二元一次方程组基本概念解法及23种不同小题类型

合集下载

二元一次方程组知识点整理、典型例题练习总结

二元一次方程组知识点整理、典型例题练习总结

⼆元⼀次⽅程组知识点整理、典型例题练习总结⼆元⼀次⽅程组(拓展与提优)1、⼆元⼀次⽅程:含有两个未知数( x 和 y ),并且含有未知数の项の次数都是 1,像这样の整式⽅程叫做⼆元⼀次⽅程,它の⼀般形式是 ax by c(a 0,b 0).例 1、若⽅程( 2m-6)x|n|-1+(n+2)ym2-8=1是关于x 、yの⼆元⼀次⽅程,求 m 、n の值.2、⼆元⼀次⽅程の解:⼀般地,能够使⼆元⼀次⽅程の左右两边相等の两个未知数の值,叫做⼆元⼀次⽅程の解.【⼆元⼀次⽅程有⽆数组解】3、⼆元⼀次⽅程组:含有两个未知数( x 和 y ),并且含有未知数の项の次数都是 1,将这样の两个或⼏个⼀次⽅程合起来组成の⽅程组叫做⼆元⼀次⽅程组 .4、⼆元⼀次⽅程组の解:⼆元⼀次⽅程组中の⼏个⽅程の公共解,叫做⼆元⼀次⽅程组の解 . 【⼆元⼀次⽅程组解x y 1 x y 1x y 1 x y 1の情况:①⽆解,例如: x y 6,2x 2y 6;②有且只有⼀组解,例如: 2x y 2 ;③有⽆数组解,例如: 2x 2y 2】例 2、已知2x +(m -1)y =2nx+ y =1の解,试求(m+n ) 2016の值例 3、⽅程 x 3y 10 在正整数范围内有哪⼏组解?5、⼆元⼀次⽅程组の解法:代⼊消元法和加减消元法。

例 4、将⽅程 10 2(3 y ) 3(2 x )变形,⽤含有 x の代数式表⽰ y .例 5、⽤适当の⽅法解⼆元⼀次⽅程组ax y 1例 6、若⽅程组有⽆数组解,则 a 、 b の值分别为()6x by 2B. a 2,b 1C.a=3,b=-2D. a 2 b, 2x2x 2是关于 x 、 y の⼆元⼀次⽅程组A. a=6,b=-1例 7、已知关于 x, y の⽅程组 3x 5y m 2の解满⾜ x y 10,求式⼦ m 2 2m 1の值. 2x 3y m6、三元⼀次⽅程组及其解法:⽅程组中⼀共含有三个未知数,含未知数の项の次数都是1,并且⽅程组中⼀共有两个或两个以上の⽅程,这样の⽅程组叫做三元⼀次⽅程组。

初中二元一次方程知识归纳

初中二元一次方程知识归纳

初中二元一次方程知识归纳二元一次方程是初中解方程的重要知识点,求解二元一次方程首先要明白其基础内容。

以下是店铺分享给大家的初中二元一次方程知识,希望可以帮到你!初中二元一次方程知识一.二元一次方程(组)的相关概念1.二元一次方程:含有两个未知数并且未知项的次数是1的方程叫做二元一次方程。

2.二元一次方程组:二元一次方程组两个二元—次方程合在一起就组成了一个二元一次方程组。

3.二元一次方程的解集:(1)二元一次方程的解适合一个二元一次方程的每一对未知数的值.叫做这个二元一次方程的一个解。

(2)二元一次方程的解集对于任何一个二元一次方程,令其中一个未知数取任意二个值,都能求出与它对应的另一个未知数的值.因此,任何一个二元一次方程都有无数多个解.由这些解组成的集合,叫做这个二元一次方程的解集。

