊥AD,所以PN⊥平面ABCD,又NB⊂平面ABCD,所以PN⊥NB,所以S△PNB=12×3×3=32.因为AD⊥平面PNB,AD∥BC,所以BC⊥平面PNB.又PM=2MC,所以V P-NBM=V M-PNB=23V C-PNB=23×13×32×2=23.考点三直线、平面垂直的综合应用[例5]如图所示,正方形AA1D1D与矩形ABCD所在平面互相垂直,AB=2AD=2, A1D∩AD1=O,E为线段AB上一点.(1)当OE∥平面D1BC时,求证:E为AB的中点;(2)在线段AB上是否存在点E,使得平面D1DE⊥平面AD1C?若存在,求出AE的长;若不存在,请说明理由.【解析】(1)因为四边形AA1D1D为正方形,A1D∩AD1=O,所以O为AD1的中点,又因为OE∥平面D1BC,平面ABD1∩平面D1BC=BD1,OE⊂平面ABD1,所以OE∥BD1,又因为O为AD1的中点,所以E为AB的中点;(2)存在,当AE=12时,平面D1DE⊥平面AD1C,理由如下:设AC∩DE=F,因为四边形AA1D1D为正方形,所以D1D⊥AD,又因为AD=平面AA1D1D∩平面ABCD,平面AA1D1D⊥平面ABCD,D1D⊂平面AA1D1D,所以D1D⊥平面ABCD,又因为AC⊂平面ABCD,所以D1D⊥AC,又因为在矩形ABCD中,AB=2,AD=1,当AE=12时,在Rt△ADE中,tan∠ADE=A A=12,在Rt△ABC中,tan∠BAC=B B=12,所以∠ADE=∠BAC,又因为∠BAD=∠BAC+∠DAC=90°,所以∠ADE+∠DAC=90°,则∠AFD=90°,所以AC⊥DE,又因为DE∩DD1=D,DE,DD1⊂平面D1DE,所以AC⊥平面D1DE,又因为AC⊂平面AD1C,所以平面D1DE⊥平面AD1C.【解题技法】关于线、面垂直关系的综合应用(1)三种垂直的综合问题,一般通过作辅助线进行线线、线面、面面垂直间的转化.求解时应注意垂直的性质及判定的综合应用;(2)如果有平面垂直时,一般要用性质定理,在一个平面内作交线的垂线,使之转化为线面垂直,然后进一步转化为线线垂直.【对点训练】如图,在四棱锥P-ABCD中,侧棱PD⊥底面ABCD,底面ABCD是直角梯形,AB ∥DC,AD⊥DC,且AB=AD=1,PD=DC=2,E是PC上一点.过A,B,E的平面交侧面PDC于l.(1)求证:AB∥l;(2)若E为PC的中点,在线段PB上是否存在一点Q,使得平面PDC⊥平面DEQ?若存在,求出B B的值;若不存在,请说明理由.【解析】(1)梯形ABCD中,AB∥DC,AB⊄平面PDC,DC⊂平面PDC,所以AB∥平面PDC,又AB⊂平面ABE,平面ABE∩平面PDC=l,所以AB∥l;(2)存在点Q,使得平面PDC⊥平面DEQ,此时B B=3,证明如下:连接BD(图略),易得BD=2,BC=12+(2-1)2=2,又PD⊥底面ABCD,CD⊂底面ABCD,BD⊂底面ABCD,则PD⊥DC,PD⊥DB,则PC=4+4=22,PB=22+(2)2=6,则PB2+BC2=PC2,PB⊥BC,又PQ=23PB=263,PE=12PC=2,cos∠BPC=B B=32,由余弦定理得,QE2=PQ2+PE2-2PQ·PE·cos∠BPC=23,则QE2+PE2=PQ2,则QE⊥PC,又DE⊥PC,QE⊂平面DEQ,DE⊂平面DEQ,QE∩DE=E,则PC⊥平面DEQ,又PC⊂平面PDC,故存在点Q,使得平面PDC⊥平面DEQ,此时B B=3.【重难突破】球与几何体的切、接问题【解题关键】(1)“接”的处理:把一个多面体的几个顶点放在球面上即球的外接问题.解决这类问题的关键是抓住外接的特点,即球心到多面体的顶点的距离等于球的半径.(2)“切”的处理:解决与球有关的内切问题主要是指球内切多面体与旋转体,解答时要先找准切点,通过作截面来解决.如果内切的是多面体,则多通过多面体过球心的对角面来作截面.1.常见几何体的内切球和外接球(1)内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等;(2)正多面体的内切球和外接球的球心重合;(3)正棱锥的内切球和外接球的球心都在高线上.【说明】求外接球或内切球的方法:在球内部构造直角三角形,利用勾股定理求解.2.长方体的外接球(1)球心:体对角线的交点;(2)半径:R a,b,c为长方体的长、宽、高).3.正方体的外接球、内切球及与各条棱相切的球球心是正方体的中心,设a为正方体的棱长.(1)外接球:半径R=32a;(2)内切球:半径r=2;(3)与各条棱都相切的球:半径r'=22a.4.正四面体的外接球与内切球球心是正四面体的中心,a为正四面体的棱长.(1)外接球:半径R=64a;(2)内切球:半径r=612a.【推导如下】设正四面体S-ABC的棱长为a,其内切球的半径为r,外接球的半径为R,如图,取AB的中点D,连接SD,CD,SE为正四面体的高,在截面三角形SDC内作一个与边SD和DC相切,且圆心在高SE上的圆.由正四面体的对称性,可知其内切球和外接球的球心同为O.此时,OC=OS=R,OE=r,CE=33a,SE=63a,则有R+r=SE=63a,R2-r2=CE2=23,解得R=64a,r=612a.