低温等离子技术及在净化VOC中的应用

低温等离子技术及在净化VOC中的应用
低温等离子技术及在净化VOC中的应用

低温等离子技术及在净化VOC中的应用

摘要:低温等离子体技术是一种处理VOC s的高新技术,以其能耗低、效率高、设备简单、操作可靠等优点,很受人们重视。本文主要介绍了有机废气的来源与危害,低温等离子体的产生、处理机理及该技术的应用现状、存在的问题和研究方向。

关键词:VOCs 低温等离子体机理

引言:

随着社会的发展,人类生活水平的提高,人类活动所造成的环境污染日趋严重。人类每年所排放的VOC的量也逐年增多,严重影响人们健康,VOC的污染控制已刻不容缓。低温等离子体技术作为一种处理VOC s的高新技术,以其能耗低、效率高、设备简单、操作可靠等优点,具有很好的应用前景,受到人们广泛的研究。

一、VOC的来源、危害及治理方法

VOCs是挥发性有机化合物的简称,不同的地方对VOCs的定义各不相同。在我国VOCs通常是指在常温下饱和蒸汽压约大于70Pa,常压下沸点小于260℃的有机化合物。VOCs来源主要分为两类:第一类是自然源,VOCs的排放来自植被的次生代谢反应,为不可控排放源;第二类是人为源,主要有石油生产、运输过程中的挥发;石油化工及制药等行业排放的废气,油漆、涂料生产和建材、制革等工艺中挥发的有机溶剂,汽车等燃油交通工具排放的尾气以及家庭排放的油烟等。近年来、人为源的贡献率比例逐年上升、一个工业化国家每年排入大气中的VOC数量达数百万吨之多,。

VOCs的危害主要有以下几方面:

(1)大多数VOCs有异味且有毒,其中许多VOCS能使人体发生病变,甚至致癌部分已被列为致癌物。

(2)在光线的照射下,许多VOCs很容易与一些氧化剂发生光化学反应,生成光化学烟雾,危害人体健康,影响农作物生长; (3)某些卤代烃可能会导致臭氧层的破坏;

(4)很多VOCs属于易燃、易爆类化合物,给企业生产造成较大安全隐患。

目前、VOC的处理方法主要有两类:一类是回收法。回收法是通过物理方法,在一定温度、压力下,用选择性吸附剂和选择性渗透膜等方法来分离VOCs,主要包括活性碳吸附、变压吸附、冷凝法和生物膜法等;另一类是消除法(也称破坏法)。消除法是通过化学或生物反应,用光、热、催化剂和微生物等将有机物转化为水和二氧化碳,主要包括热氧化、催化燃烧、生物氧化、电晕法、等离子体分解法、光分解法等。

二、等离子体概述

2.1 等离子体的基本概念

等离子体是不同于固、液、气等状态的物质存在的第四种状态,由于其中正电荷和负电荷的总数基本相等,因而,其整体表现为电中性,故称为等离子体。它具有以下特性:

(1)从微观角度来看,带电粒子虽有正负带电粒子之分,但在宏观尺度内呈电中性;

(2)带电粒子之间不存在净库仑力;

(3)它是一种优良导电流体,利用这一特征已经实现磁流体发电;

(4)带电粒子之间无净磁力;

(5)电离气体具有一定的热效应。

等离子体的分类方法有很多,根据其离子的温度不同可分为平衡等离子体(也称高温等离子体)和非平衡等离子体(也称低温等离子体)。在平衡等离子体中, 电子与其它粒子的温度相等, 一般在5000K以上。在非平衡等离子体中 , 电子温度一般要高达数万度 , 而其它粒子的温度只有 300~500K。根据产生源的不同 , 等离子体又可分为辐射等离子体和放电等离子体。

2.2、低温等离子体的产生方法

低温等离子体主要是由气体放电产生的。所谓气体放电是指, 通过某种机制使一个或几个电子从气体原子或分子中电离出来, 形成的气体媒质称为电离气体, 如果电离气体由外电场产生并形成传导电流 , 这种现象称为气体放电。

气体放电方式可分为以下几种:

(1)辉光放电(Glow discharge)

直流辉光放电是在10^-2~102Torr(1Torr=1.33×102Pa)的低气压下,在两个导电电极(阴极和阳极)之间加上102~103V 的直流电压。放电腔体重的游离电子(宇宙射线产生的)在电场的作用下,被加速而获得能量,从而与中性气体碰撞电离形成等离子体。

(2)电晕放电 (Corona discharge)

电晕放电分为脉冲电晕放电和直流电晕放电。电晕放电是使用曲率半径很小的电极,如针状电极或细线状电极,并在电极上加高压,由于电极的曲率半径很小,靠近电极区域的电场特别强,发生非均匀的局部稳定放电,形成等离子体,电晕放电可在常压下进行, 但能量过于集中 , 很难获得大体积的等离子体;

(3)介质阻挡放电 (Dielectric barrier discharge , DBD)

介质阻挡放电结合了前两者的优点, 是由大量丝状击穿通道组成,用电介质层将两电极隔开,在两电极间加上足够高的交流电压时,电极间隙的气体就会击穿,形成放电。介质阻挡放电可以在常

压下产生大面积的低温等离子体;

(4)射频放电 ( Radio frequency discharge )

射频放电的电极通常安装在放电空间的外部,利用高频率通过电感和电容耦合使反应器中的气体放电形成等离子体。由于射频低温等离子的放电能量高、放电的范围大,现在已经在材料的表面处理和有毒废物清除和裂解中得到应用.

(5)微波放电(Microwave discharge)。

微波等离子体是用微波能电离形成的,其发生器本身没有内部电极,从而消除了电极污染和腐蚀,有利于高纯化学反应和延长设备的使用寿命。

目前,上述五种放电方式中,脉冲电晕放电和介质阻挡放电在工业中应用较广泛。

三、低温等离子体处理VOC的机理

低温等离子体中通过突变电、磁场获得具有极高化学活性的高能粒子(电子、离子、活性基团和激发态分子)与气体分子、原子发生非弹性碰撞,将能量转换成基态分子、原子的内能,发生激发、离解、电离等一系列过程使气体处于活化状态,以至很多需要很高活化能的化学反应能够发生。当电子能量较低时(小于10eV),产生活性自由基,活化后的污染物分子经过等离子体定向链化学反应后被脱除。当电子平均能量超过污染物分子化学键结合能时,污染物分子发生断裂而分解,同时高能电子激发产生·O, ·OH, ·N 等自由基。由于·O 和·OH具有很强的氧化性,最终可将VOC转换为SO2 , NOx , CO2 , H2 O。研究表明,等离子体分解气态污染物可以通过以下两种途径进行:

(1)高能级电子直接作用于污染物分子

e+污染物分子→各种碎片分子(1)(2)高能级电子间接作用于污染物分子

e+O2(N2,H2O) 2→O(N,N*,OH)+污染物分子→中性分子(2)