4.二元一次方程组的解:二元一次方程组可化为使方程组中的各个方程的左、右两边都相等的未知数的值,叫做方程组的解。

二.利用消元法解二元一次方程组解二元(三元)一次方程组的一般方法是代入消元法和加减消元法。

1.解法:(1) 代入消元法是将方程组中的其中一个方程的未知数用含有另一个未知数的代数式表示,并代入到另一个方程中去,消去另一个未知数,得到一个解。

代入消元法简称代入法。

(2)加减消元法利用等式的性质使方程组中两个方程中的某一个未知数前的系数的绝对值相等,然后把两个方程相加或相减,以消去这个未知数,使方程只含有一个未知数而得以求解。

这种解二元一次方程组的方法叫做加减消元法,简称加减法。

用加减法消元的一般步骤为:①在二元一次方程组中,若有同一个未知数的系数相同(或互为相反数),则可直接相减(或相加),消去一个未知数;②在二元一次方程组中,若不存在①中的情况,可选择一个适当的数去乘方程的两边,使其中一个未知数的系数相同(或互为相反数),再把方程两边分别相减(或相加),消去一个未知数,得到一元一次方程;③解这个一元一次方程;④将求出的一元一次方程的解代入原方程组系数比较简单的方程,求另一个未知数的值;⑤把求得的两个未知数的值用大括号联立起来,这就是二元一次方程组的解。

(完整版)二元一次方程解法大全.,推荐文档

(完整版)二元一次方程解法大全.,推荐文档

二元一次方程解法大全 1、直接开平方法: 直接开平方法就是用直接开平方求解二元一次方程的方法。

用直接开平方法解形如(x-m)2=n(n≥0)的方程,其解为x=±根号下n+m. 例1.解方程(1)(3x+1)2=7(2)9x2-24x+16=11 分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2,右边=11>0,所以此方程也可用直接开平方法解。

(1)解:(3x+1)2=7× ∴(3x+1)2=5 ∴3x+1=±(注意不要丢解) ∴x= ∴原方程的解为x1=,x2= (2)解:9x2-24x+16=11 ∴(3x-4)2=11 ∴3x-4=± ∴x= ∴原方程的解为x1=,x2= 2.配方法:用配方法解方程ax2+bx+c=0(a≠0) 先将常数c移到方程右边:ax2+bx=-c 将二次项系数化为1:x2+x=- 方程两边分别加上一次项系数的一半的平方:x2+x+()2=-+()2 方程左边成为一个完全平方式:(x+)2= 当b^2-4ac≥0时,x+=± ∴x=(这就是求根公式) 例2.用配方法解方程3x^2-4x-2=0(注:X^2是X的平方) 解:将常数项移到方程右边3x^2-4x=2 将二次项系数化为1:x2-x= 方程两边都加上一次项系数一半的平方:x2-x+()2=+()2 配方:(x-)2= 直接开平方得:x-=± ∴x= ∴原方程的解为x1=,x2=. 3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项系数a,b,c的值代入求根公式x=[-b±(b^2-4ac)^(1/2)]/(2a),(b^2-4ac≥0)就可得到方程的根。

例3.用公式法解方程2x2-8x=-5 解:将方程化为一般形式:2x2-8x+5=0 ∴a=2,b=-8,c=5 b^2-4ac=(-8)2-4×2×5=64-40=24>0 ∴x=[(-b±(b^2-4ac)^(1/2)]/(2a) ∴原方程的解为x1=,x2=. 4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。

七年级下-二元一次方程组的定义及解法

七年级下-二元一次方程组的定义及解法

二元一次方程组的定义及解法知识集结知识元二元一次方程(组)的定义知识讲解1. 二元一次方程的定义:含有两个未知数,且含有未知数的项的次数为1的整式方程叫二元一次方程。