类型一外接球问题命题点1柱体的外接球[例1](2023·重庆模拟)已知圆柱O1O2的高O1O2=8,球O是圆柱的外接球,且球O 的表面积是圆柱O1O2侧面积的2倍,则球O的半径为()A.4B.32C.42D.42+23【解析】选C.设圆柱O1O2的底面半径为r,球O的半径为R,则R2=r2+16,因为球O的表面积是圆柱O1O2侧面积的2倍,所以4πR2=2πr×8×2,R2=8r,所以r2+16=8r,所以r=4,R=42(负值舍去).命题点2锥体的外接球[例2](2023·保定模拟)已知正三棱锥S-ABC的所有顶点都在球O的球面上,棱锥的底面是边长为23的正三角形,侧棱长为25,则球O的表面积为()A.25πB.20πC.16πD.30π【解析】选A.如图,延长SO交球O于点D,设△ABC的外心为E,连接AE,AD由正弦定理得2AE=23sin60°=4,所以AE=2,易知SE⊥平面ABC,由勾股定理可知,三棱锥S-ABC的高SE=B2-A2=(25)2-22=4,由于点A是以SD为直径的球O上一点,所以∠SAD=90°,由射影定理可知,球O的直径2R=SD=B2A=5,因此,球O的表面积为4πR2=π×(2R)2=25π.命题点3台体的外接球[例3](2022·新高考Ⅱ卷)已知正三棱台的高为1,上、下底面边长分别为33和43,其顶点都在同一球面上,则该球的表面积为()A.100πB.128πC.144πD.192π【解析】选A.如图所示,设该正三棱台上、下底面所在圆面的半径分别为r1,r2.所以2r1=33sin60°,2r2=43sin60°,解得r1=3,r2=4,设该球的球心到上、下底面的距离分别为d1,d2,球的半径为R,所以d1=2-9,d2=2-16,故1-2=1或d1+d2=1,或2-9+2-16=1,解得R2=25,符合题意,所以球的表面积为S=4πR2=100π.命题点4组合体的外接球[例4](2023·安庆模拟)我国有着丰富悠久的“印章文化”,古时候的印章一般用贵重的金属或玉石制成,本是官员或私人签署文件时代表身份的信物,后因其独特的文化内涵,也被作为装饰物来使用.图1是明清时期的一个金属印章摆件,除去顶部的环以后可以看作是一个正四棱柱和一个正四棱锥组成的几何体,如图2.已知正四棱柱和正四棱锥的高相等,且底面边长均为2,若该几何体的所有顶点都在同一个球的表面上,则这个球的表面积为________.【解析】如图,设正四棱柱和正四棱锥的高为h,则其外接球的半径为R +2h+12h=32h,解得h=1,所以R=32,故球的表面积为S=4πR2=9π.答案:9π【解题技法】求解外接球问题的方法(1)解决多面体外接球问题的关键是确定球心的位置,方法是先选择多面体中的一面,确定此面多边形外接圆的圆心,再过此圆心作垂直此面的垂线,则球心一定在此垂线上,最后根据其他顶点的情况确定球心的准确位置.(2)对于特殊的多面体还可通过补成正方体或长方体的方法找到球心位置.【对点训练】1.在直三棱柱ABC-A1B1C1中,AB=BC=2,∠ABC=π2.若该直三棱柱的外接球的表面积为16π,则该直三棱柱的高为()A.4B.3C.42D.22【解析】选D.因为∠ABC=π2,所以可以将直三棱柱ABC-A1B1C1补成长方体ABCD-A1B1C1D1,则该直三棱柱的外接球就是长方体的外接球,外接球的直径等于长方体的体对角线长.设外接球的半径为R,则4πR2=16π,解得R=2.设该直三棱柱的高为h,则4R2=22+22+h2,即16=8+h2,解得h=22,所以该直三棱柱的高为22.2.如图所示的粮仓可近似看作一个圆锥和圆台的组合体,且圆锥的底面圆与圆台的较大底面圆重合.已知圆台的较小底面圆的半径为1,圆锥与圆台的高分别为5-1和3,则此组合体外接球的表面积是()A.16πB.20πC.24πD.28π【解析】选B.设外接球半径为R,球心为O,圆台较小底面圆的圆心为O1,则O12+12=R2,而OO1=5-1+3-R,故R2=1+(5+2-R)2,解得R=5,此组合体外接球的表面积S=4πR2=20π.3.已知在三棱锥P-ABC中,AB⊥平面APC,AB=42,PA=PC=2,AC=2,则三棱锥P-ABC外接球的表面积为()A.28πB.36πC.48πD.72π【解析】选B.解法1:因为PA=PC=2,AC=2,所以PA⊥PC.因为AB⊥平面APC, AC,PC⊂平面APC,所以AB⊥AC,AB⊥PC.又PA∩AB=A,PA,AB⊂平面PAB,所以PC⊥平面PAB,又PB⊂平面PAB,所以PC⊥PB,则△BCP,△ABC均为直角三角形.如图,取BC的中点为O,连接OA,OP,则OB=OC=OA=OP,即点O为三棱锥P-ABC外接球的球心,在Rt△ABC中,AC=2,AB=42,则BC=6,所以外接球的半径R=3,所以三棱锥P-ABC外接球的表面积S=4πR2=36π.解法2:因为PA=PC=2,AC=2,所以PA⊥PC,△ACP为直角三角形.如图,取AC的中点为M,则M为△PAC外接圆的圆心.过M作直线n垂直于平面PAC,则直线n上任意一点到点P,A,C的距离都相等.因为AB⊥平面PAC,所以AB∥n.设直线n与BC的交点为O,则O为线段BC的中点,所以点O到点B,C的距离相等,则点O即为三棱锥P-ABC外接球的球心.因为AB⊥平面PAC,AC⊂平面PAC,所以AB⊥AC.又AC=2,AB=42,所以BC=6,则外接球的半径R=3,所以三棱锥P-ABC外接球的表面积S=4πR2=36π.