当低温等离子体电离度不高、气态污染物浓度也不高时,途径(2)成为主要反应。当污染物浓度较高时,途径(1)较为明显。

四、低温等离子体技术在VOC净化中的应用现状

由于低温等离子体技术在经济和技术上所具有的优势,近几十年来低温等离子体技术已成为VOCs治理研究领域的前沿热点课题。国内外的很多组织都在进行这方面的研究,并取得了一定的阶段性成果。例如:

同济大学王银生等利用直流高压脉冲放电来处理含有甲苯的空气,发现甲苯的净化率随着脉冲电压和峰值的增大而提高;随着甲苯进口浓度和流量的增加而降低。

复旦大学的于勇等人利用介质屏蔽降解CF3Br ,降解率达到55 %。

浙江大学的郑雷等人利用正脉冲电晕放电处理含二氯甲烷浓度为 42. 8 umol/ L 的空气 ,在反应器中加入BaTiO3为催化剂 ,在试验气体流速为28 mL/ min条件下 ,二氯甲烷的降解率达到 90 %以上。

虽然国内对低温等离子体技术处理VOCs 的研究有很多,但也只是停留在高校的理论研究或是实验室的试验研究。尽管有些已经发展成小试或者中试试验,但是都还未发展成能直接应用于工业的商业化产品。

五存在的问题及今后研究方向

5.1深入研究低温等离子体去除污染物的机理

目前 , 对等离子体的作用机理已经有了大量的研究 , 但能指导实践的理论体系还不成熟。实际研究中往往避开深层次的机理问题, 而研究表观效果, 使实验结果缺乏理论支持。进一步深入研究等离子体的机理问题是目前需要解决的问题, 也是该方法工业化应用的理论保障。

5.2 提高效率 , 降低能耗

低温等离子体技术的工业化应用的关键是在保证污染物去除率的基础上 , 降低能耗。目前,通过优化反应器的构造与操作参数 , 提高电源的能量效率及电源与反应器的匹配是降低能耗的好方法。除此之外,低温等离子体催化协同净化VOCs技术具有能耗低、投资少、处理效率高、不产生二次污染等显著优点而成为研究热点。

5.3 小型实用处理装置的研究开发

该方法应用的另一个方向是走小型化的道路。生产工艺过程中产生的废气种类多、分布面广, 与大型燃烧设备(如锅炉、炉窑) 相比 , 规模较小 , 而污染物的浓度又不高。对于这种低浓度气体一般的吸收和吸附由于传质推动力较低, 净化效果不够理想; 催化燃烧对低浓度气体或间歇排放废气的处理也不经济。而等离子体法处理这种低浓度的污染物既有效又方便、经济, 这就给小型处理装置提供了相当好的应用前景。

结束语

低温等离子体技术具有能耗低、效率高、设备简单、操作可靠等优点。虽然,低温等离子体技术还处于实验研究阶段,随着对反应机理的深入研究和新材料新工艺的不断涌现,这一新技术必将得到广泛的应用。

低温等离子体技术在表面改性中的应用

低温等离子体技术在表面改性中的应用低温等离子体中粒子的能量一般约为几个至几十电子伏特,大于聚合物材料的结合键能(几个至十几电子伏特),完全可以破裂有机大分子的化学键而形成新键;但远低于高能放射性射线,只涉及材料表面,不影响基体的性能。处于非热力学平衡状态下的低温等离子体中,电子具有较高的能量,可以断裂材料表面分子的化学键,提高粒子的化学反应活性(大于热等离子体),而中性粒子的温度接近室温,这些优点为热敏性高分子聚合物表面改性提供了适宜的条件。 1 形成装置及影响因素 选择适宜的放电方式可获得不同性质和应用特点的等离子体,通常,热等离子体是气体在大气压下电晕放电产生,冷等离子体由低压气体辉光放电形成。 热等离子体装置是利用带电体尖端(如刀状或针状尖端和狭缝式电极)造成不均匀电场,称电晕放电,使用电压和频率、电极间距、处理温度和时间对电晕处理效果都有影响。电压升高、电源频率增大,则处理强度大,处理效果好。但电源频率过高或电极间隙太宽,会引起电极间过多的离子碰撞,造成不必要的能量损耗;而电极间距太小,会有感应损失,也有能量损耗。处理温度较高时,表面特性的变化较快。处理时间延长,极性基团会增多;但时间过长,表面则可能产生分解物,形成新的弱界面层。 冷等离子体装置是在密封容器中设置两个电极形成电场,用真空泵实现一定的真空度,随着气体愈来愈稀薄,分子间距及分子或离子

的自由运动距离也愈来愈长,受电场作用,它们发生碰撞而形成等离子体,这时会发出辉光,故称为辉光放电处理。辉光放电时的气压大小对材料处理效果有很大影响,另外与放电功率,气体成分及流动速度、材料类型等因素有关。 不同的放电方式、工作物质状态及上述影响等离子体产生的因素,相互组合可形成各种低温等离子体处理设备。 2 在表面改性中的应用 低温等离子体技术具有工艺简单、操作方便、加工速度快、处理效果好、环境污染小、节能等优点,在表面改性中广泛的应用。 2.1 表面处理 通过低温等离子体表面处理,材料表面发生多种的物理、化学变化,或产生刻蚀而粗糙,或形成致密的交联层,或引入含氧极性基团,使亲水性、粘结性、可染色性、生物相容性及电性能分别得到改善。 用几种常用的等离子体对硅橡胶进行表面处理,结果表明N2、Ar、O2、CH4-O2及Ar-CH4-O2等离子体均能改善硅橡胶的亲水性,其中CH4-O2和Ar-CH4-O2的效果更佳,且不随时间发生退化[6]。英国派克制笔公司将等离子体技术用于控制墨水流量塑料元件的改性工艺中,提高了塑料的润湿率。 文献表明,用低温等离子体在适宜的工艺条件下处理PE、PP、PVF2、LDPE等材料,材料的表面形态发生的显著变化,引入了多种含氧基团,使表面由非极性、难粘性转为有一定极性、易粘性和亲水性,有利于粘结、涂覆和印刷。