所以满足三个条件:①方程中有且只有两个未知数;②方程中含有未知数的项的次数为1;③方程为整式方程,就是二元一次方程。

注意:主要考查未知数的项的次数为1,方程必须为整式,不能为分式。

例:x=2y.2.二元一次方程组的定义:由几个一次方程组成并且含有两个未知数的方程组,叫二元一次方程组。

注意三条:①方程组中有且只有两个未知数。

②方程组中含有未知数的项的次数为1。

③方程组中每个方程均为整式方程。

注意:二元一次方程组不一定由两个二元一次方程合在一起:①方程可以超过两个;②有的方程可以只有一元。

例题精讲二元一次方程(组)的定义例1.下列方程中,是二元一次方程的是().A.8x2+1=y B.y=8x+1C.y=D.xy=1例2.下列方程组中,是二元一次方程组的是().C.D.A.B.例3.有下列方程组:(1)(2)(3)(4),其中说法正确的是().A.只有(1)、(3)是二元一次方程组B.只有(3)、(4)是二元一次方程组C.只有(4)是二元一次方程组D.只有(2)不是二元一次方程组根据定义求字母的值知识讲解含有参数的二元一次方程组,根据二元一次方程的定义:1.二元的系数不为零。

2.未知数的次数为1。

注意:出现在选择填空题时,可以不用解出方程,可以直接将m,n的值代入验证即可。

例题精讲根据定义求字母的值例1.已知3 =y是二元一次方程,那么k的值是().A.2B.3C.1D.0例2.若﹣8 =10是关于x,y的二元一次方程,则m+n=.例3.'若(a-3)x+=9是关于x,y的二元一次方程,求a的值。

'由实际问题抽象出二元一次方程组知识讲解分析实际问题,找出等量关系,列出实际问题.例题精讲由实际问题抽象出二元一次方程组例1.4辆板车和5辆卡车一次能运27吨货,10辆板车和3车卡车一次能运货20吨,设每辆板车每次可运x吨货,每辆卡车每次能运y吨货,则可列方程组().A.B.C.D.例2.元旦期间,某服装商场按标价打折销售,小王去该商场买了两件衣服,第一件打6折,第二件打5折,共记230元,付款后,收银员发现两件衣服的标价牌换错了,又找给小王20元,请问两件衣服的原标价各是多少?解:设第一件衣服的原标价为x元,第二件衣服的原标价为y元;由题意可得方程组__________。

二元一次方程组知识点归纳 (1)

二元一次方程组知识点归纳 (1)

二元一次方程组知识点归纳、解题技巧汇总、练习题及答案1、二元一次方程的定义:含有两个未知数,并且未知数的项的次数都是1,像这样的方程叫做二元一次方程。

2、二元一次方程组的定义:含有两个未知数并且含有未知数的项的次数都是1,系数不为零的整式方程叫做二元一次方程。

注意:二元一次方程组应同时满足以下两点1、两个方程都是一次方程,2、方程组中共含有两个未知数。

也就是说二元一次方程组一共含有两个未知数,而不是每个方程都必须含有两个未知数。

2、二元一次方程的解:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解,二元一次方程有无数个解。

4、二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。

1有一组解如方程组x+y=5①x=-24/76x+13y=89②y=59/7 为方程组的解2.有无数组解如方程组x+y=6①因为这两个方程实际上是一个方程2x+2y=12②(亦称作“方程有两个相等的实数根”),所以此类方程组有无数组解。

3.无解如方程组x+y=4①因为方程②化简后为x+y=52x+2y=10②,这与方程①相矛盾,所以此类方程组无解。

一般解法,消元:将方程组中的未知数个数由多化少,逐一解决。

消元的方法有两种:1、代入消元法:把二元一次方程组中一个方程的未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。

这个方法叫做代入消元法,简称代入法。

例:解方程组x+y=5①6x+13y=89②解:由①得x=5-y③把③带入②,得6(5-y)+13y=89 y=59/7把y=59/7带入③,x=5-59/7 即x=-24/7x=-24/7y=59/7 为方程组的解基本思路:未知数又多变少。