解法3:因为PA=PC=2,AC=2,所以PA⊥PC,又AB⊥平面PAC,所以可把三棱锥P-ABC放在如图所示的长方体中,此长方体的长、宽、高分别为2,2,42,则三棱锥P-ABC的外接球即长方体的外接球,长方体的体对角线即长方体外接球的直径,易得长方体的体对角线的长为6,则外接球的半径R=3,所以三棱锥P-ABC外接球的表面积S=4πR2=36π.类型二内切球问题命题点1柱体的内切球[例5]如图,已知球O是棱长为1的正方体ABCD-A1B1C1D1的内切球,则平面ACD1截球O的截面面积为()A.66πB.π3C.π6D.33π【解析】选C.平面ACD1截球O的截面为△ACD1的内切圆,如图.因为正方体的棱长为1,所以AC=CD1=AD1=2,所以内切圆的半径r=66,所以S=πr2=π×636=π6.命题点2锥体的内切球[例6]已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为__________.【解析】易知半径最大的球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,其中BC=2,AB=AC=3,且点M为BC边的中点,设内切圆的圆心为O,半径为r,由于AM=32-12=22,故S△ABC=12×2×22=22,因为S△ABC=S△AOB+S△BOC+S△AOC=12×AB×r+12×BC×r+12×AC×r=12×(3+2+3)×r=22,解得r=22,故所求体积V=43πr3=23π.答案:23π【解题技法】求解内切球问题的关键点(1)求解多面体的内切球问题的关键是求内切球的半径.(2)求多面体内切球半径,往往可用“等体积法”.V多=S表·R内切·13.(3)正四面体内切球半径是高的14,外接球半径是高的34.【对点训练】1.(2023·本溪模拟)如图所示,直三棱柱ABC-A1B1C1是一块石材,测量得∠ABC= 90°,AB=6,BC=8,AA1=13.若将该石材切削、打磨,加工成几个大小相同的健身手球,则一个加工所得的健身手球的最大体积及此时加工成的健身手球的个数分别为()A.32π3,4B.9π2,3C.6π,4D.32π3,3【解析】选D.依题意知,当健身手球与直三棱柱的三个侧面均相切时,健身手球的体积最大.易知AC=B2+B2=10,设健身手球的最大半径为R,则12×(6+8+10)×R=12×6×8,解得R=2.则健身手球的最大直径为4.因为AA1=13,所以最多可加工3个健身手球.于是一个健身手球的最大体积V=43πR3=43π×23=32π3.2.我国古代数学名著《九章算术》中,将四个面都为直角三角形的四面体称为鳖臑.在封闭的鳖臑P-ABC内有一个体积为V的球,若PA⊥平面ABC,AB⊥BC, PA=AB=BC=1,则V的最大值是()A.52+36πB.5π3C .52-76πD .32π3【解析】选C .球与三棱锥的四个面均相切时球的体积最大,设此时球的半径为R ,则V 三棱锥P-ABC =13·R ·(S △ABC +S △PAB +S △PAC +S PBC ),即13×12×1×1×1=13×R ×(12×1×1+12×1×1+12×1×2+12×1×2),解得R =2-12.所以球的体积V的最大值为43π(2-12)3=52-76π.类型三与外接球有关的最值问题[例7](2023·昆明模拟)四棱锥S -ABCD 的所有顶点都在同一球面上,底面ABCD 是正方形且和球心O 在同一平面内,当此四棱锥的体积取得最大值时,其表面积等于8+83,则球O 的体积等于()A .32π3B .322π3C .16πD .1623π【解析】选A .设球O 的半径为R ,四棱锥S -ABCD 的高为h ,则有h ≤R ,即h 的最大值是R ,易得AB =2R ,所以四棱锥S -ABCD 的体积V S-ABCD =13×2R 2h ≤23.因此,当h =R时,四棱锥S-ABCD 的体积最大,其表面积等于(2R )2+4×12×2R 8+83,解得R =2,因此球O 的体积为4π33=32π3.【解题技法】与球有关的最值问题的解法(1)从图形的特征入手:观察分析问题的几何特征,充分利用其几何性质解决.(2)从代数关系入手:解题时,通过分析题设中的所有条件,在充分审清题目意思的基础上,从问题的几何特征入手,利用其几何性质,找出问题中的代数关系,建立目标函数,利用函数最值的方法求解.【对点训练】(2023·成都模拟)已知圆柱的两个底面圆周在体积为32π3的球O的球面上,则该圆柱的侧面积的最大值为()A.4πB.8πC.12πD.16π【解析】选B.方法一:设球的半径为R,由球的体积公式得43πR3=32π3,得R=2.设圆柱的底面半径为r,球的半径与上底面夹角为α(0<α<π2),则r=2cosα,所以圆柱的高为4sinα,所以圆柱的侧面积为4πcosα×4sinα=8πsin2α,当且仅当sin2α=1,即α=π4时,圆柱的侧面积最大,所以圆柱的侧面积的最大值为8π.方法二:设球的半径为R,由球的体积公式4πR3=32π3,得R=2.设圆柱的底面半径为r,高为h,则r2+(ℎ2)2=R2=4,所以r2+ℎ24=4≥2hr,即hr≤4,当且仅当r=ℎ2=2时等号成立,所以圆柱的侧面积S=2πrh≤8π,所以圆柱的侧面积的最大值为8π.。