低温等离子原理与应用

低温等离子体技术在环境工程中的应用 低温等离子体技术在废气处理中的应用随着工业经济的发展,石油、制药、油漆、印刷和涂料等行业产生的挥发性有机废气也日渐增多,这些废气不仅会在大气中停留较长的时间,还会扩散和漂移到较远的地方,给环境带来严重的污染,这些废气吸入*** ,直接对***的健康产生极大的危害;另外工业烟气的无控制排放使全球性的大气环境日益恶化,酸雨(主要来源于工业排放的硫氧化物和氮氧化物)的危害引起了各国的重视。由于大气受污染而酸化,导致了生态环境的破坏,重大灾难频繁发生,给人类造成了巨大损失。因此选择一种经济、可行性强的处理方法势在必行。 降解挥发性有机污染物(VOCs)传统的处理方法如吸收、吸附、冷凝和燃烧等,对于低浓度的VOCs很难实现,而光催化降解VOCs又存在催化剂容易失活的问题,利用低温等离子体处理VOCs可以不受上述条件的限制,具有潜在的优势。但由于等离子体是一门包含放电物理学、放电化学、化学反应工程学及真空技术等基础学科之上的交叉学科。因此,目前能成熟的掌握该技术的单位非常的少。大部分宣传采用低温等离子技术处理废气的宣传都不是真正意义上的低温等离子废气处理技术。 是否是低温等离子体处理技术的简单判断方法: 现在,各传媒上宣传低温等离子废气处理的产品和技术很多,可这些产品的宣传大部分都是在炒低温等离子体概念。如何判断是否是真正意义上的低温等离子体技术?可以用下面两个简单的规则来判断,即使你不懂低温等离子体技术也能判断出是真是假。 (1)在废气处理的通道上必须充满了低温等离子体。这条规则判断很简单,只要用眼睛观察一下处理通道是否充满紫蓝色的放电就可以直观的了解是否是低温等离子体了(需要注意的是不要将各种颜色的灯光当作电离子体放电)。如果在废气处理的通道上只零星的分布若干的放电点或线,则处理的效果是非常有限的,因为,大部分的(VOCs)气体没有进过低温等离子体处理区域。 (2)低温等离子体处理系统必须要有一定的放电处理功率。通常需要在2?5瓦时/米3。即1000米3/时的风量需要处理的电功率为2KW?5KW。如果号称1000 米3/时的风量只需要几十或几百瓦的电功率,则最多也就是静电(除尘)处理或局部处理而已。要想分解VOCs 没有一定的能量是不可能的。 等离子体技术目前采用的有四类技术,介质阻挡放电(双介质、单介质)、尖端放电(金属、纤维)、板式放电、微波放电,实际应用也有采用组合模式。

低温等离子净化器说明

低温等离子净化器说明 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

低温等离子净化器说明 等离子净化器推荐使用在喷漆、橡胶制品、印刷等行业中 等离子净化器 (耐驰等离子工程图) 等离子净化器又称低温等离子废气净化器。 本工艺在电催化总的设计概念下,分三个即独立又混成的激发系统:微波激发区、等离子激发区、极板激发区。每个激发区有它特定的功能,但在原理上有它相似的地方。 主要应用于:喷漆房治理,橡胶制品生产产生的废气,印刷行业等等。 去除污染物机理 等离子体化学反应过程中,等离子体传递化学能量的反应过程中能量的传递大致如下: (1) 电场+电子→高能电子 (2) 高能电子+分子(或原子)→(受激原子、受激基团、游离基团) 活性基团

(3) 活性基团+分子(原子)→生成物+热 (4) 活性基团+活性基团→生成物+热 从以上过程可以看出,电子首先从电场获得能量,通过激发或电离将能量转移到分子或原子中去,获得能量的分子或原子被激发,同时有部分分子被电离,从而成为活性基团;之后这些活性基团与分子或原子、活性基团与活性基团之间相互碰撞后生成稳定产物和热。另外,高能电子也能被卤素和氧气等电子亲和力较强的物质俘获,成为负离子。这类负离子具有很好的化学活性,在化学反应中起着重要的作用。 去除污染物的原理 低温等离子体技术处理污染物的原理为:在外加电场的作用下,介质放电产生的大量携能电子轰击污染物分子,使其电离、解离和激发,然后便引发了一系列复杂的物理、化学反应,使复杂大分子污染物转变为简单小分子安全物质,或使有毒有害物质转变成无毒无害或低毒低害的物质,从而使污染物得以降解去除。因其电离后产生的电子平均能量在 10ev ,适当控制反应条件可以实现一般情况下难以实现或速度很慢的化学反应变得十分快速。作为环境污染处理领域中的一项具有极强潜在优势的高新技术,等离子体受到了国内外相关学科界的高度关注。 在环境工程中的应用 低温等离子体技术在废气处理中的应用随着工业经济的发展,石油、制药、油漆、印刷和涂料等行业产生的挥发性有机废气也日渐增多,这些废气不仅会在大气中停留较长的时间,还会扩散和漂移到较远的地方,给环境带来严重的污染,这些废气吸入人体,直接对人体的健康产生极大的危害;另外工业烟气的无控制排放使全球性的大气环境日益恶化,酸雨(主要来源于工业排放的硫氧化物和氮氧化物) 的危害引起了各国的重视。由于大气受污染而酸化,导致了生态环境的破坏,重大灾难频繁发生,给人类造成了巨大损失。因此选择一种经济、可行性强的处理方法势在必行。 降解挥发性有机污染物(VOCs)传统的处理方法如吸收、吸附、冷凝和燃烧等,对于低浓度的VOCs很难实现,而光催化降解VOCs又存在催化剂容易失活的问题,利用低温等离子体处理VOCs可以不受上述条件的限制,具有潜在的优势。但由于等离子体是一门包含放电物理学、放电化学、化学反应工程学及真空技术等基础学科之上的交叉学科。因此, 目前能成熟的掌握该技术的单位非常的少。大部分宣传采用低温等离子技术处理废气的宣传都不是真正意义上的低温等离子废气处理技术。 简单判断方法

低温等离子体表面处理技术

低温等离子体表面处 理技术

Plasma and first wall Introduction Today I will talk about something about my study on the first wall in the tokamak. Firstly, I will show you that what the plasma is in our life thought the following pictures such as: Fig.1 Lighning Fig.2 Aurora Fig.3 Astrospace Just as the pictures mentioned above , they are all consist of plasma. But, what does have in the plasma, now our scientist had given a definition that the plasma state is often referred to as the fourth state of matter and contains enough free charged particles(negative ions 、positive ions)and electronics. Like the photo below. Fig.4 Plasma production Plasma production In our research, we produce the plasma through an ICP (inductively coupled plasma)