消元法的基本方法:将二元一次方程组转化为一元一次方程。

代入法解二元一次方程组的一般步骤:从方程组中选出一个系数比较简单的方程,将这个方程中的一个未知数(例如y )用含另一个未知数(例如x )的代数式表示出来,即写成y=ax+b 的形式,即“变” 将y=ax+b 代入到另一个方程中,消去y ,得到一个关于x 的一元一次方程,即“代”。

二元一次方程基本概念及基本解法讲解(最新整理)

二元一次方程基本概念及基本解法讲解(最新整理)

2
2x y 3
4.
方程组
x
y
3
的解是(

x 1
A.
y
2
x 2
B.
y
1
x 1
C.
y
1
x 2
D.
y
3
6x 5y 11, ①
5.已知二元一次方程组
3
y
2x
7,

,下列说法正确的是()
A.适合②的 x, y的值 是方程组的解①②
B.适合①的 x, y的值 是方程组的解
C.同时适合①和②的 x, y的值 不一定是方程组的解
8.在二元一次方程组
x 2x
y m
4 3
y
中,有
x
6
,则
y
_____,
m
______ .
9.若 x 2 (3y 2x)2 0 ,则 x 的值是

y
10.若
是二元一次方程
的一个解,则
的值是__________.
11.已知
,且
,则 ___________.
x 2
12.若方程
ax-2y=4
的一个解是
x
y
2 ,
8
x
y
4 ,
6
x y
1 9
等等
练习 2:二元一次方程 x-2y=1 有无数多个解,下列四组值中不是该方程解的是( )
x 0
A.
y
1 2
x 1
B.
y
1
x 1
C.
y
0
x 1
D.
y
1
【变式
2】若方程
ax

《二元一次方程组及其解法》 知识清单

《二元一次方程组及其解法》 知识清单

《二元一次方程组及其解法》知识清单一、二元一次方程组的概念含有两个未知数,并且含有未知数的项的次数都是 1 的整式方程叫做二元一次方程。

把两个具有相同未知数的二元一次方程合在一起,就组成了一个二元一次方程组。

例如:\\begin{cases}x + y = 5 \\2x y = 1\end{cases}\二、二元一次方程组的解一般地,使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。

比如,上面这个方程组的解是\(x = 2\),\(y = 3\),因为把\(x = 2\),\(y = 3\)代入方程组中的两个方程,等式都成立。

三、二元一次方程组的解法1、代入消元法(1)从方程组中选取一个系数比较简单的方程,用含有一个未知数的代数式表示另一个未知数。

例如,对于方程组\(\begin{cases}x + y = 5 \\2x y = 1\end{cases}\),由方程\(x + y = 5\)可得\(x = 5 y\)。

(2)把(1)中所得的方程代入另一个方程,消去一个未知数。

把\(x = 5 y\)代入\(2x y = 1\),得到:\\begin{align}2(5 y) y &= 1 \\10 2y y &= 1 \\10 3y &= 1 \\-3y &= 1 10 \\-3y &=-9 \\y &= 3\end{align}\(3)解所得到的一元一次方程,求得一个未知数的值。

(4)把所求得的一个未知数的值代入(1)中求得的方程,求出另一个未知数的值,从而得到方程组的解。

把\(y = 3\)代入\(x = 5 y\),得到\(x = 5 3 = 2\),所以方程组的解是\(x = 2\),\(y = 3\)。

2、加减消元法(1)当方程组的两个方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程。

例如,方程组\(\begin{cases}2x + 3y = 8 \\2x 3y = 4\end{cases}\),两个方程中\(x\)的系数相同,把两个方程相减,可以消去\(x\):\\begin{align}(2x + 3y) (2x 3y) &= 8 4 \\2x + 3y 2x + 3y &= 4 \\6y &= 4 \\y &=\frac{2}{3}\end{align}\(2)解这个一元一次方程,求出一个未知数的值。