空间中的垂直关系(优质课)教案

空间中的垂直关系(优质课)教案

1.6空间中的垂直关系(优质课)教案教学目标:理解空间中三种垂直关系的定义;掌握空间中三种垂直关系判定及性质;用空间中三种垂直关系的定义、判定及性质解决垂直问题.教学过程:一、直线与平面垂直1.如果两条直线相交于一点或经过平移后相交于一点,并且交角为直角,则称这两条直线互垂直.2.如果一条直线(AB)和一个平面(α)相交于点O,并且和这个平面内过点O的任何直线都垂直,我们就说这条直线和这个平面互相垂直,记作AB⊥α,直线叫做平面的垂线,平面叫做直线的垂面,交点叫做垂足.垂线上任一点到垂足间的线段,叫做这点到这个平面的垂线段.垂线段的长度叫做这点到平面的距离3.直线和平面垂直的判定4.(1)判定定理:如果一条直线和一个平面内的任何两条相交直线都垂直,那么这条直线垂直于这个平面.符号语言:l⊥a,l⊥b,a∩b=A,a⊂α,b⊂α⇒l⊥α,如图:(2)如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于同一个平面.符号语言:a∥b,a⊥α⇒b⊥α,如图:5.直线与平面垂直的性质(1)性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行.符号语言:a⊥α,b⊥α⇒a∥b,如图:(2)一条直线垂直于一个平面,它就和平面内的任意一条直线垂直.符号语言:a⊥α,b⊂α⇒a⊥b,如图:6.设P是三角形ABC所在平面α外一点,O是P在α内的射影(1)若PA=PB=PC,则O为△ABC的外心.特别地当∠C=90°时,O为斜边AB中点.(2)若PA、PB、PC两两垂直,则O为△ABC的垂心.(3)若P到△ABC三边距离相等,则O为△ABC的内心.7.(1)过一点有且只有一条直线与已知平面垂直.(2)过一点有且只有一个平面与已知直线垂直.二、直线和平面平行1.平面与平面垂直的定义:如果两个相交平面的交线与第三个平面垂直,又这两个平面与第三个平面相交所得的两条交线互相垂直,就称这两个平面互相垂直.平面α、β互相垂直,记作α⊥β.2.两个平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.符号表示:a⊥α,a⊂β⇒α⊥β,如图:3.两个平面垂直的性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线,垂直于另一个平面.符号表示:α⊥β,α∩β=CD,BA⊂α,BA⊥CD,B为垂足⇒BA⊥β,如图:推论:如果两个平面垂直,那么过第一个平面内的一点垂直于第二个平面的直线,在第一个平面内.类型一线面垂直例1:如图,直角△ABC 所在平面外一点S ,且SA =SB =SC ,点D 为斜边AC 的中点. (1)求证:SD ⊥平面ABC ;(2)若AB =BC ,求证:BD ⊥平面SAC.解析:由于D 是AC 中点,SA =SC ,∴SD 是△SAC 的高,连接BD ,可证△SDB ≌△SDA .由AB =BC ,则Rt △ABC 是等腰直角三角形,则BD ⊥AC ,利用线面垂直的判定定理即可得证. 答案:(1)∵SA =SC ,D 为AC 的中点, ∴SD ⊥AC .在Rt △ABC 中,连接BD ,则AD =DC =BD ,又∵SB =SA ,SD =SD , ∴△ADS ≌△BDS .∴SD ⊥BD .又AC ∩BD =D , ∴SD ⊥面ABC .(2)∵BA =BC ,D 为AC 中点,∴BD ⊥AC . 又由(1)知SD ⊥面ABC ,∴SD ⊥BD .于是BD 垂直于平面SAC 内的两条相交直线, ∴BD ⊥平面SAC . 练习1:((2014·河南南阳一中高一月考)如图所示,在四棱锥P -ABCD 中, 底面ABCD 是矩形,侧棱P A ⊥平面ABCD ,E 、F 分别是AB 、PC 的中点, P A =AD .求证:EF ⊥平面PCD .答案:如图,取PD 的中点H ,连接AH 、HF .∴FH12CD, ∴FH AE ,∴四边形AEFH 是平行四边形,∴AH ∥EF . ∵底面ABCD 是矩形,∴CD ⊥AD . 又∵PA ⊥底面ABCD , ∴PA ⊥CD ,PA ∩AD =A , ∴CD ⊥平面PAD .又∵AH ⊂平面PAD ,∴CD ⊥AH .又∵PA =AD ,∴AH ⊥PD ,PD ∩CD =D , ∴AH ⊥平面PCD ,又∵AH ∥EF ,∴EF ⊥平面PCD .练习2:如右图,在正方体1111ABCD A B C D −中,P 为1DD 的中点,O 为ABCD 的中心, 求证:1B O ⊥平面PAC 答案:连结111,,PO PB B D ,OP D 1C 1B 1A 1D CBA由正方体的性质可知,1,AC BD AC BB ⊥⊥,且1BD BB B =∴AC ⊥面11BDD B 又∵BO ⊂面11BDD B ∴1B O AC ⊥ 设AB a =,则1111,,22OB OD a B D PD PD a ===== ∵2222222222221113113,22424OB OB BB a a a OP PD DO a a a =+=+==+=+= 222222111119244PB B D PD a a a =+=+=∴2221OB PO PB += ∴1B O PO ⊥ ∵PO AC O =∴1B O ⊥平面PAC练习3:在如右图,在空间四边形ABCD 中,,AB AD BC CD ==, 求证:AC BD ⊥答案:设E 为BD 的中点,连结,AE EC∵AB AD = ∴BD AE ⊥ 同理可证:BD EC ⊥ 又∵AEEC E = ∴BD ⊥面AEC∵AE ⊂面AEC ∴BD AC ⊥例2:如图在△ABC 中,∠B =90°,SA ⊥平面ABC , 点A 在SB 和SC 上的射影分别是N 、M ,求证:MN ⊥SC . 解析:根据直线平面垂直的性质,找到所求垂直的线段中的 一条与另一条所在的平面垂直,即可证明这两条线段互相垂直. 答案:证明:∵SA ⊥平面ABC , ∴SA ⊥BC ,又∠ABC =90°,∴BC ⊥AB ,∴BC ⊥平面SAB , ∴AN ⊥BC ,又AN ⊥SB ,∴AN ⊥平面SBC , ∴AN ⊥SC ,又AM ⊥SC , ∴SC ⊥平面AMN , ∴MN ⊥SC .练习1:如图,在正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为A 1D 、AC 上的点,且EF ⊥A 1D ,EF ⊥AC .求证:EF ∥BD 1. 答案:如图所示,连接A 1C 1、C 1D 、BD 、B 1D 1. 由于AC ∥A 1C 1,EF ⊥AC ,∴EF ⊥A 1C 1. 又EF ⊥A 1D ,A 1D ∩A 1C 1=A 1, ∴EF ⊥平面A 1C 1D .①E ABCD∵BB 1⊥平面A 1B 1C 1D 1,A 1C 1⊂平面A 1B 1C 1D 1, ∴BB 1⊥A 1C 1.又∵四边形A 1B 1C 1D 1为正方形,∴A 1C 1⊥B 1D 1. ∵BB 1∩B 1D 1=B 1,∴A 1C 1⊥平面BB 1D 1D . 