低温等离子体在材料表面改性中的应用_肖梅

第31卷第1期2001年1月  东南大学学报(自然科学版)JOUR NAL OF SOUTHEA ST UNIVER SITY (Natural Science Edition ) Vol .31No .1Jan .2001 低温等离子体在材料表面改性中的应用 肖 梅 凌一鸣 (东南大学电子工程系南京,210096) 摘要:概要介绍了目前低温等离子体在材料表面改性方面的研究进展.材料的许多特性,如金 属的表面硬度、耐腐蚀、耐摩擦,聚合物的表面浸润性、亲水性、粘附性以及生物功能材料的生 物相容性等,决定了材料的应用.低温等离子体并不改变材料的块材特性而仅影响材料的表面 特性.对金属如不锈钢等用氮气等离子源离子注入,可以在表面形成Fe 2N ,Fe 3N 和Fe 4N 的铁的氮化物,提高表面的硬度和耐腐蚀性能;氧气、氮气等离子体会在聚合物材料表面形成微针 孔结构,改善其浸润性、粘附性;用等离子聚合法在生物材料表面聚合高分子材料,如氯化对二 甲苯可以降低血小板的吸附.因此,低温等离子体在材料的表面改性方面有很好的应用前景. 关键词:低温等离子体;表面改性;功能材料 中图分类号:O461 文献标识码:A 文章编号:1001-0505(2001)01-0114-05  收稿日期:2000-10-26. 作者简介:肖 梅,女,1972年生,讲师. 等离子体作为物质的第4态,是指部分或完全电离的气体,且自由电子和离子所带正、负电荷总和完全抵消.而低温等离子体是指在直流电弧放电、辉光放电、微波放电、电晕放电、射频放电等条件下所产生的部分电离气体,其中由于电子的质量远小于离子的质量,故电子温度可以在几万度到几十万度之间,远高于离子温度(离子温度甚至可与室温相当).在低温等离子体中包含有多种粒子,除了电离所产生的电子和离子(108~1017cm -3 )以外,还有大量的中性粒子如原子、分子和自由基等.故粒子间的相互作用非常复杂,有电子电子、电子中性粒子、电子离子、离子离子、离子中性分子、中性分子中性分子等.在这样一个复杂的物理体系中,由于电子、离子、激发原子、自由基的存在且相互作用,因此常可以完成在普通情况下难以完成的事.20世纪七八十年代起,等离子体表面改性开始蓬勃发展,目前已形成一个独立的研究方向,主要针对金属、聚合物,生物功能材料等方面.1 低温等离子体在金属材料表面改性中的应用 近十几年来,低温等离子体广泛用于改变金属材料的表面力学特性,即材料的磨损、硬度、摩擦、疲劳、耐腐蚀等性能. 1.1 提高金属表面抗腐蚀能力 已经有一些研究小组通过对铁和钢合金进行离子束渗氮来提高其摩擦和耐腐蚀特性[1~5].这是因为 在铁中形成了如εFe 3N 和ζFe 2N 的铁的氮化合物而在不锈钢表层形成“扩展的奥氏体”.目前采用等离子源离子注入方法[1],它区别于单能量的氮离子注入法,样品浸没在等离子体中并加上高负电压脉冲.在电场中,这些离子被加速而注入到样品中.在注入过程中,与常规束线离子注入相似,用高能离子在材料表面近距离区域注入.与其不同的是,离子从四面八方同时注入到样品上而没有视线限制,因此可以处理形状较复杂的样品,且注入粒子的能量范围宽.W .Wang 小组对轴承钢采用氮等离子源离子注入 [1],注入剂量分别为5×1016,1×1017,5×1017cm -2,所加电压为-20kV .在Na 2SO 4溶液的腐蚀实验中,没有处理的样品的腐蚀电流为170μA ·cm -2,在经过5×1016,1×1017,5×1017cm -2剂量注入后,腐蚀电流分别为66,40,50 μA ·cm -2.结果表明在轴承钢表面形成了诸如Fe 2N ,Fe 3N 和Fe 4N 的铁的氮化物,提高了表面的耐腐蚀的特性.注入其他的粒子,如碳或同时注入氧、氮、碳粒子也可提高金属的耐腐蚀特性 [6,7].

低温等离子废气处理工艺

低温等离子体是继固态、液态、气态之后的物质第四态,当达到气体的放电电压时,气体被击穿,放电过程中整个体系呈现低温状态,所以称为低温等离子体,目前这种技术主要应用于废气处理工业中,有些小伙伴对于整个处理工艺和流程比感兴趣,下面就来一起学习一下。 低温等离子体的工艺技术原理: 异味气体从气体收集系统收集后首先进入除水器中进行水气分离,然后再排入等离子体反应器单元,在该区域由于高能电子的作用,使异味分子受激发,带电粒子或分子间的化学键被打断,产生自由基等活性粒子,这些活性粒子和O2反应达到消除异味目的。同时空气中的水和氧气在高能电子轰击下也会产生OH 自由基、活性氧等强氧化性物质,这些强氧化性物质也会与异味分子反应,使其分解,从而促进异味消除。净化后的气体经排气筒高空排放。 低温等离子处理工艺主要是利用放电来产生很多的高能粒子,然后对分子进行降解、氧化、裂解以及电离。近年来,低温等离子处理工艺成为国内外重视的

一个重点问题。将低温等离子处理工艺应用到低浓度、大风量有机废气处理中,具有处理量大、低能耗等优点。但是,这种处理工艺在应用的过程中会产生很多副产物,不能够完全将有机废气降解为水和二氧化碳。 低温等离子废气处理工艺,低温等离子废气处理技术采用双介质阻挡放电形式产生等离子体,所产生等离子体的密度是其他技术产生等离子体密度的1500倍,初用于氟利昂类、哈隆类物质的分解处理,后延伸恶臭、异味、有毒有害气体处理。该技术节能、环保,应用范围广,所有化工生产环节产生的恶臭异味几乎都可以处理,并对二恶英有良好的分解效果。 低温等离子体降解污染物是利用这些高能电子、自由基等活性粒子和废气中的污染物作用,使污染物分子在极短的时间内发生分解,并发生后续的各种反应以达到降解污染物的目的。

低温等离子体介绍

低温等离子体介绍 基本概念 等离子体是物质存在的第四种状态。它由电离的导电气体组成,其中包括六种典型的粒子,即电子、正离子、负离子、激发态的原子或分子、基态的原子或分子以及光子。 事实上等离子体就是由上述大量正负带电粒子和中性粒子组成的,并表现出集体行为的一种准中性气体,也就是高度电离的气体。无论是部分电离还是完全电离,其中的负电荷总数等于正电荷总数,所以叫等离子体。 等离子体的分类 1、按等离子体焰温度分: (1)高温等离子体:温度相当于108~109 K完全电离的等离子体,如太阳、受控热核聚变等离子体。 (2)低温等离子体: 热等离子体:稠密高压(1大气压以上),温度103~105K,如电弧、高频和燃烧等离子体。 冷等离子体:电子温度高(103~104K)、气体温度低,如稀薄低压辉光放电等离子体、电晕放电等离子体、DBD介质阻挡放电等离子体、索梯放电等离子体等。 2、按等离子体所处的状态: (1)平衡等离子体:气体压力较高,电子温度与气体温度大致相等的等离子体。如常压下的电弧放电等离子体和高频感应等离子体。 (2)非平衡等离子体:低气压下或常压下,电子温度远远大于气体温度的等离子体。如低气压下DC辉光放电和高频感应辉光放电,大气压下DBD介质阻挡放电等产生的冷等离子体。 什么是低温(冷)等离子体? 冰升温至0℃会变成水,如继续使温度升至100℃,那么水就会沸腾成为水蒸气。随着温度的上升,物质的存在状态一般会呈现出固态→液态→气态三种物态的转化过程,我们把这三种基本形态称为物质的三态。那么对于气态物质,温度升至几千度时,将会有什么新变化呢? 由于物质分子热运动加剧,相互间的碰撞就会使气体分子产生电离,这样物质就变成由自由运动并相互作用的正离子和电子组