20二元一次方程组解法(一)--代入法(基础) 知识讲解及其练习

20二元一次方程组解法(一)--代入法(基础) 知识讲解及其练习

二元一次方程组解法(一)--代入法(基础)知识讲解【学习目标】1. 理解消元的思想;2. 会用代入法解二元一次方程组.【要点梳理】要点一、消元法1.消元思想:二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先求出一个未知数,然后再求出另一个未知数. 这种将未知数由多化少、逐一解决的思想,叫做消元思想.2.消元的基本思路:未知数由多变少.3.消元的基本方法:把二元一次方程组转化为一元一次方程.要点二、代入消元法通过“代入”消去一个未知数,将方程组转化为一元一次方程,这种解法叫做代入消元法,简称代入法.要点诠释:(1)代入消元法的关键是先把系数较简单的方程变形为:用含一个未知数的式子表示另一个未知数的形式,再代入另一个方程中达到消元的目的.(2)代入消元法的技巧是:①当方程组中含有一个未知数表示另一个未知数的代数式时,可以直接利用代入法求解;②若方程组中有未知数的系数为1(或-1)的方程.则选择系数为1(或-1)的方程进行变形比较简便;③若方程组中所有方程里的未知数的系数都不是1或-1,选系数绝对值较小的方程变形比较简便.【典型例题】类型一、用代入法解二元一次方程组1.(•贵阳)用代入法解方程组:的解为.【思路点拨】直接将下面的式子代入上面的式子,化简整理即可.【答案与解析】解:解,把②代入①得x+2=12,∴x=10,∴.故答案为:.【总结升华】当方程组中出现一个未知量代替另一个未知量的方程时,一般用直接代入法解方程组.举一反三:【变式】若方程y=1-x的解也是方程3x+2y=5的解,则x=____,y=____.【答案】3,﹣2.2. 用代入法解二元一次方程组:524050x y x y --=⎧⎨+-=⎩①②【思路点拨】观察两个方程的系数特点,可以发现方程②中x 的系数为1,所以把方程②中的x 用y 来表示,再代入①中即可.【答案与解析】解:由②得x =5-y ③将③代入①得5(5-y)-2y-4=0,解得:y =3,把y =3代入③,得x =5-y =5-3=2所以原方程组的解为23x y =⎧⎨=⎩.【总结升华】代入法是解二元一次方程组的一种重要方法,也是同学们最先学习到的解二元一次方程组的方法,用代入法解二元一次方程组的步骤可概括为:一“变”、二“消”、三“解”、四“代”、五“写”.举一反三:【变式1】与方程组2020x y x y +-=⎧⎨+=⎩有完全相同的解的是( )A .x+y -2=0B .x+2y=0C .(x+y -2)(x+2y)=0D .22(2)0x y x y +-++=【答案】D【变式2】若∣x-2y +1∣+(x +y -5)2=0,则 x= , y= .【答案】3,2.类型二、由解确定方程组中的相关量3.(•莆田模拟)已知关于x ,y 的二元一次方程组的解互为相反数,求k 的值.【思路点拨】将x=-y 代入第二个方程,解出y 的值,再代入上面的方程可得k 值.【答案与解析】解:,将x=-y 代入②得:-y+2y =﹣1,∴y=﹣1,∴x=1,将x=1,y=﹣1代入①得,k=1.【总结升华】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.举一反三:【变式】(•昆山市二模)已知是二元一次方程组的解,则m ﹣n 的值是 .【答案】4解:把代入方程得:,解得:m=1,n=﹣3, 则m ﹣n=1﹣(﹣3)=1+3=4.4. 若方程组ax+by=11(5-a)x-2by+14=0⎧⎨⎩的解为14x y =⎧⎨=⎩,试求a b 、的值. 【答案与解析】解:将14x y =⎧⎨=⎩代入得a+4b=11(5-a)-2b 4+14=0⎧⎨⨯⎩,即a+4b=11a+8b=19⎧⎨⎩,解得a=3b=2⎧⎨⎩. 【总结升华】将已知解代入原方程组得关于a b 、的方程组,再解关于a b 、方程组得a b 、的值.【巩固练习】一、选择题1.(•河北模拟)利用代入消元法解方程组,下列做法正确的是()A.由①得x= B.由①得y=C.由②得y= D.由②得y=2.(春•苏州期末)小亮解方程组的解为,由于不小心滴上了两滴墨水,刚好遮住了两个数●和★,则这两个数分别为()A.4和6 B.6和4 C.2和8 D.8和﹣23.对于方程3x-2y-1=0,用含y的代数式表示x,应是().A.1(31)2y x=- B.312xy+= C.1(21)3x y=- D.213yx+=4.