而BD 1⊂平面BB 1D 1D ,∴BD 1⊥A 1C 1. 同理,DC 1⊥BD 1,DC 1∩A 1C 1=C 1, ∴BD 1⊥平面A 1C 1D .②由①②可知EF ∥BD 1.练习2:在空间中,下列命题:①平行于同一条直线的两条直线平行;②垂直与同一直线的两条直线平行;③平行与同一平面的两条直线平行;④垂直于同一平面的两条直线平行.其中正确的由___ . 答案:①④练习3:已知,,a b c 及平面β,则下列命题正确的是( )A 、////a a b b ββ⎫⇒⎬⊂⎭B 、a a b b ββ⊥⎫⇒⊥⎬⊥⎭C 、//a c a b b c ⊥⎫⇒⎬⊥⎭D 、//a a b b ββ⊂⎫⇒⎬⊂⎭ 答案:B例3:如图,在底面为直角梯形的四棱锥P -ABCD 中,AD ∥BC ,∠ABC =90°,PA ⊥平面ABCD ,PA =3,AD =2,AB =23,BC =6.求证:BD ⊥平面PAC .解析:通过计算得到直角,进而得到垂直. 答案:∵PA ⊥平面ABCD ,BD ⊂平面ABCD ,∴BD ⊥PA .∵∠BAD 和∠ABC 都是直角,∴tan ∠ABD =AD AB =33,tan ∠BAC =BCAB=3, ∴∠ABD =30°,∠BAC =60°.∴∠AEB =90°,即BD ⊥AC , 又PA ∩AC =A ,∴BD ⊥平面PAC .练习1:在正方体中ABCD -A 1B 1C 1D 1中,P 为DD 1的中点, O 为底面ABCD 的中心.求证:B 1O ⊥平面PAC . 答案:如图所示,连接AB 1、CB 1、B 1D 1、PB 1、PO .设AB =a ,则AB 1=CB 1=B 1D 1=2a ,AO =OC =22a , ∴B 1O ⊥AC .∵B 1O 2=OB 2+BB 21=⎝⎛⎭⎪⎫22a 2+a 2=32a 2,PB 21=PD 21+B 1D 21=⎝ ⎛⎭⎪⎫12a 2+(2a )2=94a 2,OP 2=PD 2+DO 2=⎝ ⎛⎭⎪⎫12a +⎝⎛⎭⎪⎫22a 2=34a 2,∴B 1O 2+OP 2=PB 21,∴B 1O ⊥OP . 又PO ∩AC =O ,∴B 1O ⊥平面PAC .练习2: 如图,若测得旗杆PO =4,P A =PB =5,OA =OB =3,则旗杆PO 和地面α的关系是________.答案:∵PO =4,OA =OB =3,P A =PB =5,∴PO 2+AO 2=P A 2,PO 2+OB 2=PB 2, ∴PO ⊥OA ,PO ⊥OB .又OA ∩OB =O ,∴PO ⊥平面AOB ,∴PO ⊥地面α.类型二 平面与平面垂直例4:(2014·山东临沂高一期末测试)如图,在底面为正三角形的直三棱柱ABC -A 1B 1C 1中,点D 是BC的中点,求证:平面AC 1D ⊥平面BCC 1B 1.解析:运用平面垂直的判定.答案:∵△ABC 为正三角形,D 为BC 的中点,∴AD ⊥BC .又∵CC 1⊥底面ABC ,AD ⊂平面ABC , ∴CC 1⊥AD .又BC ∩CC 1=C , ∴AD ⊥平面BCC 1B 1. 又AD ⊂平面AC 1D ,∴平面AC 1D ⊥平面BCC 1B 1.练习1:三棱锥S -ABC 中,∠BSC =90°,∠ASB =60°,∠ASC =60°,SA =SB =SC . 求证:平面ABC ⊥平面SBC .答案:解法一:取BC 的中点D ,连接AD 、SD .由题意知△ASB 与△ASC 是等边三角形,则AB =AC . ∴AD ⊥BC ,SD ⊥BC .令SA =a ,在△SBC 中,SD =22a , 又∵AD =AC 2-CD 2=22a ,∴AD 2+SD 2=SA 2. 即AD ⊥SD .又∵AD ⊥BC ,∴AD ⊥平面SBC . ∵AD ⊂平面ABC ,∴平面ABC ⊥平面SBC .解法二:∵SA =SB =SC =a , 又∵∠ASB =∠ASC =60°,∴△ASB 、△ASC 都是等边三角形. ∴AB =AC =a .作AD ⊥平面SBC 于点D ,∵AB =AC =AS ,∴D 为△SBC 的外心. 又∵△BSC 是以BC 为斜边的直角三角形, ∴D 为BC 的中点,故AD ⊂平面ABC . ∴平面ABC ⊥平面SBC .练习2:如右图,在四面体ABCD 中,,BD AB AD CB CD a =====.求证:平面ABD ⊥平面BCD . 答案:取BD 的中点E ,连结,AE EC∵AB AD = ∴AE BD ⊥ 同理CE BD ⊥ 在△ABD中,1,22AB a BE BD a ===∴2AE a ==同理2CE a = 在△AEC中,,2AE CE a AC a === ∴222AC AE CE =+ ∴AE CE ⊥ ∵BDCE E = ∴AE ⊥平面BCD ∵AE ⊂平面ABD ∴平面ABD ⊥平面BCD练习3:空间四边形ABCD 中,若,AD BC BD AD ⊥⊥,那么有( ) A 、平面ABC ⊥平面ADC B 、平面ABC ⊥平面ADBC 、平面ABC ⊥平面DBCD 、平面ADC ⊥平面DBC 答案:D例5:已知P 是△ABC 所在平面外的一点,且P A ⊥平面ABC ,平面P AC ⊥平面PBC ,求证:BC ⊥AC .解析:已知条件是线面垂直和面面垂直,要证明两条直线垂直,应将两条直线中的一条放入一平面中,使另一条直线与该平面垂直,即由线面垂直得到线线垂直.在空间图形中,高一级的垂直关系蕴含着低一级的垂直关系,通过本题可以看到:面面垂直⇒线面垂直⇒线线垂直. 答案:如图,在平面P AC 内作AD ⊥PC 于点D ,∵平面P AC ⊥平面PBC ,AD ⊂平面P AC ,且AD ⊥PC , ∴AD ⊥平面PBC ,又BC ⊂平面PBC ,∴AD ⊥BC .∵P A ⊥平面ABC ,BC ⊂平面ABC , ∴P A ⊥BC ,∵AD ∩P A =A ,∴BC ⊥平面P AC , 又AC ⊂平面P AC ,∴BC ⊥AC .练习1:已知三棱锥P -ABC 中,侧面PAC 与底面ABC 垂直,PA =PB =PC . (1)求证:AB ⊥BC ;(2)若AB =BC ,过点A 作AF ⊥PB 于点F ,连接CF ,求证:平面PBD ⊥平面AFC . 答案:如图所示:(1)取AC 的中点D ,连接PD 、BD , ∵PA =PC ,∴PD ⊥AC ,又平面PAC ⊥平面ABC ,且平面PAC ∩平面ABC =AC , ∴PD ⊥平面ABC ,D 为垂足. ∵PA =PB =PC , ∴DA =DB =DC ,∴AC 为△ABC 的外接圆的直径,故AB ⊥BC . (2)∵PA =PC ,AB =BC ,PB =PB , ∴△ABP ≌△CBP .ABCDE∵AF⊥PB,∴CF⊥PB,又AF∩CF=F,∴PB⊥平面AFC,又PB⊂平面PBD,∴平面PBD⊥平面AFC.练习2:已知平面P AB⊥平面ABC,平面P AC⊥平面ABC,如图所示.求证:P A⊥平面ABC.