低温等离子体技术在有机净化废气中的应用与进展

低温等离子体技术在有机净化废气 中的应用与进展 姓名:xxx 专业:环境工程 班级:xxx 指导老师:xxx 2015年12月xx日

低温等离子体技术在净化有机废气中的应用与进展 摘要 随着现代工业的快速发展,工业三废的排放量与日俱增,尤其是挥发性有机废气(VOCs)的排放,挥发性有机废气种类繁多、毒性强、扩散面广,是继颗粒物、二氧化硫、氮氧化合物之后又一类不容忽视的大气污染物。传统的有机废气处理方法存在流程复杂、运行成本高、处理效率低下、易产生二次污染等问题。低温等离子体技术利用自由基、高能电子等活性粒子与有机废气分子发生一系列理化反应,使有害气体在短时间内迅速催化降解为CO2和H2O以及其他小分子化合物。低温等离子体技术工艺流程简单、开停方便、运行费用低、去除效率高,在治理上具有明显优势,是国内外目前的研究热点之一。本文综述了低温等离子体在催化剂处理挥发性有机废气方面的技术研究进展,并展望了等离子体技术在废气处理领域的发展方向。 关键词:低温等离子体;有机挥发性废气(VOCs);催化降解

1 引言 工农业生产过程不可避免地要排放挥发性有机废气(VOCs),这是污染环境、危害人类健康的重要来源[1-2]。挥发性有机废气排放到大气中会引起光化学烟雾、臭氧层破坏等环境问题;大部分的VOCs 还具有毒性、刺激性、甚至致癌作用,对人体健康造成严重的危害[3]。为了应对(VOCs)对环境的破坏以及对人体健康的威胁,挥发性有机废气处理技术迅速成为国内外的研究热点之一。 2 常用有机废气处理技术 目前国内外有多种技术用于处理挥发性有机废气,其中较为常见的方法有:燃烧法、冷凝法、吸收法、吸附法、生物法、低温等离子体法等。 2.1 燃烧法 通过燃烧将VOCs转化为无害物质的过程称为燃烧法[4]。燃烧法的原理是燃烧氧化作用及在高温下的热分解。因此,燃烧法只适用于处理可燃的或在高温下易分解的VOCs。 2.2 冷凝法 冷凝法处理VOCs是利用废气中的各组分饱和蒸汽压不同这一特点,采用降温、升压等方法,将气态的VOCs液化分离[5],但冷凝法不适用于低浓度废气的处理。 2.3 吸收法 吸收法的原理是吸收质(VOCs)与吸收剂(水、酸溶液、碱溶液等)发生化学反应从而达到吸收去除效果。当VOCs成分复杂需多段净化时,该方法便不再适用,并且该法设备易腐蚀,易形成二次污染[6]。 2.4 吸附法 吸附法是用多孔性固体活性炭、分子筛、交换树脂、硅胶、飞灰等吸附去除废气。吸附法对大部分VOCs均适用,一般作为其他方法的后续处理[7]。但是吸附法也有它的缺点投资高、吸附剂用量大、再生困难、能耗大、占地面积大等缺点。

等离子体杀菌[参考内容]

等离子体消毒灭菌知多少? 等离子体作为消毒杀菌新技术引入消毒领域,其研究与应用都得到了迅速发展,但您对其真正了解吗?下面就由小编为您做简单介绍。 等离子体(plasma)又叫做电浆,是由部分电子被剥夺后的原子及原子团被电离后产生的正负离子组成的离子化气体状物质,尺度大于德拜长度的宏观电中性电离气体,其运动主要受电磁力支配,并表现出显著的集体行为。它广泛存在于宇宙中,常被视为是除去固、液、气外,物质存在的第四态。 杀菌原理 等离子体中所包含的活性氧原子、氧分子以及等离子体所产生的辐射将破坏细菌的细胞膜、DNA 及蛋白质, 具体作用机制包括: ⑴活性基团的作用:等离子体中含有的大量活性氧离子、高能自由基团等成分,极易与细菌、霉菌及芽孢、病毒中蛋白质和核酸物质发生氧化反应而变性,使各类微生物死亡。 ⑵高速粒子击穿作用:在灭菌实验后,通过电镜观察经等离子体作用后的细菌菌体与病毒颗粒图像,均呈现千疮百孔状,这是由具有高动能的电子和离子产生的击穿蚀刻效应所致。⑶紫外线的作用:在激发双氧水形成等离子体的过程中,伴随有部分紫外线产生,这种高能紫外光子被微生物或病毒中蛋白质所吸收,致使其分子变性失活。

影响等离子体灭菌效果的因素 1有机物的影响 国内外研究表明离子体灭菌器对物体载体的灭菌效果受有机物影响,且影响主要表现在表面灭菌中。研究发现0.65%的盐和10%的血清会使灭菌效果减弱。因此, 等离子体灭菌,不适宜用于被全血和盐污染的器械的灭菌, 尤其是狭窄腔体如内窥镜的灭菌, 如要使用, 应先将器械上的血和盐清洗干净。 2电源功率的影响 电场中功率不同而导致等离子体的数量不同,进而对微生物的杀灭效果也不同。Nelson 等研究结果显示, 完全杀灭枯草杆菌黑色变种芽孢在50 W下需60 min, 在200 W功率下只需5 min[1]。 3灭菌时间的影响 顾春英等[2]研究表明, 对金黄色葡萄球菌作用1 min, 杀灭率为99.9%; 作用10 min, 杀灭率为100%。 4其他影响因素 除了以上所述的影响因素外, 等离子体灭菌效果还受到基础气体、微生物种类、电源等的影响。 等离子体消毒灭菌应用 等离子体作为消毒杀菌技术引入消毒领域,其研究与应用都得到了迅速发展,其中以过氧化氢低温等离子体灭菌技术应用最为成功。此外,利用等离子体技术进行室内空气净化、消毒也有应用。

认识等离子有机废气净化器

让大家认识等离子有机废气净化器一项非常实用的最新技术,解决了运行成本的居高不下,让大家以前无法接受的价格现在可以接受,以前让大家无法接受的运行成本现在可以接受,那是什么呢?请看: 一、等离子净化器有哪些性能特点和适用哪些行业的有机废气处理呢? 低温等离子体空气净化设备的性能特点: 1、“低温等离子体”设备属高新科技产品,自动化程度高,工艺简洁,操作简单,方便.无需专人看管,遇故障自动停机报警。 2、节能:运行费用低廉是“低温等离子体”专利核心技术之一,处理5000M3/h臭气,耗电量仅1000W。 3、适应范围广:在高温350℃,低温-20℃的环境内,净化区均可运转,特别是在潮湿,甚至空气湿度饱和的环境下仍可正常运行。 4、设备使用寿命长:本设备由不锈钢材,铜材、环氧树脂等材料组成,抗氧化性强,在酸性气体中耐腐蚀。使用寿命长达10年以上。 5、“低温等离子体”设备内使用电压在36伏以下,安全可靠,对人体不构成任何伤害。 6、“低温等离子体”设备组合性强:可以窜并联混合应用,在处理高浓度异味气体时能发挥明显优势。 等离子有机废气净化设备广泛用于:治理油烟粉尘领域,如大型火力发电厂、卷烟厂、纺织厂、印刷厂、造纸厂、钢铁厂、水泥厂等。治理废气、异味气体领域,如污水、垃圾处理厂、泵站、石化厂、化工厂、制药厂、卷烟厂、香精厂、屠宰场等。空气净化方面,如医院、餐饮、宾馆、娱乐场所、车船,航空候车室等公共场所、及办公室、家庭、轿车、实验室等。 二.等离子有机废气处理设备的优势 与传统的有机废气处理方法相比,等离子有机废气净化器有哪些突出的优点呢? 在现实生活中,恶臭的物质很多,来源亦广,主要是由有机物的加热或燃烧,有机溶剂挥发,肉类加工的废液、废渣处理等产生的。皮革厂、喷漆厂、化工厂、制浆造纸厂、屠宰厂,垃圾站等都是恶臭的污染源。