已知x+3y=0,则3232y xy x+-的值为().A.13B.13- C.3 D.-35.一副三角板按如图摆放,∠1的度数比∠2的度数大50°,若设,,则可得到方程组为( ) .A. B. C. D.6.已知21xy=⎧⎨=⎩是二元一次方程组71ax byax by+=⎧⎨-=⎩的解.则a-b的值为().A.-1 B.1 C.2 D.3 二、填空题7.解方程组523,61,x yx y+=⎧⎨-=⎩①②若用代入法解,最好是对方程________变形,用含_______的代数式表示________.8.(春•南安市期末)二元一次方程组的解是.9.方程组525x yx y=+⎧⎨-=⎩的解满足方程x+y-a=0,那么a的值是________.10.若方程3x-13y=12的解也是x-3y=2的解,则x=________,y=_______.11.(•泉州)方程组的解是.12.三年前父亲的年龄是儿子年龄的4倍,三年后父亲的年龄是儿子年龄的3倍,则父亲现在的年龄是________岁,儿子现在的年龄是________岁.三、解答题13.用代入法解下列方程组:(1)52233x yx y-=-⎧⎨+=⎩①②(2)233511x yx y+=⎧⎨-=⎩①②14.小明在解方程组时,遇到了困难,你能根据他的解题过程,帮他找出原因吗?并求出原方程组的解.解方程组123761x yx y-=⎧⎨+=⎩①②解:由②,得y=1-6x ③将③代入②,得6x+(1-6x)=1(由于x消元,无法继续)15.(•黄冈模拟)若关于x,y的二元一次方程组的解也是二元一次方程2x+3y=6的解,求k的值.【答案与解析】一、选择题1.【答案】B ;【解析】解:由①得,2x=6﹣3y , x=;3y=6﹣2x , y=;由②得,5x=2+3y , x=,3y=5x ﹣2, y=.故选B .2.【答案】D .【解析】∵x=5是方程组的解,∴2×5﹣y=12,∴y=﹣2,∴2x+y=2×5﹣2=8,∴●是8,★是﹣2.故选D .3. 【答案】D ;【解析】移项,得321x y =+,系数化1得213y x +=. 4. 【答案】B ;【解析】由x+3y =0得3y =﹣x ,代入32213223y x x x y x x x +-+==----. 5. 【答案】D ;6. 【答案】A ;【解析】将21x y =⎧⎨=⎩代入71ax by ax by +=⎧⎨-=⎩得2721a b a b +=⎧⎨-=⎩,解得23a b =⎧⎨=⎩.二、填空题7. 【答案】②; x , y ;8. 【答案】; 【解析】解:,把①代入②得:x+2x=3,即x=1,把x=1代入①得:y=2,则方程组的解为,故答案为:9. 【答案】-5;【解析】由525x y x y =+⎧⎨-=⎩解得05x y =⎧⎨=-⎩,代入 x+y-a =0,得a =-5.10.【答案】﹣2.5,﹣1.5; 【解析】联立方程组3131232x y x y -=⎧⎨-=⎩,解得 2.51.5x y =-⎧⎨=-⎩. 11.【答案】.12.【答案】51,15;【解析】设父亲现在的年龄是x 岁,儿子现在的年龄是y .由题意得:34(3)33(3)x y x y -=-⎧⎨+=+⎩,解得5115x y =⎧⎨=⎩. 三、解答题13.【解析】解: (1)由②得x =3-3y ③,将③代入①得,5(3-3y)-2y =-2,解得y =1,将y =1代入③得x =0,故01x y =⎧⎨=⎩. (2)由①得y =3-2x ③,将③代入②得,3x-5(3-2x)=11,解得x =2,将x =2代入③得y =-1,故21x y =⎧⎨=-⎩.14.【解析】解:无法继续的原因是变形所得的③应该代入①,不可代入②.由②,得y =1-6x ③,将③代入①,得12x-3(1-6x)=7. 解得13x =,将13x =代入③,得y =-1.所以原方程组的解为131x y ⎧=⎪⎨⎪=-⎩. 15.【解析】解:由方程组得:∵此方程组的解也是方程2x+3y=6的解∴2×7k+3×(﹣2k )=6k=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一二元一次方程定义
①每个方程都有两个未知数,
②未知项的次数都是1.
像这样的整式方程,我们把它叫做二元一次方程2x+3y=6 5x=3 5x+6y=9z 3x2-y=1
三什么叫做二元一次方程组
①方程组有2个一次方程;
②方程组中共有2个不同未知数;
③一般用大括号把2个方程连起来。