答案:如图所示,在平面ABC内任取一点D,作DF⊥AC于点F,作DG⊥AB于点G,∵平面PAC⊥平面ABC,平面PAC∩平面ABC=AC,∴DF⊥平面PAC,又∵PA⊂平面PAC,∴PA⊥DF,同理可证:DG⊥PA,∵DF∩DG=D,且DF⊂平面ABC,DG⊂平面ABC,∴PA⊥平面ABC.1.一条直线和三角形的两边同时垂直,则这条直线和三角形的第三边的位置关系是( ) A.平行B.垂直C.相交不垂直D.不确定答案:B2.若一条直线l上有两个点到平面α的距离相等,则l与α的关系是( )A.平行B.相交C.垂直D.不确定答案:D3.已知直线l⊥平面α,直线m⊂平面β,给出下列四个命题:①α∥β,l⊄β⇒l⊥m②α⊥β⇒l∥m③l∥m⇒α⊥β④l⊥m⇒α∥β其中正确的两个命题是( )A.①②B.③④C.②④D.①③答案:D4.如图,四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ABD沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A-BCD,则在三棱锥A-BCD中,下列命题正确的是( )A.平面ABD⊥平面ABCB.平面ADC⊥平面BDCC.平面ABC⊥平面BDCD.平面ADC⊥平面ABC答案:D5.若有直线m、n和平面α、β,下列四个命题中,正确的是( )A.若m∥α,n∥α,则m∥nB.若m⊂α,n⊂α,m∥β,n∥β,则α∥βC.若α⊥β,m⊂α,则m⊥βD.若α⊥β,m⊥β,m⊄α,则m∥α答案:D6. Rt △ABC 所在平面α外一点P 到直角顶点的距离为24,到两直角边的距离都是610,那么点P 到平面α的距离等于__________.答案: 12_________________________________________________________________________________ _________________________________________________________________________________基础巩固1.已知一平面平行于两条异面直线,一直线与两异面直线都垂直,那么这个平面与这条直线的位置关系是( )A .平行B .垂直C .斜交D .不能确定 答案:B2.直线a ⊥直线b ,a ⊥平面β,则b 与β的位置关系是( )A .b ⊥βB .b ∥βC .b ⊂βD .b ⊂β或b ∥β 答案:D 3.下列命题①⎭⎪⎬⎪⎫a ⊥αb ⊂α⇒a ⊥b ; ②⎭⎪⎬⎪⎫a ⊥αa ∥b ⇒b ⊥α; ③⎭⎪⎬⎪⎫a ⊥αb ∥α⇒a ⊥b; ④⎭⎪⎬⎪⎫a ⊥ba ⊥b b ⊂αc ⊂α⇒a ⊥α; ⑤⎭⎪⎬⎪⎫a ∥αa ⊥b ⇒b ⊥α; ⑥⎭⎪⎬⎪⎫a ⊥αb ⊥a ⇒b ∥α. 其中正确命题的个数是( )A .3B .4C .5D .6 答案:A4..若平面α∥平面β,直线a ⊂α,直线b ⊂β,那么a 、b 的位置关系是( )A .无公共点B .平行C .既不平行也不相交D .相交答案:A5.直线a 与平面α内的两条直线都垂直,则a 与α的位置关系是( )A .垂直B .平行C .a 在平面α内D .不确定 答案:D6.若平面α⊥平面β,且平面α内的一条直线a 垂直于平面β内的一条直线b ,则( )A .直线a 必垂直于平面βB .直线b 必垂直于平面αC .直线a 不一定垂直于平面βD.过a的平面与过b的平面垂直答案:C7.长方体ABCD-A1B1C1D1中,MN在平面BCC1B1内,MN⊥BC于M,则MN与AB的位置关系为____________________.答案:MN⊥AB8.如图所示,已知正三棱柱ABC-A1B1C1的面对角线A1B⊥B1C,求证B1C⊥C1A.答案:如图所示,连接A1C,交AC1于点D,则点D是A1C的中点.取BC的中点N,连接AN、DN,则DN∥A1B.又A1B⊥B1C,∴B1C⊥DN.又△ABC是正三角形,∴AN⊥BC.又平面ABC⊥平面BB1C1C,平面ABCD∩平面BB1C1C=BC,AN⊂平面ABC,∴AN⊥平面BB1C1C.又B1C⊂平面BB1C1C,∴B1C⊥AN.又AN⊂平面AND,DN⊂平面AND,AN∩DN=N,∴B1C⊥平面AND.又C1A⊂平面AND,∴B1C⊥AC1.能力提升9.若两直线a与b异面,则过a且与b垂直的平面()A.有且只有一个B.至多有一个C.有无数多个D.一定不存在答案:B10.已知三棱锥S-ABC的各顶点都在一个半径为r的球面上,球心O在AB上,SO⊥底面ABC,AC=2r,则球的体积与三棱锥体积之比是()A.πB.2πC.3πD.4π答案:D11. (2014·浙江文,6)设m,n是两条不同的直线,α、β是两个不同的平面()A.若m⊥n,n∥α,则m⊥αB.若m∥β,β⊥α,则m⊥αC.若m⊥β,n⊥β,n⊥α,则m⊥αD.若m⊥n,n⊥β,β⊥α,则m⊥α答案:C12.已知平面ABC外一点P,且PH⊥平面ABC于H.给出下列4个命题:①若P A⊥BC,PB⊥AC,则H是△ABC的垂心;②若P A、PB、PC两两互相垂直,则H是△ABC的垂心;③若∠ABC=90°,H是AC的中点,则P A=PB=PC;④若P A=PB=PC,则H是△ABC的外心.其中正确命题的个数为()A.1B.2C.3D.4答案:D13. 平面α的斜线AB 交α于点B ,过定点A 的动直线l 与AB 垂直,且交α于点C ,则动点C 的轨迹为________.(填直线、圆、其它曲线)答案:直线14. 如图所示,已知矩形ABCD 中,AB =1,BC =a ,P A ⊥平面ABCD ,若在BC 上只有一个点Q 满足PQ ⊥QD ,则a 的值等于________.答案:215. 如图所示,在四棱锥P -ABCD 中,P A ⊥底面ABCD .底面各边都相等,M 是PC 上的一动点,当点M 满足________________时,平面MBD ⊥平面PCD .(注:只要填写一个你认为正确的即可)答案:BM ⊥PC (其它合理答案亦可)16. 如图所示,△ABC 为正三角形,CE ⊥平面ABC ,BD ∥CE ,且CE =AC =2BD ,M 是AE 的中点.(1)求证:DE =DA ;(2)求证:平面BDM ⊥平面ECA ;(3)求证:平面DEA ⊥平面ECA .答案:(1)取EC 的中点F ,连接DF .∵CE ⊥平面ABC ,∴CE ⊥BC .易知DF ∥BC ,∴CE ⊥DF .∵BD ∥CE ,∴BD ⊥平面ABC .在Rt △EFD 和Rt △DBA 中,EF =12CE =DB ,DF =BC =AB , ∴Rt △EFD ≌Rt △DBA .故DE =DA .(2)取AC 的中点N ,连接MN 、BN ,则MN CF .∵BD CF ,∴MN BD ,∴N ∈平面BDM .∵EC ⊥平面ABC ,∴EC ⊥BN .又∵AC ⊥BN ,EC ∩AC =C ,∴BN ⊥平面ECA .又∵BN ⊂平面BDM ,∴平面BDM ⊥平面ECA .(3)∵DM ∥BN ,BN ⊥平面ECA ,∴DM ⊥平面ECA .又∵DM ⊂平面DEA ,∴平面DEA ⊥平面ECA .。