低温等离子体废气处理

有机、无机废气和恶臭处理技术 市场拓展人员培训教程 (宋文国,男,1968年出生,高级工程师,从事于节能环保项目多年。邮箱:,手机:) 一、行业废气概况 煤化工废气 煤制焦过程废气 焦化废气主要来源于装煤、炼焦、化产回收等过程。装煤初期,煤料在高温条件下与空气接触,形成大量黑烟及烟尘、荒煤气及对人体健康有害的多环芳烃。炼焦时,废气一方面来自化学转化过程中未完全炭化的细煤粉及其析出的挥发组分、焦油、飞灰和泄漏的粗煤气,另一方面来自出焦时灼热的焦炭与空气接触生成的CO、CO2、NOx等,主要污染物包括苯系物(如苯并芘)、酚、氰、硫氧化物以及碳氢化合物等。 煤制气过程废气 煤制气废气的来源主要是气化炉开车过程中由于炉内结渣、火层倾斜等非正常停车而产生的逸散,另外,还有炉内的排空气形成部分废气、固定床气化炉的卸压废气、粗煤气净化工序中的部分尾气、硫和酚类物质回收装置的尾气及酸性气体、氨回收吸

收塔的排放气。这些废气的主要成分包括碳氧化物、硫氧化物、氨气、苯并芘、CO、CH4等,有些还夹杂了煤中的砷、镉、汞、铅等有害物质,对环境及人体健康有较大的危害。 煤制油过程废气 煤的液化可分为直接液化和间接液化。煤直接液化时,经过加氢反应,所有异质原子基本被脱除,也无颗粒物,回收的硫可以获得元素硫,氮大多转化为氨。煤间接液化时,催化合成过程中的排放物不多,未反应的尾气(主要是CO)可以在燃烧器中燃烧,排放的废气中CO2和硫很少,也没有颗粒物的生成。煤液化过程对环境造成的影响较小,主要的污染物是液化残渣,这是一种高碳、高灰和高硫物质,在某些工艺中占到液化原料煤总量的40%左右,需进一步处理。 煤燃烧过程废气 煤燃烧过程主要污染物有粉尘与烟雾、SO2为主的硫化物、N2O、NO、NO2、N2O3、 N2O4等氮氧化物、Hg、Cd、Pb、Cr、As、Se、F等有害微量元素、产生温室效应的CO2等。煤直接燃烧的能量利用率低,环境污染严重。 石油化工厂废气 化工厂在生产过程中会产生大量的废气,比如:氨、三甲胺、硫化氢、二氧化硫、甲硫氢、甲硫醇、甲硫醚、二甲二硫、二硫化碳和硫化氢等无机废气;还有VOC类:苯、甲苯、二甲苯、丙

低温等离子体的产生方法

辉光放电电晕放电介质阻挡放电射频放电滑动电弧放电射流放电大气压辉光放电次大气压辉光放电 辉光放电(Glow Discharge) 辉光放电属于低气压放电(low pressure discharge),工作压力一般都低于 10mbar,其构造是在封闭的容器內放置两个平行的电极板,利用电子将中性原子和分子激发,当粒子由激发态(excited state)降回至基态(ground state)时会以光的形式释放出能量。电源可以为直流电源也可以是交流电源。每种气体都有其典型的辉光放电颜色(如下表所示),荧光灯的发光即为辉光放电。因此,实验时若发现等离子的颜色有误,通常代表气体的纯度有问题,一般为漏气所至。辉光放电是化学等离子体实验的重要工具,但因其受低气压的限制,工业应用难于连续化生产且应用成本高昂,而无法广泛应用于工业制造中。目前的应用范围仅局限于实验室、灯光照明产品和半导体工业等。 部分气体辉光放电的颜色 Gas He Ne(neon) Ar Kr Xe H2N2O2 Air Cathode Layer red yellow pink --

red-brown pink red pink Negative Glow pink orange dark-blue green orange-green thin-blue blue yellow-white blue Positive Column Red-pink red-brown dark-red blue-purple white-green pink red-yellow red-yellow red-yellow 次大气压下辉光放电(HAPGD)产生低温等离子体 由于大气压辉光放电技术目前虽有报道但技术还不成熟,没有见到可用于工业生产的设备。而次大气压辉光放电技术则已经成熟并被应用于工业化的生产中。次大气压辉光放电可以处理各种材料,成本低、处理的时间短、加入各种气体的气氛含量高、功率密度大、处理效率高。可应用于表面聚合、表面接枝、金属渗氮、冶金、表面催化、化学合成及各种粉、粒、片材料的表面改性和纺织品的表面处理。次大气压下辉光放电的视觉特征呈现均匀的雾状放电;放电时电极两端的电压低而功率密度大;处理纺织品和碳纤维等材料时不会出

等离子空气净化装置机理分析

等离子空气净化装置机理分析 【摘要】等离子体是一种聚集态物质,其所拥有的高能电子同空气中的分子碰撞时会发生一系列基元物化反应,并在反应过程中产生多种活性自由基和生态氧,即臭氧分解而产生的原子氧。等离子体空气净化工作过程有三部分预荷电集尘,催化净化,负离子发生。基于分子重组原理的新一代空气,净化器利用等离子技术,不仅具有对颗粒污染物的一个净化功能,而且对于气态污染物通过破坏分子间的键能,有效的分解气态污染物,从而达到空气净化作用。 【关键词】等离子体;空气净化;污染物 0.引言 众所周知,随着私家车的普及,城市的道路环境状况越来越令人担忧,发动的汽车所排出的尾气中,混杂有氮氧化合物、碳氢化合物、铅烟、碳烟等多种有害有毒物质。再加上交通路口的频繁停车、起步和怠速运行造成的燃油不完全燃烧,排放的尾气中的有毒有害物质的浓度更高。所以该地段被汽车行驶带起的尘埃中吸附了大量的铅粒、碳烟和有毒的化学物质,使长期工作在上述环境中的环卫人员、交通警察深受其害。 1.等离子空气净化器的工作原理 物质的存在状态随着温度的上升一般会呈现出固态、液态、气态三种物态的转化过程,我们把这三种基本形态称为物质的三态。那么对于气态物质,温度升至几千度时,由于物质分子热运动加剧,相互间的碰撞就会使气体分子产生电离,这样物质就变成由自由运动并相互作用的正离子和电子组成的混合物。我们把物质的这种存在状态称为物质的第四态,它与固态、液态和气态物质比较有不同的物理和化学性质。等离子体按等离子体焰温度分为高温等离子体和低温等离子体其中,按重粒子温度水平还可以分为热等离子体和冷等离子体。非平衡等离子体产生方法主要有低气压辉光放电法、电子束照射法、介质阻挡放电法和电晕放电法等。 本装置选择电晕放电法,作为非平衡态等离子体处理废气技术的具体实现方法中的一种,脉冲电晕放电激发等离子体化学反应过程,目前被认为是去除气相有害物质的很有前途的方法。其基本原理是在室温、常压条件下,由前沿陡峭、脉宽窄的脉冲高压,在电晕线极附近产生激烈的脉冲电晕放电,利用脉冲电晕放电产生的高能电子同废气中气体分子作用而产生丰富的离子和自由基等活性粒子,这些活性粒子再同污染物分子发生氧化或还原反应生成低毒性的无机小分子化合物。由于脉冲上升时间短,只能使电子能量剧烈增加,而离子和原子之类的重粒子其温度可降低至300K,形成低温等离子体。因为电子与电子之间处于同一热力学平衡态,这就意味着电子具有足够高的能量以使反应物分子激发、离解、电离,反应体系又得以保持低温,这样设备投资少,节省能源。