1下面哪些是二元一次方程
2若2x3m+1+3y2n-1=0是二元一次方程,则m= ,n=
3若(k-1)x lkl+2y=0是二元一次方程,则k= .
4由两个二元一次方程组成方程组一定是二元一次方程组()
5二元一次方程组一定是由两个二元一次方程组成()
三一般地,使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解.
1二元一次方程3x+2y=12的解有个,正整数解有个,分别是.
2方程2x+3y=8的解()
A、只有一个
B、只有两个
C、只有三个
D、有无数个
3方程组



=
+
-
=
+
8
10
4
3
y
x
x
m
my
mx
有唯一的解,那么m的值为m≠-5 …………()
4、方程组
⎪⎩



=
+
=
+
6
2
3
1
3
1
y
x
y
x
有…………()
5任何一个二元一次方程都有()
(A)一个解;(B)两个解;
(C)三个解;(D)无数多个解
6在下列方程中,只有一个解的是()
(A)



=
+
=
+
3
3
3
1
y
x
y
x
(B)



-
=
+
=
+
2
3
3
y
x
y
x
(C)



=
-
=
+
4
3
3
1
y
x
y
x
(D)以上都是
小练
设甲数为x,乙数为y,根据下列语句,列二元一次方程
.
3
2=
+x
xy3
1
2=
+
y
x
(1)甲数的3倍比乙数大5;
(2)甲数比乙数的2倍少2;
(3)甲数的2倍与乙数的3倍的和是20;
(4)甲乙两数之差为2.
二元一次方程组的解法
1二元一次方程组中一个方程的一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程中,实现了消元(把两个未知数变成一个未知数)进而求二元一次方程组的解。

这种方法叫做代入消元法,简称代入法。

2加减法:把方程组的两个方程(或先作适当变形)相加或相减,消去其中一个未知数,把
解二元一次方程组转化为解一元一次方程。

这种解方程组的方法叫做加减消元法简称加减法
⎩⎨⎧=-=+)2(.
574)1(,973y x y x ⎩⎨⎧-=-=-)
2(73)1(732y x y x 解方程需要一定的过程模式
有趣的题目 1已知 和 都是y =kx +b 的解,求k 、b 的值
2已知|2x+3y-5|+(4x-3y-1)2=0, 求(x+y)2的值
3方程组⎩⎨⎧=+=-3513y x y x 的解是方程x +5y =3的解,反过来方程x +5y =3的解也是方程组⎩⎨⎧=+=-3513y x y x 的解 ………( )
4方程组⎪⎪⎩⎪⎪⎨⎧=-++=+++25323
473523y x y x ,可以转化为⎩⎨⎧-=--=+27651223y x y x ( ) 5在方程4x -3y =7里,如果用x 的代数式表示y ,则437y x +=
( ) 6关于x 、y 的方程组⎩
⎨⎧=-=+m y x m y x 932的解是方程3x +2y =34的一组解,那么m 的值是( ) (A )2; (B )-1; (C )1;
(D )-2; 7若x 、y 均为非负数,则方程6x =-7y 的解的情况是( ) 3x+0.5y=2 3x-4y=-12 5x+6y=22 3x-6y=0 ⎩⎨⎧-==24y x ⎩⎨⎧-==62y x
(A )无解
(B )有唯一一个解 (C )有无数多个解 (D )不能确定
8若5x -6y =0,且xy ≠0,则y
x y x 3545--的值等于( ) (A )32 (B )23 (C )1 (D )-1
9若68132+=--=-+x x y y x ,则=-y x 2______。