空间中的垂直关系教案

空间中的垂直关系教案

空间中的垂直关系教案空间中的垂直关系一. 教学内容:空间中的垂直关系二、学习目标1、掌握直线与平面垂直的定义、判定定理和性质定理,并能运用它们进行论证和解决有关的问题;2、掌握平面与平面垂直的概念和判定定理、性质定理,并能运用它们进行推理论证和解决有关问题;3、在研究垂直问题时,要善于应用“转化”和“降维”的思想,通过线线、线面、面面平行与垂直关系的转化,从而使问题获得解决。

三、知识要点1、直线与平面垂直的定义:如果一条直线和一个平面内的任何一条直线都垂直,那么就称这条直线和这个平面垂直。

2、直线与平面垂直的判定:常用方法有:①判定定理: .② b⊥α, a∥ba⊥α;(线面垂直性质定理)③α∥β,a⊥βa⊥α(面面平行性质定理)④α⊥β,α∩β=l,a⊥l,a a⊥α(面面垂直性质定理)3、直线与平面垂直的性质定理:①如果两条直线同垂直于一个平面,那么这两条直线平行。

(a⊥α,b⊥α&#8658;a∥b)②直线和平面垂直时,那么该直线就垂直于这个平面内的任何直线()4、点到平面的距离的定义:从平面外一点引这个平面的垂线,这个点和垂足间的线段的长度叫做这个点到平面的距离。

特别注意:点到面的距离可直接向面作垂线,但要考虑垂足的位置,如果垂足的位置不能确定,往往采取由点向面上某一条线作垂线,再证明此垂足即为面的垂足。

5、平面与平面垂直的定义及判定定理:(1)定义:如果两个相交平面的交线与第三个平面垂直,又这两个平面与第三个平面相交所得的两条交线互相垂直,就说这两个平面互相垂直。

记作:平面α⊥平面β(2)判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。

(简称:线面垂直,面面垂直)6、两个平面垂直的性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。

(简称:面面垂直,线面垂直。

)思维方式:判定两相交平面垂直的常用方法是:线面垂直,面面垂直;有时用定义也是一种办法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空间中的垂直关系一.【课标要求】以立体几何的上述定义、公理和定理为出发点,通过直观感知、操作确认、思辨论证,认识和理解空间中线面垂直的有关性质与判定。

通过直观感知、操作确认,归纳出以下判定定理:◆一条直线与一个平面内的两条相交直线垂直,则该直线与此平面垂直。

◆ 一个平面过另一个平面的垂线,则两个平面垂直。

通过直观感知、操作确认,归纳出以下性质定理,并加以证明: ◆两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。

能运用已获得的结论证明一些空间位置关系的简单命题。

二.【命题走向】近年来,立体几何高考命题形式比较稳定,题目难易适中,常常立足于棱柱、棱锥和正方体,复习是要以多面体为依托,始终把直线与直线、直线与平面、平面与平面垂直的性质和判定作为考察重点。

在难度上也始终以中等偏难为主,在新课标教材中将立体几何要求进行了降低,重点在对图形及几何体的认识上,实现平面到空间的转化,示知识深化和拓展的重点,因而在这部分知识点上命题,将是重中之重。

预测2010年高考将以多面体为载体直接考察线面位置关系: (1)考题将会出现一个选择题、一个填空题和一个解答题;(2)在考题上的特点为:热点问题为平面的基本性质,考察线线、线面和面面关系的论证,此类题目将以客观题和解答题的第一步为主。

(3)解答题多采用一题多问的方式,这样既降低了起点又分散了难点三.【要点精讲】1.线线垂直判断线线垂直的方法:所成的角是直角,两直线垂直;垂直于平行线中的一条,必垂直于另一条。

三垂线定理:在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。

三垂线定理的逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那麽它也和这条斜线的射影垂直推理模式: ,,PO O PA A a AO a a AP αααα⊥∈⎫⎪=⇒⊥⎬⎪⊂⊥⎭。

注意:⑴三垂线指PA ,PO ,AO 都垂直α内的直线a 其实质是:斜线和平面内一条直线垂直的判定和性质定理⑵要考虑a 的位置,并注意两定理交替使用。

2.线面垂直定义:如果一条直线l 和一个平面α相交,并且和平面α内的任意一条直线都垂直,我们就说直线l 和平面α互相垂直其中直线l 叫做平面的垂线,平面α叫做直线l 的垂面,直线与平面的交点叫做垂足。

直线l 与平面α垂直记作:l ⊥α。

直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。

直线和平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。

3.面面垂直两个平面垂直的定义:相交成直二面角的两个平面叫做互相垂直的平面。

两平面垂直的判定定理:(线面垂直⇒面面垂直)如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。

两平面垂直的性质定理:(面面垂直⇒线面垂直)若两个平面互相垂直,那么在一个平面内垂直于它们的交线的直线垂直于另一个平面。

四.【典例解析】题型1:线线垂直问题例1.如图1所示,已知正方体ABCD —A 1B 1C 1D 1中,E 、F 、G 、H 、L 、M 、N 分别为A 1D 1,A 1B 1,BC ,CD ,DA ,DE ,CL 的中点,求证:EF ⊥GF 。

证明:如图2,作GQ ⊥B 1C 1于Q ,连接FQ ,则GQ ⊥平面A 1B 1C 1D 1,且Q 为B 1C 1的中点。

在正方形A 1B 1C 1D 1中,由E 、F 、Q 分别为A 1D 1、A 1B 1、B 1C 1的中点可证明EF ⊥FQ ,由三垂线定理得EF ⊥GF 。

点评:以垂直为背景,加强空间想象能力的考查,体现了立体几何从考查、论证思想。

例2.(2006全国Ⅱ,19)如图,在直三棱柱ABC -A 1B 1C 1中,AB =BC ,D 、E 分别为BB 1、AC 1的中点,证明:ED 为异面直线BB 1与AC 1的公垂线。

证明:设O 为AC 中点,连接EO ,BO ,则EO 12C 1C ,又C 1CB 1B ,所以EODB ,EOBD 为平行四边形,ED ∥O B 。

AB C D E A 1B 1C 1O F∵AB =BC ,∴BO ⊥AC ,又平面ABC ⊥平面ACC 1A 1,BO ⊂面ABC ,故BO ⊥平面ACC 1A 1, ∴ED ⊥平面ACC 1A 1,BD ⊥AC 1,ED ⊥CC 1, ∴ED ⊥BB 1,ED 为异面直线AC 1与BB 1的公垂线点评:该题考点多,具有一定深度,但入手不难,逐渐加深,逻辑推理增强。