低温等离子体技术介绍

技术介绍 --低温等离子体 低温等离子体是继固态、液态、气态之后的物质的第四态,当外加电压达到气体的着火电压时,气体被击穿,产生包括电子、各种离子、原子和自由基在内的混合体。放电过程中虽然电子温度很高,但重粒子温度很低,整个体系呈现低温状态,所以称为低温等离子体。低温等离子体降解污染物是利用这些高能电子、自由基等活性粒子和废气中的污染物作用,使污染物分子在极短的时间内发生分解,并发生后续的各种反应以达到分解污染物的目的。 “QHDD-Ⅱ”低温等离子体工业废气处理成套设备和技术作为一种新型的气态污染物的治理技术是一个集物理学、化学、生物学和环境科学于一体的交叉综合性电子化学技术,由于能很容易使污染物分子高效分解且处理能耗低等特点,是目前国内外大气污染治理中最富有前景、最行之有效的技术方法之一,其使用和推广前景广阔,为工业领域VOC类有机废气及恶臭气体的治理开辟了一条新的思路。 低温等离子体废气处理技术与其他废气治理方法优缺点对比 表1-2 几种废气处理工艺的适用范围及优缺点 工艺名称原理适用范围优点缺点 掩蔽法采用更强烈的芳香气味与臭气掺和,以掩蔽臭气,使之能被人接收适用于需立即、暂时地消除低浓度恶臭气体影响地场合,恶臭强度左右,无组织排放源可尽快消除恶臭影响,灵活性大,费用低恶臭成分并没有被去除,麻痹了对原有污染物的感知 热力燃烧法在高温下恶臭物质与燃料气充分混和,实现完全燃烧适用于处理高浓度、小气量的可燃性气体净化效率高,恶臭物质被彻底氧化分解设备易腐蚀,消耗燃料,处理成本高,易形成二次污染,催化剂中毒 催化燃烧法

水吸收法利用臭气中某些物质易溶于水的特性,使臭气成分直接与水接触,从而溶解于水达到脱臭目的水溶性、有组织排放源的恶臭气体工艺简单,管理方便,设备运转费用低产生二次污染,需对洗涤液进行处理;净化效率低,应与其他技术联合使用,对水溶性差的物质等处理效果差 药液吸收法利用臭气中某些物质和药液产生化学反应的特性,去除某些臭气成分适用于处理大气量、高中浓度的臭气能够有针对性处理某些臭气成分,工艺较成熟净化效率不高,消耗吸收剂,易形成而二次污染 吸附法利用吸附剂的吸附功能使恶臭物质由气相转移至固相适用于处理低浓度,高净化要求的恶臭气体净化效率很高,可以处理多组分恶臭气体吸附剂费用昂贵,再生较困难,要求待处理的恶臭气体有较低的温度和含尘量 生物滤池恶臭气体经过除尘增湿或降温等预处理工艺后,从滤床底部由下向上穿过由滤料组成的滤床,恶臭气体由气相转移至水—微生物混和相,通过固着于滤料上的微生物代谢作用而被分解掉目前研究最多,工艺最成熟,在实际中也最常用的生物脱臭方法,又可细分为土壤脱臭法、堆肥脱臭法、泥炭脱臭法等。净化效率高,处理费用低占地面积大,易堵塞,填料需定期更换,脱臭过程很难控制,受温度和湿度的影响大,生物菌培训需要较长时间,遭到破坏后恢复时间较长。 生物滴滤池原理同生物滤池式类似,不过使用的滤料是诸如聚丙烯小球、陶瓷、木炭、塑料等不能提供营养物的惰性材料。只有针对某些恶臭物质而降解的微生物附着在填料上,而不会出现生物滤池中混和微生物群同时消耗滤料有机质的情况池内微生物数量大,能承受比生物滤池大的污染负荷,惰性滤料可以不用更换,造成压力损失小,而且操作条件极易控制占地面积大,需不断投加营养物质,而且操作复杂,受温度和湿度的影响大,生物菌培训需要较长时间,遭到破坏后恢复时间较长。 洗涤式活性污泥脱臭法将恶臭物质和含悬浮物泥浆的混和液充分接触,使之在吸收器中从臭气中去除掉,洗涤液再送到反应器中,通过悬浮生长的微生物代谢活动降解溶解的恶臭物质有较大的适用范围可以处理大气量的臭气,同时操作条件易于控制,占地面积小设备费用大,操作复杂而且需要投加营养物质 曝气式活性污泥脱臭法将恶臭物质以曝气形式分散到含活性污泥的混和液中,通过悬浮生长的微生物降解恶臭物质适用范围广,目前日本已用于粪便处理场、污水处理厂的臭气处理活性污泥经过驯化后,对不超过极限负荷量的恶臭成分,去除率可达%以上。受到曝气强度的限制,该法的应用还有一定局限

低温等离子体技术及其在环保领域的应用

Advances in Environmental Protection 环境保护前沿, 2014, 4, 136-145 Published Online August 2014 in Hans. https://www.360docs.net/doc/c011940157.html,/journal/aep https://www.360docs.net/doc/c011940157.html,/10.12677/aep.2014.44019 Non-Thermal Plasma Technique and Its Application in the Field of Environmental Protection Zhiwei Ding, Yunlong Xie*, Kai Yan, Hongjuan Xu, Yijun Zhong Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua Email: *xieyunlong@https://www.360docs.net/doc/c011940157.html, Received: May 24th, 2014; revised: Jun. 20th, 2014; accepted: Jun. 29th, 2014 Copyright ? 2014 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.360docs.net/doc/c011940157.html,/licenses/by/4.0/ Abstract In the last thirty years, non-thermal plasma (NTP) technology has been developed for the envi-ronmental protection, which has been more and more widely used in air pollutants, especially in volatile organic compounds (VOCs), NO x, SO2, etc. This work systematically introduces the me-chanism of producing NTP and eliminating pollutants, and highlights its application to the treat-ment of air pollutants. Furthermore, the influencing factor of treatment efficiency of the NTP and the current research situation of the NTP combined with other technologies are further summa-rized and analyzed. At last, this paper puts forward a promising viewpoint to better use the Non-thermal Plasma technology. Keywords Non-Thermal Plasma (NTP), Air Pollution Treatment, Environmental Protection, Synergistic Effect 低温等离子体技术及其在环保领域的应用 丁志威,谢云龙*,颜凯,许红娟,钟依均 浙江师范大学先进催化材料教育部重点实验室,金华 Email: *xieyunlong@https://www.360docs.net/doc/c011940157.html, *通讯作者。