10方程■52+=-x y x 是二元一次方程,■是被弄污的x 的系数,请你推断■的值属于下列情况中的( )
A.不可能是-1
B. 不可能是-2
C.不可能是1
D. 不可能是2
11已知⎩⎨⎧=-=21y x 是方程组⎩⎨⎧=+-=++0
706ay bx by ax 的解,则a 、b 分别为( )
A . ⎩⎨⎧==14b a
B . ⎩⎨⎧-=-=14b a
C .⎩⎨⎧=-=14b a
D . ⎩⎨⎧-==1
4b a 12当k 为何值时,三个二元一次方程73=-y x ,132=+y x 和9-=kx y 有公共解? 13方程组⎩⎨⎧=--=8
2352y x x y 消去y 后所得的方程可以是…………………………………( )
A.3x -4x -10=8
B.3x -4x +5=8
C.3x -4x -5=8
D.3x -4x +10=8 14用加减法解方程组⎩
⎨⎧=-=+823132y x y x 时,要使两个方程中同一未知数的系数相等或相反,有以下四种变形的结果:
①⎩⎨⎧=-=+846196y x y x ②⎩⎨⎧=-=+869164y x y x ③⎩⎨⎧-=+-=+1646396y x y x ④⎩⎨⎧=-=+24
69264y x y x 其中变形正确的是………………………………………………………………( )
A.①②
B.③④
C.①③
D.②④
15已知等式 (2A -7B ) x +(3A -8B )=8x +10对一切实数x 都成立,求A 、B 的值.
16解方程组278{ax by cx y +=-=时学生把C 看错,而得到22{x y =-=,正确的解是32{x y ==-,那么
,,a b c 的值是 ( )
A.不能确定
B. 4,5,2a b c ===-
C .a,b 不能确定,c=-2 D.4,7,2a b c ===
17由
12
3=-y x ,可以得到用x 表示y 的式子是( ) A .x=3+1.5y B .x=3+y C .232-=x y D .322x y -= 18 m 为何值时,方程组3522718{x y m
x y m -=+=-的解互为相反数,并求出它们的解; 19当m 为何值时,方程组⎩⎨⎧=+=+8
442y x my x 的解是正整数;
20若⎩
⎨⎧==++4:2:3::54c b a c b a ,则=a ,b= ;c= ; 21方程|a |+|b |=2的自然数解是_____________;
22若4x +3y +5=0,则3(8y -x )-5(x +6y -2)的值等于_________;
23当a 、b 满足什么条件时,方程(2b 2-18)x =3与方程组⎩
⎨⎧-=-=-5231b y x y ax 都无解 24甲、乙两人在解方程组 时,甲看错了①式中的x 的系数,解得⎪⎪⎩
⎪⎪⎨⎧==475847107y x ;乙看错了方程②中的y 的系数,解得⎪⎪⎩
⎪⎪⎨⎧==19177681y x ,若两人的计算都准确无误,请写出这个方程组,并求出此方程组的解;
25代数式ax 2+bx +c 中,当x =1时的值是0,在x =2时的值是3,在x =3时的值是28,试求出这个代数式;。

相关文档
最新文档