题型2:线面垂直问题例3.(1)(2006文,17)如图,ABCD —A 1B 1C 1D 1是正四棱柱,求证:BD ⊥平面ACC 1A 1。

(2)(2006某某文,19)如图,在五面体ABCDEF 中,点O 是矩形ABCD 的对角线的交点,面CDE 是等边三角形,棱12EF BC ∥。

(I )证明FO ∥平面;CDE ;(II)设,BC =证明EO ⊥平面。

证明:(1)∵ABCD —A 1B 1C 1D 1是正四棱柱, ∴CC 1⊥平面ADCD, ∴BD ⊥CC 1 ∵ABCD 是正方形 ∴BD ⊥AC又∵AC ,CC 1⊂平面ACC 1A 1, 且AC ∩CC 1=C, ∴BD ⊥平面ACC 1A 1。

(2)证明:(I )取CD 中点M ,连结OM 。

在矩形ABCD 中, 1,2OM BC ∥又1,2EF BC ∥则.EF OM ∥连结EM ,于是四边形EFOM 为平行四边形。

FO ∴∥EM.又FO ⊂平面CDE ,且EM ⊂平面CDE ,FO ∴∥平面CDE 。

(II )连结FM 。

由(I )和已知条件,在等边CDE ∆中,,CM DM =EM CD ⊥且1.2EM BC EF ===1DCABEOFM因此平行四边形EFOM 为菱形,从而EO FM ⊥。

,,CD OM CD EM CD ⊥⊥∴⊥平面EOM ,从而.CD EO ⊥而,FMCD M =所以EO ⊥平面.CDF点评:本题考查直线与平面垂直等基础知识,考查空间想象能力和推理论证能力例4.如图,直三棱柱ABC —A 1B 1C 1 中,AC =BC =1,∠ACB =90°,AA 1 =2,D 是A 1B 1 中点.(1)求证C 1D ⊥平面A 1B ;(2)当点F 在BB 1 上什么位置时,会使得AB 1⊥平面C 1DF ?并证明你的结论。

分析:(1)由于C 1D 所在平面A 1B 1C 1 垂直平面A 1B ,只要证明C 1D 垂直交线A 1B 1 ,由直线与平面垂直判定定理可得C 1D ⊥平面A 1B 。

(2)由(1)得C 1D ⊥AB 1 ,只要过D 作AB 1 的垂线,它与BB 1 的交点即为所求的F 点位置。

(1)证明:如图,∵ABC —A 1B 1C 1 是直三棱柱, ∴A 1C 1 =B 1C 1 =1,且∠A 1C 1B 1 =90°。

又 D 是A 1B 1 的中点,∴C 1D ⊥A 1B 1 。

∵AA 1⊥平面A 1B 1C 1 ,C 1D ⊂平面A 1B 1C 1 , ∴AA 1⊥C 1D ,∴C 1D ⊥平面AA 1B 1B 。

(2)解:作DE ⊥AB 1 交AB 1 于E ,延长DE 交BB 1 于F ,连结C 1F ,则AB 1⊥平面C 1DF ,点F 即为所求。

事实上,∵C 1D ⊥平面AA 1BB ,AB 1⊂平面AA 1B 1B , ∴C 1D ⊥AB 1 .又AB 1⊥DF ,DF C 1D =D , ∴AB 1⊥平面C 1DF 。

点评:本题(1)的证明中,证得C 1D ⊥A 1B 1 后,由ABC —A 1B 1C 1 是直三棱柱知平面C 1A 1B 1⊥平面AA 1B 1B ,立得C 1D ⊥平面AA 1B 1B 。

(2)是开放性探索问题,注意采用逆向思维的方法分析问题。

题型3:面面垂直问题例5.如图,△ABC 为正三角形,EC ⊥平面ABC ,BD ∥CE ,CE =CA =2 BD ,M 是EA 的中点,求证:(1)DE =DA ;(2)平面BDM ⊥平面ECA ;(3)平面DEA ⊥平面ECA 。

分析:(1)证明DE =DA ,可以通过图形分割,证明△DEF ≌△DBA 。

(2)证明面面垂直的关键在于寻找平面内一直线垂直于另一平面。

由(1)知DM ⊥EA ,取AC 中点N ,连结MN 、NB ,易得四边形MNBD 是矩形。

从而证明DM ⊥平面ECA 。

证明:(1)如图,取EC 中点F ,连结DF 。

∵EC ⊥平面ABC ,BD ∥CE ,得DB ⊥平面ABC 。

∴DB ⊥AB ,EC ⊥BC 。

∵BD ∥CE ,BD =21CE =21FC ,则四边形FCBD 是矩形,DF ⊥EC 。

又BA =BC =DF ,∴Rt △DEF ≌Rt △ABD ,所以DE =DA 。

(2)取AC 中点N ,连结MN 、NB , ∵M 是EA 的中点, ∴MN21EC 。

由BD 21EC ,且BD ⊥平面ABC ,可得四边形MNBD 是矩形,于是DM ⊥MN 。

∵DE =DA ,M 是EA 的中点, ∴DM ⊥EA .又EA MN =M ,∴DM ⊥平面ECA ,而DM ⊂平面BDM ,则平面ECA ⊥平面BDM 。

(3)∵DM ⊥平面ECA ,DM ⊂平面DEA , ∴ 平面DEA ⊥平面ECA 。

点评:面面垂直的问题常常转化为线面垂直、线线垂直的问题解决。

例6.(2009某某卷理)(本小题满分12分)在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥平面ABCD ,4PA AD ==,2AB =. 以AC 的中点O 为球心、AC 为直径的球面交PD 于点M ,交PC 于点N .(1)求证:平面ABM ⊥平面PCD ;(2)求直线CD 与平面ACM 所成的角的大小; (3)求点N 到平面ACM 的距离. 解:方法一:(1)依题设知,AC 是所作球面的直径,则AM ⊥MC 。

又因为P A ⊥平面ABCD ,则PA ⊥CD ,又CD ⊥AD , 所以CD ⊥平面PAD,则CD ⊥AM ,所以A M ⊥平面PCD , 所以平面ABM ⊥平面PCD 。

(2)由(1)知,AM PD ⊥,又PA AD =,则M 是PD 的中点可得22AM =,2223MC MD CD =+=则1262ACMS AM MC ∆⋅= NODMBPA设D 到平面ACM 的距离为h ,由D ACM M ACD V V --=即8=,可求得h =, 设所求角为θ,则sin 3h CD θ==,arcsin 3θ=。

(1) 可求得PC=6。

因为AN ⊥NC ,由PN PA PA PC =,得PN 83=。

相关文档
最新文档