八种空气净化技术全解析

八种空气净化技术全解析 关键词:空气净化,中国家网 2013年才刚刚开始,全国多个城市的PM2.5监测站相继“爆表”,很多消费者开始抢购空气净化器,但是面对新产品,可能对于不同产品之间的技术区别还不甚了解,也造成了很多选购过程中的误解。 快速有效的解决室内空气质量问题基本可以分为三种方式,空气净化器、空调或者造价略显高昂的新风系统。空气净化器是近几年伴随消费需求诞生的新鲜产品,空调则是功能升级的锦上添花,新风系统虽然效果最佳,但是造价高昂,绝大多数应用于别墅或者高档酒店。相对而言前两者的选购用户更多,而大多数已经购买了空调的用户则将目光集中在空气净化器上。但是对于这种新产品,很多人站在空气净化器的销售区域发呆,面对陌生的技术名词无所适从。 首先我们需要先了解污染源的种类,了解了“病根”才好对症下药。目前空气净化器主要用于解决室内的八大污染类别,包括粉尘污染、可吸附颗粒物污染、烟碱污染、厨房油烟污染、室内异味、细菌、病毒,以及国外不常见但国内常有的装饰装修所造成的化学污染。净化不同的污染源最有效的净化手段或者技术也不一样,当我们了解了污染源之后,只需要有针对性的选择合适的技术产品,就能帮助我们实现空气质量的改善。笔者在此跟大家分享目前八种主流的空气净化技术以及优缺点。 活性炭吸附技术吸附能力很强 广大消费者对于活性炭并不陌生,从洗面奶到除臭剂等等生活中的很多产品都曾利用过活性炭的超强吸附能力。而活性炭吸附技术在国内用于医药、化工和食品等工业的精制和脱色已有多年历史,70年代开始用于工业废水处理,并逐步成为工业废水二级或三级处理的主要方法之一。正是因为对于杂质或者污染源的超强吸附能力让活性炭成为很多空气净化产品的首选技术方案。 基于活性炭吸附技术的空气净化器如何工作呢?简单地说,就是指活性炭(滤网)通过主动式的风扇将空气过滤后重新释放出来。作为目前最为基础的一种净化技术,应用于绝大多数的空气净化器。 优点:吸附能力很强,能够有效吸附室内空气中的有害物质(诸如粉尘、微粒、游离分子、细菌等)。 缺点:活性炭只能暂时吸附,并且随温度、风速升高,所吸附的污染物就有可能游离出来,所以要经常更换过滤材料,避免吸附饱和。 负氧离子技术净化二手烟污染、消除室内异味效果显著 负氧离子技术指的是基于空气负离子发生器的应用,也是种基础净化技术,应用于绝大多数的空气净化器。 负离子是空气中一种带负电荷的气体离子,也被称作“负氧离子”。负离子具有镇静、催眠、镇痛、增食欲、降血压等功能。雷雨过后,人们感到心情舒畅,就是空气的负离子增多的缘故。空气负离子能还原来自大气的污染物质、氮氧化物、香烟等产生的活性氧(氧自由基)、减少过多活性氧对人体的危害;中和带正电的空气飘尘无电荷后沉降,使空气得到净化。优点:负氧离子净化器,对二手烟污染效果显著并能有效除尘、能有效增强血液携氧能力20%左右,并有效促进人体新陈代谢改善睡眠、对室内异味消除效果明显、能有效消除电脑电视等产生的高压静电、保护视力、同时释放微量臭氧具有一定杀菌消毒效果。 缺点:负氧离子在空气中寿命很短,所以需要持续释放;对因装饰装修造成的甲醛苯系物等污染净化效果则很一般,所以需要您区别选择。 活性氧技术杀菌迅速彻底

低温等离子废气净化器 实用案例

低温等离子废气净化器 说 明 书

河北清大明骏环保设备有限公司 公司简介 河北清大明骏环保设备有限责任公司 是一家集科研、设计、生产、维修、和销售集成为一体的高新技术企业,、凭借在环保领域的专业水平和成熟的技术,正在迅速崛起。依靠科技求发展,不断为用户提供满意的高科技产品,是我们始终不变的追求。 在充分引进吸收国外先进技术的基础上,我公司已成功开发出环保净化设备、粉尘处理设备、废气处理设备、等系列产品,

并已广泛应用于冶金、化工、焊接、制药、垃圾处理、喷涂等众多领域。以一流的产品质量和精湛的技术服务受到了用户的一致 好评。河北廊坊山东滨州 明骏环保全体员工奉行“进取求实严 谨团结”的方针,不断开拓创新,以技术为核心、视质量为生命、奉用户为上帝,竭诚为您提供性价比最高的环保产品、高质量的废气粉尘工程设计改造及无微不至的售后 服务。 本公司拥有专业的设计团队、生产团队可根据客户要求进行定做。欢迎前来询。一:产品外观

1.箱体。 2.进出风口。 3.门锁。 4.配电箱。 5.支架 6.指示灯

7.电源开关8.漏油换气口9.电源线 10.过滤网11.高压电解模块 12.高频绝缘陶瓷 二:低温等离子净化工作原理 采用低温等离子体分解油雾、废气等污染介质时,等离子体中的高能离子起决定性的作用。流星雨状的高能离子与介质内分子(原理)发生非弹性碰撞,将能量转化成基态分子(原子)的内能,发生激发、离解、电离等一系列过程使污染介质处于活化状态。污染介质在等离子体的作用下,产生活性自由基,活化后的污染物分子经过等离子体定向链化学反应后被脱除。当离子平均能量超过污染介质中化学键结合能时,分子链断裂,污染介质分解,并在等离子发生器吸附场的作用下被收集。在低温等离子体中,可能发生各类型的化学反应,这主要取决于等离子的平均能量、离子密度、气体温度、污染物介质内分子浓度及共存的介质成分。 对气态有机污染物的降解机理 有足够的能量来产生自由基,引发一系列复杂的物理、化学反应。由低温等离子体引起的气体有机物化学反应是在气相中进行的电离、离解、激发、原子.分子间的相互结合及加成反应。这个能量足以使大多数气态有机物中的化学键发生断裂,从而使其降解。 从净化空气效率考虑,我们选择了电晕电流较高化

相关文档
最新文档